aio-posix: extract ppoll(2) and epoll(7) fd monitoring
[qemu/ar7.git] / hw / ssi / aspeed_smc.c
blob23c8d2f06245c4f77944de38e226adfd8fcf880a
1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
4 * Copyright (C) 2016 IBM Corp.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
39 /* CE Type Setting Register */
40 #define R_CONF (0x00 / 4)
41 #define CONF_LEGACY_DISABLE (1 << 31)
42 #define CONF_ENABLE_W4 20
43 #define CONF_ENABLE_W3 19
44 #define CONF_ENABLE_W2 18
45 #define CONF_ENABLE_W1 17
46 #define CONF_ENABLE_W0 16
47 #define CONF_FLASH_TYPE4 8
48 #define CONF_FLASH_TYPE3 6
49 #define CONF_FLASH_TYPE2 4
50 #define CONF_FLASH_TYPE1 2
51 #define CONF_FLASH_TYPE0 0
52 #define CONF_FLASH_TYPE_NOR 0x0
53 #define CONF_FLASH_TYPE_NAND 0x1
54 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
56 /* CE Control Register */
57 #define R_CE_CTRL (0x04 / 4)
58 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
59 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL (0x08 / 4)
66 #define INTR_CTRL_DMA_STATUS (1 << 11)
67 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
68 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
69 #define INTR_CTRL_DMA_EN (1 << 3)
70 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
71 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
73 /* CEx Control Register */
74 #define R_CTRL0 (0x10 / 4)
75 #define CTRL_IO_QPI (1 << 31)
76 #define CTRL_IO_QUAD_DATA (1 << 30)
77 #define CTRL_IO_DUAL_DATA (1 << 29)
78 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
79 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
80 #define CTRL_CMD_SHIFT 16
81 #define CTRL_CMD_MASK 0xff
82 #define CTRL_DUMMY_HIGH_SHIFT 14
83 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
84 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
85 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
86 #define CE_CTRL_CLOCK_FREQ(div) \
87 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
88 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
89 #define CTRL_CE_STOP_ACTIVE (1 << 2)
90 #define CTRL_CMD_MODE_MASK 0x3
91 #define CTRL_READMODE 0x0
92 #define CTRL_FREADMODE 0x1
93 #define CTRL_WRITEMODE 0x2
94 #define CTRL_USERMODE 0x3
95 #define R_CTRL1 (0x14 / 4)
96 #define R_CTRL2 (0x18 / 4)
97 #define R_CTRL3 (0x1C / 4)
98 #define R_CTRL4 (0x20 / 4)
100 /* CEx Segment Address Register */
101 #define R_SEG_ADDR0 (0x30 / 4)
102 #define SEG_END_SHIFT 24 /* 8MB units */
103 #define SEG_END_MASK 0xff
104 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
105 #define SEG_START_MASK 0xff
106 #define R_SEG_ADDR1 (0x34 / 4)
107 #define R_SEG_ADDR2 (0x38 / 4)
108 #define R_SEG_ADDR3 (0x3C / 4)
109 #define R_SEG_ADDR4 (0x40 / 4)
111 /* Misc Control Register #1 */
112 #define R_MISC_CTRL1 (0x50 / 4)
114 /* SPI dummy cycle data */
115 #define R_DUMMY_DATA (0x54 / 4)
117 /* DMA Control/Status Register */
118 #define R_DMA_CTRL (0x80 / 4)
119 #define DMA_CTRL_DELAY_MASK 0xf
120 #define DMA_CTRL_DELAY_SHIFT 8
121 #define DMA_CTRL_FREQ_MASK 0xf
122 #define DMA_CTRL_FREQ_SHIFT 4
123 #define DMA_CTRL_CALIB (1 << 3)
124 #define DMA_CTRL_CKSUM (1 << 2)
125 #define DMA_CTRL_WRITE (1 << 1)
126 #define DMA_CTRL_ENABLE (1 << 0)
128 /* DMA Flash Side Address */
129 #define R_DMA_FLASH_ADDR (0x84 / 4)
131 /* DMA DRAM Side Address */
132 #define R_DMA_DRAM_ADDR (0x88 / 4)
134 /* DMA Length Register */
135 #define R_DMA_LEN (0x8C / 4)
137 /* Checksum Calculation Result */
138 #define R_DMA_CHECKSUM (0x90 / 4)
140 /* Read Timing Compensation Register */
141 #define R_TIMINGS (0x94 / 4)
143 /* SPI controller registers and bits (AST2400) */
144 #define R_SPI_CONF (0x00 / 4)
145 #define SPI_CONF_ENABLE_W0 0
146 #define R_SPI_CTRL0 (0x4 / 4)
147 #define R_SPI_MISC_CTRL (0x10 / 4)
148 #define R_SPI_TIMINGS (0x14 / 4)
150 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
151 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
153 #define ASPEED_SOC_SMC_FLASH_BASE 0x10000000
154 #define ASPEED_SOC_FMC_FLASH_BASE 0x20000000
155 #define ASPEED_SOC_SPI_FLASH_BASE 0x30000000
156 #define ASPEED_SOC_SPI2_FLASH_BASE 0x38000000
159 * DMA DRAM addresses should be 4 bytes aligned and the valid address
160 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
161 * 0x80000000 - 0xBFFFFFFF (AST2500)
163 * DMA flash addresses should be 4 bytes aligned and the valid address
164 * range is 0x20000000 - 0x2FFFFFFF.
166 * DMA length is from 4 bytes to 32MB
167 * 0: 4 bytes
168 * 0x7FFFFF: 32M bytes
170 #define DMA_DRAM_ADDR(s, val) ((s)->sdram_base | \
171 ((val) & (s)->ctrl->dma_dram_mask))
172 #define DMA_FLASH_ADDR(s, val) ((s)->ctrl->flash_window_base | \
173 ((val) & (s)->ctrl->dma_flash_mask))
174 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
176 /* Flash opcodes. */
177 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
179 #define SNOOP_OFF 0xFF
180 #define SNOOP_START 0x0
183 * Default segments mapping addresses and size for each slave per
184 * controller. These can be changed when board is initialized with the
185 * Segment Address Registers.
187 static const AspeedSegments aspeed_segments_legacy[] = {
188 { 0x10000000, 32 * 1024 * 1024 },
191 static const AspeedSegments aspeed_segments_fmc[] = {
192 { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
193 { 0x24000000, 32 * 1024 * 1024 },
194 { 0x26000000, 32 * 1024 * 1024 },
195 { 0x28000000, 32 * 1024 * 1024 },
196 { 0x2A000000, 32 * 1024 * 1024 }
199 static const AspeedSegments aspeed_segments_spi[] = {
200 { 0x30000000, 64 * 1024 * 1024 },
203 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
204 { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
205 { 0x28000000, 32 * 1024 * 1024 },
206 { 0x2A000000, 32 * 1024 * 1024 },
209 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
210 { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
211 { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
214 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
215 { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
216 { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
218 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
219 const AspeedSegments *seg);
220 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
221 AspeedSegments *seg);
224 * AST2600 definitions
226 #define ASPEED26_SOC_FMC_FLASH_BASE 0x20000000
227 #define ASPEED26_SOC_SPI_FLASH_BASE 0x30000000
228 #define ASPEED26_SOC_SPI2_FLASH_BASE 0x50000000
230 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
231 { 0x0, 128 * MiB }, /* start address is readonly */
232 { 0x0, 0 }, /* disabled */
233 { 0x0, 0 }, /* disabled */
236 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
237 { 0x0, 128 * MiB }, /* start address is readonly */
238 { 0x0, 0 }, /* disabled */
241 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
242 { 0x0, 128 * MiB }, /* start address is readonly */
243 { 0x0, 0 }, /* disabled */
244 { 0x0, 0 }, /* disabled */
247 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
248 const AspeedSegments *seg);
249 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
250 uint32_t reg, AspeedSegments *seg);
252 static const AspeedSMCController controllers[] = {
254 .name = "aspeed.smc-ast2400",
255 .r_conf = R_CONF,
256 .r_ce_ctrl = R_CE_CTRL,
257 .r_ctrl0 = R_CTRL0,
258 .r_timings = R_TIMINGS,
259 .nregs_timings = 1,
260 .conf_enable_w0 = CONF_ENABLE_W0,
261 .max_slaves = 5,
262 .segments = aspeed_segments_legacy,
263 .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
264 .flash_window_size = 0x6000000,
265 .has_dma = false,
266 .nregs = ASPEED_SMC_R_SMC_MAX,
267 .segment_to_reg = aspeed_smc_segment_to_reg,
268 .reg_to_segment = aspeed_smc_reg_to_segment,
269 }, {
270 .name = "aspeed.fmc-ast2400",
271 .r_conf = R_CONF,
272 .r_ce_ctrl = R_CE_CTRL,
273 .r_ctrl0 = R_CTRL0,
274 .r_timings = R_TIMINGS,
275 .nregs_timings = 1,
276 .conf_enable_w0 = CONF_ENABLE_W0,
277 .max_slaves = 5,
278 .segments = aspeed_segments_fmc,
279 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
280 .flash_window_size = 0x10000000,
281 .has_dma = true,
282 .dma_flash_mask = 0x0FFFFFFC,
283 .dma_dram_mask = 0x1FFFFFFC,
284 .nregs = ASPEED_SMC_R_MAX,
285 .segment_to_reg = aspeed_smc_segment_to_reg,
286 .reg_to_segment = aspeed_smc_reg_to_segment,
287 }, {
288 .name = "aspeed.spi1-ast2400",
289 .r_conf = R_SPI_CONF,
290 .r_ce_ctrl = 0xff,
291 .r_ctrl0 = R_SPI_CTRL0,
292 .r_timings = R_SPI_TIMINGS,
293 .nregs_timings = 1,
294 .conf_enable_w0 = SPI_CONF_ENABLE_W0,
295 .max_slaves = 1,
296 .segments = aspeed_segments_spi,
297 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
298 .flash_window_size = 0x10000000,
299 .has_dma = false,
300 .nregs = ASPEED_SMC_R_SPI_MAX,
301 .segment_to_reg = aspeed_smc_segment_to_reg,
302 .reg_to_segment = aspeed_smc_reg_to_segment,
303 }, {
304 .name = "aspeed.fmc-ast2500",
305 .r_conf = R_CONF,
306 .r_ce_ctrl = R_CE_CTRL,
307 .r_ctrl0 = R_CTRL0,
308 .r_timings = R_TIMINGS,
309 .nregs_timings = 1,
310 .conf_enable_w0 = CONF_ENABLE_W0,
311 .max_slaves = 3,
312 .segments = aspeed_segments_ast2500_fmc,
313 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
314 .flash_window_size = 0x10000000,
315 .has_dma = true,
316 .dma_flash_mask = 0x0FFFFFFC,
317 .dma_dram_mask = 0x3FFFFFFC,
318 .nregs = ASPEED_SMC_R_MAX,
319 .segment_to_reg = aspeed_smc_segment_to_reg,
320 .reg_to_segment = aspeed_smc_reg_to_segment,
321 }, {
322 .name = "aspeed.spi1-ast2500",
323 .r_conf = R_CONF,
324 .r_ce_ctrl = R_CE_CTRL,
325 .r_ctrl0 = R_CTRL0,
326 .r_timings = R_TIMINGS,
327 .nregs_timings = 1,
328 .conf_enable_w0 = CONF_ENABLE_W0,
329 .max_slaves = 2,
330 .segments = aspeed_segments_ast2500_spi1,
331 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
332 .flash_window_size = 0x8000000,
333 .has_dma = false,
334 .nregs = ASPEED_SMC_R_MAX,
335 .segment_to_reg = aspeed_smc_segment_to_reg,
336 .reg_to_segment = aspeed_smc_reg_to_segment,
337 }, {
338 .name = "aspeed.spi2-ast2500",
339 .r_conf = R_CONF,
340 .r_ce_ctrl = R_CE_CTRL,
341 .r_ctrl0 = R_CTRL0,
342 .r_timings = R_TIMINGS,
343 .nregs_timings = 1,
344 .conf_enable_w0 = CONF_ENABLE_W0,
345 .max_slaves = 2,
346 .segments = aspeed_segments_ast2500_spi2,
347 .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
348 .flash_window_size = 0x8000000,
349 .has_dma = false,
350 .nregs = ASPEED_SMC_R_MAX,
351 .segment_to_reg = aspeed_smc_segment_to_reg,
352 .reg_to_segment = aspeed_smc_reg_to_segment,
353 }, {
354 .name = "aspeed.fmc-ast2600",
355 .r_conf = R_CONF,
356 .r_ce_ctrl = R_CE_CTRL,
357 .r_ctrl0 = R_CTRL0,
358 .r_timings = R_TIMINGS,
359 .nregs_timings = 1,
360 .conf_enable_w0 = CONF_ENABLE_W0,
361 .max_slaves = 3,
362 .segments = aspeed_segments_ast2600_fmc,
363 .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
364 .flash_window_size = 0x10000000,
365 .has_dma = true,
366 .nregs = ASPEED_SMC_R_MAX,
367 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
368 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
369 }, {
370 .name = "aspeed.spi1-ast2600",
371 .r_conf = R_CONF,
372 .r_ce_ctrl = R_CE_CTRL,
373 .r_ctrl0 = R_CTRL0,
374 .r_timings = R_TIMINGS,
375 .nregs_timings = 2,
376 .conf_enable_w0 = CONF_ENABLE_W0,
377 .max_slaves = 2,
378 .segments = aspeed_segments_ast2600_spi1,
379 .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
380 .flash_window_size = 0x10000000,
381 .has_dma = false,
382 .nregs = ASPEED_SMC_R_MAX,
383 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
384 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
385 }, {
386 .name = "aspeed.spi2-ast2600",
387 .r_conf = R_CONF,
388 .r_ce_ctrl = R_CE_CTRL,
389 .r_ctrl0 = R_CTRL0,
390 .r_timings = R_TIMINGS,
391 .nregs_timings = 3,
392 .conf_enable_w0 = CONF_ENABLE_W0,
393 .max_slaves = 3,
394 .segments = aspeed_segments_ast2600_spi2,
395 .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
396 .flash_window_size = 0x10000000,
397 .has_dma = false,
398 .nregs = ASPEED_SMC_R_MAX,
399 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
400 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
405 * The Segment Registers of the AST2400 and AST2500 have a 8MB
406 * unit. The address range of a flash SPI slave is encoded with
407 * absolute addresses which should be part of the overall controller
408 * window.
410 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
411 const AspeedSegments *seg)
413 uint32_t reg = 0;
414 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
415 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
416 return reg;
419 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
420 uint32_t reg, AspeedSegments *seg)
422 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
423 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
427 * The Segment Registers of the AST2600 have a 1MB unit. The address
428 * range of a flash SPI slave is encoded with offsets in the overall
429 * controller window. The previous SoC AST2400 and AST2500 used
430 * absolute addresses. Only bits [27:20] are relevant and the end
431 * address is an upper bound limit.
433 #define AST2600_SEG_ADDR_MASK 0x0ff00000
435 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
436 const AspeedSegments *seg)
438 uint32_t reg = 0;
440 /* Disabled segments have a nil register */
441 if (!seg->size) {
442 return 0;
445 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
446 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
447 return reg;
450 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
451 uint32_t reg, AspeedSegments *seg)
453 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
454 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
456 if (reg) {
457 seg->addr = s->ctrl->flash_window_base + start_offset;
458 seg->size = end_offset + MiB - start_offset;
459 } else {
460 seg->addr = s->ctrl->flash_window_base;
461 seg->size = 0;
465 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
466 const AspeedSegments *new,
467 int cs)
469 AspeedSegments seg;
470 int i;
472 for (i = 0; i < s->ctrl->max_slaves; i++) {
473 if (i == cs) {
474 continue;
477 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
479 if (new->addr + new->size > seg.addr &&
480 new->addr < seg.addr + seg.size) {
481 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
482 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
483 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
484 s->ctrl->name, cs, new->addr, new->addr + new->size,
485 i, seg.addr, seg.addr + seg.size);
486 return true;
489 return false;
492 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
493 uint64_t regval)
495 AspeedSMCFlash *fl = &s->flashes[cs];
496 AspeedSegments seg;
498 s->ctrl->reg_to_segment(s, regval, &seg);
500 memory_region_transaction_begin();
501 memory_region_set_size(&fl->mmio, seg.size);
502 memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
503 memory_region_set_enabled(&fl->mmio, !!seg.size);
504 memory_region_transaction_commit();
506 s->regs[R_SEG_ADDR0 + cs] = regval;
509 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
510 uint64_t new)
512 AspeedSegments seg;
514 s->ctrl->reg_to_segment(s, new, &seg);
516 /* The start address of CS0 is read-only */
517 if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
518 qemu_log_mask(LOG_GUEST_ERROR,
519 "%s: Tried to change CS0 start address to 0x%"
520 HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
521 seg.addr = s->ctrl->flash_window_base;
522 new = s->ctrl->segment_to_reg(s, &seg);
526 * The end address of the AST2500 spi controllers is also
527 * read-only.
529 if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
530 s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
531 cs == s->ctrl->max_slaves &&
532 seg.addr + seg.size != s->ctrl->segments[cs].addr +
533 s->ctrl->segments[cs].size) {
534 qemu_log_mask(LOG_GUEST_ERROR,
535 "%s: Tried to change CS%d end address to 0x%"
536 HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
537 seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
538 seg.addr;
539 new = s->ctrl->segment_to_reg(s, &seg);
542 /* Keep the segment in the overall flash window */
543 if (seg.size &&
544 (seg.addr + seg.size <= s->ctrl->flash_window_base ||
545 seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
546 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
547 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
548 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
549 return;
552 /* Check start address vs. alignment */
553 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
554 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
555 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
556 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
559 /* And segments should not overlap (in the specs) */
560 aspeed_smc_flash_overlap(s, &seg, cs);
562 /* All should be fine now to move the region */
563 aspeed_smc_flash_set_segment_region(s, cs, new);
566 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
567 unsigned size)
569 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
570 PRIx64 "\n", __func__, addr, size);
571 return 0;
574 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
575 uint64_t data, unsigned size)
577 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
578 PRIx64 "\n", __func__, addr, size, data);
581 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
582 .read = aspeed_smc_flash_default_read,
583 .write = aspeed_smc_flash_default_write,
584 .endianness = DEVICE_LITTLE_ENDIAN,
585 .valid = {
586 .min_access_size = 1,
587 .max_access_size = 4,
591 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
593 const AspeedSMCState *s = fl->controller;
595 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
598 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
600 const AspeedSMCState *s = fl->controller;
602 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
605 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
607 const AspeedSMCState *s = fl->controller;
608 int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
611 * In read mode, the default SPI command is READ (0x3). In other
612 * modes, the command should necessarily be defined
614 * TODO: add support for READ4 (0x13) on AST2600
616 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
617 cmd = SPI_OP_READ;
620 if (!cmd) {
621 qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
622 __func__, aspeed_smc_flash_mode(fl));
625 return cmd;
628 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
630 const AspeedSMCState *s = fl->controller;
632 if (s->ctrl->segments == aspeed_segments_spi) {
633 return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
634 } else {
635 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
639 static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
641 const AspeedSMCState *s = fl->controller;
643 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
646 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
648 AspeedSMCState *s = fl->controller;
650 s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
651 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
654 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
656 AspeedSMCState *s = fl->controller;
658 s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
659 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
662 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
663 uint32_t addr)
665 const AspeedSMCState *s = fl->controller;
666 AspeedSegments seg;
668 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
669 if ((addr % seg.size) != addr) {
670 qemu_log_mask(LOG_GUEST_ERROR,
671 "%s: invalid address 0x%08x for CS%d segment : "
672 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
673 s->ctrl->name, addr, fl->id, seg.addr,
674 seg.addr + seg.size);
675 addr %= seg.size;
678 return addr;
681 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
683 const AspeedSMCState *s = fl->controller;
684 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
685 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
686 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
687 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
689 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
690 dummies /= 2;
693 return dummies;
696 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
698 const AspeedSMCState *s = fl->controller;
699 uint8_t cmd = aspeed_smc_flash_cmd(fl);
700 int i;
702 /* Flash access can not exceed CS segment */
703 addr = aspeed_smc_check_segment_addr(fl, addr);
705 ssi_transfer(s->spi, cmd);
707 if (aspeed_smc_flash_is_4byte(fl)) {
708 ssi_transfer(s->spi, (addr >> 24) & 0xff);
710 ssi_transfer(s->spi, (addr >> 16) & 0xff);
711 ssi_transfer(s->spi, (addr >> 8) & 0xff);
712 ssi_transfer(s->spi, (addr & 0xff));
715 * Use fake transfers to model dummy bytes. The value should
716 * be configured to some non-zero value in fast read mode and
717 * zero in read mode. But, as the HW allows inconsistent
718 * settings, let's check for fast read mode.
720 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
721 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
722 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
727 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
729 AspeedSMCFlash *fl = opaque;
730 AspeedSMCState *s = fl->controller;
731 uint64_t ret = 0;
732 int i;
734 switch (aspeed_smc_flash_mode(fl)) {
735 case CTRL_USERMODE:
736 for (i = 0; i < size; i++) {
737 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
739 break;
740 case CTRL_READMODE:
741 case CTRL_FREADMODE:
742 aspeed_smc_flash_select(fl);
743 aspeed_smc_flash_setup(fl, addr);
745 for (i = 0; i < size; i++) {
746 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
749 aspeed_smc_flash_unselect(fl);
750 break;
751 default:
752 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
753 __func__, aspeed_smc_flash_mode(fl));
756 return ret;
760 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
761 * common include header.
763 typedef enum {
764 READ = 0x3, READ_4 = 0x13,
765 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
766 DOR = 0x3b, DOR_4 = 0x3c,
767 QOR = 0x6b, QOR_4 = 0x6c,
768 DIOR = 0xbb, DIOR_4 = 0xbc,
769 QIOR = 0xeb, QIOR_4 = 0xec,
771 PP = 0x2, PP_4 = 0x12,
772 DPP = 0xa2,
773 QPP = 0x32, QPP_4 = 0x34,
774 } FlashCMD;
776 static int aspeed_smc_num_dummies(uint8_t command)
778 switch (command) { /* check for dummies */
779 case READ: /* no dummy bytes/cycles */
780 case PP:
781 case DPP:
782 case QPP:
783 case READ_4:
784 case PP_4:
785 case QPP_4:
786 return 0;
787 case FAST_READ:
788 case DOR:
789 case QOR:
790 case DOR_4:
791 case QOR_4:
792 return 1;
793 case DIOR:
794 case FAST_READ_4:
795 case DIOR_4:
796 return 2;
797 case QIOR:
798 case QIOR_4:
799 return 4;
800 default:
801 return -1;
805 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
806 unsigned size)
808 AspeedSMCState *s = fl->controller;
809 uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
811 if (s->snoop_index == SNOOP_OFF) {
812 return false; /* Do nothing */
814 } else if (s->snoop_index == SNOOP_START) {
815 uint8_t cmd = data & 0xff;
816 int ndummies = aspeed_smc_num_dummies(cmd);
819 * No dummy cycles are expected with the current command. Turn
820 * off snooping and let the transfer proceed normally.
822 if (ndummies <= 0) {
823 s->snoop_index = SNOOP_OFF;
824 return false;
827 s->snoop_dummies = ndummies * 8;
829 } else if (s->snoop_index >= addr_width + 1) {
831 /* The SPI transfer has reached the dummy cycles sequence */
832 for (; s->snoop_dummies; s->snoop_dummies--) {
833 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
836 /* If no more dummy cycles are expected, turn off snooping */
837 if (!s->snoop_dummies) {
838 s->snoop_index = SNOOP_OFF;
839 } else {
840 s->snoop_index += size;
844 * Dummy cycles have been faked already. Ignore the current
845 * SPI transfer
847 return true;
850 s->snoop_index += size;
851 return false;
854 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
855 unsigned size)
857 AspeedSMCFlash *fl = opaque;
858 AspeedSMCState *s = fl->controller;
859 int i;
861 if (!aspeed_smc_is_writable(fl)) {
862 qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
863 HWADDR_PRIx "\n", __func__, addr);
864 return;
867 switch (aspeed_smc_flash_mode(fl)) {
868 case CTRL_USERMODE:
869 if (aspeed_smc_do_snoop(fl, data, size)) {
870 break;
873 for (i = 0; i < size; i++) {
874 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
876 break;
877 case CTRL_WRITEMODE:
878 aspeed_smc_flash_select(fl);
879 aspeed_smc_flash_setup(fl, addr);
881 for (i = 0; i < size; i++) {
882 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
885 aspeed_smc_flash_unselect(fl);
886 break;
887 default:
888 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
889 __func__, aspeed_smc_flash_mode(fl));
893 static const MemoryRegionOps aspeed_smc_flash_ops = {
894 .read = aspeed_smc_flash_read,
895 .write = aspeed_smc_flash_write,
896 .endianness = DEVICE_LITTLE_ENDIAN,
897 .valid = {
898 .min_access_size = 1,
899 .max_access_size = 4,
903 static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
905 AspeedSMCState *s = fl->controller;
907 s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
909 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
912 static void aspeed_smc_reset(DeviceState *d)
914 AspeedSMCState *s = ASPEED_SMC(d);
915 int i;
917 memset(s->regs, 0, sizeof s->regs);
919 /* Unselect all slaves */
920 for (i = 0; i < s->num_cs; ++i) {
921 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
922 qemu_set_irq(s->cs_lines[i], true);
925 /* setup the default segment register values and regions for all */
926 for (i = 0; i < s->ctrl->max_slaves; ++i) {
927 aspeed_smc_flash_set_segment_region(s, i,
928 s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
931 /* HW strapping flash type for the AST2600 controllers */
932 if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
933 /* flash type is fixed to SPI for all */
934 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
935 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
936 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
939 /* HW strapping flash type for FMC controllers */
940 if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
941 /* flash type is fixed to SPI for CE0 and CE1 */
942 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
943 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
946 /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
947 * configuration of the palmetto-bmc machine */
948 if (s->ctrl->segments == aspeed_segments_fmc) {
949 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
952 s->snoop_index = SNOOP_OFF;
953 s->snoop_dummies = 0;
956 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
958 AspeedSMCState *s = ASPEED_SMC(opaque);
960 addr >>= 2;
962 if (addr == s->r_conf ||
963 (addr >= s->r_timings &&
964 addr < s->r_timings + s->ctrl->nregs_timings) ||
965 addr == s->r_ce_ctrl ||
966 addr == R_INTR_CTRL ||
967 addr == R_DUMMY_DATA ||
968 (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
969 (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
970 (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
971 (s->ctrl->has_dma && addr == R_DMA_LEN) ||
972 (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
973 (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
974 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
975 return s->regs[addr];
976 } else {
977 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
978 __func__, addr);
979 return -1;
983 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
985 /* HCLK/1 .. HCLK/16 */
986 const uint8_t hclk_divisors[] = {
987 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
989 int i;
991 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
992 if (hclk_mask == hclk_divisors[i]) {
993 return i + 1;
997 qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
998 return 0;
1002 * When doing calibration, the SPI clock rate in the CE0 Control
1003 * Register and the read delay cycles in the Read Timing Compensation
1004 * Register are set using bit[11:4] of the DMA Control Register.
1006 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1008 uint8_t delay =
1009 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1010 uint8_t hclk_mask =
1011 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1012 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1013 uint32_t hclk_shift = (hclk_div - 1) << 2;
1014 uint8_t cs;
1017 * The Read Timing Compensation Register values apply to all CS on
1018 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1020 if (hclk_div && hclk_div < 6) {
1021 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1022 s->regs[s->r_timings] |= delay << hclk_shift;
1026 * TODO: compute the CS from the DMA address and the segment
1027 * registers. This is not really a problem for now because the
1028 * Timing Register values apply to all CS and software uses CS0 to
1029 * do calibration.
1031 cs = 0;
1032 s->regs[s->r_ctrl0 + cs] &=
1033 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1034 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1038 * Emulate read errors in the DMA Checksum Register for high
1039 * frequencies and optimistic settings of the Read Timing Compensation
1040 * Register. This will help in tuning the SPI timing calibration
1041 * algorithm.
1043 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1045 uint8_t delay =
1046 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1047 uint8_t hclk_mask =
1048 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1051 * Typical values of a palmetto-bmc machine.
1053 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1054 case 4 ... 16:
1055 return false;
1056 case 3: /* at least one HCLK cycle delay */
1057 return (delay & 0x7) < 1;
1058 case 2: /* at least two HCLK cycle delay */
1059 return (delay & 0x7) < 2;
1060 case 1: /* (> 100MHz) is above the max freq of the controller */
1061 return true;
1062 default:
1063 g_assert_not_reached();
1068 * Accumulate the result of the reads to provide a checksum that will
1069 * be used to validate the read timing settings.
1071 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1073 MemTxResult result;
1074 uint32_t data;
1076 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1077 qemu_log_mask(LOG_GUEST_ERROR,
1078 "%s: invalid direction for DMA checksum\n", __func__);
1079 return;
1082 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1083 aspeed_smc_dma_calibration(s);
1086 while (s->regs[R_DMA_LEN]) {
1087 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1088 MEMTXATTRS_UNSPECIFIED, &result);
1089 if (result != MEMTX_OK) {
1090 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1091 __func__, s->regs[R_DMA_FLASH_ADDR]);
1092 return;
1096 * When the DMA is on-going, the DMA registers are updated
1097 * with the current working addresses and length.
1099 s->regs[R_DMA_CHECKSUM] += data;
1100 s->regs[R_DMA_FLASH_ADDR] += 4;
1101 s->regs[R_DMA_LEN] -= 4;
1104 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1105 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1110 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1112 MemTxResult result;
1113 uint32_t data;
1115 while (s->regs[R_DMA_LEN]) {
1116 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1117 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1118 MEMTXATTRS_UNSPECIFIED, &result);
1119 if (result != MEMTX_OK) {
1120 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1121 __func__, s->regs[R_DMA_DRAM_ADDR]);
1122 return;
1125 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1126 data, MEMTXATTRS_UNSPECIFIED, &result);
1127 if (result != MEMTX_OK) {
1128 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1129 __func__, s->regs[R_DMA_FLASH_ADDR]);
1130 return;
1132 } else {
1133 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1134 MEMTXATTRS_UNSPECIFIED, &result);
1135 if (result != MEMTX_OK) {
1136 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1137 __func__, s->regs[R_DMA_FLASH_ADDR]);
1138 return;
1141 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1142 data, MEMTXATTRS_UNSPECIFIED, &result);
1143 if (result != MEMTX_OK) {
1144 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1145 __func__, s->regs[R_DMA_DRAM_ADDR]);
1146 return;
1151 * When the DMA is on-going, the DMA registers are updated
1152 * with the current working addresses and length.
1154 s->regs[R_DMA_FLASH_ADDR] += 4;
1155 s->regs[R_DMA_DRAM_ADDR] += 4;
1156 s->regs[R_DMA_LEN] -= 4;
1157 s->regs[R_DMA_CHECKSUM] += data;
1161 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1164 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1165 * engine is idle
1167 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1168 s->regs[R_DMA_CHECKSUM] = 0;
1171 * Lower the DMA irq in any case. The IRQ control register could
1172 * have been cleared before disabling the DMA.
1174 qemu_irq_lower(s->irq);
1178 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1179 * can start even if the result of the previous was not collected.
1181 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1183 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1184 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1187 static void aspeed_smc_dma_done(AspeedSMCState *s)
1189 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1190 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1191 qemu_irq_raise(s->irq);
1195 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1197 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1198 s->regs[R_DMA_CTRL] = dma_ctrl;
1200 aspeed_smc_dma_stop(s);
1201 return;
1204 if (aspeed_smc_dma_in_progress(s)) {
1205 qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n", __func__);
1206 return;
1209 s->regs[R_DMA_CTRL] = dma_ctrl;
1211 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1212 aspeed_smc_dma_checksum(s);
1213 } else {
1214 aspeed_smc_dma_rw(s);
1217 aspeed_smc_dma_done(s);
1220 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1221 unsigned int size)
1223 AspeedSMCState *s = ASPEED_SMC(opaque);
1224 uint32_t value = data;
1226 addr >>= 2;
1228 if (addr == s->r_conf ||
1229 (addr >= s->r_timings &&
1230 addr < s->r_timings + s->ctrl->nregs_timings) ||
1231 addr == s->r_ce_ctrl) {
1232 s->regs[addr] = value;
1233 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1234 int cs = addr - s->r_ctrl0;
1235 s->regs[addr] = value;
1236 aspeed_smc_flash_update_cs(&s->flashes[cs]);
1237 } else if (addr >= R_SEG_ADDR0 &&
1238 addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1239 int cs = addr - R_SEG_ADDR0;
1241 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1242 aspeed_smc_flash_set_segment(s, cs, value);
1244 } else if (addr == R_DUMMY_DATA) {
1245 s->regs[addr] = value & 0xff;
1246 } else if (addr == R_INTR_CTRL) {
1247 s->regs[addr] = value;
1248 } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1249 aspeed_smc_dma_ctrl(s, value);
1250 } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1251 s->regs[addr] = DMA_DRAM_ADDR(s, value);
1252 } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1253 s->regs[addr] = DMA_FLASH_ADDR(s, value);
1254 } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1255 s->regs[addr] = DMA_LENGTH(value);
1256 } else {
1257 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1258 __func__, addr);
1259 return;
1263 static const MemoryRegionOps aspeed_smc_ops = {
1264 .read = aspeed_smc_read,
1265 .write = aspeed_smc_write,
1266 .endianness = DEVICE_LITTLE_ENDIAN,
1267 .valid.unaligned = true,
1272 * Initialize the custom address spaces for DMAs
1274 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1276 char *name;
1278 if (!s->dram_mr) {
1279 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1280 return;
1283 name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1284 address_space_init(&s->flash_as, &s->mmio_flash, name);
1285 g_free(name);
1287 name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1288 address_space_init(&s->dram_as, s->dram_mr, name);
1289 g_free(name);
1292 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1294 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1295 AspeedSMCState *s = ASPEED_SMC(dev);
1296 AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1297 int i;
1298 char name[32];
1299 hwaddr offset = 0;
1301 s->ctrl = mc->ctrl;
1303 /* keep a copy under AspeedSMCState to speed up accesses */
1304 s->r_conf = s->ctrl->r_conf;
1305 s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1306 s->r_ctrl0 = s->ctrl->r_ctrl0;
1307 s->r_timings = s->ctrl->r_timings;
1308 s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1310 /* Enforce some real HW limits */
1311 if (s->num_cs > s->ctrl->max_slaves) {
1312 qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1313 __func__, s->ctrl->max_slaves);
1314 s->num_cs = s->ctrl->max_slaves;
1317 /* DMA irq. Keep it first for the initialization in the SoC */
1318 sysbus_init_irq(sbd, &s->irq);
1320 s->spi = ssi_create_bus(dev, "spi");
1322 /* Setup cs_lines for slaves */
1323 s->cs_lines = g_new0(qemu_irq, s->num_cs);
1324 ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1326 for (i = 0; i < s->num_cs; ++i) {
1327 sysbus_init_irq(sbd, &s->cs_lines[i]);
1330 /* The memory region for the controller registers */
1331 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1332 s->ctrl->name, s->ctrl->nregs * 4);
1333 sysbus_init_mmio(sbd, &s->mmio);
1336 * The container memory region representing the address space
1337 * window in which the flash modules are mapped. The size and
1338 * address depends on the SoC model and controller type.
1340 snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1342 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1343 &aspeed_smc_flash_default_ops, s, name,
1344 s->ctrl->flash_window_size);
1345 sysbus_init_mmio(sbd, &s->mmio_flash);
1347 s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1350 * Let's create a sub memory region for each possible slave. All
1351 * have a configurable memory segment in the overall flash mapping
1352 * window of the controller but, there is not necessarily a flash
1353 * module behind to handle the memory accesses. This depends on
1354 * the board configuration.
1356 for (i = 0; i < s->ctrl->max_slaves; ++i) {
1357 AspeedSMCFlash *fl = &s->flashes[i];
1359 snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1361 fl->id = i;
1362 fl->controller = s;
1363 fl->size = s->ctrl->segments[i].size;
1364 memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1365 fl, name, fl->size);
1366 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1367 offset += fl->size;
1370 /* DMA support */
1371 if (s->ctrl->has_dma) {
1372 aspeed_smc_dma_setup(s, errp);
1376 static const VMStateDescription vmstate_aspeed_smc = {
1377 .name = "aspeed.smc",
1378 .version_id = 2,
1379 .minimum_version_id = 2,
1380 .fields = (VMStateField[]) {
1381 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1382 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1383 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1384 VMSTATE_END_OF_LIST()
1388 static Property aspeed_smc_properties[] = {
1389 DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1390 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1391 DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1392 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1393 TYPE_MEMORY_REGION, MemoryRegion *),
1394 DEFINE_PROP_END_OF_LIST(),
1397 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1399 DeviceClass *dc = DEVICE_CLASS(klass);
1400 AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1402 dc->realize = aspeed_smc_realize;
1403 dc->reset = aspeed_smc_reset;
1404 device_class_set_props(dc, aspeed_smc_properties);
1405 dc->vmsd = &vmstate_aspeed_smc;
1406 mc->ctrl = data;
1409 static const TypeInfo aspeed_smc_info = {
1410 .name = TYPE_ASPEED_SMC,
1411 .parent = TYPE_SYS_BUS_DEVICE,
1412 .instance_size = sizeof(AspeedSMCState),
1413 .class_size = sizeof(AspeedSMCClass),
1414 .abstract = true,
1417 static void aspeed_smc_register_types(void)
1419 int i;
1421 type_register_static(&aspeed_smc_info);
1422 for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1423 TypeInfo ti = {
1424 .name = controllers[i].name,
1425 .parent = TYPE_ASPEED_SMC,
1426 .class_init = aspeed_smc_class_init,
1427 .class_data = (void *)&controllers[i],
1429 type_register(&ti);
1433 type_init(aspeed_smc_register_types)