Merge remote-tracking branch 'remotes/sstabellini/tags/xen-20170228-tag' into staging
[qemu/ar7.git] / hw / intc / arm_gicv3_kvm.c
blob81f0403117d1325f3fd7dfd589ad6b89f7437545
1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "sysemu/kvm.h"
28 #include "kvm_arm.h"
29 #include "gicv3_internal.h"
30 #include "vgic_common.h"
31 #include "migration/migration.h"
33 #ifdef DEBUG_GICV3_KVM
34 #define DPRINTF(fmt, ...) \
35 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define DPRINTF(fmt, ...) \
38 do { } while (0)
39 #endif
41 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
42 #define KVM_ARM_GICV3(obj) \
43 OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
44 #define KVM_ARM_GICV3_CLASS(klass) \
45 OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
46 #define KVM_ARM_GICV3_GET_CLASS(obj) \
47 OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
49 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
50 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
51 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
52 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
53 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
54 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56 #define ICC_PMR_EL1 \
57 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
58 #define ICC_BPR0_EL1 \
59 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
60 #define ICC_AP0R_EL1(n) \
61 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
62 #define ICC_AP1R_EL1(n) \
63 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
64 #define ICC_BPR1_EL1 \
65 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
66 #define ICC_CTLR_EL1 \
67 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
68 #define ICC_SRE_EL1 \
69 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
70 #define ICC_IGRPEN0_EL1 \
71 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
72 #define ICC_IGRPEN1_EL1 \
73 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75 typedef struct KVMARMGICv3Class {
76 ARMGICv3CommonClass parent_class;
77 DeviceRealize parent_realize;
78 void (*parent_reset)(DeviceState *dev);
79 } KVMARMGICv3Class;
81 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 GICv3State *s = (GICv3State *)opaque;
85 kvm_arm_gic_set_irq(s->num_irq, irq, level);
88 #define KVM_VGIC_ATTR(reg, typer) \
89 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91 static inline void kvm_gicd_access(GICv3State *s, int offset,
92 uint32_t *val, bool write)
94 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
95 KVM_VGIC_ATTR(offset, 0),
96 val, write);
99 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
100 uint32_t *val, bool write)
102 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
103 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
104 val, write);
107 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
108 uint64_t *val, bool write)
110 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
111 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
112 val, write);
115 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
116 uint32_t *val, bool write)
118 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
119 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
120 (VGIC_LEVEL_INFO_LINE_LEVEL <<
121 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
122 val, write);
125 /* Loop through each distributor IRQ related register; since bits
126 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
127 * is enabled, we skip those.
129 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
130 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 uint32_t reg, *field;
135 int irq;
137 field = (uint32_t *)bmp;
138 for_each_dist_irq_reg(irq, s->num_irq, 8) {
139 kvm_gicd_access(s, offset, &reg, false);
140 *field = reg;
141 offset += 4;
142 field++;
146 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
148 uint32_t reg, *field;
149 int irq;
151 field = (uint32_t *)bmp;
152 for_each_dist_irq_reg(irq, s->num_irq, 8) {
153 reg = *field;
154 kvm_gicd_access(s, offset, &reg, true);
155 offset += 4;
156 field++;
160 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
161 uint32_t *bmp)
163 uint32_t reg;
164 int irq;
166 for_each_dist_irq_reg(irq, s->num_irq, 2) {
167 kvm_gicd_access(s, offset, &reg, false);
168 reg = half_unshuffle32(reg >> 1);
169 if (irq % 32 != 0) {
170 reg = (reg << 16);
172 *gic_bmp_ptr32(bmp, irq) |= reg;
173 offset += 4;
177 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
178 uint32_t *bmp)
180 uint32_t reg;
181 int irq;
183 for_each_dist_irq_reg(irq, s->num_irq, 2) {
184 reg = *gic_bmp_ptr32(bmp, irq);
185 if (irq % 32 != 0) {
186 reg = (reg & 0xffff0000) >> 16;
187 } else {
188 reg = reg & 0xffff;
190 reg = half_shuffle32(reg) << 1;
191 kvm_gicd_access(s, offset, &reg, true);
192 offset += 4;
196 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
198 uint32_t reg;
199 int irq;
201 for_each_dist_irq_reg(irq, s->num_irq, 1) {
202 kvm_gic_line_level_access(s, irq, 0, &reg, false);
203 *gic_bmp_ptr32(bmp, irq) = reg;
207 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
209 uint32_t reg;
210 int irq;
212 for_each_dist_irq_reg(irq, s->num_irq, 1) {
213 reg = *gic_bmp_ptr32(bmp, irq);
214 kvm_gic_line_level_access(s, irq, 0, &reg, true);
218 /* Read a bitmap register group from the kernel VGIC. */
219 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
221 uint32_t reg;
222 int irq;
224 for_each_dist_irq_reg(irq, s->num_irq, 1) {
225 kvm_gicd_access(s, offset, &reg, false);
226 *gic_bmp_ptr32(bmp, irq) = reg;
227 offset += 4;
231 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
232 uint32_t clroffset, uint32_t *bmp)
234 uint32_t reg;
235 int irq;
237 for_each_dist_irq_reg(irq, s->num_irq, 1) {
238 /* If this bitmap is a set/clear register pair, first write to the
239 * clear-reg to clear all bits before using the set-reg to write
240 * the 1 bits.
242 if (clroffset != 0) {
243 reg = 0;
244 kvm_gicd_access(s, clroffset, &reg, true);
246 reg = *gic_bmp_ptr32(bmp, irq);
247 kvm_gicd_access(s, offset, &reg, true);
248 offset += 4;
252 static void kvm_arm_gicv3_check(GICv3State *s)
254 uint32_t reg;
255 uint32_t num_irq;
257 /* Sanity checking s->num_irq */
258 kvm_gicd_access(s, GICD_TYPER, &reg, false);
259 num_irq = ((reg & 0x1f) + 1) * 32;
261 if (num_irq < s->num_irq) {
262 error_report("Model requests %u IRQs, but kernel supports max %u",
263 s->num_irq, num_irq);
264 abort();
268 static void kvm_arm_gicv3_put(GICv3State *s)
270 uint32_t regl, regh, reg;
271 uint64_t reg64, redist_typer;
272 int ncpu, i;
274 kvm_arm_gicv3_check(s);
276 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
277 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
278 redist_typer = ((uint64_t)regh << 32) | regl;
280 reg = s->gicd_ctlr;
281 kvm_gicd_access(s, GICD_CTLR, &reg, true);
283 if (redist_typer & GICR_TYPER_PLPIS) {
284 /* Set base addresses before LPIs are enabled by GICR_CTLR write */
285 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
286 GICv3CPUState *c = &s->cpu[ncpu];
288 reg64 = c->gicr_propbaser;
289 regl = (uint32_t)reg64;
290 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
291 regh = (uint32_t)(reg64 >> 32);
292 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
294 reg64 = c->gicr_pendbaser;
295 if (!c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) {
296 /* Setting PTZ is advised if LPIs are disabled, to reduce
297 * GIC initialization time.
299 reg64 |= GICR_PENDBASER_PTZ;
301 regl = (uint32_t)reg64;
302 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
303 regh = (uint32_t)(reg64 >> 32);
304 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
308 /* Redistributor state (one per CPU) */
310 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
311 GICv3CPUState *c = &s->cpu[ncpu];
313 reg = c->gicr_ctlr;
314 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
316 reg = c->gicr_statusr[GICV3_NS];
317 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
319 reg = c->gicr_waker;
320 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
322 reg = c->gicr_igroupr0;
323 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
325 reg = ~0;
326 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
327 reg = c->gicr_ienabler0;
328 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
330 /* Restore config before pending so we treat level/edge correctly */
331 reg = half_shuffle32(c->edge_trigger >> 16) << 1;
332 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
334 reg = c->level;
335 kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
337 reg = ~0;
338 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
339 reg = c->gicr_ipendr0;
340 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
342 reg = ~0;
343 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
344 reg = c->gicr_iactiver0;
345 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
347 for (i = 0; i < GIC_INTERNAL; i += 4) {
348 reg = c->gicr_ipriorityr[i] |
349 (c->gicr_ipriorityr[i + 1] << 8) |
350 (c->gicr_ipriorityr[i + 2] << 16) |
351 (c->gicr_ipriorityr[i + 3] << 24);
352 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
356 /* Distributor state (shared between all CPUs */
357 reg = s->gicd_statusr[GICV3_NS];
358 kvm_gicd_access(s, GICD_STATUSR, &reg, true);
360 /* s->enable bitmap -> GICD_ISENABLERn */
361 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
363 /* s->group bitmap -> GICD_IGROUPRn */
364 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
366 /* Restore targets before pending to ensure the pending state is set on
367 * the appropriate CPU interfaces in the kernel
370 /* s->gicd_irouter[irq] -> GICD_IROUTERn
371 * We can't use kvm_dist_put() here because the registers are 64-bit
373 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
374 uint32_t offset;
376 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
377 reg = (uint32_t)s->gicd_irouter[i];
378 kvm_gicd_access(s, offset, &reg, true);
380 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
381 reg = (uint32_t)(s->gicd_irouter[i] >> 32);
382 kvm_gicd_access(s, offset, &reg, true);
385 /* s->trigger bitmap -> GICD_ICFGRn
386 * (restore configuration registers before pending IRQs so we treat
387 * level/edge correctly)
389 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
391 /* s->level bitmap -> line_level */
392 kvm_gic_put_line_level_bmp(s, s->level);
394 /* s->pending bitmap -> GICD_ISPENDRn */
395 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
397 /* s->active bitmap -> GICD_ISACTIVERn */
398 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
400 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
401 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
403 /* CPU Interface state (one per CPU) */
405 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
406 GICv3CPUState *c = &s->cpu[ncpu];
407 int num_pri_bits;
409 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
410 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
411 &c->icc_ctlr_el1[GICV3_NS], true);
412 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
413 &c->icc_igrpen[GICV3_G0], true);
414 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
415 &c->icc_igrpen[GICV3_G1NS], true);
416 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
417 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
418 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
420 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
421 ICC_CTLR_EL1_PRIBITS_MASK) >>
422 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
424 switch (num_pri_bits) {
425 case 7:
426 reg64 = c->icc_apr[GICV3_G0][3];
427 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
428 reg64 = c->icc_apr[GICV3_G0][2];
429 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
430 case 6:
431 reg64 = c->icc_apr[GICV3_G0][1];
432 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
433 default:
434 reg64 = c->icc_apr[GICV3_G0][0];
435 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
438 switch (num_pri_bits) {
439 case 7:
440 reg64 = c->icc_apr[GICV3_G1NS][3];
441 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
442 reg64 = c->icc_apr[GICV3_G1NS][2];
443 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
444 case 6:
445 reg64 = c->icc_apr[GICV3_G1NS][1];
446 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
447 default:
448 reg64 = c->icc_apr[GICV3_G1NS][0];
449 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
454 static void kvm_arm_gicv3_get(GICv3State *s)
456 uint32_t regl, regh, reg;
457 uint64_t reg64, redist_typer;
458 int ncpu, i;
460 kvm_arm_gicv3_check(s);
462 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
463 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
464 redist_typer = ((uint64_t)regh << 32) | regl;
466 kvm_gicd_access(s, GICD_CTLR, &reg, false);
467 s->gicd_ctlr = reg;
469 /* Redistributor state (one per CPU) */
471 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
472 GICv3CPUState *c = &s->cpu[ncpu];
474 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
475 c->gicr_ctlr = reg;
477 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
478 c->gicr_statusr[GICV3_NS] = reg;
480 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
481 c->gicr_waker = reg;
483 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
484 c->gicr_igroupr0 = reg;
485 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
486 c->gicr_ienabler0 = reg;
487 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
488 c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
489 kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
490 c->level = reg;
491 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
492 c->gicr_ipendr0 = reg;
493 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
494 c->gicr_iactiver0 = reg;
496 for (i = 0; i < GIC_INTERNAL; i += 4) {
497 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
498 c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
499 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
500 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
501 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
505 if (redist_typer & GICR_TYPER_PLPIS) {
506 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
507 GICv3CPUState *c = &s->cpu[ncpu];
509 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
510 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
511 c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
513 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
514 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
515 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
519 /* Distributor state (shared between all CPUs */
521 kvm_gicd_access(s, GICD_STATUSR, &reg, false);
522 s->gicd_statusr[GICV3_NS] = reg;
524 /* GICD_IGROUPRn -> s->group bitmap */
525 kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
527 /* GICD_ISENABLERn -> s->enabled bitmap */
528 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
530 /* Line level of irq */
531 kvm_gic_get_line_level_bmp(s, s->level);
532 /* GICD_ISPENDRn -> s->pending bitmap */
533 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
535 /* GICD_ISACTIVERn -> s->active bitmap */
536 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
538 /* GICD_ICFGRn -> s->trigger bitmap */
539 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
541 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
542 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
544 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
545 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
546 uint32_t offset;
548 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
549 kvm_gicd_access(s, offset, &regl, false);
550 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
551 kvm_gicd_access(s, offset, &regh, false);
552 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
555 /*****************************************************************
556 * CPU Interface(s) State
559 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
560 GICv3CPUState *c = &s->cpu[ncpu];
561 int num_pri_bits;
563 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
564 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
565 &c->icc_ctlr_el1[GICV3_NS], false);
566 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
567 &c->icc_igrpen[GICV3_G0], false);
568 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
569 &c->icc_igrpen[GICV3_G1NS], false);
570 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
571 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
572 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
573 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
574 ICC_CTLR_EL1_PRIBITS_MASK) >>
575 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
577 switch (num_pri_bits) {
578 case 7:
579 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
580 c->icc_apr[GICV3_G0][3] = reg64;
581 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
582 c->icc_apr[GICV3_G0][2] = reg64;
583 case 6:
584 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
585 c->icc_apr[GICV3_G0][1] = reg64;
586 default:
587 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
588 c->icc_apr[GICV3_G0][0] = reg64;
591 switch (num_pri_bits) {
592 case 7:
593 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
594 c->icc_apr[GICV3_G1NS][3] = reg64;
595 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
596 c->icc_apr[GICV3_G1NS][2] = reg64;
597 case 6:
598 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
599 c->icc_apr[GICV3_G1NS][1] = reg64;
600 default:
601 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
602 c->icc_apr[GICV3_G1NS][0] = reg64;
607 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
609 ARMCPU *cpu;
610 GICv3State *s;
611 GICv3CPUState *c;
613 c = (GICv3CPUState *)env->gicv3state;
614 s = c->gic;
615 cpu = ARM_CPU(c->cpu);
617 /* Initialize to actual HW supported configuration */
618 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
619 KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
620 &c->icc_ctlr_el1[GICV3_NS], false);
622 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
623 c->icc_pmr_el1 = 0;
624 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
625 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
626 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
628 c->icc_sre_el1 = 0x7;
629 memset(c->icc_apr, 0, sizeof(c->icc_apr));
630 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
633 static void kvm_arm_gicv3_reset(DeviceState *dev)
635 GICv3State *s = ARM_GICV3_COMMON(dev);
636 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
638 DPRINTF("Reset\n");
640 kgc->parent_reset(dev);
642 if (s->migration_blocker) {
643 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
644 return;
647 kvm_arm_gicv3_put(s);
651 * CPU interface registers of GIC needs to be reset on CPU reset.
652 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
653 * below ARMCPRegInfo. As we reset the whole cpu interface under single
654 * register reset, we define only one register of CPU interface instead
655 * of defining all the registers.
657 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
658 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
659 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
661 * If ARM_CP_NOP is used, resetfn is not called,
662 * So ARM_CP_NO_RAW is appropriate type.
664 .type = ARM_CP_NO_RAW,
665 .access = PL1_RW,
666 .readfn = arm_cp_read_zero,
667 .writefn = arm_cp_write_ignore,
669 * We hang the whole cpu interface reset routine off here
670 * rather than parcelling it out into one little function
671 * per register
673 .resetfn = arm_gicv3_icc_reset,
675 REGINFO_SENTINEL
678 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
680 GICv3State *s = KVM_ARM_GICV3(dev);
681 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
682 Error *local_err = NULL;
683 int i;
685 DPRINTF("kvm_arm_gicv3_realize\n");
687 kgc->parent_realize(dev, &local_err);
688 if (local_err) {
689 error_propagate(errp, local_err);
690 return;
693 if (s->security_extn) {
694 error_setg(errp, "the in-kernel VGICv3 does not implement the "
695 "security extensions");
696 return;
699 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
701 for (i = 0; i < s->num_cpu; i++) {
702 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
704 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
707 /* Try to create the device via the device control API */
708 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
709 if (s->dev_fd < 0) {
710 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
711 return;
714 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
715 0, &s->num_irq, true);
717 /* Tell the kernel to complete VGIC initialization now */
718 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
719 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true);
721 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
722 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
723 kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
724 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
726 if (kvm_has_gsi_routing()) {
727 /* set up irq routing */
728 kvm_init_irq_routing(kvm_state);
729 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
730 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
733 kvm_gsi_routing_allowed = true;
735 kvm_irqchip_commit_routes(kvm_state);
738 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
739 GICD_CTLR)) {
740 error_setg(&s->migration_blocker, "This operating system kernel does "
741 "not support vGICv3 migration");
742 migrate_add_blocker(s->migration_blocker, &local_err);
743 if (local_err) {
744 error_propagate(errp, local_err);
745 error_free(s->migration_blocker);
746 return;
751 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
753 DeviceClass *dc = DEVICE_CLASS(klass);
754 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
755 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
757 agcc->pre_save = kvm_arm_gicv3_get;
758 agcc->post_load = kvm_arm_gicv3_put;
759 kgc->parent_realize = dc->realize;
760 kgc->parent_reset = dc->reset;
761 dc->realize = kvm_arm_gicv3_realize;
762 dc->reset = kvm_arm_gicv3_reset;
765 static const TypeInfo kvm_arm_gicv3_info = {
766 .name = TYPE_KVM_ARM_GICV3,
767 .parent = TYPE_ARM_GICV3_COMMON,
768 .instance_size = sizeof(GICv3State),
769 .class_init = kvm_arm_gicv3_class_init,
770 .class_size = sizeof(KVMARMGICv3Class),
773 static void kvm_arm_gicv3_register_types(void)
775 type_register_static(&kvm_arm_gicv3_info);
778 type_init(kvm_arm_gicv3_register_types)