s390x: refine pci dependencies
[qemu/ar7.git] / hw / s390x / sclp.c
blob7ae6a0e37abaeb89b58051747b0345c41d667e64
1 /*
2 * SCLP Support
4 * Copyright IBM, Corp. 2012
6 * Authors:
7 * Christian Borntraeger <borntraeger@de.ibm.com>
8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11 * option) any later version. See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "sysemu/kvm.h"
19 #include "exec/memory.h"
20 #include "sysemu/sysemu.h"
21 #include "exec/address-spaces.h"
22 #include "hw/boards.h"
23 #include "hw/s390x/sclp.h"
24 #include "hw/s390x/event-facility.h"
25 #include "hw/s390x/s390-pci-bus.h"
26 #include "hw/s390x/ipl.h"
28 static inline SCLPDevice *get_sclp_device(void)
30 static SCLPDevice *sclp;
32 if (!sclp) {
33 sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
35 return sclp;
38 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count)
40 uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
41 int i;
43 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
44 for (i = 0; i < count; i++) {
45 entry[i].address = i;
46 entry[i].type = 0;
47 memcpy(entry[i].features, features, sizeof(entry[i].features));
51 /* Provide information about the configuration, CPUs and storage */
52 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
54 ReadInfo *read_info = (ReadInfo *) sccb;
55 MachineState *machine = MACHINE(qdev_get_machine());
56 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
57 CPUState *cpu;
58 int cpu_count = 0;
59 int rnsize, rnmax;
60 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
61 IplParameterBlock *ipib = s390_ipl_get_iplb();
63 CPU_FOREACH(cpu) {
64 cpu_count++;
67 /* CPU information */
68 read_info->entries_cpu = cpu_to_be16(cpu_count);
69 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
70 read_info->highest_cpu = cpu_to_be16(max_cpus);
72 read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
74 /* Configuration Characteristic (Extension) */
75 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
76 read_info->conf_char);
77 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
78 read_info->conf_char_ext);
80 prepare_cpu_entries(sclp, read_info->entries, cpu_count);
82 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
83 SCLP_HAS_IOA_RECONFIG);
85 /* Memory Hotplug is only supported for the ccw machine type */
86 if (mhd) {
87 mhd->standby_subregion_size = MEM_SECTION_SIZE;
88 /* Deduct the memory slot already used for core */
89 if (slots > 0) {
90 while ((mhd->standby_subregion_size * (slots - 1)
91 < mhd->standby_mem_size)) {
92 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
96 * Initialize mapping of guest standby memory sections indicating which
97 * are and are not online. Assume all standby memory begins offline.
99 if (mhd->standby_state_map == 0) {
100 if (mhd->standby_mem_size % mhd->standby_subregion_size) {
101 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
102 mhd->standby_subregion_size + 1) *
103 (mhd->standby_subregion_size /
104 MEM_SECTION_SIZE));
105 } else {
106 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
107 MEM_SECTION_SIZE);
110 mhd->padded_ram_size = ram_size + mhd->pad_size;
111 mhd->rzm = 1 << mhd->increment_size;
113 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
115 read_info->mha_pow = s390_get_mha_pow();
116 read_info->hmfai = cpu_to_be32(s390_get_hmfai());
118 rnsize = 1 << (sclp->increment_size - 20);
119 if (rnsize <= 128) {
120 read_info->rnsize = rnsize;
121 } else {
122 read_info->rnsize = 0;
123 read_info->rnsize2 = cpu_to_be32(rnsize);
126 rnmax = machine->maxram_size >> sclp->increment_size;
127 if (rnmax < 0x10000) {
128 read_info->rnmax = cpu_to_be16(rnmax);
129 } else {
130 read_info->rnmax = cpu_to_be16(0);
131 read_info->rnmax2 = cpu_to_be64(rnmax);
134 if (ipib && ipib->flags & DIAG308_FLAGS_LP_VALID) {
135 memcpy(&read_info->loadparm, &ipib->loadparm,
136 sizeof(read_info->loadparm));
137 } else {
138 s390_ipl_set_loadparm(read_info->loadparm);
141 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
144 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
146 int i, assigned;
147 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
148 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
149 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
151 if (!mhd) {
152 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
153 return;
156 if ((ram_size >> mhd->increment_size) >= 0x10000) {
157 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
158 return;
161 /* Return information regarding core memory */
162 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
163 assigned = ram_size >> mhd->increment_size;
164 storage_info->assigned = cpu_to_be16(assigned);
166 for (i = 0; i < assigned; i++) {
167 storage_info->entries[i] = cpu_to_be32(subincrement_id);
168 subincrement_id += SCLP_INCREMENT_UNIT;
170 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
173 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
175 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
176 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
178 if (!mhd) {
179 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
180 return;
183 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
184 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
185 return;
188 /* Return information regarding standby memory */
189 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
190 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
191 mhd->increment_size);
192 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
193 mhd->increment_size);
194 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
197 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
198 uint16_t element)
200 int i, assigned, subincrement_id;
201 AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
202 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
204 if (!mhd) {
205 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
206 return;
209 if (element != 1) {
210 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
211 return;
214 assigned = mhd->standby_mem_size >> mhd->increment_size;
215 attach_info->assigned = cpu_to_be16(assigned);
216 subincrement_id = ((ram_size >> mhd->increment_size) << 16)
217 + SCLP_STARTING_SUBINCREMENT_ID;
218 for (i = 0; i < assigned; i++) {
219 attach_info->entries[i] = cpu_to_be32(subincrement_id);
220 subincrement_id += SCLP_INCREMENT_UNIT;
222 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
225 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
227 MemoryRegion *mr = NULL;
228 uint64_t this_subregion_size;
229 AssignStorage *assign_info = (AssignStorage *) sccb;
230 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
231 ram_addr_t assign_addr;
232 MemoryRegion *sysmem = get_system_memory();
234 if (!mhd) {
235 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
236 return;
238 assign_addr = (assign_info->rn - 1) * mhd->rzm;
240 if ((assign_addr % MEM_SECTION_SIZE == 0) &&
241 (assign_addr >= mhd->padded_ram_size)) {
242 /* Re-use existing memory region if found */
243 mr = memory_region_find(sysmem, assign_addr, 1).mr;
244 memory_region_unref(mr);
245 if (!mr) {
247 MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
249 /* offset to align to standby_subregion_size for allocation */
250 ram_addr_t offset = assign_addr -
251 (assign_addr - mhd->padded_ram_size)
252 % mhd->standby_subregion_size;
254 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */
255 char id[16];
256 snprintf(id, 16, "standby.ram%d",
257 (int)((offset - mhd->padded_ram_size) /
258 mhd->standby_subregion_size) + 1);
260 /* Allocate a subregion of the calculated standby_subregion_size */
261 if (offset + mhd->standby_subregion_size >
262 mhd->padded_ram_size + mhd->standby_mem_size) {
263 this_subregion_size = mhd->padded_ram_size +
264 mhd->standby_mem_size - offset;
265 } else {
266 this_subregion_size = mhd->standby_subregion_size;
269 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
270 &error_fatal);
271 /* This is a hack to make memory hotunplug work again. Once we have
272 * subdevices, we have to unparent them when unassigning memory,
273 * instead of doing it via the ref count of the MemoryRegion. */
274 object_ref(OBJECT(standby_ram));
275 object_unparent(OBJECT(standby_ram));
276 memory_region_add_subregion(sysmem, offset, standby_ram);
278 /* The specified subregion is no longer in standby */
279 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
280 / MEM_SECTION_SIZE] = 1;
282 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
285 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
287 MemoryRegion *mr = NULL;
288 AssignStorage *assign_info = (AssignStorage *) sccb;
289 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
290 ram_addr_t unassign_addr;
291 MemoryRegion *sysmem = get_system_memory();
293 if (!mhd) {
294 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
295 return;
297 unassign_addr = (assign_info->rn - 1) * mhd->rzm;
299 /* if the addr is a multiple of 256 MB */
300 if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
301 (unassign_addr >= mhd->padded_ram_size)) {
302 mhd->standby_state_map[(unassign_addr -
303 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
305 /* find the specified memory region and destroy it */
306 mr = memory_region_find(sysmem, unassign_addr, 1).mr;
307 memory_region_unref(mr);
308 if (mr) {
309 int i;
310 int is_removable = 1;
311 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
312 (unassign_addr - mhd->padded_ram_size)
313 % mhd->standby_subregion_size);
314 /* Mark all affected subregions as 'standby' once again */
315 for (i = 0;
316 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
317 i++) {
319 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
320 is_removable = 0;
321 break;
324 if (is_removable) {
325 memory_region_del_subregion(sysmem, mr);
326 object_unref(OBJECT(mr));
330 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
333 /* Provide information about the CPU */
334 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
336 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
337 CPUState *cpu;
338 int cpu_count = 0;
340 CPU_FOREACH(cpu) {
341 cpu_count++;
344 cpu_info->nr_configured = cpu_to_be16(cpu_count);
345 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
346 cpu_info->nr_standby = cpu_to_be16(0);
348 /* The standby offset is 16-byte for each CPU */
349 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
350 + cpu_info->nr_configured*sizeof(CPUEntry));
352 prepare_cpu_entries(sclp, cpu_info->entries, cpu_count);
354 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
357 static void sclp_configure_io_adapter(SCLPDevice *sclp, SCCB *sccb,
358 bool configure)
360 int rc;
362 if (be16_to_cpu(sccb->h.length) < 16) {
363 rc = SCLP_RC_INSUFFICIENT_SCCB_LENGTH;
364 goto out_err;
367 switch (((IoaCfgSccb *)sccb)->atype) {
368 case SCLP_RECONFIG_PCI_ATYPE:
369 if (s390_has_feat(S390_FEAT_ZPCI)) {
370 if (configure) {
371 s390_pci_sclp_configure(sccb);
372 } else {
373 s390_pci_sclp_deconfigure(sccb);
375 return;
377 /* fallthrough */
378 default:
379 rc = SCLP_RC_ADAPTER_TYPE_NOT_RECOGNIZED;
382 out_err:
383 sccb->h.response_code = cpu_to_be16(rc);
386 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
388 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
389 SCLPEventFacility *ef = sclp->event_facility;
390 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
392 switch (code & SCLP_CMD_CODE_MASK) {
393 case SCLP_CMDW_READ_SCP_INFO:
394 case SCLP_CMDW_READ_SCP_INFO_FORCED:
395 sclp_c->read_SCP_info(sclp, sccb);
396 break;
397 case SCLP_CMDW_READ_CPU_INFO:
398 sclp_c->read_cpu_info(sclp, sccb);
399 break;
400 case SCLP_READ_STORAGE_ELEMENT_INFO:
401 if (code & 0xff00) {
402 sclp_c->read_storage_element1_info(sclp, sccb);
403 } else {
404 sclp_c->read_storage_element0_info(sclp, sccb);
406 break;
407 case SCLP_ATTACH_STORAGE_ELEMENT:
408 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
409 break;
410 case SCLP_ASSIGN_STORAGE:
411 sclp_c->assign_storage(sclp, sccb);
412 break;
413 case SCLP_UNASSIGN_STORAGE:
414 sclp_c->unassign_storage(sclp, sccb);
415 break;
416 case SCLP_CMDW_CONFIGURE_IOA:
417 sclp_configure_io_adapter(sclp, sccb, true);
418 break;
419 case SCLP_CMDW_DECONFIGURE_IOA:
420 sclp_configure_io_adapter(sclp, sccb, false);
421 break;
422 default:
423 efc->command_handler(ef, sccb, code);
424 break;
428 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
430 SCLPDevice *sclp = get_sclp_device();
431 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
432 int r = 0;
433 SCCB work_sccb;
435 hwaddr sccb_len = sizeof(SCCB);
437 /* first some basic checks on program checks */
438 if (env->psw.mask & PSW_MASK_PSTATE) {
439 r = -PGM_PRIVILEGED;
440 goto out;
442 if (cpu_physical_memory_is_io(sccb)) {
443 r = -PGM_ADDRESSING;
444 goto out;
446 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
447 || (sccb & ~0x7ffffff8UL) != 0) {
448 r = -PGM_SPECIFICATION;
449 goto out;
453 * we want to work on a private copy of the sccb, to prevent guests
454 * from playing dirty tricks by modifying the memory content after
455 * the host has checked the values
457 cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
459 /* Valid sccb sizes */
460 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
461 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
462 r = -PGM_SPECIFICATION;
463 goto out;
466 sclp_c->execute(sclp, &work_sccb, code);
468 cpu_physical_memory_write(sccb, &work_sccb,
469 be16_to_cpu(work_sccb.h.length));
471 sclp_c->service_interrupt(sclp, sccb);
473 out:
474 return r;
477 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
479 SCLPEventFacility *ef = sclp->event_facility;
480 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
482 uint32_t param = sccb & ~3;
484 /* Indicate whether an event is still pending */
485 param |= efc->event_pending(ef) ? 1 : 0;
487 if (!param) {
488 /* No need to send an interrupt, there's nothing to be notified about */
489 return;
491 s390_sclp_extint(param);
494 void sclp_service_interrupt(uint32_t sccb)
496 SCLPDevice *sclp = get_sclp_device();
497 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
499 sclp_c->service_interrupt(sclp, sccb);
502 /* qemu object creation and initialization functions */
504 void s390_sclp_init(void)
506 Object *new = object_new(TYPE_SCLP);
508 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
509 NULL);
510 object_unref(OBJECT(new));
511 qdev_init_nofail(DEVICE(new));
514 static void sclp_realize(DeviceState *dev, Error **errp)
516 MachineState *machine = MACHINE(qdev_get_machine());
517 SCLPDevice *sclp = SCLP(dev);
518 Error *err = NULL;
519 uint64_t hw_limit;
520 int ret;
522 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
523 &err);
524 if (err) {
525 goto out;
528 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
529 * as we can't find a fitting bus via the qom tree, we have to add the
530 * event facility to the sysbus, so e.g. a sclp console can be created.
532 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
534 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
535 if (ret == -E2BIG) {
536 error_setg(&err, "host supports a maximum of %" PRIu64 " GB",
537 hw_limit >> 30);
538 } else if (ret) {
539 error_setg(&err, "setting the guest size failed");
542 out:
543 error_propagate(errp, err);
546 static void sclp_memory_init(SCLPDevice *sclp)
548 MachineState *machine = MACHINE(qdev_get_machine());
549 ram_addr_t initial_mem = machine->ram_size;
550 ram_addr_t max_mem = machine->maxram_size;
551 ram_addr_t standby_mem = max_mem - initial_mem;
552 ram_addr_t pad_mem = 0;
553 int increment_size = 20;
555 /* The storage increment size is a multiple of 1M and is a power of 2.
556 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
557 * The variable 'increment_size' is an exponent of 2 that can be
558 * used to calculate the size (in bytes) of an increment. */
559 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
560 increment_size++;
562 if (machine->ram_slots) {
563 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
564 increment_size++;
567 sclp->increment_size = increment_size;
569 /* The core and standby memory areas need to be aligned with
570 * the increment size. In effect, this can cause the
571 * user-specified memory size to be rounded down to align
572 * with the nearest increment boundary. */
573 initial_mem = initial_mem >> increment_size << increment_size;
574 standby_mem = standby_mem >> increment_size << increment_size;
576 /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
577 calculate the pad size necessary to force this boundary. */
578 if (machine->ram_slots && standby_mem) {
579 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
581 if (initial_mem % MEM_SECTION_SIZE) {
582 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
584 mhd->increment_size = increment_size;
585 mhd->pad_size = pad_mem;
586 mhd->standby_mem_size = standby_mem;
588 machine->ram_size = initial_mem;
589 machine->maxram_size = initial_mem + pad_mem + standby_mem;
590 /* let's propagate the changed ram size into the global variable. */
591 ram_size = initial_mem;
594 static void sclp_init(Object *obj)
596 SCLPDevice *sclp = SCLP(obj);
597 Object *new;
599 new = object_new(TYPE_SCLP_EVENT_FACILITY);
600 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
601 object_unref(new);
602 sclp->event_facility = EVENT_FACILITY(new);
604 sclp_memory_init(sclp);
607 static void sclp_class_init(ObjectClass *oc, void *data)
609 SCLPDeviceClass *sc = SCLP_CLASS(oc);
610 DeviceClass *dc = DEVICE_CLASS(oc);
612 dc->desc = "SCLP (Service-Call Logical Processor)";
613 dc->realize = sclp_realize;
614 dc->hotpluggable = false;
615 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
617 sc->read_SCP_info = read_SCP_info;
618 sc->read_storage_element0_info = read_storage_element0_info;
619 sc->read_storage_element1_info = read_storage_element1_info;
620 sc->attach_storage_element = attach_storage_element;
621 sc->assign_storage = assign_storage;
622 sc->unassign_storage = unassign_storage;
623 sc->read_cpu_info = sclp_read_cpu_info;
624 sc->execute = sclp_execute;
625 sc->service_interrupt = service_interrupt;
628 static TypeInfo sclp_info = {
629 .name = TYPE_SCLP,
630 .parent = TYPE_DEVICE,
631 .instance_init = sclp_init,
632 .instance_size = sizeof(SCLPDevice),
633 .class_init = sclp_class_init,
634 .class_size = sizeof(SCLPDeviceClass),
637 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
639 DeviceState *dev;
640 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
641 object_property_add_child(qdev_get_machine(),
642 TYPE_SCLP_MEMORY_HOTPLUG_DEV,
643 OBJECT(dev), NULL);
644 qdev_init_nofail(dev);
645 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
646 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
649 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
651 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
652 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
655 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
656 void *data)
658 DeviceClass *dc = DEVICE_CLASS(klass);
660 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
663 static TypeInfo sclp_memory_hotplug_dev_info = {
664 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
665 .parent = TYPE_SYS_BUS_DEVICE,
666 .instance_size = sizeof(sclpMemoryHotplugDev),
667 .class_init = sclp_memory_hotplug_dev_class_init,
670 static void register_types(void)
672 type_register_static(&sclp_memory_hotplug_dev_info);
673 type_register_static(&sclp_info);
675 type_init(register_types);