iotests: Drop readlink -f
[qemu/ar7.git] / hw / block / onenand.c
blob19f55aba662c8de751b0f6a67cdfc106bcf2a369
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "hw/hw.h"
24 #include "hw/block/flash.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-properties.h"
27 #include "sysemu/block-backend.h"
28 #include "exec/memory.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "qemu/error-report.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "qom/object.h"
36 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
37 #define PAGE_SHIFT 11
39 /* Fixed */
40 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
42 #define TYPE_ONE_NAND "onenand"
43 typedef struct OneNANDState OneNANDState;
44 DECLARE_INSTANCE_CHECKER(OneNANDState, ONE_NAND,
45 TYPE_ONE_NAND)
47 struct OneNANDState {
48 SysBusDevice parent_obj;
50 struct {
51 uint16_t man;
52 uint16_t dev;
53 uint16_t ver;
54 } id;
55 int shift;
56 hwaddr base;
57 qemu_irq intr;
58 qemu_irq rdy;
59 BlockBackend *blk;
60 BlockBackend *blk_cur;
61 uint8_t *image;
62 uint8_t *otp;
63 uint8_t *current;
64 MemoryRegion ram;
65 MemoryRegion mapped_ram;
66 uint8_t current_direction;
67 uint8_t *boot[2];
68 uint8_t *data[2][2];
69 MemoryRegion iomem;
70 MemoryRegion container;
71 int cycle;
72 int otpmode;
74 uint16_t addr[8];
75 uint16_t unladdr[8];
76 int bufaddr;
77 int count;
78 uint16_t command;
79 uint16_t config[2];
80 uint16_t status;
81 uint16_t intstatus;
82 uint16_t wpstatus;
84 ECCState ecc;
86 int density_mask;
87 int secs;
88 int secs_cur;
89 int blocks;
90 uint8_t *blockwp;
93 enum {
94 ONEN_BUF_BLOCK = 0,
95 ONEN_BUF_BLOCK2 = 1,
96 ONEN_BUF_DEST_BLOCK = 2,
97 ONEN_BUF_DEST_PAGE = 3,
98 ONEN_BUF_PAGE = 7,
101 enum {
102 ONEN_ERR_CMD = 1 << 10,
103 ONEN_ERR_ERASE = 1 << 11,
104 ONEN_ERR_PROG = 1 << 12,
105 ONEN_ERR_LOAD = 1 << 13,
108 enum {
109 ONEN_INT_RESET = 1 << 4,
110 ONEN_INT_ERASE = 1 << 5,
111 ONEN_INT_PROG = 1 << 6,
112 ONEN_INT_LOAD = 1 << 7,
113 ONEN_INT = 1 << 15,
116 enum {
117 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
118 ONEN_LOCK_LOCKED = 1 << 1,
119 ONEN_LOCK_UNLOCKED = 1 << 2,
122 static void onenand_mem_setup(OneNANDState *s)
124 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
125 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
126 * write boot commands. Also take note of the BWPS bit. */
127 memory_region_init(&s->container, OBJECT(s), "onenand",
128 0x10000 << s->shift);
129 memory_region_add_subregion(&s->container, 0, &s->iomem);
130 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
131 &s->ram, 0x0200 << s->shift,
132 0xbe00 << s->shift);
133 memory_region_add_subregion_overlap(&s->container,
134 0x0200 << s->shift,
135 &s->mapped_ram,
139 static void onenand_intr_update(OneNANDState *s)
141 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
144 static int onenand_pre_save(void *opaque)
146 OneNANDState *s = opaque;
147 if (s->current == s->otp) {
148 s->current_direction = 1;
149 } else if (s->current == s->image) {
150 s->current_direction = 2;
151 } else {
152 s->current_direction = 0;
155 return 0;
158 static int onenand_post_load(void *opaque, int version_id)
160 OneNANDState *s = opaque;
161 switch (s->current_direction) {
162 case 0:
163 break;
164 case 1:
165 s->current = s->otp;
166 break;
167 case 2:
168 s->current = s->image;
169 break;
170 default:
171 return -1;
173 onenand_intr_update(s);
174 return 0;
177 static const VMStateDescription vmstate_onenand = {
178 .name = "onenand",
179 .version_id = 1,
180 .minimum_version_id = 1,
181 .pre_save = onenand_pre_save,
182 .post_load = onenand_post_load,
183 .fields = (VMStateField[]) {
184 VMSTATE_UINT8(current_direction, OneNANDState),
185 VMSTATE_INT32(cycle, OneNANDState),
186 VMSTATE_INT32(otpmode, OneNANDState),
187 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
188 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
189 VMSTATE_INT32(bufaddr, OneNANDState),
190 VMSTATE_INT32(count, OneNANDState),
191 VMSTATE_UINT16(command, OneNANDState),
192 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
193 VMSTATE_UINT16(status, OneNANDState),
194 VMSTATE_UINT16(intstatus, OneNANDState),
195 VMSTATE_UINT16(wpstatus, OneNANDState),
196 VMSTATE_INT32(secs_cur, OneNANDState),
197 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
198 VMSTATE_UINT8(ecc.cp, OneNANDState),
199 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
200 VMSTATE_UINT16(ecc.count, OneNANDState),
201 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
202 ((64 + 2) << PAGE_SHIFT)),
203 VMSTATE_END_OF_LIST()
207 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
208 static void onenand_reset(OneNANDState *s, int cold)
210 memset(&s->addr, 0, sizeof(s->addr));
211 s->command = 0;
212 s->count = 1;
213 s->bufaddr = 0;
214 s->config[0] = 0x40c0;
215 s->config[1] = 0x0000;
216 onenand_intr_update(s);
217 qemu_irq_raise(s->rdy);
218 s->status = 0x0000;
219 s->intstatus = cold ? 0x8080 : 0x8010;
220 s->unladdr[0] = 0;
221 s->unladdr[1] = 0;
222 s->wpstatus = 0x0002;
223 s->cycle = 0;
224 s->otpmode = 0;
225 s->blk_cur = s->blk;
226 s->current = s->image;
227 s->secs_cur = s->secs;
229 if (cold) {
230 /* Lock the whole flash */
231 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
233 if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
234 8 << BDRV_SECTOR_BITS) < 0) {
235 hw_error("%s: Loading the BootRAM failed.\n", __func__);
240 static void onenand_system_reset(DeviceState *dev)
242 OneNANDState *s = ONE_NAND(dev);
244 onenand_reset(s, 1);
247 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
248 void *dest)
250 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
251 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
252 if (s->blk_cur) {
253 return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
254 secn << BDRV_SECTOR_BITS) < 0;
255 } else if (sec + secn > s->secs_cur) {
256 return 1;
259 memcpy(dest, s->current + (sec << 9), secn << 9);
261 return 0;
264 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
265 void *src)
267 int result = 0;
269 if (secn > 0) {
270 uint32_t size = secn << BDRV_SECTOR_BITS;
271 uint32_t offset = sec << BDRV_SECTOR_BITS;
272 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
273 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
274 const uint8_t *sp = (const uint8_t *)src;
275 uint8_t *dp = 0;
276 if (s->blk_cur) {
277 dp = g_malloc(size);
278 if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
279 result = 1;
281 } else {
282 if (sec + secn > s->secs_cur) {
283 result = 1;
284 } else {
285 dp = (uint8_t *)s->current + offset;
288 if (!result) {
289 uint32_t i;
290 for (i = 0; i < size; i++) {
291 dp[i] &= sp[i];
293 if (s->blk_cur) {
294 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
297 if (dp && s->blk_cur) {
298 g_free(dp);
302 return result;
305 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
306 void *dest)
308 uint8_t buf[512];
310 if (s->blk_cur) {
311 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
312 if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
313 return 1;
315 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
316 } else if (sec + secn > s->secs_cur) {
317 return 1;
318 } else {
319 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
322 return 0;
325 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
326 void *src)
328 int result = 0;
329 if (secn > 0) {
330 const uint8_t *sp = (const uint8_t *)src;
331 uint8_t *dp = 0, *dpp = 0;
332 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
333 assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
334 if (s->blk_cur) {
335 dp = g_malloc(512);
336 if (!dp
337 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
338 result = 1;
339 } else {
340 dpp = dp + ((sec & 31) << 4);
342 } else {
343 if (sec + secn > s->secs_cur) {
344 result = 1;
345 } else {
346 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
349 if (!result) {
350 uint32_t i;
351 for (i = 0; i < (secn << 4); i++) {
352 dpp[i] &= sp[i];
354 if (s->blk_cur) {
355 result = blk_pwrite(s->blk_cur, offset, dp,
356 BDRV_SECTOR_SIZE, 0) < 0;
359 g_free(dp);
361 return result;
364 static inline int onenand_erase(OneNANDState *s, int sec, int num)
366 uint8_t *blankbuf, *tmpbuf;
368 blankbuf = g_malloc(512);
369 tmpbuf = g_malloc(512);
370 memset(blankbuf, 0xff, 512);
371 for (; num > 0; num--, sec++) {
372 if (s->blk_cur) {
373 int erasesec = s->secs_cur + (sec >> 5);
374 if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
375 BDRV_SECTOR_SIZE, 0) < 0) {
376 goto fail;
378 if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
379 BDRV_SECTOR_SIZE) < 0) {
380 goto fail;
382 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
383 if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
384 BDRV_SECTOR_SIZE, 0) < 0) {
385 goto fail;
387 } else {
388 if (sec + 1 > s->secs_cur) {
389 goto fail;
391 memcpy(s->current + (sec << 9), blankbuf, 512);
392 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
393 blankbuf, 1 << 4);
397 g_free(tmpbuf);
398 g_free(blankbuf);
399 return 0;
401 fail:
402 g_free(tmpbuf);
403 g_free(blankbuf);
404 return 1;
407 static void onenand_command(OneNANDState *s)
409 int b;
410 int sec;
411 void *buf;
412 #define SETADDR(block, page) \
413 sec = (s->addr[page] & 3) + \
414 ((((s->addr[page] >> 2) & 0x3f) + \
415 (((s->addr[block] & 0xfff) | \
416 (s->addr[block] >> 15 ? \
417 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
418 #define SETBUF_M() \
419 buf = (s->bufaddr & 8) ? \
420 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
421 buf += (s->bufaddr & 3) << 9;
422 #define SETBUF_S() \
423 buf = (s->bufaddr & 8) ? \
424 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
425 buf += (s->bufaddr & 3) << 4;
427 switch (s->command) {
428 case 0x00: /* Load single/multiple sector data unit into buffer */
429 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
431 SETBUF_M()
432 if (onenand_load_main(s, sec, s->count, buf))
433 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
435 #if 0
436 SETBUF_S()
437 if (onenand_load_spare(s, sec, s->count, buf))
438 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
439 #endif
441 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
442 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
443 * then we need two split the read/write into two chunks.
445 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
446 break;
447 case 0x13: /* Load single/multiple spare sector into buffer */
448 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
450 SETBUF_S()
451 if (onenand_load_spare(s, sec, s->count, buf))
452 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
454 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
455 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
456 * then we need two split the read/write into two chunks.
458 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
459 break;
460 case 0x80: /* Program single/multiple sector data unit from buffer */
461 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
463 SETBUF_M()
464 if (onenand_prog_main(s, sec, s->count, buf))
465 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
467 #if 0
468 SETBUF_S()
469 if (onenand_prog_spare(s, sec, s->count, buf))
470 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
471 #endif
473 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
474 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
475 * then we need two split the read/write into two chunks.
477 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
478 break;
479 case 0x1a: /* Program single/multiple spare area sector from buffer */
480 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
482 SETBUF_S()
483 if (onenand_prog_spare(s, sec, s->count, buf))
484 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
486 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
487 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
488 * then we need two split the read/write into two chunks.
490 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
491 break;
492 case 0x1b: /* Copy-back program */
493 SETBUF_S()
495 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
496 if (onenand_load_main(s, sec, s->count, buf))
497 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
499 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
500 if (onenand_prog_main(s, sec, s->count, buf))
501 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
503 /* TODO: spare areas */
505 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
506 break;
508 case 0x23: /* Unlock NAND array block(s) */
509 s->intstatus |= ONEN_INT;
511 /* XXX the previous (?) area should be locked automatically */
512 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
513 if (b >= s->blocks) {
514 s->status |= ONEN_ERR_CMD;
515 break;
517 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
518 break;
520 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
522 break;
523 case 0x27: /* Unlock All NAND array blocks */
524 s->intstatus |= ONEN_INT;
526 for (b = 0; b < s->blocks; b ++) {
527 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
528 break;
530 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
532 break;
534 case 0x2a: /* Lock NAND array block(s) */
535 s->intstatus |= ONEN_INT;
537 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
538 if (b >= s->blocks) {
539 s->status |= ONEN_ERR_CMD;
540 break;
542 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
543 break;
545 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
547 break;
548 case 0x2c: /* Lock-tight NAND array block(s) */
549 s->intstatus |= ONEN_INT;
551 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
552 if (b >= s->blocks) {
553 s->status |= ONEN_ERR_CMD;
554 break;
556 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
557 continue;
559 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
561 break;
563 case 0x71: /* Erase-Verify-Read */
564 s->intstatus |= ONEN_INT;
565 break;
566 case 0x95: /* Multi-block erase */
567 qemu_irq_pulse(s->intr);
568 /* Fall through. */
569 case 0x94: /* Block erase */
570 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
571 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
572 << (BLOCK_SHIFT - 9);
573 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
574 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
576 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
577 break;
578 case 0xb0: /* Erase suspend */
579 break;
580 case 0x30: /* Erase resume */
581 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
582 break;
584 case 0xf0: /* Reset NAND Flash core */
585 onenand_reset(s, 0);
586 break;
587 case 0xf3: /* Reset OneNAND */
588 onenand_reset(s, 0);
589 break;
591 case 0x65: /* OTP Access */
592 s->intstatus |= ONEN_INT;
593 s->blk_cur = NULL;
594 s->current = s->otp;
595 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
596 s->addr[ONEN_BUF_BLOCK] = 0;
597 s->otpmode = 1;
598 break;
600 default:
601 s->status |= ONEN_ERR_CMD;
602 s->intstatus |= ONEN_INT;
603 qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
604 s->command);
607 onenand_intr_update(s);
610 static uint64_t onenand_read(void *opaque, hwaddr addr,
611 unsigned size)
613 OneNANDState *s = (OneNANDState *) opaque;
614 int offset = addr >> s->shift;
616 switch (offset) {
617 case 0x0000 ... 0xbffe:
618 return lduw_le_p(s->boot[0] + addr);
620 case 0xf000: /* Manufacturer ID */
621 return s->id.man;
622 case 0xf001: /* Device ID */
623 return s->id.dev;
624 case 0xf002: /* Version ID */
625 return s->id.ver;
626 /* TODO: get the following values from a real chip! */
627 case 0xf003: /* Data Buffer size */
628 return 1 << PAGE_SHIFT;
629 case 0xf004: /* Boot Buffer size */
630 return 0x200;
631 case 0xf005: /* Amount of buffers */
632 return 1 | (2 << 8);
633 case 0xf006: /* Technology */
634 return 0;
636 case 0xf100 ... 0xf107: /* Start addresses */
637 return s->addr[offset - 0xf100];
639 case 0xf200: /* Start buffer */
640 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
642 case 0xf220: /* Command */
643 return s->command;
644 case 0xf221: /* System Configuration 1 */
645 return s->config[0] & 0xffe0;
646 case 0xf222: /* System Configuration 2 */
647 return s->config[1];
649 case 0xf240: /* Controller Status */
650 return s->status;
651 case 0xf241: /* Interrupt */
652 return s->intstatus;
653 case 0xf24c: /* Unlock Start Block Address */
654 return s->unladdr[0];
655 case 0xf24d: /* Unlock End Block Address */
656 return s->unladdr[1];
657 case 0xf24e: /* Write Protection Status */
658 return s->wpstatus;
660 case 0xff00: /* ECC Status */
661 return 0x00;
662 case 0xff01: /* ECC Result of main area data */
663 case 0xff02: /* ECC Result of spare area data */
664 case 0xff03: /* ECC Result of main area data */
665 case 0xff04: /* ECC Result of spare area data */
666 qemu_log_mask(LOG_UNIMP,
667 "onenand: ECC result registers unimplemented\n");
668 return 0x0000;
671 qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
672 offset);
673 return 0;
676 static void onenand_write(void *opaque, hwaddr addr,
677 uint64_t value, unsigned size)
679 OneNANDState *s = (OneNANDState *) opaque;
680 int offset = addr >> s->shift;
681 int sec;
683 switch (offset) {
684 case 0x0000 ... 0x01ff:
685 case 0x8000 ... 0x800f:
686 if (s->cycle) {
687 s->cycle = 0;
689 if (value == 0x0000) {
690 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
691 onenand_load_main(s, sec,
692 1 << (PAGE_SHIFT - 9), s->data[0][0]);
693 s->addr[ONEN_BUF_PAGE] += 4;
694 s->addr[ONEN_BUF_PAGE] &= 0xff;
696 break;
699 switch (value) {
700 case 0x00f0: /* Reset OneNAND */
701 onenand_reset(s, 0);
702 break;
704 case 0x00e0: /* Load Data into Buffer */
705 s->cycle = 1;
706 break;
708 case 0x0090: /* Read Identification Data */
709 memset(s->boot[0], 0, 3 << s->shift);
710 s->boot[0][0 << s->shift] = s->id.man & 0xff;
711 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
712 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
713 break;
715 default:
716 qemu_log_mask(LOG_GUEST_ERROR,
717 "unknown OneNAND boot command %" PRIx64 "\n",
718 value);
720 break;
722 case 0xf100 ... 0xf107: /* Start addresses */
723 s->addr[offset - 0xf100] = value;
724 break;
726 case 0xf200: /* Start buffer */
727 s->bufaddr = (value >> 8) & 0xf;
728 if (PAGE_SHIFT == 11)
729 s->count = (value & 3) ?: 4;
730 else if (PAGE_SHIFT == 10)
731 s->count = (value & 1) ?: 2;
732 break;
734 case 0xf220: /* Command */
735 if (s->intstatus & (1 << 15))
736 break;
737 s->command = value;
738 onenand_command(s);
739 break;
740 case 0xf221: /* System Configuration 1 */
741 s->config[0] = value;
742 onenand_intr_update(s);
743 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
744 break;
745 case 0xf222: /* System Configuration 2 */
746 s->config[1] = value;
747 break;
749 case 0xf241: /* Interrupt */
750 s->intstatus &= value;
751 if ((1 << 15) & ~s->intstatus)
752 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
753 ONEN_ERR_PROG | ONEN_ERR_LOAD);
754 onenand_intr_update(s);
755 break;
756 case 0xf24c: /* Unlock Start Block Address */
757 s->unladdr[0] = value & (s->blocks - 1);
758 /* For some reason we have to set the end address to by default
759 * be same as start because the software forgets to write anything
760 * in there. */
761 s->unladdr[1] = value & (s->blocks - 1);
762 break;
763 case 0xf24d: /* Unlock End Block Address */
764 s->unladdr[1] = value & (s->blocks - 1);
765 break;
767 default:
768 qemu_log_mask(LOG_GUEST_ERROR,
769 "write to unknown OneNAND register 0x%x\n",
770 offset);
774 static const MemoryRegionOps onenand_ops = {
775 .read = onenand_read,
776 .write = onenand_write,
777 .endianness = DEVICE_NATIVE_ENDIAN,
780 static void onenand_realize(DeviceState *dev, Error **errp)
782 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
783 OneNANDState *s = ONE_NAND(dev);
784 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
785 void *ram;
786 Error *local_err = NULL;
788 s->base = (hwaddr)-1;
789 s->rdy = NULL;
790 s->blocks = size >> BLOCK_SHIFT;
791 s->secs = size >> 9;
792 s->blockwp = g_malloc(s->blocks);
793 s->density_mask = (s->id.dev & 0x08)
794 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
795 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
796 0x10000 << s->shift);
797 if (!s->blk) {
798 s->image = memset(g_malloc(size + (size >> 5)),
799 0xff, size + (size >> 5));
800 } else {
801 if (blk_is_read_only(s->blk)) {
802 error_setg(errp, "Can't use a read-only drive");
803 return;
805 blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
806 BLK_PERM_ALL, &local_err);
807 if (local_err) {
808 error_propagate(errp, local_err);
809 return;
811 s->blk_cur = s->blk;
813 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
814 0xff, (64 + 2) << PAGE_SHIFT);
815 memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
816 0xc000 << s->shift, &error_fatal);
817 vmstate_register_ram_global(&s->ram);
818 ram = memory_region_get_ram_ptr(&s->ram);
819 s->boot[0] = ram + (0x0000 << s->shift);
820 s->boot[1] = ram + (0x8000 << s->shift);
821 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
822 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
823 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
824 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
825 onenand_mem_setup(s);
826 sysbus_init_irq(sbd, &s->intr);
827 sysbus_init_mmio(sbd, &s->container);
828 vmstate_register(VMSTATE_IF(dev),
829 ((s->shift & 0x7f) << 24)
830 | ((s->id.man & 0xff) << 16)
831 | ((s->id.dev & 0xff) << 8)
832 | (s->id.ver & 0xff),
833 &vmstate_onenand, s);
836 static Property onenand_properties[] = {
837 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
838 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
839 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
840 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
841 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
842 DEFINE_PROP_END_OF_LIST(),
845 static void onenand_class_init(ObjectClass *klass, void *data)
847 DeviceClass *dc = DEVICE_CLASS(klass);
849 dc->realize = onenand_realize;
850 dc->reset = onenand_system_reset;
851 device_class_set_props(dc, onenand_properties);
854 static const TypeInfo onenand_info = {
855 .name = TYPE_ONE_NAND,
856 .parent = TYPE_SYS_BUS_DEVICE,
857 .instance_size = sizeof(OneNANDState),
858 .class_init = onenand_class_init,
861 static void onenand_register_types(void)
863 type_register_static(&onenand_info);
866 void *onenand_raw_otp(DeviceState *onenand_device)
868 OneNANDState *s = ONE_NAND(onenand_device);
870 return s->otp;
873 type_init(onenand_register_types)