ppc: introducing spapr_numa.c NUMA code helper
[qemu/ar7.git] / hw / ppc / spapr.c
bloba45912acac57b7af8692fa6e407deb401069cf36
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
86 #include "monitor/monitor.h"
88 #include <libfdt.h>
90 /* SLOF memory layout:
92 * SLOF raw image loaded at 0, copies its romfs right below the flat
93 * device-tree, then position SLOF itself 31M below that
95 * So we set FW_OVERHEAD to 40MB which should account for all of that
96 * and more
98 * We load our kernel at 4M, leaving space for SLOF initial image
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106 #define MIN_RMA_SLOF (128 * MiB)
108 #define PHANDLE_INTC 0x00001111
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 int spapr_max_server_number(SpaprMachineState *spapr)
166 MachineState *ms = MACHINE(spapr);
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
202 return ret;
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
207 int index = spapr_get_vcpu_id(cpu);
208 uint32_t associativity[] = {cpu_to_be32(0x5),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(0x0),
212 cpu_to_be32(cpu->node_id),
213 cpu_to_be32(index)};
215 /* Advertise NUMA via ibm,associativity */
216 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217 sizeof(associativity));
220 static void spapr_dt_pa_features(SpaprMachineState *spapr,
221 PowerPCCPU *cpu,
222 void *fdt, int offset)
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
271 if (!pa_features) {
272 return;
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
283 pa_features[3] |= 0x20;
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
288 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
298 static hwaddr spapr_node0_size(MachineState *machine)
300 if (machine->numa_state->num_nodes) {
301 int i;
302 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303 if (machine->numa_state->nodes[i].node_mem) {
304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305 machine->ram_size);
309 return machine->ram_size;
312 static void add_str(GString *s, const gchar *s1)
314 g_string_append_len(s, s1, strlen(s1) + 1);
317 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
318 hwaddr size)
320 uint32_t associativity[] = {
321 cpu_to_be32(0x4), /* length */
322 cpu_to_be32(0x0), cpu_to_be32(0x0),
323 cpu_to_be32(0x0), cpu_to_be32(nodeid)
325 char mem_name[32];
326 uint64_t mem_reg_property[2];
327 int off;
329 mem_reg_property[0] = cpu_to_be64(start);
330 mem_reg_property[1] = cpu_to_be64(size);
332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333 off = fdt_add_subnode(fdt, 0, mem_name);
334 _FDT(off);
335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337 sizeof(mem_reg_property))));
338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339 sizeof(associativity))));
340 return off;
343 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
345 MemoryDeviceInfoList *info;
347 for (info = list; info; info = info->next) {
348 MemoryDeviceInfo *value = info->value;
350 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
351 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
353 if (addr >= pcdimm_info->addr &&
354 addr < (pcdimm_info->addr + pcdimm_info->size)) {
355 return pcdimm_info->node;
360 return -1;
363 struct sPAPRDrconfCellV2 {
364 uint32_t seq_lmbs;
365 uint64_t base_addr;
366 uint32_t drc_index;
367 uint32_t aa_index;
368 uint32_t flags;
369 } QEMU_PACKED;
371 typedef struct DrconfCellQueue {
372 struct sPAPRDrconfCellV2 cell;
373 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
374 } DrconfCellQueue;
376 static DrconfCellQueue *
377 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
378 uint32_t drc_index, uint32_t aa_index,
379 uint32_t flags)
381 DrconfCellQueue *elem;
383 elem = g_malloc0(sizeof(*elem));
384 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
385 elem->cell.base_addr = cpu_to_be64(base_addr);
386 elem->cell.drc_index = cpu_to_be32(drc_index);
387 elem->cell.aa_index = cpu_to_be32(aa_index);
388 elem->cell.flags = cpu_to_be32(flags);
390 return elem;
393 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
394 int offset, MemoryDeviceInfoList *dimms)
396 MachineState *machine = MACHINE(spapr);
397 uint8_t *int_buf, *cur_index;
398 int ret;
399 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
400 uint64_t addr, cur_addr, size;
401 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
402 uint64_t mem_end = machine->device_memory->base +
403 memory_region_size(&machine->device_memory->mr);
404 uint32_t node, buf_len, nr_entries = 0;
405 SpaprDrc *drc;
406 DrconfCellQueue *elem, *next;
407 MemoryDeviceInfoList *info;
408 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
409 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
411 /* Entry to cover RAM and the gap area */
412 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
413 SPAPR_LMB_FLAGS_RESERVED |
414 SPAPR_LMB_FLAGS_DRC_INVALID);
415 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
416 nr_entries++;
418 cur_addr = machine->device_memory->base;
419 for (info = dimms; info; info = info->next) {
420 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
422 addr = di->addr;
423 size = di->size;
424 node = di->node;
427 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
428 * area is marked hotpluggable in the next iteration for the bigger
429 * chunk including the NVDIMM occupied area.
431 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
432 continue;
434 /* Entry for hot-pluggable area */
435 if (cur_addr < addr) {
436 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
437 g_assert(drc);
438 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
439 cur_addr, spapr_drc_index(drc), -1, 0);
440 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
441 nr_entries++;
444 /* Entry for DIMM */
445 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
446 g_assert(drc);
447 elem = spapr_get_drconf_cell(size / lmb_size, addr,
448 spapr_drc_index(drc), node,
449 (SPAPR_LMB_FLAGS_ASSIGNED |
450 SPAPR_LMB_FLAGS_HOTREMOVABLE));
451 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
452 nr_entries++;
453 cur_addr = addr + size;
456 /* Entry for remaining hotpluggable area */
457 if (cur_addr < mem_end) {
458 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
459 g_assert(drc);
460 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
461 cur_addr, spapr_drc_index(drc), -1, 0);
462 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
463 nr_entries++;
466 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
467 int_buf = cur_index = g_malloc0(buf_len);
468 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
469 cur_index += sizeof(nr_entries);
471 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
472 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
473 cur_index += sizeof(elem->cell);
474 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
475 g_free(elem);
478 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
479 g_free(int_buf);
480 if (ret < 0) {
481 return -1;
483 return 0;
486 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
487 int offset, MemoryDeviceInfoList *dimms)
489 MachineState *machine = MACHINE(spapr);
490 int i, ret;
491 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
492 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
493 uint32_t nr_lmbs = (machine->device_memory->base +
494 memory_region_size(&machine->device_memory->mr)) /
495 lmb_size;
496 uint32_t *int_buf, *cur_index, buf_len;
499 * Allocate enough buffer size to fit in ibm,dynamic-memory
501 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
502 cur_index = int_buf = g_malloc0(buf_len);
503 int_buf[0] = cpu_to_be32(nr_lmbs);
504 cur_index++;
505 for (i = 0; i < nr_lmbs; i++) {
506 uint64_t addr = i * lmb_size;
507 uint32_t *dynamic_memory = cur_index;
509 if (i >= device_lmb_start) {
510 SpaprDrc *drc;
512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
513 g_assert(drc);
515 dynamic_memory[0] = cpu_to_be32(addr >> 32);
516 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
517 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
518 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
519 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
520 if (memory_region_present(get_system_memory(), addr)) {
521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
522 } else {
523 dynamic_memory[5] = cpu_to_be32(0);
525 } else {
527 * LMB information for RMA, boot time RAM and gap b/n RAM and
528 * device memory region -- all these are marked as reserved
529 * and as having no valid DRC.
531 dynamic_memory[0] = cpu_to_be32(addr >> 32);
532 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
533 dynamic_memory[2] = cpu_to_be32(0);
534 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
535 dynamic_memory[4] = cpu_to_be32(-1);
536 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
537 SPAPR_LMB_FLAGS_DRC_INVALID);
540 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
542 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
543 g_free(int_buf);
544 if (ret < 0) {
545 return -1;
547 return 0;
551 * Adds ibm,dynamic-reconfiguration-memory node.
552 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
553 * of this device tree node.
555 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
556 void *fdt)
558 MachineState *machine = MACHINE(spapr);
559 int nb_numa_nodes = machine->numa_state->num_nodes;
560 int ret, i, offset;
561 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
562 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
563 cpu_to_be32(lmb_size & 0xffffffff)};
564 uint32_t *int_buf, *cur_index, buf_len;
565 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
566 MemoryDeviceInfoList *dimms = NULL;
569 * Don't create the node if there is no device memory
571 if (machine->ram_size == machine->maxram_size) {
572 return 0;
575 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
577 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
578 sizeof(prop_lmb_size));
579 if (ret < 0) {
580 return ret;
583 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
584 if (ret < 0) {
585 return ret;
588 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
589 if (ret < 0) {
590 return ret;
593 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
594 dimms = qmp_memory_device_list();
595 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
596 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
597 } else {
598 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
600 qapi_free_MemoryDeviceInfoList(dimms);
602 if (ret < 0) {
603 return ret;
606 /* ibm,associativity-lookup-arrays */
607 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
608 cur_index = int_buf = g_malloc0(buf_len);
609 int_buf[0] = cpu_to_be32(nr_nodes);
610 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
611 cur_index += 2;
612 for (i = 0; i < nr_nodes; i++) {
613 uint32_t associativity[] = {
614 cpu_to_be32(0x0),
615 cpu_to_be32(0x0),
616 cpu_to_be32(0x0),
617 cpu_to_be32(i)
619 memcpy(cur_index, associativity, sizeof(associativity));
620 cur_index += 4;
622 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
623 (cur_index - int_buf) * sizeof(uint32_t));
624 g_free(int_buf);
626 return ret;
629 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
631 MachineState *machine = MACHINE(spapr);
632 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
633 hwaddr mem_start, node_size;
634 int i, nb_nodes = machine->numa_state->num_nodes;
635 NodeInfo *nodes = machine->numa_state->nodes;
637 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
638 if (!nodes[i].node_mem) {
639 continue;
641 if (mem_start >= machine->ram_size) {
642 node_size = 0;
643 } else {
644 node_size = nodes[i].node_mem;
645 if (node_size > machine->ram_size - mem_start) {
646 node_size = machine->ram_size - mem_start;
649 if (!mem_start) {
650 /* spapr_machine_init() checks for rma_size <= node0_size
651 * already */
652 spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
653 mem_start += spapr->rma_size;
654 node_size -= spapr->rma_size;
656 for ( ; node_size; ) {
657 hwaddr sizetmp = pow2floor(node_size);
659 /* mem_start != 0 here */
660 if (ctzl(mem_start) < ctzl(sizetmp)) {
661 sizetmp = 1ULL << ctzl(mem_start);
664 spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
665 node_size -= sizetmp;
666 mem_start += sizetmp;
670 /* Generate ibm,dynamic-reconfiguration-memory node if required */
671 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
672 int ret;
674 g_assert(smc->dr_lmb_enabled);
675 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
676 if (ret) {
677 return ret;
681 return 0;
684 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
685 SpaprMachineState *spapr)
687 MachineState *ms = MACHINE(spapr);
688 PowerPCCPU *cpu = POWERPC_CPU(cs);
689 CPUPPCState *env = &cpu->env;
690 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
691 int index = spapr_get_vcpu_id(cpu);
692 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
693 0xffffffff, 0xffffffff};
694 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
695 : SPAPR_TIMEBASE_FREQ;
696 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
697 uint32_t page_sizes_prop[64];
698 size_t page_sizes_prop_size;
699 unsigned int smp_threads = ms->smp.threads;
700 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
701 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
702 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
703 SpaprDrc *drc;
704 int drc_index;
705 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
706 int i;
708 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
709 if (drc) {
710 drc_index = spapr_drc_index(drc);
711 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
714 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
715 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
717 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
718 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
719 env->dcache_line_size)));
720 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
721 env->dcache_line_size)));
722 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
723 env->icache_line_size)));
724 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
725 env->icache_line_size)));
727 if (pcc->l1_dcache_size) {
728 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
729 pcc->l1_dcache_size)));
730 } else {
731 warn_report("Unknown L1 dcache size for cpu");
733 if (pcc->l1_icache_size) {
734 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
735 pcc->l1_icache_size)));
736 } else {
737 warn_report("Unknown L1 icache size for cpu");
740 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
741 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
742 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
743 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
744 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
745 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
747 if (env->spr_cb[SPR_PURR].oea_read) {
748 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
750 if (env->spr_cb[SPR_SPURR].oea_read) {
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
754 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
755 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
756 segs, sizeof(segs))));
759 /* Advertise VSX (vector extensions) if available
760 * 1 == VMX / Altivec available
761 * 2 == VSX available
763 * Only CPUs for which we create core types in spapr_cpu_core.c
764 * are possible, and all of those have VMX */
765 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
766 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
767 } else {
768 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
771 /* Advertise DFP (Decimal Floating Point) if available
772 * 0 / no property == no DFP
773 * 1 == DFP available */
774 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
775 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
778 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
779 sizeof(page_sizes_prop));
780 if (page_sizes_prop_size) {
781 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
782 page_sizes_prop, page_sizes_prop_size)));
785 spapr_dt_pa_features(spapr, cpu, fdt, offset);
787 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
788 cs->cpu_index / vcpus_per_socket)));
790 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
791 pft_size_prop, sizeof(pft_size_prop))));
793 if (ms->numa_state->num_nodes > 1) {
794 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
797 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
799 if (pcc->radix_page_info) {
800 for (i = 0; i < pcc->radix_page_info->count; i++) {
801 radix_AP_encodings[i] =
802 cpu_to_be32(pcc->radix_page_info->entries[i]);
804 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
805 radix_AP_encodings,
806 pcc->radix_page_info->count *
807 sizeof(radix_AP_encodings[0]))));
811 * We set this property to let the guest know that it can use the large
812 * decrementer and its width in bits.
814 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
815 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
816 pcc->lrg_decr_bits)));
819 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
821 CPUState **rev;
822 CPUState *cs;
823 int n_cpus;
824 int cpus_offset;
825 char *nodename;
826 int i;
828 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
829 _FDT(cpus_offset);
830 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
831 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
834 * We walk the CPUs in reverse order to ensure that CPU DT nodes
835 * created by fdt_add_subnode() end up in the right order in FDT
836 * for the guest kernel the enumerate the CPUs correctly.
838 * The CPU list cannot be traversed in reverse order, so we need
839 * to do extra work.
841 n_cpus = 0;
842 rev = NULL;
843 CPU_FOREACH(cs) {
844 rev = g_renew(CPUState *, rev, n_cpus + 1);
845 rev[n_cpus++] = cs;
848 for (i = n_cpus - 1; i >= 0; i--) {
849 CPUState *cs = rev[i];
850 PowerPCCPU *cpu = POWERPC_CPU(cs);
851 int index = spapr_get_vcpu_id(cpu);
852 DeviceClass *dc = DEVICE_GET_CLASS(cs);
853 int offset;
855 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
856 continue;
859 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
860 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
861 g_free(nodename);
862 _FDT(offset);
863 spapr_dt_cpu(cs, fdt, offset, spapr);
866 g_free(rev);
869 static int spapr_dt_rng(void *fdt)
871 int node;
872 int ret;
874 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
875 if (node <= 0) {
876 return -1;
878 ret = fdt_setprop_string(fdt, node, "device_type",
879 "ibm,platform-facilities");
880 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
881 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
883 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
884 if (node <= 0) {
885 return -1;
887 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
889 return ret ? -1 : 0;
892 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
894 MachineState *ms = MACHINE(spapr);
895 int rtas;
896 GString *hypertas = g_string_sized_new(256);
897 GString *qemu_hypertas = g_string_sized_new(256);
898 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
899 memory_region_size(&MACHINE(spapr)->device_memory->mr);
900 uint32_t lrdr_capacity[] = {
901 cpu_to_be32(max_device_addr >> 32),
902 cpu_to_be32(max_device_addr & 0xffffffff),
903 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
904 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
905 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
908 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
910 /* hypertas */
911 add_str(hypertas, "hcall-pft");
912 add_str(hypertas, "hcall-term");
913 add_str(hypertas, "hcall-dabr");
914 add_str(hypertas, "hcall-interrupt");
915 add_str(hypertas, "hcall-tce");
916 add_str(hypertas, "hcall-vio");
917 add_str(hypertas, "hcall-splpar");
918 add_str(hypertas, "hcall-join");
919 add_str(hypertas, "hcall-bulk");
920 add_str(hypertas, "hcall-set-mode");
921 add_str(hypertas, "hcall-sprg0");
922 add_str(hypertas, "hcall-copy");
923 add_str(hypertas, "hcall-debug");
924 add_str(hypertas, "hcall-vphn");
925 add_str(qemu_hypertas, "hcall-memop1");
927 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
928 add_str(hypertas, "hcall-multi-tce");
931 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
932 add_str(hypertas, "hcall-hpt-resize");
935 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
936 hypertas->str, hypertas->len));
937 g_string_free(hypertas, TRUE);
938 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
939 qemu_hypertas->str, qemu_hypertas->len));
940 g_string_free(qemu_hypertas, TRUE);
942 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
945 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
946 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
948 * The system reset requirements are driven by existing Linux and PowerVM
949 * implementation which (contrary to PAPR) saves r3 in the error log
950 * structure like machine check, so Linux expects to find the saved r3
951 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
952 * does not look at the error value).
954 * System reset interrupts are not subject to interlock like machine
955 * check, so this memory area could be corrupted if the sreset is
956 * interrupted by a machine check (or vice versa) if it was shared. To
957 * prevent this, system reset uses per-CPU areas for the sreset save
958 * area. A system reset that interrupts a system reset handler could
959 * still overwrite this area, but Linux doesn't try to recover in that
960 * case anyway.
962 * The extra 8 bytes is required because Linux's FWNMI error log check
963 * is off-by-one.
965 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
966 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
967 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
968 RTAS_ERROR_LOG_MAX));
969 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
970 RTAS_EVENT_SCAN_RATE));
972 g_assert(msi_nonbroken);
973 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
976 * According to PAPR, rtas ibm,os-term does not guarantee a return
977 * back to the guest cpu.
979 * While an additional ibm,extended-os-term property indicates
980 * that rtas call return will always occur. Set this property.
982 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
984 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
985 lrdr_capacity, sizeof(lrdr_capacity)));
987 spapr_dt_rtas_tokens(fdt, rtas);
991 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
992 * and the XIVE features that the guest may request and thus the valid
993 * values for bytes 23..26 of option vector 5:
995 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
996 int chosen)
998 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1000 char val[2 * 4] = {
1001 23, 0x00, /* XICS / XIVE mode */
1002 24, 0x00, /* Hash/Radix, filled in below. */
1003 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1004 26, 0x40, /* Radix options: GTSE == yes. */
1007 if (spapr->irq->xics && spapr->irq->xive) {
1008 val[1] = SPAPR_OV5_XIVE_BOTH;
1009 } else if (spapr->irq->xive) {
1010 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1011 } else {
1012 assert(spapr->irq->xics);
1013 val[1] = SPAPR_OV5_XIVE_LEGACY;
1016 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1017 first_ppc_cpu->compat_pvr)) {
1019 * If we're in a pre POWER9 compat mode then the guest should
1020 * do hash and use the legacy interrupt mode
1022 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1023 val[3] = 0x00; /* Hash */
1024 } else if (kvm_enabled()) {
1025 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1026 val[3] = 0x80; /* OV5_MMU_BOTH */
1027 } else if (kvmppc_has_cap_mmu_radix()) {
1028 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1029 } else {
1030 val[3] = 0x00; /* Hash */
1032 } else {
1033 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1034 val[3] = 0xC0;
1036 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1037 val, sizeof(val)));
1040 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1042 MachineState *machine = MACHINE(spapr);
1043 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1044 int chosen;
1046 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1048 if (reset) {
1049 const char *boot_device = machine->boot_order;
1050 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1051 size_t cb = 0;
1052 char *bootlist = get_boot_devices_list(&cb);
1054 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1055 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1056 machine->kernel_cmdline));
1059 if (spapr->initrd_size) {
1060 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1061 spapr->initrd_base));
1062 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1063 spapr->initrd_base + spapr->initrd_size));
1066 if (spapr->kernel_size) {
1067 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1068 cpu_to_be64(spapr->kernel_size) };
1070 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1071 &kprop, sizeof(kprop)));
1072 if (spapr->kernel_le) {
1073 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1076 if (boot_menu) {
1077 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1079 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1080 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1081 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1083 if (cb && bootlist) {
1084 int i;
1086 for (i = 0; i < cb; i++) {
1087 if (bootlist[i] == '\n') {
1088 bootlist[i] = ' ';
1091 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1094 if (boot_device && strlen(boot_device)) {
1095 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1098 if (!spapr->has_graphics && stdout_path) {
1100 * "linux,stdout-path" and "stdout" properties are
1101 * deprecated by linux kernel. New platforms should only
1102 * use the "stdout-path" property. Set the new property
1103 * and continue using older property to remain compatible
1104 * with the existing firmware.
1106 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1107 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1111 * We can deal with BAR reallocation just fine, advertise it
1112 * to the guest
1114 if (smc->linux_pci_probe) {
1115 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1118 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1120 g_free(stdout_path);
1121 g_free(bootlist);
1124 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1127 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1129 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1130 * KVM to work under pHyp with some guest co-operation */
1131 int hypervisor;
1132 uint8_t hypercall[16];
1134 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1135 /* indicate KVM hypercall interface */
1136 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1137 if (kvmppc_has_cap_fixup_hcalls()) {
1139 * Older KVM versions with older guest kernels were broken
1140 * with the magic page, don't allow the guest to map it.
1142 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1143 sizeof(hypercall))) {
1144 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1145 hypercall, sizeof(hypercall)));
1150 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1152 MachineState *machine = MACHINE(spapr);
1153 MachineClass *mc = MACHINE_GET_CLASS(machine);
1154 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1155 int ret;
1156 void *fdt;
1157 SpaprPhbState *phb;
1158 char *buf;
1160 fdt = g_malloc0(space);
1161 _FDT((fdt_create_empty_tree(fdt, space)));
1163 /* Root node */
1164 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1165 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1166 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1168 /* Guest UUID & Name*/
1169 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1170 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1171 if (qemu_uuid_set) {
1172 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1174 g_free(buf);
1176 if (qemu_get_vm_name()) {
1177 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1178 qemu_get_vm_name()));
1181 /* Host Model & Serial Number */
1182 if (spapr->host_model) {
1183 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1184 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1185 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1186 g_free(buf);
1189 if (spapr->host_serial) {
1190 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1191 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1192 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1193 g_free(buf);
1196 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1197 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1199 /* /interrupt controller */
1200 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1202 ret = spapr_dt_memory(spapr, fdt);
1203 if (ret < 0) {
1204 error_report("couldn't setup memory nodes in fdt");
1205 exit(1);
1208 /* /vdevice */
1209 spapr_dt_vdevice(spapr->vio_bus, fdt);
1211 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1212 ret = spapr_dt_rng(fdt);
1213 if (ret < 0) {
1214 error_report("could not set up rng device in the fdt");
1215 exit(1);
1219 QLIST_FOREACH(phb, &spapr->phbs, list) {
1220 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1221 if (ret < 0) {
1222 error_report("couldn't setup PCI devices in fdt");
1223 exit(1);
1227 spapr_dt_cpus(fdt, spapr);
1229 if (smc->dr_lmb_enabled) {
1230 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1233 if (mc->has_hotpluggable_cpus) {
1234 int offset = fdt_path_offset(fdt, "/cpus");
1235 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1236 if (ret < 0) {
1237 error_report("Couldn't set up CPU DR device tree properties");
1238 exit(1);
1242 /* /event-sources */
1243 spapr_dt_events(spapr, fdt);
1245 /* /rtas */
1246 spapr_dt_rtas(spapr, fdt);
1248 /* /chosen */
1249 spapr_dt_chosen(spapr, fdt, reset);
1251 /* /hypervisor */
1252 if (kvm_enabled()) {
1253 spapr_dt_hypervisor(spapr, fdt);
1256 /* Build memory reserve map */
1257 if (reset) {
1258 if (spapr->kernel_size) {
1259 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1260 spapr->kernel_size)));
1262 if (spapr->initrd_size) {
1263 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1264 spapr->initrd_size)));
1268 if (smc->dr_phb_enabled) {
1269 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1270 if (ret < 0) {
1271 error_report("Couldn't set up PHB DR device tree properties");
1272 exit(1);
1276 /* NVDIMM devices */
1277 if (mc->nvdimm_supported) {
1278 spapr_dt_persistent_memory(fdt);
1281 return fdt;
1284 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1286 SpaprMachineState *spapr = opaque;
1288 return (addr & 0x0fffffff) + spapr->kernel_addr;
1291 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1292 PowerPCCPU *cpu)
1294 CPUPPCState *env = &cpu->env;
1296 /* The TCG path should also be holding the BQL at this point */
1297 g_assert(qemu_mutex_iothread_locked());
1299 if (msr_pr) {
1300 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1301 env->gpr[3] = H_PRIVILEGE;
1302 } else {
1303 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1307 struct LPCRSyncState {
1308 target_ulong value;
1309 target_ulong mask;
1312 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1314 struct LPCRSyncState *s = arg.host_ptr;
1315 PowerPCCPU *cpu = POWERPC_CPU(cs);
1316 CPUPPCState *env = &cpu->env;
1317 target_ulong lpcr;
1319 cpu_synchronize_state(cs);
1320 lpcr = env->spr[SPR_LPCR];
1321 lpcr &= ~s->mask;
1322 lpcr |= s->value;
1323 ppc_store_lpcr(cpu, lpcr);
1326 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1328 CPUState *cs;
1329 struct LPCRSyncState s = {
1330 .value = value,
1331 .mask = mask
1333 CPU_FOREACH(cs) {
1334 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1338 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1340 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1342 /* Copy PATE1:GR into PATE0:HR */
1343 entry->dw0 = spapr->patb_entry & PATE0_HR;
1344 entry->dw1 = spapr->patb_entry;
1347 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1348 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1349 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1350 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1351 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1354 * Get the fd to access the kernel htab, re-opening it if necessary
1356 static int get_htab_fd(SpaprMachineState *spapr)
1358 Error *local_err = NULL;
1360 if (spapr->htab_fd >= 0) {
1361 return spapr->htab_fd;
1364 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1365 if (spapr->htab_fd < 0) {
1366 error_report_err(local_err);
1369 return spapr->htab_fd;
1372 void close_htab_fd(SpaprMachineState *spapr)
1374 if (spapr->htab_fd >= 0) {
1375 close(spapr->htab_fd);
1377 spapr->htab_fd = -1;
1380 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1382 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1384 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1387 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1389 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1391 assert(kvm_enabled());
1393 if (!spapr->htab) {
1394 return 0;
1397 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1400 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1401 hwaddr ptex, int n)
1403 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1404 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1406 if (!spapr->htab) {
1408 * HTAB is controlled by KVM. Fetch into temporary buffer
1410 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1411 kvmppc_read_hptes(hptes, ptex, n);
1412 return hptes;
1416 * HTAB is controlled by QEMU. Just point to the internally
1417 * accessible PTEG.
1419 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1422 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1423 const ppc_hash_pte64_t *hptes,
1424 hwaddr ptex, int n)
1426 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1428 if (!spapr->htab) {
1429 g_free((void *)hptes);
1432 /* Nothing to do for qemu managed HPT */
1435 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1436 uint64_t pte0, uint64_t pte1)
1438 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1439 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1441 if (!spapr->htab) {
1442 kvmppc_write_hpte(ptex, pte0, pte1);
1443 } else {
1444 if (pte0 & HPTE64_V_VALID) {
1445 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1447 * When setting valid, we write PTE1 first. This ensures
1448 * proper synchronization with the reading code in
1449 * ppc_hash64_pteg_search()
1451 smp_wmb();
1452 stq_p(spapr->htab + offset, pte0);
1453 } else {
1454 stq_p(spapr->htab + offset, pte0);
1456 * When clearing it we set PTE0 first. This ensures proper
1457 * synchronization with the reading code in
1458 * ppc_hash64_pteg_search()
1460 smp_wmb();
1461 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1466 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1467 uint64_t pte1)
1469 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1472 if (!spapr->htab) {
1473 /* There should always be a hash table when this is called */
1474 error_report("spapr_hpte_set_c called with no hash table !");
1475 return;
1478 /* The HW performs a non-atomic byte update */
1479 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1482 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1483 uint64_t pte1)
1485 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1488 if (!spapr->htab) {
1489 /* There should always be a hash table when this is called */
1490 error_report("spapr_hpte_set_r called with no hash table !");
1491 return;
1494 /* The HW performs a non-atomic byte update */
1495 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1498 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1500 int shift;
1502 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1503 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1504 * that's much more than is needed for Linux guests */
1505 shift = ctz64(pow2ceil(ramsize)) - 7;
1506 shift = MAX(shift, 18); /* Minimum architected size */
1507 shift = MIN(shift, 46); /* Maximum architected size */
1508 return shift;
1511 void spapr_free_hpt(SpaprMachineState *spapr)
1513 g_free(spapr->htab);
1514 spapr->htab = NULL;
1515 spapr->htab_shift = 0;
1516 close_htab_fd(spapr);
1519 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1520 Error **errp)
1522 long rc;
1524 /* Clean up any HPT info from a previous boot */
1525 spapr_free_hpt(spapr);
1527 rc = kvmppc_reset_htab(shift);
1528 if (rc < 0) {
1529 /* kernel-side HPT needed, but couldn't allocate one */
1530 error_setg_errno(errp, errno,
1531 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1532 shift);
1533 /* This is almost certainly fatal, but if the caller really
1534 * wants to carry on with shift == 0, it's welcome to try */
1535 } else if (rc > 0) {
1536 /* kernel-side HPT allocated */
1537 if (rc != shift) {
1538 error_setg(errp,
1539 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1540 shift, rc);
1543 spapr->htab_shift = shift;
1544 spapr->htab = NULL;
1545 } else {
1546 /* kernel-side HPT not needed, allocate in userspace instead */
1547 size_t size = 1ULL << shift;
1548 int i;
1550 spapr->htab = qemu_memalign(size, size);
1551 if (!spapr->htab) {
1552 error_setg_errno(errp, errno,
1553 "Could not allocate HPT of order %d", shift);
1554 return;
1557 memset(spapr->htab, 0, size);
1558 spapr->htab_shift = shift;
1560 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1561 DIRTY_HPTE(HPTE(spapr->htab, i));
1564 /* We're setting up a hash table, so that means we're not radix */
1565 spapr->patb_entry = 0;
1566 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1569 void spapr_setup_hpt(SpaprMachineState *spapr)
1571 int hpt_shift;
1573 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1574 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1575 } else {
1576 uint64_t current_ram_size;
1578 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1579 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1581 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1583 if (kvm_enabled()) {
1584 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1586 /* Check our RMA fits in the possible VRMA */
1587 if (vrma_limit < spapr->rma_size) {
1588 error_report("Unable to create %" HWADDR_PRIu
1589 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1590 spapr->rma_size / MiB, vrma_limit / MiB);
1591 exit(EXIT_FAILURE);
1596 static int spapr_reset_drcs(Object *child, void *opaque)
1598 SpaprDrc *drc =
1599 (SpaprDrc *) object_dynamic_cast(child,
1600 TYPE_SPAPR_DR_CONNECTOR);
1602 if (drc) {
1603 spapr_drc_reset(drc);
1606 return 0;
1609 static void spapr_machine_reset(MachineState *machine)
1611 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1612 PowerPCCPU *first_ppc_cpu;
1613 hwaddr fdt_addr;
1614 void *fdt;
1615 int rc;
1617 kvmppc_svm_off(&error_fatal);
1618 spapr_caps_apply(spapr);
1620 first_ppc_cpu = POWERPC_CPU(first_cpu);
1621 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1622 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1623 spapr->max_compat_pvr)) {
1625 * If using KVM with radix mode available, VCPUs can be started
1626 * without a HPT because KVM will start them in radix mode.
1627 * Set the GR bit in PATE so that we know there is no HPT.
1629 spapr->patb_entry = PATE1_GR;
1630 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1631 } else {
1632 spapr_setup_hpt(spapr);
1635 qemu_devices_reset();
1637 spapr_ovec_cleanup(spapr->ov5_cas);
1638 spapr->ov5_cas = spapr_ovec_new();
1640 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1643 * This is fixing some of the default configuration of the XIVE
1644 * devices. To be called after the reset of the machine devices.
1646 spapr_irq_reset(spapr, &error_fatal);
1649 * There is no CAS under qtest. Simulate one to please the code that
1650 * depends on spapr->ov5_cas. This is especially needed to test device
1651 * unplug, so we do that before resetting the DRCs.
1653 if (qtest_enabled()) {
1654 spapr_ovec_cleanup(spapr->ov5_cas);
1655 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1658 /* DRC reset may cause a device to be unplugged. This will cause troubles
1659 * if this device is used by another device (eg, a running vhost backend
1660 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1661 * situations, we reset DRCs after all devices have been reset.
1663 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1665 spapr_clear_pending_events(spapr);
1668 * We place the device tree and RTAS just below either the top of the RMA,
1669 * or just below 2GB, whichever is lower, so that it can be
1670 * processed with 32-bit real mode code if necessary
1672 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1674 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1676 rc = fdt_pack(fdt);
1678 /* Should only fail if we've built a corrupted tree */
1679 assert(rc == 0);
1681 /* Load the fdt */
1682 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1683 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1684 g_free(spapr->fdt_blob);
1685 spapr->fdt_size = fdt_totalsize(fdt);
1686 spapr->fdt_initial_size = spapr->fdt_size;
1687 spapr->fdt_blob = fdt;
1689 /* Set up the entry state */
1690 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1691 first_ppc_cpu->env.gpr[5] = 0;
1693 spapr->fwnmi_system_reset_addr = -1;
1694 spapr->fwnmi_machine_check_addr = -1;
1695 spapr->fwnmi_machine_check_interlock = -1;
1697 /* Signal all vCPUs waiting on this condition */
1698 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1700 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1703 static void spapr_create_nvram(SpaprMachineState *spapr)
1705 DeviceState *dev = qdev_new("spapr-nvram");
1706 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1708 if (dinfo) {
1709 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1710 &error_fatal);
1713 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1715 spapr->nvram = (struct SpaprNvram *)dev;
1718 static void spapr_rtc_create(SpaprMachineState *spapr)
1720 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1721 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1722 &error_fatal, NULL);
1723 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1724 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1725 "date");
1728 /* Returns whether we want to use VGA or not */
1729 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1731 switch (vga_interface_type) {
1732 case VGA_NONE:
1733 return false;
1734 case VGA_DEVICE:
1735 return true;
1736 case VGA_STD:
1737 case VGA_VIRTIO:
1738 case VGA_CIRRUS:
1739 return pci_vga_init(pci_bus) != NULL;
1740 default:
1741 error_setg(errp,
1742 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1743 return false;
1747 static int spapr_pre_load(void *opaque)
1749 int rc;
1751 rc = spapr_caps_pre_load(opaque);
1752 if (rc) {
1753 return rc;
1756 return 0;
1759 static int spapr_post_load(void *opaque, int version_id)
1761 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1762 int err = 0;
1764 err = spapr_caps_post_migration(spapr);
1765 if (err) {
1766 return err;
1770 * In earlier versions, there was no separate qdev for the PAPR
1771 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1772 * So when migrating from those versions, poke the incoming offset
1773 * value into the RTC device
1775 if (version_id < 3) {
1776 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1777 if (err) {
1778 return err;
1782 if (kvm_enabled() && spapr->patb_entry) {
1783 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1784 bool radix = !!(spapr->patb_entry & PATE1_GR);
1785 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1788 * Update LPCR:HR and UPRT as they may not be set properly in
1789 * the stream
1791 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1792 LPCR_HR | LPCR_UPRT);
1794 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1795 if (err) {
1796 error_report("Process table config unsupported by the host");
1797 return -EINVAL;
1801 err = spapr_irq_post_load(spapr, version_id);
1802 if (err) {
1803 return err;
1806 return err;
1809 static int spapr_pre_save(void *opaque)
1811 int rc;
1813 rc = spapr_caps_pre_save(opaque);
1814 if (rc) {
1815 return rc;
1818 return 0;
1821 static bool version_before_3(void *opaque, int version_id)
1823 return version_id < 3;
1826 static bool spapr_pending_events_needed(void *opaque)
1828 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1829 return !QTAILQ_EMPTY(&spapr->pending_events);
1832 static const VMStateDescription vmstate_spapr_event_entry = {
1833 .name = "spapr_event_log_entry",
1834 .version_id = 1,
1835 .minimum_version_id = 1,
1836 .fields = (VMStateField[]) {
1837 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1838 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1839 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1840 NULL, extended_length),
1841 VMSTATE_END_OF_LIST()
1845 static const VMStateDescription vmstate_spapr_pending_events = {
1846 .name = "spapr_pending_events",
1847 .version_id = 1,
1848 .minimum_version_id = 1,
1849 .needed = spapr_pending_events_needed,
1850 .fields = (VMStateField[]) {
1851 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1852 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1853 VMSTATE_END_OF_LIST()
1857 static bool spapr_ov5_cas_needed(void *opaque)
1859 SpaprMachineState *spapr = opaque;
1860 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1861 bool cas_needed;
1863 /* Prior to the introduction of SpaprOptionVector, we had two option
1864 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1865 * Both of these options encode machine topology into the device-tree
1866 * in such a way that the now-booted OS should still be able to interact
1867 * appropriately with QEMU regardless of what options were actually
1868 * negotiatied on the source side.
1870 * As such, we can avoid migrating the CAS-negotiated options if these
1871 * are the only options available on the current machine/platform.
1872 * Since these are the only options available for pseries-2.7 and
1873 * earlier, this allows us to maintain old->new/new->old migration
1874 * compatibility.
1876 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1877 * via default pseries-2.8 machines and explicit command-line parameters.
1878 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1879 * of the actual CAS-negotiated values to continue working properly. For
1880 * example, availability of memory unplug depends on knowing whether
1881 * OV5_HP_EVT was negotiated via CAS.
1883 * Thus, for any cases where the set of available CAS-negotiatable
1884 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1885 * include the CAS-negotiated options in the migration stream, unless
1886 * if they affect boot time behaviour only.
1888 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1889 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1890 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1892 /* We need extra information if we have any bits outside the mask
1893 * defined above */
1894 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1896 spapr_ovec_cleanup(ov5_mask);
1898 return cas_needed;
1901 static const VMStateDescription vmstate_spapr_ov5_cas = {
1902 .name = "spapr_option_vector_ov5_cas",
1903 .version_id = 1,
1904 .minimum_version_id = 1,
1905 .needed = spapr_ov5_cas_needed,
1906 .fields = (VMStateField[]) {
1907 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1908 vmstate_spapr_ovec, SpaprOptionVector),
1909 VMSTATE_END_OF_LIST()
1913 static bool spapr_patb_entry_needed(void *opaque)
1915 SpaprMachineState *spapr = opaque;
1917 return !!spapr->patb_entry;
1920 static const VMStateDescription vmstate_spapr_patb_entry = {
1921 .name = "spapr_patb_entry",
1922 .version_id = 1,
1923 .minimum_version_id = 1,
1924 .needed = spapr_patb_entry_needed,
1925 .fields = (VMStateField[]) {
1926 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1927 VMSTATE_END_OF_LIST()
1931 static bool spapr_irq_map_needed(void *opaque)
1933 SpaprMachineState *spapr = opaque;
1935 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1938 static const VMStateDescription vmstate_spapr_irq_map = {
1939 .name = "spapr_irq_map",
1940 .version_id = 1,
1941 .minimum_version_id = 1,
1942 .needed = spapr_irq_map_needed,
1943 .fields = (VMStateField[]) {
1944 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1945 VMSTATE_END_OF_LIST()
1949 static bool spapr_dtb_needed(void *opaque)
1951 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1953 return smc->update_dt_enabled;
1956 static int spapr_dtb_pre_load(void *opaque)
1958 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1960 g_free(spapr->fdt_blob);
1961 spapr->fdt_blob = NULL;
1962 spapr->fdt_size = 0;
1964 return 0;
1967 static const VMStateDescription vmstate_spapr_dtb = {
1968 .name = "spapr_dtb",
1969 .version_id = 1,
1970 .minimum_version_id = 1,
1971 .needed = spapr_dtb_needed,
1972 .pre_load = spapr_dtb_pre_load,
1973 .fields = (VMStateField[]) {
1974 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1975 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1976 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1977 fdt_size),
1978 VMSTATE_END_OF_LIST()
1982 static bool spapr_fwnmi_needed(void *opaque)
1984 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1986 return spapr->fwnmi_machine_check_addr != -1;
1989 static int spapr_fwnmi_pre_save(void *opaque)
1991 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1994 * Check if machine check handling is in progress and print a
1995 * warning message.
1997 if (spapr->fwnmi_machine_check_interlock != -1) {
1998 warn_report("A machine check is being handled during migration. The"
1999 "handler may run and log hardware error on the destination");
2002 return 0;
2005 static const VMStateDescription vmstate_spapr_fwnmi = {
2006 .name = "spapr_fwnmi",
2007 .version_id = 1,
2008 .minimum_version_id = 1,
2009 .needed = spapr_fwnmi_needed,
2010 .pre_save = spapr_fwnmi_pre_save,
2011 .fields = (VMStateField[]) {
2012 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2013 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2014 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2015 VMSTATE_END_OF_LIST()
2019 static const VMStateDescription vmstate_spapr = {
2020 .name = "spapr",
2021 .version_id = 3,
2022 .minimum_version_id = 1,
2023 .pre_load = spapr_pre_load,
2024 .post_load = spapr_post_load,
2025 .pre_save = spapr_pre_save,
2026 .fields = (VMStateField[]) {
2027 /* used to be @next_irq */
2028 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2030 /* RTC offset */
2031 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2033 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2034 VMSTATE_END_OF_LIST()
2036 .subsections = (const VMStateDescription*[]) {
2037 &vmstate_spapr_ov5_cas,
2038 &vmstate_spapr_patb_entry,
2039 &vmstate_spapr_pending_events,
2040 &vmstate_spapr_cap_htm,
2041 &vmstate_spapr_cap_vsx,
2042 &vmstate_spapr_cap_dfp,
2043 &vmstate_spapr_cap_cfpc,
2044 &vmstate_spapr_cap_sbbc,
2045 &vmstate_spapr_cap_ibs,
2046 &vmstate_spapr_cap_hpt_maxpagesize,
2047 &vmstate_spapr_irq_map,
2048 &vmstate_spapr_cap_nested_kvm_hv,
2049 &vmstate_spapr_dtb,
2050 &vmstate_spapr_cap_large_decr,
2051 &vmstate_spapr_cap_ccf_assist,
2052 &vmstate_spapr_cap_fwnmi,
2053 &vmstate_spapr_fwnmi,
2054 NULL
2058 static int htab_save_setup(QEMUFile *f, void *opaque)
2060 SpaprMachineState *spapr = opaque;
2062 /* "Iteration" header */
2063 if (!spapr->htab_shift) {
2064 qemu_put_be32(f, -1);
2065 } else {
2066 qemu_put_be32(f, spapr->htab_shift);
2069 if (spapr->htab) {
2070 spapr->htab_save_index = 0;
2071 spapr->htab_first_pass = true;
2072 } else {
2073 if (spapr->htab_shift) {
2074 assert(kvm_enabled());
2079 return 0;
2082 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2083 int chunkstart, int n_valid, int n_invalid)
2085 qemu_put_be32(f, chunkstart);
2086 qemu_put_be16(f, n_valid);
2087 qemu_put_be16(f, n_invalid);
2088 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2089 HASH_PTE_SIZE_64 * n_valid);
2092 static void htab_save_end_marker(QEMUFile *f)
2094 qemu_put_be32(f, 0);
2095 qemu_put_be16(f, 0);
2096 qemu_put_be16(f, 0);
2099 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2100 int64_t max_ns)
2102 bool has_timeout = max_ns != -1;
2103 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2104 int index = spapr->htab_save_index;
2105 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2107 assert(spapr->htab_first_pass);
2109 do {
2110 int chunkstart;
2112 /* Consume invalid HPTEs */
2113 while ((index < htabslots)
2114 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2115 CLEAN_HPTE(HPTE(spapr->htab, index));
2116 index++;
2119 /* Consume valid HPTEs */
2120 chunkstart = index;
2121 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2122 && HPTE_VALID(HPTE(spapr->htab, index))) {
2123 CLEAN_HPTE(HPTE(spapr->htab, index));
2124 index++;
2127 if (index > chunkstart) {
2128 int n_valid = index - chunkstart;
2130 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2132 if (has_timeout &&
2133 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2134 break;
2137 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2139 if (index >= htabslots) {
2140 assert(index == htabslots);
2141 index = 0;
2142 spapr->htab_first_pass = false;
2144 spapr->htab_save_index = index;
2147 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2148 int64_t max_ns)
2150 bool final = max_ns < 0;
2151 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2152 int examined = 0, sent = 0;
2153 int index = spapr->htab_save_index;
2154 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2156 assert(!spapr->htab_first_pass);
2158 do {
2159 int chunkstart, invalidstart;
2161 /* Consume non-dirty HPTEs */
2162 while ((index < htabslots)
2163 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2164 index++;
2165 examined++;
2168 chunkstart = index;
2169 /* Consume valid dirty HPTEs */
2170 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2171 && HPTE_DIRTY(HPTE(spapr->htab, index))
2172 && HPTE_VALID(HPTE(spapr->htab, index))) {
2173 CLEAN_HPTE(HPTE(spapr->htab, index));
2174 index++;
2175 examined++;
2178 invalidstart = index;
2179 /* Consume invalid dirty HPTEs */
2180 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2181 && HPTE_DIRTY(HPTE(spapr->htab, index))
2182 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2183 CLEAN_HPTE(HPTE(spapr->htab, index));
2184 index++;
2185 examined++;
2188 if (index > chunkstart) {
2189 int n_valid = invalidstart - chunkstart;
2190 int n_invalid = index - invalidstart;
2192 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2193 sent += index - chunkstart;
2195 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2196 break;
2200 if (examined >= htabslots) {
2201 break;
2204 if (index >= htabslots) {
2205 assert(index == htabslots);
2206 index = 0;
2208 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2210 if (index >= htabslots) {
2211 assert(index == htabslots);
2212 index = 0;
2215 spapr->htab_save_index = index;
2217 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2220 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2221 #define MAX_KVM_BUF_SIZE 2048
2223 static int htab_save_iterate(QEMUFile *f, void *opaque)
2225 SpaprMachineState *spapr = opaque;
2226 int fd;
2227 int rc = 0;
2229 /* Iteration header */
2230 if (!spapr->htab_shift) {
2231 qemu_put_be32(f, -1);
2232 return 1;
2233 } else {
2234 qemu_put_be32(f, 0);
2237 if (!spapr->htab) {
2238 assert(kvm_enabled());
2240 fd = get_htab_fd(spapr);
2241 if (fd < 0) {
2242 return fd;
2245 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2246 if (rc < 0) {
2247 return rc;
2249 } else if (spapr->htab_first_pass) {
2250 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2251 } else {
2252 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2255 htab_save_end_marker(f);
2257 return rc;
2260 static int htab_save_complete(QEMUFile *f, void *opaque)
2262 SpaprMachineState *spapr = opaque;
2263 int fd;
2265 /* Iteration header */
2266 if (!spapr->htab_shift) {
2267 qemu_put_be32(f, -1);
2268 return 0;
2269 } else {
2270 qemu_put_be32(f, 0);
2273 if (!spapr->htab) {
2274 int rc;
2276 assert(kvm_enabled());
2278 fd = get_htab_fd(spapr);
2279 if (fd < 0) {
2280 return fd;
2283 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2284 if (rc < 0) {
2285 return rc;
2287 } else {
2288 if (spapr->htab_first_pass) {
2289 htab_save_first_pass(f, spapr, -1);
2291 htab_save_later_pass(f, spapr, -1);
2294 /* End marker */
2295 htab_save_end_marker(f);
2297 return 0;
2300 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2302 SpaprMachineState *spapr = opaque;
2303 uint32_t section_hdr;
2304 int fd = -1;
2305 Error *local_err = NULL;
2307 if (version_id < 1 || version_id > 1) {
2308 error_report("htab_load() bad version");
2309 return -EINVAL;
2312 section_hdr = qemu_get_be32(f);
2314 if (section_hdr == -1) {
2315 spapr_free_hpt(spapr);
2316 return 0;
2319 if (section_hdr) {
2320 /* First section gives the htab size */
2321 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2322 if (local_err) {
2323 error_report_err(local_err);
2324 return -EINVAL;
2326 return 0;
2329 if (!spapr->htab) {
2330 assert(kvm_enabled());
2332 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2333 if (fd < 0) {
2334 error_report_err(local_err);
2335 return fd;
2339 while (true) {
2340 uint32_t index;
2341 uint16_t n_valid, n_invalid;
2343 index = qemu_get_be32(f);
2344 n_valid = qemu_get_be16(f);
2345 n_invalid = qemu_get_be16(f);
2347 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2348 /* End of Stream */
2349 break;
2352 if ((index + n_valid + n_invalid) >
2353 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2354 /* Bad index in stream */
2355 error_report(
2356 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2357 index, n_valid, n_invalid, spapr->htab_shift);
2358 return -EINVAL;
2361 if (spapr->htab) {
2362 if (n_valid) {
2363 qemu_get_buffer(f, HPTE(spapr->htab, index),
2364 HASH_PTE_SIZE_64 * n_valid);
2366 if (n_invalid) {
2367 memset(HPTE(spapr->htab, index + n_valid), 0,
2368 HASH_PTE_SIZE_64 * n_invalid);
2370 } else {
2371 int rc;
2373 assert(fd >= 0);
2375 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2376 if (rc < 0) {
2377 return rc;
2382 if (!spapr->htab) {
2383 assert(fd >= 0);
2384 close(fd);
2387 return 0;
2390 static void htab_save_cleanup(void *opaque)
2392 SpaprMachineState *spapr = opaque;
2394 close_htab_fd(spapr);
2397 static SaveVMHandlers savevm_htab_handlers = {
2398 .save_setup = htab_save_setup,
2399 .save_live_iterate = htab_save_iterate,
2400 .save_live_complete_precopy = htab_save_complete,
2401 .save_cleanup = htab_save_cleanup,
2402 .load_state = htab_load,
2405 static void spapr_boot_set(void *opaque, const char *boot_device,
2406 Error **errp)
2408 MachineState *machine = MACHINE(opaque);
2409 machine->boot_order = g_strdup(boot_device);
2412 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2414 MachineState *machine = MACHINE(spapr);
2415 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2416 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2417 int i;
2419 for (i = 0; i < nr_lmbs; i++) {
2420 uint64_t addr;
2422 addr = i * lmb_size + machine->device_memory->base;
2423 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2424 addr / lmb_size);
2429 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2430 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2431 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2433 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2435 int i;
2437 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2438 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2439 " is not aligned to %" PRIu64 " MiB",
2440 machine->ram_size,
2441 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2442 return;
2445 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2446 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2447 " is not aligned to %" PRIu64 " MiB",
2448 machine->ram_size,
2449 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2450 return;
2453 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2454 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2455 error_setg(errp,
2456 "Node %d memory size 0x%" PRIx64
2457 " is not aligned to %" PRIu64 " MiB",
2458 i, machine->numa_state->nodes[i].node_mem,
2459 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2460 return;
2465 /* find cpu slot in machine->possible_cpus by core_id */
2466 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2468 int index = id / ms->smp.threads;
2470 if (index >= ms->possible_cpus->len) {
2471 return NULL;
2473 if (idx) {
2474 *idx = index;
2476 return &ms->possible_cpus->cpus[index];
2479 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2481 MachineState *ms = MACHINE(spapr);
2482 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2483 Error *local_err = NULL;
2484 bool vsmt_user = !!spapr->vsmt;
2485 int kvm_smt = kvmppc_smt_threads();
2486 int ret;
2487 unsigned int smp_threads = ms->smp.threads;
2489 if (!kvm_enabled() && (smp_threads > 1)) {
2490 error_setg(errp, "TCG cannot support more than 1 thread/core "
2491 "on a pseries machine");
2492 return;
2494 if (!is_power_of_2(smp_threads)) {
2495 error_setg(errp, "Cannot support %d threads/core on a pseries "
2496 "machine because it must be a power of 2", smp_threads);
2497 return;
2500 /* Detemine the VSMT mode to use: */
2501 if (vsmt_user) {
2502 if (spapr->vsmt < smp_threads) {
2503 error_setg(errp, "Cannot support VSMT mode %d"
2504 " because it must be >= threads/core (%d)",
2505 spapr->vsmt, smp_threads);
2506 return;
2508 /* In this case, spapr->vsmt has been set by the command line */
2509 } else if (!smc->smp_threads_vsmt) {
2511 * Default VSMT value is tricky, because we need it to be as
2512 * consistent as possible (for migration), but this requires
2513 * changing it for at least some existing cases. We pick 8 as
2514 * the value that we'd get with KVM on POWER8, the
2515 * overwhelmingly common case in production systems.
2517 spapr->vsmt = MAX(8, smp_threads);
2518 } else {
2519 spapr->vsmt = smp_threads;
2522 /* KVM: If necessary, set the SMT mode: */
2523 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2524 ret = kvmppc_set_smt_threads(spapr->vsmt);
2525 if (ret) {
2526 /* Looks like KVM isn't able to change VSMT mode */
2527 error_setg(&local_err,
2528 "Failed to set KVM's VSMT mode to %d (errno %d)",
2529 spapr->vsmt, ret);
2530 /* We can live with that if the default one is big enough
2531 * for the number of threads, and a submultiple of the one
2532 * we want. In this case we'll waste some vcpu ids, but
2533 * behaviour will be correct */
2534 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2535 warn_report_err(local_err);
2536 } else {
2537 if (!vsmt_user) {
2538 error_append_hint(&local_err,
2539 "On PPC, a VM with %d threads/core"
2540 " on a host with %d threads/core"
2541 " requires the use of VSMT mode %d.\n",
2542 smp_threads, kvm_smt, spapr->vsmt);
2544 kvmppc_error_append_smt_possible_hint(&local_err);
2545 error_propagate(errp, local_err);
2549 /* else TCG: nothing to do currently */
2552 static void spapr_init_cpus(SpaprMachineState *spapr)
2554 MachineState *machine = MACHINE(spapr);
2555 MachineClass *mc = MACHINE_GET_CLASS(machine);
2556 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2557 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2558 const CPUArchIdList *possible_cpus;
2559 unsigned int smp_cpus = machine->smp.cpus;
2560 unsigned int smp_threads = machine->smp.threads;
2561 unsigned int max_cpus = machine->smp.max_cpus;
2562 int boot_cores_nr = smp_cpus / smp_threads;
2563 int i;
2565 possible_cpus = mc->possible_cpu_arch_ids(machine);
2566 if (mc->has_hotpluggable_cpus) {
2567 if (smp_cpus % smp_threads) {
2568 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2569 smp_cpus, smp_threads);
2570 exit(1);
2572 if (max_cpus % smp_threads) {
2573 error_report("max_cpus (%u) must be multiple of threads (%u)",
2574 max_cpus, smp_threads);
2575 exit(1);
2577 } else {
2578 if (max_cpus != smp_cpus) {
2579 error_report("This machine version does not support CPU hotplug");
2580 exit(1);
2582 boot_cores_nr = possible_cpus->len;
2585 if (smc->pre_2_10_has_unused_icps) {
2586 int i;
2588 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2589 /* Dummy entries get deregistered when real ICPState objects
2590 * are registered during CPU core hotplug.
2592 pre_2_10_vmstate_register_dummy_icp(i);
2596 for (i = 0; i < possible_cpus->len; i++) {
2597 int core_id = i * smp_threads;
2599 if (mc->has_hotpluggable_cpus) {
2600 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2601 spapr_vcpu_id(spapr, core_id));
2604 if (i < boot_cores_nr) {
2605 Object *core = object_new(type);
2606 int nr_threads = smp_threads;
2608 /* Handle the partially filled core for older machine types */
2609 if ((i + 1) * smp_threads >= smp_cpus) {
2610 nr_threads = smp_cpus - i * smp_threads;
2613 object_property_set_int(core, "nr-threads", nr_threads,
2614 &error_fatal);
2615 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2616 &error_fatal);
2617 qdev_realize(DEVICE(core), NULL, &error_fatal);
2619 object_unref(core);
2624 static PCIHostState *spapr_create_default_phb(void)
2626 DeviceState *dev;
2628 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2629 qdev_prop_set_uint32(dev, "index", 0);
2630 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2632 return PCI_HOST_BRIDGE(dev);
2635 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2637 MachineState *machine = MACHINE(spapr);
2638 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2639 hwaddr rma_size = machine->ram_size;
2640 hwaddr node0_size = spapr_node0_size(machine);
2642 /* RMA has to fit in the first NUMA node */
2643 rma_size = MIN(rma_size, node0_size);
2646 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2647 * never exceed that
2649 rma_size = MIN(rma_size, 1 * TiB);
2652 * Clamp the RMA size based on machine type. This is for
2653 * migration compatibility with older qemu versions, which limited
2654 * the RMA size for complicated and mostly bad reasons.
2656 if (smc->rma_limit) {
2657 rma_size = MIN(rma_size, smc->rma_limit);
2660 if (rma_size < MIN_RMA_SLOF) {
2661 error_setg(errp,
2662 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2663 "ldMiB guest RMA (Real Mode Area memory)",
2664 MIN_RMA_SLOF / MiB);
2665 return 0;
2668 return rma_size;
2671 /* pSeries LPAR / sPAPR hardware init */
2672 static void spapr_machine_init(MachineState *machine)
2674 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2675 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2676 MachineClass *mc = MACHINE_GET_CLASS(machine);
2677 const char *kernel_filename = machine->kernel_filename;
2678 const char *initrd_filename = machine->initrd_filename;
2679 PCIHostState *phb;
2680 int i;
2681 MemoryRegion *sysmem = get_system_memory();
2682 long load_limit, fw_size;
2683 char *filename;
2684 Error *resize_hpt_err = NULL;
2686 msi_nonbroken = true;
2688 QLIST_INIT(&spapr->phbs);
2689 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2691 /* Determine capabilities to run with */
2692 spapr_caps_init(spapr);
2694 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2695 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2697 * If the user explicitly requested a mode we should either
2698 * supply it, or fail completely (which we do below). But if
2699 * it's not set explicitly, we reset our mode to something
2700 * that works
2702 if (resize_hpt_err) {
2703 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2704 error_free(resize_hpt_err);
2705 resize_hpt_err = NULL;
2706 } else {
2707 spapr->resize_hpt = smc->resize_hpt_default;
2711 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2713 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2715 * User requested HPT resize, but this host can't supply it. Bail out
2717 error_report_err(resize_hpt_err);
2718 exit(1);
2720 error_free(resize_hpt_err);
2722 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2724 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2725 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2728 * VSMT must be set in order to be able to compute VCPU ids, ie to
2729 * call spapr_max_server_number() or spapr_vcpu_id().
2731 spapr_set_vsmt_mode(spapr, &error_fatal);
2733 /* Set up Interrupt Controller before we create the VCPUs */
2734 spapr_irq_init(spapr, &error_fatal);
2736 /* Set up containers for ibm,client-architecture-support negotiated options
2738 spapr->ov5 = spapr_ovec_new();
2739 spapr->ov5_cas = spapr_ovec_new();
2741 if (smc->dr_lmb_enabled) {
2742 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2743 spapr_validate_node_memory(machine, &error_fatal);
2746 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2748 /* advertise support for dedicated HP event source to guests */
2749 if (spapr->use_hotplug_event_source) {
2750 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2753 /* advertise support for HPT resizing */
2754 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2755 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2758 /* advertise support for ibm,dyamic-memory-v2 */
2759 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2761 /* advertise XIVE on POWER9 machines */
2762 if (spapr->irq->xive) {
2763 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2766 /* init CPUs */
2767 spapr_init_cpus(spapr);
2770 * check we don't have a memory-less/cpu-less NUMA node
2771 * Firmware relies on the existing memory/cpu topology to provide the
2772 * NUMA topology to the kernel.
2773 * And the linux kernel needs to know the NUMA topology at start
2774 * to be able to hotplug CPUs later.
2776 if (machine->numa_state->num_nodes) {
2777 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2778 /* check for memory-less node */
2779 if (machine->numa_state->nodes[i].node_mem == 0) {
2780 CPUState *cs;
2781 int found = 0;
2782 /* check for cpu-less node */
2783 CPU_FOREACH(cs) {
2784 PowerPCCPU *cpu = POWERPC_CPU(cs);
2785 if (cpu->node_id == i) {
2786 found = 1;
2787 break;
2790 /* memory-less and cpu-less node */
2791 if (!found) {
2792 error_report(
2793 "Memory-less/cpu-less nodes are not supported (node %d)",
2795 exit(1);
2803 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2804 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2805 * called from vPHB reset handler so we initialize the counter here.
2806 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2807 * must be equally distant from any other node.
2808 * The final value of spapr->gpu_numa_id is going to be written to
2809 * max-associativity-domains in spapr_build_fdt().
2811 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2813 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2814 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2815 spapr->max_compat_pvr)) {
2816 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2817 /* KVM and TCG always allow GTSE with radix... */
2818 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2820 /* ... but not with hash (currently). */
2822 if (kvm_enabled()) {
2823 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2824 kvmppc_enable_logical_ci_hcalls();
2825 kvmppc_enable_set_mode_hcall();
2827 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2828 kvmppc_enable_clear_ref_mod_hcalls();
2830 /* Enable H_PAGE_INIT */
2831 kvmppc_enable_h_page_init();
2834 /* map RAM */
2835 memory_region_add_subregion(sysmem, 0, machine->ram);
2837 /* always allocate the device memory information */
2838 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2840 /* initialize hotplug memory address space */
2841 if (machine->ram_size < machine->maxram_size) {
2842 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2844 * Limit the number of hotpluggable memory slots to half the number
2845 * slots that KVM supports, leaving the other half for PCI and other
2846 * devices. However ensure that number of slots doesn't drop below 32.
2848 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2849 SPAPR_MAX_RAM_SLOTS;
2851 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2852 max_memslots = SPAPR_MAX_RAM_SLOTS;
2854 if (machine->ram_slots > max_memslots) {
2855 error_report("Specified number of memory slots %"
2856 PRIu64" exceeds max supported %d",
2857 machine->ram_slots, max_memslots);
2858 exit(1);
2861 machine->device_memory->base = ROUND_UP(machine->ram_size,
2862 SPAPR_DEVICE_MEM_ALIGN);
2863 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2864 "device-memory", device_mem_size);
2865 memory_region_add_subregion(sysmem, machine->device_memory->base,
2866 &machine->device_memory->mr);
2869 if (smc->dr_lmb_enabled) {
2870 spapr_create_lmb_dr_connectors(spapr);
2873 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2874 /* Create the error string for live migration blocker */
2875 error_setg(&spapr->fwnmi_migration_blocker,
2876 "A machine check is being handled during migration. The handler"
2877 "may run and log hardware error on the destination");
2880 if (mc->nvdimm_supported) {
2881 spapr_create_nvdimm_dr_connectors(spapr);
2884 /* Set up RTAS event infrastructure */
2885 spapr_events_init(spapr);
2887 /* Set up the RTC RTAS interfaces */
2888 spapr_rtc_create(spapr);
2890 /* Set up VIO bus */
2891 spapr->vio_bus = spapr_vio_bus_init();
2893 for (i = 0; i < serial_max_hds(); i++) {
2894 if (serial_hd(i)) {
2895 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2899 /* We always have at least the nvram device on VIO */
2900 spapr_create_nvram(spapr);
2903 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2904 * connectors (described in root DT node's "ibm,drc-types" property)
2905 * are pre-initialized here. additional child connectors (such as
2906 * connectors for a PHBs PCI slots) are added as needed during their
2907 * parent's realization.
2909 if (smc->dr_phb_enabled) {
2910 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2911 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2915 /* Set up PCI */
2916 spapr_pci_rtas_init();
2918 phb = spapr_create_default_phb();
2920 for (i = 0; i < nb_nics; i++) {
2921 NICInfo *nd = &nd_table[i];
2923 if (!nd->model) {
2924 nd->model = g_strdup("spapr-vlan");
2927 if (g_str_equal(nd->model, "spapr-vlan") ||
2928 g_str_equal(nd->model, "ibmveth")) {
2929 spapr_vlan_create(spapr->vio_bus, nd);
2930 } else {
2931 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2935 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2936 spapr_vscsi_create(spapr->vio_bus);
2939 /* Graphics */
2940 if (spapr_vga_init(phb->bus, &error_fatal)) {
2941 spapr->has_graphics = true;
2942 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2945 if (machine->usb) {
2946 if (smc->use_ohci_by_default) {
2947 pci_create_simple(phb->bus, -1, "pci-ohci");
2948 } else {
2949 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2952 if (spapr->has_graphics) {
2953 USBBus *usb_bus = usb_bus_find(-1);
2955 usb_create_simple(usb_bus, "usb-kbd");
2956 usb_create_simple(usb_bus, "usb-mouse");
2960 if (kernel_filename) {
2961 uint64_t lowaddr = 0;
2963 spapr->kernel_size = load_elf(kernel_filename, NULL,
2964 translate_kernel_address, spapr,
2965 NULL, &lowaddr, NULL, NULL, 1,
2966 PPC_ELF_MACHINE, 0, 0);
2967 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2968 spapr->kernel_size = load_elf(kernel_filename, NULL,
2969 translate_kernel_address, spapr, NULL,
2970 &lowaddr, NULL, NULL, 0,
2971 PPC_ELF_MACHINE,
2972 0, 0);
2973 spapr->kernel_le = spapr->kernel_size > 0;
2975 if (spapr->kernel_size < 0) {
2976 error_report("error loading %s: %s", kernel_filename,
2977 load_elf_strerror(spapr->kernel_size));
2978 exit(1);
2981 /* load initrd */
2982 if (initrd_filename) {
2983 /* Try to locate the initrd in the gap between the kernel
2984 * and the firmware. Add a bit of space just in case
2986 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2987 + 0x1ffff) & ~0xffff;
2988 spapr->initrd_size = load_image_targphys(initrd_filename,
2989 spapr->initrd_base,
2990 load_limit
2991 - spapr->initrd_base);
2992 if (spapr->initrd_size < 0) {
2993 error_report("could not load initial ram disk '%s'",
2994 initrd_filename);
2995 exit(1);
3000 if (bios_name == NULL) {
3001 bios_name = FW_FILE_NAME;
3003 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3004 if (!filename) {
3005 error_report("Could not find LPAR firmware '%s'", bios_name);
3006 exit(1);
3008 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3009 if (fw_size <= 0) {
3010 error_report("Could not load LPAR firmware '%s'", filename);
3011 exit(1);
3013 g_free(filename);
3015 /* FIXME: Should register things through the MachineState's qdev
3016 * interface, this is a legacy from the sPAPREnvironment structure
3017 * which predated MachineState but had a similar function */
3018 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3019 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3020 &savevm_htab_handlers, spapr);
3022 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3024 qemu_register_boot_set(spapr_boot_set, spapr);
3027 * Nothing needs to be done to resume a suspended guest because
3028 * suspending does not change the machine state, so no need for
3029 * a ->wakeup method.
3031 qemu_register_wakeup_support();
3033 if (kvm_enabled()) {
3034 /* to stop and start vmclock */
3035 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3036 &spapr->tb);
3038 kvmppc_spapr_enable_inkernel_multitce();
3041 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3044 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3046 if (!vm_type) {
3047 return 0;
3050 if (!strcmp(vm_type, "HV")) {
3051 return 1;
3054 if (!strcmp(vm_type, "PR")) {
3055 return 2;
3058 error_report("Unknown kvm-type specified '%s'", vm_type);
3059 exit(1);
3063 * Implementation of an interface to adjust firmware path
3064 * for the bootindex property handling.
3066 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3067 DeviceState *dev)
3069 #define CAST(type, obj, name) \
3070 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3071 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3072 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3073 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3075 if (d) {
3076 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3077 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3078 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3080 if (spapr) {
3082 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3083 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3084 * 0x8000 | (target << 8) | (bus << 5) | lun
3085 * (see the "Logical unit addressing format" table in SAM5)
3087 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3088 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3089 (uint64_t)id << 48);
3090 } else if (virtio) {
3092 * We use SRP luns of the form 01000000 | (target << 8) | lun
3093 * in the top 32 bits of the 64-bit LUN
3094 * Note: the quote above is from SLOF and it is wrong,
3095 * the actual binding is:
3096 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3098 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3099 if (d->lun >= 256) {
3100 /* Use the LUN "flat space addressing method" */
3101 id |= 0x4000;
3103 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3104 (uint64_t)id << 32);
3105 } else if (usb) {
3107 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3108 * in the top 32 bits of the 64-bit LUN
3110 unsigned usb_port = atoi(usb->port->path);
3111 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3112 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3113 (uint64_t)id << 32);
3118 * SLOF probes the USB devices, and if it recognizes that the device is a
3119 * storage device, it changes its name to "storage" instead of "usb-host",
3120 * and additionally adds a child node for the SCSI LUN, so the correct
3121 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3123 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3124 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3125 if (usb_host_dev_is_scsi_storage(usbdev)) {
3126 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3130 if (phb) {
3131 /* Replace "pci" with "pci@800000020000000" */
3132 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3135 if (vsc) {
3136 /* Same logic as virtio above */
3137 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3138 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3141 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3142 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3143 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3144 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3147 return NULL;
3150 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3152 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3154 return g_strdup(spapr->kvm_type);
3157 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3159 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3161 g_free(spapr->kvm_type);
3162 spapr->kvm_type = g_strdup(value);
3165 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3167 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3169 return spapr->use_hotplug_event_source;
3172 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3173 Error **errp)
3175 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3177 spapr->use_hotplug_event_source = value;
3180 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3182 return true;
3185 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3187 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3189 switch (spapr->resize_hpt) {
3190 case SPAPR_RESIZE_HPT_DEFAULT:
3191 return g_strdup("default");
3192 case SPAPR_RESIZE_HPT_DISABLED:
3193 return g_strdup("disabled");
3194 case SPAPR_RESIZE_HPT_ENABLED:
3195 return g_strdup("enabled");
3196 case SPAPR_RESIZE_HPT_REQUIRED:
3197 return g_strdup("required");
3199 g_assert_not_reached();
3202 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3204 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3206 if (strcmp(value, "default") == 0) {
3207 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3208 } else if (strcmp(value, "disabled") == 0) {
3209 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3210 } else if (strcmp(value, "enabled") == 0) {
3211 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3212 } else if (strcmp(value, "required") == 0) {
3213 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3214 } else {
3215 error_setg(errp, "Bad value for \"resize-hpt\" property");
3219 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3221 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223 if (spapr->irq == &spapr_irq_xics_legacy) {
3224 return g_strdup("legacy");
3225 } else if (spapr->irq == &spapr_irq_xics) {
3226 return g_strdup("xics");
3227 } else if (spapr->irq == &spapr_irq_xive) {
3228 return g_strdup("xive");
3229 } else if (spapr->irq == &spapr_irq_dual) {
3230 return g_strdup("dual");
3232 g_assert_not_reached();
3235 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3240 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3241 return;
3244 /* The legacy IRQ backend can not be set */
3245 if (strcmp(value, "xics") == 0) {
3246 spapr->irq = &spapr_irq_xics;
3247 } else if (strcmp(value, "xive") == 0) {
3248 spapr->irq = &spapr_irq_xive;
3249 } else if (strcmp(value, "dual") == 0) {
3250 spapr->irq = &spapr_irq_dual;
3251 } else {
3252 error_setg(errp, "Bad value for \"ic-mode\" property");
3256 static char *spapr_get_host_model(Object *obj, Error **errp)
3258 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260 return g_strdup(spapr->host_model);
3263 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3265 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3267 g_free(spapr->host_model);
3268 spapr->host_model = g_strdup(value);
3271 static char *spapr_get_host_serial(Object *obj, Error **errp)
3273 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3275 return g_strdup(spapr->host_serial);
3278 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3280 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3282 g_free(spapr->host_serial);
3283 spapr->host_serial = g_strdup(value);
3286 static void spapr_instance_init(Object *obj)
3288 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3289 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3291 spapr->htab_fd = -1;
3292 spapr->use_hotplug_event_source = true;
3293 object_property_add_str(obj, "kvm-type",
3294 spapr_get_kvm_type, spapr_set_kvm_type);
3295 object_property_set_description(obj, "kvm-type",
3296 "Specifies the KVM virtualization mode (HV, PR)");
3297 object_property_add_bool(obj, "modern-hotplug-events",
3298 spapr_get_modern_hotplug_events,
3299 spapr_set_modern_hotplug_events);
3300 object_property_set_description(obj, "modern-hotplug-events",
3301 "Use dedicated hotplug event mechanism in"
3302 " place of standard EPOW events when possible"
3303 " (required for memory hot-unplug support)");
3304 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3305 "Maximum permitted CPU compatibility mode");
3307 object_property_add_str(obj, "resize-hpt",
3308 spapr_get_resize_hpt, spapr_set_resize_hpt);
3309 object_property_set_description(obj, "resize-hpt",
3310 "Resizing of the Hash Page Table (enabled, disabled, required)");
3311 object_property_add_uint32_ptr(obj, "vsmt",
3312 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3313 object_property_set_description(obj, "vsmt",
3314 "Virtual SMT: KVM behaves as if this were"
3315 " the host's SMT mode");
3317 object_property_add_bool(obj, "vfio-no-msix-emulation",
3318 spapr_get_msix_emulation, NULL);
3320 object_property_add_uint64_ptr(obj, "kernel-addr",
3321 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3322 object_property_set_description(obj, "kernel-addr",
3323 stringify(KERNEL_LOAD_ADDR)
3324 " for -kernel is the default");
3325 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3326 /* The machine class defines the default interrupt controller mode */
3327 spapr->irq = smc->irq;
3328 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3329 spapr_set_ic_mode);
3330 object_property_set_description(obj, "ic-mode",
3331 "Specifies the interrupt controller mode (xics, xive, dual)");
3333 object_property_add_str(obj, "host-model",
3334 spapr_get_host_model, spapr_set_host_model);
3335 object_property_set_description(obj, "host-model",
3336 "Host model to advertise in guest device tree");
3337 object_property_add_str(obj, "host-serial",
3338 spapr_get_host_serial, spapr_set_host_serial);
3339 object_property_set_description(obj, "host-serial",
3340 "Host serial number to advertise in guest device tree");
3343 static void spapr_machine_finalizefn(Object *obj)
3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3347 g_free(spapr->kvm_type);
3350 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3352 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3353 PowerPCCPU *cpu = POWERPC_CPU(cs);
3354 CPUPPCState *env = &cpu->env;
3356 cpu_synchronize_state(cs);
3357 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3358 if (spapr->fwnmi_system_reset_addr != -1) {
3359 uint64_t rtas_addr, addr;
3361 /* get rtas addr from fdt */
3362 rtas_addr = spapr_get_rtas_addr();
3363 if (!rtas_addr) {
3364 qemu_system_guest_panicked(NULL);
3365 return;
3368 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3369 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3370 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3371 env->gpr[3] = addr;
3373 ppc_cpu_do_system_reset(cs);
3374 if (spapr->fwnmi_system_reset_addr != -1) {
3375 env->nip = spapr->fwnmi_system_reset_addr;
3379 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3381 CPUState *cs;
3383 CPU_FOREACH(cs) {
3384 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3388 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3389 void *fdt, int *fdt_start_offset, Error **errp)
3391 uint64_t addr;
3392 uint32_t node;
3394 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3395 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3396 &error_abort);
3397 *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3398 SPAPR_MEMORY_BLOCK_SIZE);
3399 return 0;
3402 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3403 bool dedicated_hp_event_source, Error **errp)
3405 SpaprDrc *drc;
3406 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3407 int i;
3408 uint64_t addr = addr_start;
3409 bool hotplugged = spapr_drc_hotplugged(dev);
3410 Error *local_err = NULL;
3412 for (i = 0; i < nr_lmbs; i++) {
3413 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3414 addr / SPAPR_MEMORY_BLOCK_SIZE);
3415 g_assert(drc);
3417 spapr_drc_attach(drc, dev, &local_err);
3418 if (local_err) {
3419 while (addr > addr_start) {
3420 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3422 addr / SPAPR_MEMORY_BLOCK_SIZE);
3423 spapr_drc_detach(drc);
3425 error_propagate(errp, local_err);
3426 return;
3428 if (!hotplugged) {
3429 spapr_drc_reset(drc);
3431 addr += SPAPR_MEMORY_BLOCK_SIZE;
3433 /* send hotplug notification to the
3434 * guest only in case of hotplugged memory
3436 if (hotplugged) {
3437 if (dedicated_hp_event_source) {
3438 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3439 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3440 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3441 nr_lmbs,
3442 spapr_drc_index(drc));
3443 } else {
3444 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3445 nr_lmbs);
3450 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3451 Error **errp)
3453 Error *local_err = NULL;
3454 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3455 PCDIMMDevice *dimm = PC_DIMM(dev);
3456 uint64_t size, addr, slot;
3457 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3459 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3461 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3462 if (local_err) {
3463 goto out;
3466 if (!is_nvdimm) {
3467 addr = object_property_get_uint(OBJECT(dimm),
3468 PC_DIMM_ADDR_PROP, &local_err);
3469 if (local_err) {
3470 goto out_unplug;
3472 spapr_add_lmbs(dev, addr, size,
3473 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3474 &local_err);
3475 } else {
3476 slot = object_property_get_uint(OBJECT(dimm),
3477 PC_DIMM_SLOT_PROP, &local_err);
3478 if (local_err) {
3479 goto out_unplug;
3481 spapr_add_nvdimm(dev, slot, &local_err);
3484 if (local_err) {
3485 goto out_unplug;
3488 return;
3490 out_unplug:
3491 pc_dimm_unplug(dimm, MACHINE(ms));
3492 out:
3493 error_propagate(errp, local_err);
3496 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3497 Error **errp)
3499 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3500 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3501 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3502 PCDIMMDevice *dimm = PC_DIMM(dev);
3503 Error *local_err = NULL;
3504 uint64_t size;
3505 Object *memdev;
3506 hwaddr pagesize;
3508 if (!smc->dr_lmb_enabled) {
3509 error_setg(errp, "Memory hotplug not supported for this machine");
3510 return;
3513 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3514 if (local_err) {
3515 error_propagate(errp, local_err);
3516 return;
3519 if (is_nvdimm) {
3520 spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, &local_err);
3521 if (local_err) {
3522 error_propagate(errp, local_err);
3523 return;
3525 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3526 error_setg(errp, "Hotplugged memory size must be a multiple of "
3527 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3528 return;
3531 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3532 &error_abort);
3533 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3534 spapr_check_pagesize(spapr, pagesize, &local_err);
3535 if (local_err) {
3536 error_propagate(errp, local_err);
3537 return;
3540 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3543 struct SpaprDimmState {
3544 PCDIMMDevice *dimm;
3545 uint32_t nr_lmbs;
3546 QTAILQ_ENTRY(SpaprDimmState) next;
3549 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3550 PCDIMMDevice *dimm)
3552 SpaprDimmState *dimm_state = NULL;
3554 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3555 if (dimm_state->dimm == dimm) {
3556 break;
3559 return dimm_state;
3562 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3563 uint32_t nr_lmbs,
3564 PCDIMMDevice *dimm)
3566 SpaprDimmState *ds = NULL;
3569 * If this request is for a DIMM whose removal had failed earlier
3570 * (due to guest's refusal to remove the LMBs), we would have this
3571 * dimm already in the pending_dimm_unplugs list. In that
3572 * case don't add again.
3574 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3575 if (!ds) {
3576 ds = g_malloc0(sizeof(SpaprDimmState));
3577 ds->nr_lmbs = nr_lmbs;
3578 ds->dimm = dimm;
3579 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3581 return ds;
3584 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3585 SpaprDimmState *dimm_state)
3587 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3588 g_free(dimm_state);
3591 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3592 PCDIMMDevice *dimm)
3594 SpaprDrc *drc;
3595 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3596 &error_abort);
3597 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3598 uint32_t avail_lmbs = 0;
3599 uint64_t addr_start, addr;
3600 int i;
3602 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3603 &error_abort);
3605 addr = addr_start;
3606 for (i = 0; i < nr_lmbs; i++) {
3607 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3608 addr / SPAPR_MEMORY_BLOCK_SIZE);
3609 g_assert(drc);
3610 if (drc->dev) {
3611 avail_lmbs++;
3613 addr += SPAPR_MEMORY_BLOCK_SIZE;
3616 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3619 /* Callback to be called during DRC release. */
3620 void spapr_lmb_release(DeviceState *dev)
3622 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3623 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3624 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3626 /* This information will get lost if a migration occurs
3627 * during the unplug process. In this case recover it. */
3628 if (ds == NULL) {
3629 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3630 g_assert(ds);
3631 /* The DRC being examined by the caller at least must be counted */
3632 g_assert(ds->nr_lmbs);
3635 if (--ds->nr_lmbs) {
3636 return;
3640 * Now that all the LMBs have been removed by the guest, call the
3641 * unplug handler chain. This can never fail.
3643 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3644 object_unparent(OBJECT(dev));
3647 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3649 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3650 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3652 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3653 qdev_unrealize(dev);
3654 spapr_pending_dimm_unplugs_remove(spapr, ds);
3657 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3658 DeviceState *dev, Error **errp)
3660 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3661 Error *local_err = NULL;
3662 PCDIMMDevice *dimm = PC_DIMM(dev);
3663 uint32_t nr_lmbs;
3664 uint64_t size, addr_start, addr;
3665 int i;
3666 SpaprDrc *drc;
3668 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3669 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3670 return;
3673 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3674 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3676 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3677 &local_err);
3678 if (local_err) {
3679 error_propagate(errp, local_err);
3680 return;
3684 * An existing pending dimm state for this DIMM means that there is an
3685 * unplug operation in progress, waiting for the spapr_lmb_release
3686 * callback to complete the job (BQL can't cover that far). In this case,
3687 * bail out to avoid detaching DRCs that were already released.
3689 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3690 error_setg(errp, "Memory unplug already in progress for device %s",
3691 dev->id);
3692 return;
3695 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3697 addr = addr_start;
3698 for (i = 0; i < nr_lmbs; i++) {
3699 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3700 addr / SPAPR_MEMORY_BLOCK_SIZE);
3701 g_assert(drc);
3703 spapr_drc_detach(drc);
3704 addr += SPAPR_MEMORY_BLOCK_SIZE;
3707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3708 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3709 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3710 nr_lmbs, spapr_drc_index(drc));
3713 /* Callback to be called during DRC release. */
3714 void spapr_core_release(DeviceState *dev)
3716 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3718 /* Call the unplug handler chain. This can never fail. */
3719 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3720 object_unparent(OBJECT(dev));
3723 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3725 MachineState *ms = MACHINE(hotplug_dev);
3726 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3727 CPUCore *cc = CPU_CORE(dev);
3728 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3730 if (smc->pre_2_10_has_unused_icps) {
3731 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3732 int i;
3734 for (i = 0; i < cc->nr_threads; i++) {
3735 CPUState *cs = CPU(sc->threads[i]);
3737 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3741 assert(core_slot);
3742 core_slot->cpu = NULL;
3743 qdev_unrealize(dev);
3746 static
3747 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3748 Error **errp)
3750 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3751 int index;
3752 SpaprDrc *drc;
3753 CPUCore *cc = CPU_CORE(dev);
3755 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3756 error_setg(errp, "Unable to find CPU core with core-id: %d",
3757 cc->core_id);
3758 return;
3760 if (index == 0) {
3761 error_setg(errp, "Boot CPU core may not be unplugged");
3762 return;
3765 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3766 spapr_vcpu_id(spapr, cc->core_id));
3767 g_assert(drc);
3769 if (!spapr_drc_unplug_requested(drc)) {
3770 spapr_drc_detach(drc);
3771 spapr_hotplug_req_remove_by_index(drc);
3775 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3776 void *fdt, int *fdt_start_offset, Error **errp)
3778 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3779 CPUState *cs = CPU(core->threads[0]);
3780 PowerPCCPU *cpu = POWERPC_CPU(cs);
3781 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3782 int id = spapr_get_vcpu_id(cpu);
3783 char *nodename;
3784 int offset;
3786 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3787 offset = fdt_add_subnode(fdt, 0, nodename);
3788 g_free(nodename);
3790 spapr_dt_cpu(cs, fdt, offset, spapr);
3792 *fdt_start_offset = offset;
3793 return 0;
3796 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3797 Error **errp)
3799 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3800 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3801 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3802 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3803 CPUCore *cc = CPU_CORE(dev);
3804 CPUState *cs;
3805 SpaprDrc *drc;
3806 Error *local_err = NULL;
3807 CPUArchId *core_slot;
3808 int index;
3809 bool hotplugged = spapr_drc_hotplugged(dev);
3810 int i;
3812 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3813 if (!core_slot) {
3814 error_setg(errp, "Unable to find CPU core with core-id: %d",
3815 cc->core_id);
3816 return;
3818 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3819 spapr_vcpu_id(spapr, cc->core_id));
3821 g_assert(drc || !mc->has_hotpluggable_cpus);
3823 if (drc) {
3824 spapr_drc_attach(drc, dev, &local_err);
3825 if (local_err) {
3826 error_propagate(errp, local_err);
3827 return;
3830 if (hotplugged) {
3832 * Send hotplug notification interrupt to the guest only
3833 * in case of hotplugged CPUs.
3835 spapr_hotplug_req_add_by_index(drc);
3836 } else {
3837 spapr_drc_reset(drc);
3841 core_slot->cpu = OBJECT(dev);
3843 if (smc->pre_2_10_has_unused_icps) {
3844 for (i = 0; i < cc->nr_threads; i++) {
3845 cs = CPU(core->threads[i]);
3846 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3851 * Set compatibility mode to match the boot CPU, which was either set
3852 * by the machine reset code or by CAS.
3854 if (hotplugged) {
3855 for (i = 0; i < cc->nr_threads; i++) {
3856 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3857 &local_err);
3858 if (local_err) {
3859 error_propagate(errp, local_err);
3860 return;
3866 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3867 Error **errp)
3869 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3870 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3871 CPUCore *cc = CPU_CORE(dev);
3872 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3873 const char *type = object_get_typename(OBJECT(dev));
3874 CPUArchId *core_slot;
3875 int index;
3876 unsigned int smp_threads = machine->smp.threads;
3878 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3879 error_setg(errp, "CPU hotplug not supported for this machine");
3880 return;
3883 if (strcmp(base_core_type, type)) {
3884 error_setg(errp, "CPU core type should be %s", base_core_type);
3885 return;
3888 if (cc->core_id % smp_threads) {
3889 error_setg(errp, "invalid core id %d", cc->core_id);
3890 return;
3894 * In general we should have homogeneous threads-per-core, but old
3895 * (pre hotplug support) machine types allow the last core to have
3896 * reduced threads as a compatibility hack for when we allowed
3897 * total vcpus not a multiple of threads-per-core.
3899 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3900 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3901 smp_threads);
3902 return;
3905 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3906 if (!core_slot) {
3907 error_setg(errp, "core id %d out of range", cc->core_id);
3908 return;
3911 if (core_slot->cpu) {
3912 error_setg(errp, "core %d already populated", cc->core_id);
3913 return;
3916 numa_cpu_pre_plug(core_slot, dev, errp);
3919 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3920 void *fdt, int *fdt_start_offset, Error **errp)
3922 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3923 int intc_phandle;
3925 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3926 if (intc_phandle <= 0) {
3927 return -1;
3930 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3931 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3932 return -1;
3935 /* generally SLOF creates these, for hotplug it's up to QEMU */
3936 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3938 return 0;
3941 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3942 Error **errp)
3944 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3945 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3946 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3947 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3949 if (dev->hotplugged && !smc->dr_phb_enabled) {
3950 error_setg(errp, "PHB hotplug not supported for this machine");
3951 return;
3954 if (sphb->index == (uint32_t)-1) {
3955 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3956 return;
3960 * This will check that sphb->index doesn't exceed the maximum number of
3961 * PHBs for the current machine type.
3963 smc->phb_placement(spapr, sphb->index,
3964 &sphb->buid, &sphb->io_win_addr,
3965 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3966 windows_supported, sphb->dma_liobn,
3967 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3968 errp);
3971 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3972 Error **errp)
3974 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3975 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3976 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3977 SpaprDrc *drc;
3978 bool hotplugged = spapr_drc_hotplugged(dev);
3979 Error *local_err = NULL;
3981 if (!smc->dr_phb_enabled) {
3982 return;
3985 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3986 /* hotplug hooks should check it's enabled before getting this far */
3987 assert(drc);
3989 spapr_drc_attach(drc, dev, &local_err);
3990 if (local_err) {
3991 error_propagate(errp, local_err);
3992 return;
3995 if (hotplugged) {
3996 spapr_hotplug_req_add_by_index(drc);
3997 } else {
3998 spapr_drc_reset(drc);
4002 void spapr_phb_release(DeviceState *dev)
4004 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4006 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4007 object_unparent(OBJECT(dev));
4010 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4012 qdev_unrealize(dev);
4015 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4016 DeviceState *dev, Error **errp)
4018 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4019 SpaprDrc *drc;
4021 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4022 assert(drc);
4024 if (!spapr_drc_unplug_requested(drc)) {
4025 spapr_drc_detach(drc);
4026 spapr_hotplug_req_remove_by_index(drc);
4030 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4031 Error **errp)
4033 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4034 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4036 if (spapr->tpm_proxy != NULL) {
4037 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4038 return;
4041 spapr->tpm_proxy = tpm_proxy;
4044 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4046 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4048 qdev_unrealize(dev);
4049 object_unparent(OBJECT(dev));
4050 spapr->tpm_proxy = NULL;
4053 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4054 DeviceState *dev, Error **errp)
4056 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4057 spapr_memory_plug(hotplug_dev, dev, errp);
4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4059 spapr_core_plug(hotplug_dev, dev, errp);
4060 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4061 spapr_phb_plug(hotplug_dev, dev, errp);
4062 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4063 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4067 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4068 DeviceState *dev, Error **errp)
4070 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4071 spapr_memory_unplug(hotplug_dev, dev);
4072 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4073 spapr_core_unplug(hotplug_dev, dev);
4074 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4075 spapr_phb_unplug(hotplug_dev, dev);
4076 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4077 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4081 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4082 DeviceState *dev, Error **errp)
4084 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4085 MachineClass *mc = MACHINE_GET_CLASS(sms);
4086 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4088 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4089 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4090 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4091 } else {
4092 /* NOTE: this means there is a window after guest reset, prior to
4093 * CAS negotiation, where unplug requests will fail due to the
4094 * capability not being detected yet. This is a bit different than
4095 * the case with PCI unplug, where the events will be queued and
4096 * eventually handled by the guest after boot
4098 error_setg(errp, "Memory hot unplug not supported for this guest");
4100 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4101 if (!mc->has_hotpluggable_cpus) {
4102 error_setg(errp, "CPU hot unplug not supported on this machine");
4103 return;
4105 spapr_core_unplug_request(hotplug_dev, dev, errp);
4106 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4107 if (!smc->dr_phb_enabled) {
4108 error_setg(errp, "PHB hot unplug not supported on this machine");
4109 return;
4111 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4112 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4113 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4117 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4118 DeviceState *dev, Error **errp)
4120 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4121 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4122 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4123 spapr_core_pre_plug(hotplug_dev, dev, errp);
4124 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4125 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4129 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4130 DeviceState *dev)
4132 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4133 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4134 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4135 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4136 return HOTPLUG_HANDLER(machine);
4138 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4139 PCIDevice *pcidev = PCI_DEVICE(dev);
4140 PCIBus *root = pci_device_root_bus(pcidev);
4141 SpaprPhbState *phb =
4142 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4143 TYPE_SPAPR_PCI_HOST_BRIDGE);
4145 if (phb) {
4146 return HOTPLUG_HANDLER(phb);
4149 return NULL;
4152 static CpuInstanceProperties
4153 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4155 CPUArchId *core_slot;
4156 MachineClass *mc = MACHINE_GET_CLASS(machine);
4158 /* make sure possible_cpu are intialized */
4159 mc->possible_cpu_arch_ids(machine);
4160 /* get CPU core slot containing thread that matches cpu_index */
4161 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4162 assert(core_slot);
4163 return core_slot->props;
4166 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4168 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4171 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4173 int i;
4174 unsigned int smp_threads = machine->smp.threads;
4175 unsigned int smp_cpus = machine->smp.cpus;
4176 const char *core_type;
4177 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4178 MachineClass *mc = MACHINE_GET_CLASS(machine);
4180 if (!mc->has_hotpluggable_cpus) {
4181 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4183 if (machine->possible_cpus) {
4184 assert(machine->possible_cpus->len == spapr_max_cores);
4185 return machine->possible_cpus;
4188 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4189 if (!core_type) {
4190 error_report("Unable to find sPAPR CPU Core definition");
4191 exit(1);
4194 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4195 sizeof(CPUArchId) * spapr_max_cores);
4196 machine->possible_cpus->len = spapr_max_cores;
4197 for (i = 0; i < machine->possible_cpus->len; i++) {
4198 int core_id = i * smp_threads;
4200 machine->possible_cpus->cpus[i].type = core_type;
4201 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4202 machine->possible_cpus->cpus[i].arch_id = core_id;
4203 machine->possible_cpus->cpus[i].props.has_core_id = true;
4204 machine->possible_cpus->cpus[i].props.core_id = core_id;
4206 return machine->possible_cpus;
4209 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4210 uint64_t *buid, hwaddr *pio,
4211 hwaddr *mmio32, hwaddr *mmio64,
4212 unsigned n_dma, uint32_t *liobns,
4213 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4216 * New-style PHB window placement.
4218 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4219 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4220 * windows.
4222 * Some guest kernels can't work with MMIO windows above 1<<46
4223 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4225 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4226 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4227 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4228 * 1TiB 64-bit MMIO windows for each PHB.
4230 const uint64_t base_buid = 0x800000020000000ULL;
4231 int i;
4233 /* Sanity check natural alignments */
4234 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4235 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4236 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4237 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4238 /* Sanity check bounds */
4239 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4240 SPAPR_PCI_MEM32_WIN_SIZE);
4241 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4242 SPAPR_PCI_MEM64_WIN_SIZE);
4244 if (index >= SPAPR_MAX_PHBS) {
4245 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4246 SPAPR_MAX_PHBS - 1);
4247 return;
4250 *buid = base_buid + index;
4251 for (i = 0; i < n_dma; ++i) {
4252 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4255 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4256 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4257 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4259 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4260 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4263 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4265 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4267 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4270 static void spapr_ics_resend(XICSFabric *dev)
4272 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4274 ics_resend(spapr->ics);
4277 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4279 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4281 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4284 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4285 Monitor *mon)
4287 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4289 spapr_irq_print_info(spapr, mon);
4290 monitor_printf(mon, "irqchip: %s\n",
4291 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4295 * This is a XIVE only operation
4297 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4298 uint8_t nvt_blk, uint32_t nvt_idx,
4299 bool cam_ignore, uint8_t priority,
4300 uint32_t logic_serv, XiveTCTXMatch *match)
4302 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4303 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4304 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4305 int count;
4307 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4308 priority, logic_serv, match);
4309 if (count < 0) {
4310 return count;
4314 * When we implement the save and restore of the thread interrupt
4315 * contexts in the enter/exit CPU handlers of the machine and the
4316 * escalations in QEMU, we should be able to handle non dispatched
4317 * vCPUs.
4319 * Until this is done, the sPAPR machine should find at least one
4320 * matching context always.
4322 if (count == 0) {
4323 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4324 nvt_blk, nvt_idx);
4327 return count;
4330 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4332 return cpu->vcpu_id;
4335 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4337 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4338 MachineState *ms = MACHINE(spapr);
4339 int vcpu_id;
4341 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4343 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4344 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4345 error_append_hint(errp, "Adjust the number of cpus to %d "
4346 "or try to raise the number of threads per core\n",
4347 vcpu_id * ms->smp.threads / spapr->vsmt);
4348 return;
4351 cpu->vcpu_id = vcpu_id;
4354 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4356 CPUState *cs;
4358 CPU_FOREACH(cs) {
4359 PowerPCCPU *cpu = POWERPC_CPU(cs);
4361 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4362 return cpu;
4366 return NULL;
4369 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4371 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4373 /* These are only called by TCG, KVM maintains dispatch state */
4375 spapr_cpu->prod = false;
4376 if (spapr_cpu->vpa_addr) {
4377 CPUState *cs = CPU(cpu);
4378 uint32_t dispatch;
4380 dispatch = ldl_be_phys(cs->as,
4381 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4382 dispatch++;
4383 if ((dispatch & 1) != 0) {
4384 qemu_log_mask(LOG_GUEST_ERROR,
4385 "VPA: incorrect dispatch counter value for "
4386 "dispatched partition %u, correcting.\n", dispatch);
4387 dispatch++;
4389 stl_be_phys(cs->as,
4390 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4394 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4396 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4398 if (spapr_cpu->vpa_addr) {
4399 CPUState *cs = CPU(cpu);
4400 uint32_t dispatch;
4402 dispatch = ldl_be_phys(cs->as,
4403 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4404 dispatch++;
4405 if ((dispatch & 1) != 1) {
4406 qemu_log_mask(LOG_GUEST_ERROR,
4407 "VPA: incorrect dispatch counter value for "
4408 "preempted partition %u, correcting.\n", dispatch);
4409 dispatch++;
4411 stl_be_phys(cs->as,
4412 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4416 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4418 MachineClass *mc = MACHINE_CLASS(oc);
4419 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4420 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4421 NMIClass *nc = NMI_CLASS(oc);
4422 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4423 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4424 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4425 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4426 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4428 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4429 mc->ignore_boot_device_suffixes = true;
4432 * We set up the default / latest behaviour here. The class_init
4433 * functions for the specific versioned machine types can override
4434 * these details for backwards compatibility
4436 mc->init = spapr_machine_init;
4437 mc->reset = spapr_machine_reset;
4438 mc->block_default_type = IF_SCSI;
4439 mc->max_cpus = 1024;
4440 mc->no_parallel = 1;
4441 mc->default_boot_order = "";
4442 mc->default_ram_size = 512 * MiB;
4443 mc->default_ram_id = "ppc_spapr.ram";
4444 mc->default_display = "std";
4445 mc->kvm_type = spapr_kvm_type;
4446 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4447 mc->pci_allow_0_address = true;
4448 assert(!mc->get_hotplug_handler);
4449 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4450 hc->pre_plug = spapr_machine_device_pre_plug;
4451 hc->plug = spapr_machine_device_plug;
4452 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4453 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4454 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4455 hc->unplug_request = spapr_machine_device_unplug_request;
4456 hc->unplug = spapr_machine_device_unplug;
4458 smc->dr_lmb_enabled = true;
4459 smc->update_dt_enabled = true;
4460 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4461 mc->has_hotpluggable_cpus = true;
4462 mc->nvdimm_supported = true;
4463 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4464 fwc->get_dev_path = spapr_get_fw_dev_path;
4465 nc->nmi_monitor_handler = spapr_nmi;
4466 smc->phb_placement = spapr_phb_placement;
4467 vhc->hypercall = emulate_spapr_hypercall;
4468 vhc->hpt_mask = spapr_hpt_mask;
4469 vhc->map_hptes = spapr_map_hptes;
4470 vhc->unmap_hptes = spapr_unmap_hptes;
4471 vhc->hpte_set_c = spapr_hpte_set_c;
4472 vhc->hpte_set_r = spapr_hpte_set_r;
4473 vhc->get_pate = spapr_get_pate;
4474 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4475 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4476 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4477 xic->ics_get = spapr_ics_get;
4478 xic->ics_resend = spapr_ics_resend;
4479 xic->icp_get = spapr_icp_get;
4480 ispc->print_info = spapr_pic_print_info;
4481 /* Force NUMA node memory size to be a multiple of
4482 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4483 * in which LMBs are represented and hot-added
4485 mc->numa_mem_align_shift = 28;
4486 mc->auto_enable_numa = true;
4488 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4489 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4490 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4491 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4492 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4493 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4494 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4495 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4496 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4497 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4498 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4499 spapr_caps_add_properties(smc);
4500 smc->irq = &spapr_irq_dual;
4501 smc->dr_phb_enabled = true;
4502 smc->linux_pci_probe = true;
4503 smc->smp_threads_vsmt = true;
4504 smc->nr_xirqs = SPAPR_NR_XIRQS;
4505 xfc->match_nvt = spapr_match_nvt;
4508 static const TypeInfo spapr_machine_info = {
4509 .name = TYPE_SPAPR_MACHINE,
4510 .parent = TYPE_MACHINE,
4511 .abstract = true,
4512 .instance_size = sizeof(SpaprMachineState),
4513 .instance_init = spapr_instance_init,
4514 .instance_finalize = spapr_machine_finalizefn,
4515 .class_size = sizeof(SpaprMachineClass),
4516 .class_init = spapr_machine_class_init,
4517 .interfaces = (InterfaceInfo[]) {
4518 { TYPE_FW_PATH_PROVIDER },
4519 { TYPE_NMI },
4520 { TYPE_HOTPLUG_HANDLER },
4521 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4522 { TYPE_XICS_FABRIC },
4523 { TYPE_INTERRUPT_STATS_PROVIDER },
4524 { TYPE_XIVE_FABRIC },
4529 static void spapr_machine_latest_class_options(MachineClass *mc)
4531 mc->alias = "pseries";
4532 mc->is_default = true;
4535 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4536 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4537 void *data) \
4539 MachineClass *mc = MACHINE_CLASS(oc); \
4540 spapr_machine_##suffix##_class_options(mc); \
4541 if (latest) { \
4542 spapr_machine_latest_class_options(mc); \
4545 static const TypeInfo spapr_machine_##suffix##_info = { \
4546 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4547 .parent = TYPE_SPAPR_MACHINE, \
4548 .class_init = spapr_machine_##suffix##_class_init, \
4549 }; \
4550 static void spapr_machine_register_##suffix(void) \
4552 type_register(&spapr_machine_##suffix##_info); \
4554 type_init(spapr_machine_register_##suffix)
4557 * pseries-5.2
4559 static void spapr_machine_5_2_class_options(MachineClass *mc)
4561 /* Defaults for the latest behaviour inherited from the base class */
4564 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4567 * pseries-5.1
4569 static void spapr_machine_5_1_class_options(MachineClass *mc)
4571 spapr_machine_5_2_class_options(mc);
4572 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4575 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4578 * pseries-5.0
4580 static void spapr_machine_5_0_class_options(MachineClass *mc)
4582 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4583 static GlobalProperty compat[] = {
4584 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4587 spapr_machine_5_1_class_options(mc);
4588 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4589 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4590 mc->numa_mem_supported = true;
4591 smc->pre_5_1_assoc_refpoints = true;
4594 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4597 * pseries-4.2
4599 static void spapr_machine_4_2_class_options(MachineClass *mc)
4601 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4603 spapr_machine_5_0_class_options(mc);
4604 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4605 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4606 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4607 smc->rma_limit = 16 * GiB;
4608 mc->nvdimm_supported = false;
4611 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4614 * pseries-4.1
4616 static void spapr_machine_4_1_class_options(MachineClass *mc)
4618 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4619 static GlobalProperty compat[] = {
4620 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4621 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4624 spapr_machine_4_2_class_options(mc);
4625 smc->linux_pci_probe = false;
4626 smc->smp_threads_vsmt = false;
4627 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4628 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4631 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4634 * pseries-4.0
4636 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4637 uint64_t *buid, hwaddr *pio,
4638 hwaddr *mmio32, hwaddr *mmio64,
4639 unsigned n_dma, uint32_t *liobns,
4640 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4642 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4643 nv2gpa, nv2atsd, errp);
4644 *nv2gpa = 0;
4645 *nv2atsd = 0;
4648 static void spapr_machine_4_0_class_options(MachineClass *mc)
4650 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4652 spapr_machine_4_1_class_options(mc);
4653 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4654 smc->phb_placement = phb_placement_4_0;
4655 smc->irq = &spapr_irq_xics;
4656 smc->pre_4_1_migration = true;
4659 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4662 * pseries-3.1
4664 static void spapr_machine_3_1_class_options(MachineClass *mc)
4666 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4668 spapr_machine_4_0_class_options(mc);
4669 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4671 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4672 smc->update_dt_enabled = false;
4673 smc->dr_phb_enabled = false;
4674 smc->broken_host_serial_model = true;
4675 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4676 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4677 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4678 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4681 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4684 * pseries-3.0
4687 static void spapr_machine_3_0_class_options(MachineClass *mc)
4689 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4691 spapr_machine_3_1_class_options(mc);
4692 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4694 smc->legacy_irq_allocation = true;
4695 smc->nr_xirqs = 0x400;
4696 smc->irq = &spapr_irq_xics_legacy;
4699 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4702 * pseries-2.12
4704 static void spapr_machine_2_12_class_options(MachineClass *mc)
4706 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4707 static GlobalProperty compat[] = {
4708 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4709 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4712 spapr_machine_3_0_class_options(mc);
4713 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4714 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4716 /* We depend on kvm_enabled() to choose a default value for the
4717 * hpt-max-page-size capability. Of course we can't do it here
4718 * because this is too early and the HW accelerator isn't initialzed
4719 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4721 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4724 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4726 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4728 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4730 spapr_machine_2_12_class_options(mc);
4731 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4732 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4733 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4736 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4739 * pseries-2.11
4742 static void spapr_machine_2_11_class_options(MachineClass *mc)
4744 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4746 spapr_machine_2_12_class_options(mc);
4747 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4748 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4751 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4754 * pseries-2.10
4757 static void spapr_machine_2_10_class_options(MachineClass *mc)
4759 spapr_machine_2_11_class_options(mc);
4760 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4763 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4766 * pseries-2.9
4769 static void spapr_machine_2_9_class_options(MachineClass *mc)
4771 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4772 static GlobalProperty compat[] = {
4773 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4776 spapr_machine_2_10_class_options(mc);
4777 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4778 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4779 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4780 smc->pre_2_10_has_unused_icps = true;
4781 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4784 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4787 * pseries-2.8
4790 static void spapr_machine_2_8_class_options(MachineClass *mc)
4792 static GlobalProperty compat[] = {
4793 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4796 spapr_machine_2_9_class_options(mc);
4797 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4798 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4799 mc->numa_mem_align_shift = 23;
4802 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4805 * pseries-2.7
4808 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4809 uint64_t *buid, hwaddr *pio,
4810 hwaddr *mmio32, hwaddr *mmio64,
4811 unsigned n_dma, uint32_t *liobns,
4812 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4814 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4815 const uint64_t base_buid = 0x800000020000000ULL;
4816 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4817 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4818 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4819 const uint32_t max_index = 255;
4820 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4822 uint64_t ram_top = MACHINE(spapr)->ram_size;
4823 hwaddr phb0_base, phb_base;
4824 int i;
4826 /* Do we have device memory? */
4827 if (MACHINE(spapr)->maxram_size > ram_top) {
4828 /* Can't just use maxram_size, because there may be an
4829 * alignment gap between normal and device memory regions
4831 ram_top = MACHINE(spapr)->device_memory->base +
4832 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4835 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4837 if (index > max_index) {
4838 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4839 max_index);
4840 return;
4843 *buid = base_buid + index;
4844 for (i = 0; i < n_dma; ++i) {
4845 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4848 phb_base = phb0_base + index * phb_spacing;
4849 *pio = phb_base + pio_offset;
4850 *mmio32 = phb_base + mmio_offset;
4852 * We don't set the 64-bit MMIO window, relying on the PHB's
4853 * fallback behaviour of automatically splitting a large "32-bit"
4854 * window into contiguous 32-bit and 64-bit windows
4857 *nv2gpa = 0;
4858 *nv2atsd = 0;
4861 static void spapr_machine_2_7_class_options(MachineClass *mc)
4863 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4864 static GlobalProperty compat[] = {
4865 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4866 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4867 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4868 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4871 spapr_machine_2_8_class_options(mc);
4872 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4873 mc->default_machine_opts = "modern-hotplug-events=off";
4874 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4875 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4876 smc->phb_placement = phb_placement_2_7;
4879 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4882 * pseries-2.6
4885 static void spapr_machine_2_6_class_options(MachineClass *mc)
4887 static GlobalProperty compat[] = {
4888 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4891 spapr_machine_2_7_class_options(mc);
4892 mc->has_hotpluggable_cpus = false;
4893 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4894 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4897 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4900 * pseries-2.5
4903 static void spapr_machine_2_5_class_options(MachineClass *mc)
4905 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4906 static GlobalProperty compat[] = {
4907 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4910 spapr_machine_2_6_class_options(mc);
4911 smc->use_ohci_by_default = true;
4912 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4913 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4916 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4919 * pseries-2.4
4922 static void spapr_machine_2_4_class_options(MachineClass *mc)
4924 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4926 spapr_machine_2_5_class_options(mc);
4927 smc->dr_lmb_enabled = false;
4928 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4931 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4934 * pseries-2.3
4937 static void spapr_machine_2_3_class_options(MachineClass *mc)
4939 static GlobalProperty compat[] = {
4940 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4942 spapr_machine_2_4_class_options(mc);
4943 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4944 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4946 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4949 * pseries-2.2
4952 static void spapr_machine_2_2_class_options(MachineClass *mc)
4954 static GlobalProperty compat[] = {
4955 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4958 spapr_machine_2_3_class_options(mc);
4959 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4960 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4961 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4963 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4966 * pseries-2.1
4969 static void spapr_machine_2_1_class_options(MachineClass *mc)
4971 spapr_machine_2_2_class_options(mc);
4972 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4974 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4976 static void spapr_machine_register_types(void)
4978 type_register_static(&spapr_machine_info);
4981 type_init(spapr_machine_register_types)