hw/arm/armsse: Give SSE-300 its own Property array
[qemu/ar7.git] / hw / arm / armsse.c
blob170dea8632dea51c192c2f089405ac520ea5cb69
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
24 #include "hw/irq.h"
25 #include "hw/qdev-clock.h"
28 * The SSE-300 puts some devices in different places to the
29 * SSE-200 (and original IoTKit). We use an array of these structs
30 * to define how each variant lays out these devices. (Parts of the
31 * SoC that are the same for all variants aren't handled via these
32 * data structures.)
35 #define NO_IRQ -1
36 #define NO_PPC -1
38 * Special values for ARMSSEDeviceInfo::irq to indicate that this
39 * device uses one of the inputs to the OR gate that feeds into the
40 * CPU NMI input.
42 #define NMI_0 10000
43 #define NMI_1 10001
45 typedef struct ARMSSEDeviceInfo {
46 const char *name; /* name to use for the QOM object; NULL terminates list */
47 const char *type; /* QOM type name */
48 unsigned int index; /* Which of the N devices of this type is this ? */
49 hwaddr addr;
50 hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
51 int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
52 int ppc_port; /* Port number of this device on the PPC */
53 int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
54 bool slowclk; /* true if device uses the slow 32KHz clock */
55 } ARMSSEDeviceInfo;
57 struct ARMSSEInfo {
58 const char *name;
59 uint32_t sse_version;
60 int sram_banks;
61 int num_cpus;
62 uint32_t sys_version;
63 uint32_t iidr;
64 uint32_t cpuwait_rst;
65 bool has_mhus;
66 bool has_cachectrl;
67 bool has_cpusecctrl;
68 bool has_cpuid;
69 bool has_cpu_pwrctrl;
70 bool has_sse_counter;
71 Property *props;
72 const ARMSSEDeviceInfo *devinfo;
73 const bool *irq_is_common;
76 static Property iotkit_properties[] = {
77 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
78 MemoryRegion *),
79 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
80 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
81 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
82 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
83 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
84 DEFINE_PROP_END_OF_LIST()
87 static Property sse200_properties[] = {
88 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
89 MemoryRegion *),
90 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
91 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
92 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
93 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
94 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
95 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
96 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
97 DEFINE_PROP_END_OF_LIST()
100 static Property sse300_properties[] = {
101 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
102 MemoryRegion *),
103 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
104 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
105 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
106 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
107 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
108 DEFINE_PROP_END_OF_LIST()
111 static const ARMSSEDeviceInfo iotkit_devices[] = {
113 .name = "timer0",
114 .type = TYPE_CMSDK_APB_TIMER,
115 .index = 0,
116 .addr = 0x40000000,
117 .ppc = 0,
118 .ppc_port = 0,
119 .irq = 3,
122 .name = "timer1",
123 .type = TYPE_CMSDK_APB_TIMER,
124 .index = 1,
125 .addr = 0x40001000,
126 .ppc = 0,
127 .ppc_port = 1,
128 .irq = 4,
131 .name = "s32ktimer",
132 .type = TYPE_CMSDK_APB_TIMER,
133 .index = 2,
134 .addr = 0x4002f000,
135 .ppc = 1,
136 .ppc_port = 0,
137 .irq = 2,
138 .slowclk = true,
141 .name = "dualtimer",
142 .type = TYPE_CMSDK_APB_DUALTIMER,
143 .index = 0,
144 .addr = 0x40002000,
145 .ppc = 0,
146 .ppc_port = 2,
147 .irq = 5,
150 .name = "s32kwatchdog",
151 .type = TYPE_CMSDK_APB_WATCHDOG,
152 .index = 0,
153 .addr = 0x5002e000,
154 .ppc = NO_PPC,
155 .irq = NMI_0,
156 .slowclk = true,
159 .name = "nswatchdog",
160 .type = TYPE_CMSDK_APB_WATCHDOG,
161 .index = 1,
162 .addr = 0x40081000,
163 .ppc = NO_PPC,
164 .irq = 1,
167 .name = "swatchdog",
168 .type = TYPE_CMSDK_APB_WATCHDOG,
169 .index = 2,
170 .addr = 0x50081000,
171 .ppc = NO_PPC,
172 .irq = NMI_1,
175 .name = "armsse-sysinfo",
176 .type = TYPE_IOTKIT_SYSINFO,
177 .index = 0,
178 .addr = 0x40020000,
179 .ppc = NO_PPC,
180 .irq = NO_IRQ,
183 .name = "armsse-sysctl",
184 .type = TYPE_IOTKIT_SYSCTL,
185 .index = 0,
186 .addr = 0x50021000,
187 .ppc = NO_PPC,
188 .irq = NO_IRQ,
191 .name = NULL,
195 static const ARMSSEDeviceInfo sse200_devices[] = {
197 .name = "timer0",
198 .type = TYPE_CMSDK_APB_TIMER,
199 .index = 0,
200 .addr = 0x40000000,
201 .ppc = 0,
202 .ppc_port = 0,
203 .irq = 3,
206 .name = "timer1",
207 .type = TYPE_CMSDK_APB_TIMER,
208 .index = 1,
209 .addr = 0x40001000,
210 .ppc = 0,
211 .ppc_port = 1,
212 .irq = 4,
215 .name = "s32ktimer",
216 .type = TYPE_CMSDK_APB_TIMER,
217 .index = 2,
218 .addr = 0x4002f000,
219 .ppc = 1,
220 .ppc_port = 0,
221 .irq = 2,
222 .slowclk = true,
225 .name = "dualtimer",
226 .type = TYPE_CMSDK_APB_DUALTIMER,
227 .index = 0,
228 .addr = 0x40002000,
229 .ppc = 0,
230 .ppc_port = 2,
231 .irq = 5,
234 .name = "s32kwatchdog",
235 .type = TYPE_CMSDK_APB_WATCHDOG,
236 .index = 0,
237 .addr = 0x5002e000,
238 .ppc = NO_PPC,
239 .irq = NMI_0,
240 .slowclk = true,
243 .name = "nswatchdog",
244 .type = TYPE_CMSDK_APB_WATCHDOG,
245 .index = 1,
246 .addr = 0x40081000,
247 .ppc = NO_PPC,
248 .irq = 1,
251 .name = "swatchdog",
252 .type = TYPE_CMSDK_APB_WATCHDOG,
253 .index = 2,
254 .addr = 0x50081000,
255 .ppc = NO_PPC,
256 .irq = NMI_1,
259 .name = "armsse-sysinfo",
260 .type = TYPE_IOTKIT_SYSINFO,
261 .index = 0,
262 .addr = 0x40020000,
263 .ppc = NO_PPC,
264 .irq = NO_IRQ,
267 .name = "armsse-sysctl",
268 .type = TYPE_IOTKIT_SYSCTL,
269 .index = 0,
270 .addr = 0x50021000,
271 .ppc = NO_PPC,
272 .irq = NO_IRQ,
275 .name = "CPU0CORE_PPU",
276 .type = TYPE_UNIMPLEMENTED_DEVICE,
277 .index = 0,
278 .addr = 0x50023000,
279 .size = 0x1000,
280 .ppc = NO_PPC,
281 .irq = NO_IRQ,
284 .name = "CPU1CORE_PPU",
285 .type = TYPE_UNIMPLEMENTED_DEVICE,
286 .index = 1,
287 .addr = 0x50025000,
288 .size = 0x1000,
289 .ppc = NO_PPC,
290 .irq = NO_IRQ,
293 .name = "DBG_PPU",
294 .type = TYPE_UNIMPLEMENTED_DEVICE,
295 .index = 2,
296 .addr = 0x50029000,
297 .size = 0x1000,
298 .ppc = NO_PPC,
299 .irq = NO_IRQ,
302 .name = "RAM0_PPU",
303 .type = TYPE_UNIMPLEMENTED_DEVICE,
304 .index = 3,
305 .addr = 0x5002a000,
306 .size = 0x1000,
307 .ppc = NO_PPC,
308 .irq = NO_IRQ,
311 .name = "RAM1_PPU",
312 .type = TYPE_UNIMPLEMENTED_DEVICE,
313 .index = 4,
314 .addr = 0x5002b000,
315 .size = 0x1000,
316 .ppc = NO_PPC,
317 .irq = NO_IRQ,
320 .name = "RAM2_PPU",
321 .type = TYPE_UNIMPLEMENTED_DEVICE,
322 .index = 5,
323 .addr = 0x5002c000,
324 .size = 0x1000,
325 .ppc = NO_PPC,
326 .irq = NO_IRQ,
329 .name = "RAM3_PPU",
330 .type = TYPE_UNIMPLEMENTED_DEVICE,
331 .index = 6,
332 .addr = 0x5002d000,
333 .size = 0x1000,
334 .ppc = NO_PPC,
335 .irq = NO_IRQ,
338 .name = "SYS_PPU",
339 .type = TYPE_UNIMPLEMENTED_DEVICE,
340 .index = 7,
341 .addr = 0x50022000,
342 .size = 0x1000,
343 .ppc = NO_PPC,
344 .irq = NO_IRQ,
347 .name = NULL,
351 static const ARMSSEDeviceInfo sse300_devices[] = {
353 .name = "timer0",
354 .type = TYPE_SSE_TIMER,
355 .index = 0,
356 .addr = 0x48000000,
357 .ppc = 0,
358 .ppc_port = 0,
359 .irq = 3,
362 .name = "timer1",
363 .type = TYPE_SSE_TIMER,
364 .index = 1,
365 .addr = 0x48001000,
366 .ppc = 0,
367 .ppc_port = 1,
368 .irq = 4,
371 .name = "timer2",
372 .type = TYPE_SSE_TIMER,
373 .index = 2,
374 .addr = 0x48002000,
375 .ppc = 0,
376 .ppc_port = 2,
377 .irq = 5,
380 .name = "timer3",
381 .type = TYPE_SSE_TIMER,
382 .index = 3,
383 .addr = 0x48003000,
384 .ppc = 0,
385 .ppc_port = 5,
386 .irq = 27,
389 .name = "s32ktimer",
390 .type = TYPE_CMSDK_APB_TIMER,
391 .index = 0,
392 .addr = 0x4802f000,
393 .ppc = 1,
394 .ppc_port = 0,
395 .irq = 2,
396 .slowclk = true,
399 .name = "s32kwatchdog",
400 .type = TYPE_CMSDK_APB_WATCHDOG,
401 .index = 0,
402 .addr = 0x4802e000,
403 .ppc = NO_PPC,
404 .irq = NMI_0,
405 .slowclk = true,
408 .name = "watchdog",
409 .type = TYPE_UNIMPLEMENTED_DEVICE,
410 .index = 0,
411 .addr = 0x48040000,
412 .size = 0x2000,
413 .ppc = NO_PPC,
414 .irq = NO_IRQ,
417 .name = "armsse-sysinfo",
418 .type = TYPE_IOTKIT_SYSINFO,
419 .index = 0,
420 .addr = 0x48020000,
421 .ppc = NO_PPC,
422 .irq = NO_IRQ,
425 .name = "armsse-sysctl",
426 .type = TYPE_IOTKIT_SYSCTL,
427 .index = 0,
428 .addr = 0x58021000,
429 .ppc = NO_PPC,
430 .irq = NO_IRQ,
433 .name = "SYS_PPU",
434 .type = TYPE_UNIMPLEMENTED_DEVICE,
435 .index = 1,
436 .addr = 0x58022000,
437 .size = 0x1000,
438 .ppc = NO_PPC,
439 .irq = NO_IRQ,
442 .name = "CPU0CORE_PPU",
443 .type = TYPE_UNIMPLEMENTED_DEVICE,
444 .index = 2,
445 .addr = 0x50023000,
446 .size = 0x1000,
447 .ppc = NO_PPC,
448 .irq = NO_IRQ,
451 .name = "MGMT_PPU",
452 .type = TYPE_UNIMPLEMENTED_DEVICE,
453 .index = 3,
454 .addr = 0x50028000,
455 .size = 0x1000,
456 .ppc = NO_PPC,
457 .irq = NO_IRQ,
460 .name = "DEBUG_PPU",
461 .type = TYPE_UNIMPLEMENTED_DEVICE,
462 .index = 4,
463 .addr = 0x50029000,
464 .size = 0x1000,
465 .ppc = NO_PPC,
466 .irq = NO_IRQ,
469 .name = NULL,
473 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
474 static const bool sse200_irq_is_common[32] = {
475 [0 ... 5] = true,
476 /* 6, 7: per-CPU MHU interrupts */
477 [8 ... 12] = true,
478 /* 13: per-CPU icache interrupt */
479 /* 14: reserved */
480 [15 ... 20] = true,
481 /* 21: reserved */
482 [22 ... 26] = true,
483 /* 27: reserved */
484 /* 28, 29: per-CPU CTI interrupts */
485 /* 30, 31: reserved */
488 static const bool sse300_irq_is_common[32] = {
489 [0 ... 5] = true,
490 /* 6, 7: per-CPU MHU interrupts */
491 [8 ... 12] = true,
492 /* 13: reserved */
493 [14 ... 16] = true,
494 /* 17-25: reserved */
495 [26 ... 27] = true,
496 /* 28, 29: per-CPU CTI interrupts */
497 /* 30, 31: reserved */
500 static const ARMSSEInfo armsse_variants[] = {
502 .name = TYPE_IOTKIT,
503 .sse_version = ARMSSE_IOTKIT,
504 .sram_banks = 1,
505 .num_cpus = 1,
506 .sys_version = 0x41743,
507 .iidr = 0,
508 .cpuwait_rst = 0,
509 .has_mhus = false,
510 .has_cachectrl = false,
511 .has_cpusecctrl = false,
512 .has_cpuid = false,
513 .has_cpu_pwrctrl = false,
514 .has_sse_counter = false,
515 .props = iotkit_properties,
516 .devinfo = iotkit_devices,
517 .irq_is_common = sse200_irq_is_common,
520 .name = TYPE_SSE200,
521 .sse_version = ARMSSE_SSE200,
522 .sram_banks = 4,
523 .num_cpus = 2,
524 .sys_version = 0x22041743,
525 .iidr = 0,
526 .cpuwait_rst = 2,
527 .has_mhus = true,
528 .has_cachectrl = true,
529 .has_cpusecctrl = true,
530 .has_cpuid = true,
531 .has_cpu_pwrctrl = false,
532 .has_sse_counter = false,
533 .props = sse200_properties,
534 .devinfo = sse200_devices,
535 .irq_is_common = sse200_irq_is_common,
538 .name = TYPE_SSE300,
539 .sse_version = ARMSSE_SSE300,
540 .sram_banks = 2,
541 .num_cpus = 1,
542 .sys_version = 0x7e00043b,
543 .iidr = 0x74a0043b,
544 .cpuwait_rst = 0,
545 .has_mhus = false,
546 .has_cachectrl = false,
547 .has_cpusecctrl = true,
548 .has_cpuid = true,
549 .has_cpu_pwrctrl = true,
550 .has_sse_counter = true,
551 .props = sse300_properties,
552 .devinfo = sse300_devices,
553 .irq_is_common = sse300_irq_is_common,
557 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
559 /* Return the SYS_CONFIG value for this SSE */
560 uint32_t sys_config;
562 switch (info->sse_version) {
563 case ARMSSE_IOTKIT:
564 sys_config = 0;
565 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
566 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
567 break;
568 case ARMSSE_SSE200:
569 sys_config = 0;
570 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
571 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
572 sys_config = deposit32(sys_config, 24, 4, 2);
573 if (info->num_cpus > 1) {
574 sys_config = deposit32(sys_config, 10, 1, 1);
575 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
576 sys_config = deposit32(sys_config, 28, 4, 2);
578 break;
579 case ARMSSE_SSE300:
580 sys_config = 0;
581 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
582 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
583 sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
584 break;
585 default:
586 g_assert_not_reached();
588 return sys_config;
591 /* Clock frequency in HZ of the 32KHz "slow clock" */
592 #define S32KCLK (32 * 1000)
595 * Create an alias region in @container of @size bytes starting at @base
596 * which mirrors the memory starting at @orig.
598 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
599 const char *name, hwaddr base, hwaddr size, hwaddr orig)
601 memory_region_init_alias(mr, NULL, name, container, orig, size);
602 /* The alias is even lower priority than unimplemented_device regions */
603 memory_region_add_subregion_overlap(container, base, mr, -1500);
606 static void irq_status_forwarder(void *opaque, int n, int level)
608 qemu_irq destirq = opaque;
610 qemu_set_irq(destirq, level);
613 static void nsccfg_handler(void *opaque, int n, int level)
615 ARMSSE *s = ARM_SSE(opaque);
617 s->nsccfg = level;
620 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
622 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
623 * system using the ARMSSE has a collection of control lines which
624 * are provided by the security controller and which we want to
625 * expose as control lines on the ARMSSE device itself, so the
626 * code using the ARMSSE can wire them up to the PPCs.
628 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
629 DeviceState *armssedev = DEVICE(s);
630 DeviceState *dev_secctl = DEVICE(&s->secctl);
631 DeviceState *dev_splitter = DEVICE(splitter);
632 char *name;
634 name = g_strdup_printf("%s_nonsec", ppcname);
635 qdev_pass_gpios(dev_secctl, armssedev, name);
636 g_free(name);
637 name = g_strdup_printf("%s_ap", ppcname);
638 qdev_pass_gpios(dev_secctl, armssedev, name);
639 g_free(name);
640 name = g_strdup_printf("%s_irq_enable", ppcname);
641 qdev_pass_gpios(dev_secctl, armssedev, name);
642 g_free(name);
643 name = g_strdup_printf("%s_irq_clear", ppcname);
644 qdev_pass_gpios(dev_secctl, armssedev, name);
645 g_free(name);
647 /* irq_status is a little more tricky, because we need to
648 * split it so we can send it both to the security controller
649 * and to our OR gate for the NVIC interrupt line.
650 * Connect up the splitter's outputs, and create a GPIO input
651 * which will pass the line state to the input splitter.
653 name = g_strdup_printf("%s_irq_status", ppcname);
654 qdev_connect_gpio_out(dev_splitter, 0,
655 qdev_get_gpio_in_named(dev_secctl,
656 name, 0));
657 qdev_connect_gpio_out(dev_splitter, 1,
658 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
659 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
660 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
661 s->irq_status_in[ppcnum], name, 1);
662 g_free(name);
665 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
667 /* Forward the 3rd output from the splitter device as a
668 * named GPIO output of the armsse object.
670 DeviceState *dev = DEVICE(s);
671 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
673 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
674 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
675 s->sec_resp_cfg, 1);
676 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
679 static void armsse_mainclk_update(void *opaque, ClockEvent event)
681 ARMSSE *s = ARM_SSE(opaque);
684 * Set system_clock_scale from our Clock input; this is what
685 * controls the tick rate of the CPU SysTick timer.
687 system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
690 static void armsse_init(Object *obj)
692 ARMSSE *s = ARM_SSE(obj);
693 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
694 const ARMSSEInfo *info = asc->info;
695 const ARMSSEDeviceInfo *devinfo;
696 int i;
698 assert(info->sram_banks <= MAX_SRAM_BANKS);
699 assert(info->num_cpus <= SSE_MAX_CPUS);
701 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
702 armsse_mainclk_update, s, ClockUpdate);
703 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
705 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
707 for (i = 0; i < info->num_cpus; i++) {
709 * We put each CPU in its own cluster as they are logically
710 * distinct and may be configured differently.
712 char *name;
714 name = g_strdup_printf("cluster%d", i);
715 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
716 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
717 g_free(name);
719 name = g_strdup_printf("armv7m%d", i);
720 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
721 TYPE_ARMV7M);
722 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
723 ARM_CPU_TYPE_NAME("cortex-m33"));
724 g_free(name);
725 name = g_strdup_printf("arm-sse-cpu-container%d", i);
726 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
727 g_free(name);
728 if (i > 0) {
729 name = g_strdup_printf("arm-sse-container-alias%d", i);
730 memory_region_init_alias(&s->container_alias[i - 1], obj,
731 name, &s->container, 0, UINT64_MAX);
732 g_free(name);
736 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
737 assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
738 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
739 assert(devinfo->index < ARRAY_SIZE(s->timer));
740 object_initialize_child(obj, devinfo->name,
741 &s->timer[devinfo->index],
742 TYPE_CMSDK_APB_TIMER);
743 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
744 assert(devinfo->index == 0);
745 object_initialize_child(obj, devinfo->name, &s->dualtimer,
746 TYPE_CMSDK_APB_DUALTIMER);
747 } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
748 assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
749 object_initialize_child(obj, devinfo->name,
750 &s->sse_timer[devinfo->index],
751 TYPE_SSE_TIMER);
752 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
753 assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
754 object_initialize_child(obj, devinfo->name,
755 &s->cmsdk_watchdog[devinfo->index],
756 TYPE_CMSDK_APB_WATCHDOG);
757 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
758 assert(devinfo->index == 0);
759 object_initialize_child(obj, devinfo->name, &s->sysinfo,
760 TYPE_IOTKIT_SYSINFO);
761 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
762 assert(devinfo->index == 0);
763 object_initialize_child(obj, devinfo->name, &s->sysctl,
764 TYPE_IOTKIT_SYSCTL);
765 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
766 assert(devinfo->index < ARRAY_SIZE(s->unimp));
767 object_initialize_child(obj, devinfo->name,
768 &s->unimp[devinfo->index],
769 TYPE_UNIMPLEMENTED_DEVICE);
770 } else {
771 g_assert_not_reached();
775 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
777 for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
778 g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
779 object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
782 for (i = 0; i < info->sram_banks; i++) {
783 char *name = g_strdup_printf("mpc%d", i);
784 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
785 g_free(name);
787 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
788 TYPE_OR_IRQ);
790 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
791 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
792 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
794 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
795 g_free(name);
798 if (info->has_mhus) {
799 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
800 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
802 if (info->has_cachectrl) {
803 for (i = 0; i < info->num_cpus; i++) {
804 char *name = g_strdup_printf("cachectrl%d", i);
806 object_initialize_child(obj, name, &s->cachectrl[i],
807 TYPE_UNIMPLEMENTED_DEVICE);
808 g_free(name);
811 if (info->has_cpusecctrl) {
812 for (i = 0; i < info->num_cpus; i++) {
813 char *name = g_strdup_printf("cpusecctrl%d", i);
815 object_initialize_child(obj, name, &s->cpusecctrl[i],
816 TYPE_UNIMPLEMENTED_DEVICE);
817 g_free(name);
820 if (info->has_cpuid) {
821 for (i = 0; i < info->num_cpus; i++) {
822 char *name = g_strdup_printf("cpuid%d", i);
824 object_initialize_child(obj, name, &s->cpuid[i],
825 TYPE_ARMSSE_CPUID);
826 g_free(name);
829 if (info->has_cpu_pwrctrl) {
830 for (i = 0; i < info->num_cpus; i++) {
831 char *name = g_strdup_printf("cpu_pwrctrl%d", i);
833 object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
834 TYPE_ARMSSE_CPU_PWRCTRL);
835 g_free(name);
838 if (info->has_sse_counter) {
839 object_initialize_child(obj, "sse-counter", &s->sse_counter,
840 TYPE_SSE_COUNTER);
843 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
844 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
845 TYPE_OR_IRQ);
846 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
847 TYPE_SPLIT_IRQ);
848 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
849 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
850 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
852 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
853 g_free(name);
855 if (info->num_cpus > 1) {
856 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
857 if (info->irq_is_common[i]) {
858 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
859 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
861 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
862 g_free(name);
868 static void armsse_exp_irq(void *opaque, int n, int level)
870 qemu_irq *irqarray = opaque;
872 qemu_set_irq(irqarray[n], level);
875 static void armsse_mpcexp_status(void *opaque, int n, int level)
877 ARMSSE *s = ARM_SSE(opaque);
878 qemu_set_irq(s->mpcexp_status_in[n], level);
881 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
884 * Return a qemu_irq which can be used to signal IRQ n to
885 * all CPUs in the SSE.
887 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
888 const ARMSSEInfo *info = asc->info;
890 assert(info->irq_is_common[irqno]);
892 if (info->num_cpus == 1) {
893 /* Only one CPU -- just connect directly to it */
894 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
895 } else {
896 /* Connect to the splitter which feeds all CPUs */
897 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
901 static void armsse_realize(DeviceState *dev, Error **errp)
903 ARMSSE *s = ARM_SSE(dev);
904 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
905 const ARMSSEInfo *info = asc->info;
906 const ARMSSEDeviceInfo *devinfo;
907 int i;
908 MemoryRegion *mr;
909 Error *err = NULL;
910 SysBusDevice *sbd_apb_ppc0;
911 SysBusDevice *sbd_secctl;
912 DeviceState *dev_apb_ppc0;
913 DeviceState *dev_apb_ppc1;
914 DeviceState *dev_secctl;
915 DeviceState *dev_splitter;
916 uint32_t addr_width_max;
918 if (!s->board_memory) {
919 error_setg(errp, "memory property was not set");
920 return;
923 if (!clock_has_source(s->mainclk)) {
924 error_setg(errp, "MAINCLK clock was not connected");
926 if (!clock_has_source(s->s32kclk)) {
927 error_setg(errp, "S32KCLK clock was not connected");
930 assert(info->num_cpus <= SSE_MAX_CPUS);
932 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
933 assert(is_power_of_2(info->sram_banks));
934 addr_width_max = 24 - ctz32(info->sram_banks);
935 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
936 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
937 addr_width_max);
938 return;
941 /* Handling of which devices should be available only to secure
942 * code is usually done differently for M profile than for A profile.
943 * Instead of putting some devices only into the secure address space,
944 * devices exist in both address spaces but with hard-wired security
945 * permissions that will cause the CPU to fault for non-secure accesses.
947 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
948 * which specifies hard-wired security permissions for different
949 * areas of the physical address space. For the ARMSSE IDAU, the
950 * top 4 bits of the physical address are the IDAU region ID, and
951 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
952 * region, otherwise it is an S region.
954 * The various devices and RAMs are generally all mapped twice,
955 * once into a region that the IDAU defines as secure and once
956 * into a non-secure region. They sit behind either a Memory
957 * Protection Controller (for RAM) or a Peripheral Protection
958 * Controller (for devices), which allow a more fine grained
959 * configuration of whether non-secure accesses are permitted.
961 * (The other place that guest software can configure security
962 * permissions is in the architected SAU (Security Attribution
963 * Unit), which is entirely inside the CPU. The IDAU can upgrade
964 * the security attributes for a region to more restrictive than
965 * the SAU specifies, but cannot downgrade them.)
967 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
968 * 0x20000000..0x2007ffff 32KB FPGA block RAM
969 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
970 * 0x40000000..0x4000ffff base peripheral region 1
971 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
972 * 0x40020000..0x4002ffff system control element peripherals
973 * 0x40080000..0x400fffff base peripheral region 2
974 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
977 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
979 for (i = 0; i < info->num_cpus; i++) {
980 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
981 Object *cpuobj = OBJECT(&s->armv7m[i]);
982 int j;
983 char *gpioname;
985 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
987 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
988 * registers in the IoT Kit System Control Register block. In QEMU
989 * we set the initial value here, and also the reset value of the
990 * sysctl register, from this object's QOM init-svtor property.
991 * If the guest changes the INITSVTOR* registers at runtime then the
992 * code in iotkit-sysctl.c will update the CPU init-svtor property
993 * (which will then take effect on the next CPU warm-reset).
995 * Note that typically a board using the SSE-200 will have a system
996 * control processor whose boot firmware initializes the INITSVTOR*
997 * registers before powering up the CPUs. QEMU doesn't emulate
998 * the control processor, so instead we behave in the way that the
999 * firmware does: the initial value should be set by the board code
1000 * (using the init-svtor property on the ARMSSE object) to match
1001 * whatever its firmware does.
1003 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1005 * CPUs start powered down if the corresponding bit in the CPUWAIT
1006 * register is 1. In real hardware the CPUWAIT register reset value is
1007 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1008 * CPUWAIT1_RST parameters), but since all the boards we care about
1009 * start CPU0 and leave CPU1 powered off, we hard-code that in
1010 * info->cpuwait_rst for now. We can add QOM properties for this
1011 * later if necessary.
1013 if (extract32(info->cpuwait_rst, i, 1)) {
1014 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1015 errp)) {
1016 return;
1019 if (!s->cpu_fpu[i]) {
1020 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1021 return;
1024 if (!s->cpu_dsp[i]) {
1025 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1026 return;
1030 if (i > 0) {
1031 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1032 &s->container_alias[i - 1], -1);
1033 } else {
1034 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1035 &s->container, -1);
1037 object_property_set_link(cpuobj, "memory",
1038 OBJECT(&s->cpu_container[i]), &error_abort);
1039 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1040 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1041 return;
1044 * The cluster must be realized after the armv7m container, as
1045 * the container's CPU object is only created on realize, and the
1046 * CPU must exist and have been parented into the cluster before
1047 * the cluster is realized.
1049 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1050 return;
1053 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1054 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1055 for (j = 0; j < s->exp_numirq; j++) {
1056 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1058 if (i == 0) {
1059 gpioname = g_strdup("EXP_IRQ");
1060 } else {
1061 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1063 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1064 s->exp_irqs[i],
1065 gpioname, s->exp_numirq);
1066 g_free(gpioname);
1069 /* Wire up the splitters that connect common IRQs to all CPUs */
1070 if (info->num_cpus > 1) {
1071 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1072 if (info->irq_is_common[i]) {
1073 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1074 DeviceState *devs = DEVICE(splitter);
1075 int cpunum;
1077 if (!object_property_set_int(splitter, "num-lines",
1078 info->num_cpus, errp)) {
1079 return;
1081 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1082 return;
1084 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1085 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1087 qdev_connect_gpio_out(devs, cpunum,
1088 qdev_get_gpio_in(cpudev, i));
1094 /* Set up the big aliases first */
1095 make_alias(s, &s->alias1, &s->container, "alias 1",
1096 0x10000000, 0x10000000, 0x00000000);
1097 make_alias(s, &s->alias2, &s->container,
1098 "alias 2", 0x30000000, 0x10000000, 0x20000000);
1099 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1100 * a few extra devices that only appear there (generally the
1101 * control interfaces for the protection controllers).
1102 * We implement this by mapping those devices over the top of this
1103 * alias MR at a higher priority. Some of the devices in this range
1104 * are per-CPU, so we must put this alias in the per-cpu containers.
1106 for (i = 0; i < info->num_cpus; i++) {
1107 make_alias(s, &s->alias3[i], &s->cpu_container[i],
1108 "alias 3", 0x50000000, 0x10000000, 0x40000000);
1111 /* Security controller */
1112 object_property_set_int(OBJECT(&s->secctl), "sse-version",
1113 info->sse_version, &error_abort);
1114 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1115 return;
1117 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1118 dev_secctl = DEVICE(&s->secctl);
1119 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1120 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1122 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1123 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1125 /* The sec_resp_cfg output from the security controller must be split into
1126 * multiple lines, one for each of the PPCs within the ARMSSE and one
1127 * that will be an output from the ARMSSE to the system.
1129 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1130 "num-lines", 3, errp)) {
1131 return;
1133 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1134 return;
1136 dev_splitter = DEVICE(&s->sec_resp_splitter);
1137 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1138 qdev_get_gpio_in(dev_splitter, 0));
1140 /* Each SRAM bank lives behind its own Memory Protection Controller */
1141 for (i = 0; i < info->sram_banks; i++) {
1142 char *ramname = g_strdup_printf("armsse.sram%d", i);
1143 SysBusDevice *sbd_mpc;
1144 uint32_t sram_bank_size = 1 << s->sram_addr_width;
1146 memory_region_init_ram(&s->sram[i], NULL, ramname,
1147 sram_bank_size, &err);
1148 g_free(ramname);
1149 if (err) {
1150 error_propagate(errp, err);
1151 return;
1153 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1154 OBJECT(&s->sram[i]), &error_abort);
1155 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1156 return;
1158 /* Map the upstream end of the MPC into the right place... */
1159 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1160 memory_region_add_subregion(&s->container,
1161 0x20000000 + i * sram_bank_size,
1162 sysbus_mmio_get_region(sbd_mpc, 1));
1163 /* ...and its register interface */
1164 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1165 sysbus_mmio_get_region(sbd_mpc, 0));
1168 /* We must OR together lines from the MPC splitters to go to the NVIC */
1169 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1170 IOTS_NUM_EXP_MPC + info->sram_banks,
1171 errp)) {
1172 return;
1174 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1175 return;
1177 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1178 armsse_get_common_irq_in(s, 9));
1180 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1181 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1182 errp)) {
1183 return;
1185 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1186 return;
1188 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1189 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1191 /* The SSE-300 has a System Counter / System Timestamp Generator */
1192 if (info->has_sse_counter) {
1193 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1195 qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1196 if (!sysbus_realize(sbd, errp)) {
1197 return;
1200 * The control frame is only in the Secure region;
1201 * the status frame is in the NS region (and visible in the
1202 * S region via the alias mapping).
1204 memory_region_add_subregion(&s->container, 0x58100000,
1205 sysbus_mmio_get_region(sbd, 0));
1206 memory_region_add_subregion(&s->container, 0x48101000,
1207 sysbus_mmio_get_region(sbd, 1));
1210 /* Devices behind APB PPC0:
1211 * 0x40000000: timer0
1212 * 0x40001000: timer1
1213 * 0x40002000: dual timer
1214 * 0x40003000: MHU0 (SSE-200 only)
1215 * 0x40004000: MHU1 (SSE-200 only)
1216 * We must configure and realize each downstream device and connect
1217 * it to the appropriate PPC port; then we can realize the PPC and
1218 * map its upstream ends to the right place in the container.
1220 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1221 SysBusDevice *sbd;
1222 qemu_irq irq;
1224 if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1225 sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1227 qdev_connect_clock_in(DEVICE(sbd), "pclk",
1228 devinfo->slowclk ? s->s32kclk : s->mainclk);
1229 if (!sysbus_realize(sbd, errp)) {
1230 return;
1232 mr = sysbus_mmio_get_region(sbd, 0);
1233 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1234 sbd = SYS_BUS_DEVICE(&s->dualtimer);
1236 qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1237 if (!sysbus_realize(sbd, errp)) {
1238 return;
1240 mr = sysbus_mmio_get_region(sbd, 0);
1241 } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1242 sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1244 assert(info->has_sse_counter);
1245 object_property_set_link(OBJECT(sbd), "counter",
1246 OBJECT(&s->sse_counter), &error_abort);
1247 if (!sysbus_realize(sbd, errp)) {
1248 return;
1250 mr = sysbus_mmio_get_region(sbd, 0);
1251 } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1252 sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1254 qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1255 devinfo->slowclk ? s->s32kclk : s->mainclk);
1256 if (!sysbus_realize(sbd, errp)) {
1257 return;
1259 mr = sysbus_mmio_get_region(sbd, 0);
1260 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1261 sbd = SYS_BUS_DEVICE(&s->sysinfo);
1263 object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1264 info->sys_version, &error_abort);
1265 object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1266 armsse_sys_config_value(s, info),
1267 &error_abort);
1268 object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1269 info->sse_version, &error_abort);
1270 object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1271 info->iidr, &error_abort);
1272 if (!sysbus_realize(sbd, errp)) {
1273 return;
1275 mr = sysbus_mmio_get_region(sbd, 0);
1276 } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1277 /* System control registers */
1278 sbd = SYS_BUS_DEVICE(&s->sysctl);
1280 object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1281 info->sse_version, &error_abort);
1282 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1283 info->cpuwait_rst, &error_abort);
1284 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1285 s->init_svtor, &error_abort);
1286 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1287 s->init_svtor, &error_abort);
1288 if (!sysbus_realize(sbd, errp)) {
1289 return;
1291 mr = sysbus_mmio_get_region(sbd, 0);
1292 } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1293 sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1295 qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1296 qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1297 if (!sysbus_realize(sbd, errp)) {
1298 return;
1300 mr = sysbus_mmio_get_region(sbd, 0);
1301 } else {
1302 g_assert_not_reached();
1305 switch (devinfo->irq) {
1306 case NO_IRQ:
1307 irq = NULL;
1308 break;
1309 case 0 ... NUM_SSE_IRQS - 1:
1310 irq = armsse_get_common_irq_in(s, devinfo->irq);
1311 break;
1312 case NMI_0:
1313 case NMI_1:
1314 irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1315 devinfo->irq - NMI_0);
1316 break;
1317 default:
1318 g_assert_not_reached();
1321 if (irq) {
1322 sysbus_connect_irq(sbd, 0, irq);
1326 * Devices connected to a PPC are connected to the port here;
1327 * we will map the upstream end of that port to the right address
1328 * in the container later after the PPC has been realized.
1329 * Devices not connected to a PPC can be mapped immediately.
1331 if (devinfo->ppc != NO_PPC) {
1332 TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1333 g_autofree char *portname = g_strdup_printf("port[%d]",
1334 devinfo->ppc_port);
1335 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1336 &error_abort);
1337 } else {
1338 memory_region_add_subregion(&s->container, devinfo->addr, mr);
1342 if (info->has_mhus) {
1344 * An SSE-200 with only one CPU should have only one MHU created,
1345 * with the region where the second MHU usually is being RAZ/WI.
1346 * We don't implement that SSE-200 config; if we want to support
1347 * it then this code needs to be enhanced to handle creating the
1348 * RAZ/WI region instead of the second MHU.
1350 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1352 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1353 char *port;
1354 int cpunum;
1355 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1357 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1358 return;
1360 port = g_strdup_printf("port[%d]", i + 3);
1361 mr = sysbus_mmio_get_region(mhu_sbd, 0);
1362 object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1363 &error_abort);
1364 g_free(port);
1367 * Each MHU has an irq line for each CPU:
1368 * MHU 0 irq line 0 -> CPU 0 IRQ 6
1369 * MHU 0 irq line 1 -> CPU 1 IRQ 6
1370 * MHU 1 irq line 0 -> CPU 0 IRQ 7
1371 * MHU 1 irq line 1 -> CPU 1 IRQ 7
1373 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1374 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1376 sysbus_connect_irq(mhu_sbd, cpunum,
1377 qdev_get_gpio_in(cpudev, 6 + i));
1382 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1383 return;
1386 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1387 dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1389 if (info->has_mhus) {
1390 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1391 memory_region_add_subregion(&s->container, 0x40003000, mr);
1392 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1393 memory_region_add_subregion(&s->container, 0x40004000, mr);
1395 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1396 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1397 qdev_get_gpio_in_named(dev_apb_ppc0,
1398 "cfg_nonsec", i));
1399 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1400 qdev_get_gpio_in_named(dev_apb_ppc0,
1401 "cfg_ap", i));
1403 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1404 qdev_get_gpio_in_named(dev_apb_ppc0,
1405 "irq_enable", 0));
1406 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1407 qdev_get_gpio_in_named(dev_apb_ppc0,
1408 "irq_clear", 0));
1409 qdev_connect_gpio_out(dev_splitter, 0,
1410 qdev_get_gpio_in_named(dev_apb_ppc0,
1411 "cfg_sec_resp", 0));
1413 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1414 * ones) are sent individually to the security controller, and also
1415 * ORed together to give a single combined PPC interrupt to the NVIC.
1417 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1418 "num-lines", NUM_PPCS, errp)) {
1419 return;
1421 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1422 return;
1424 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1425 armsse_get_common_irq_in(s, 10));
1428 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1429 * private per-CPU region (all these devices are SSE-200 only):
1430 * 0x50010000: L1 icache control registers
1431 * 0x50011000: CPUSECCTRL (CPU local security control registers)
1432 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1433 * The SSE-300 has an extra:
1434 * 0x40012000 and 0x50012000: CPU_PWRCTRL register block
1436 if (info->has_cachectrl) {
1437 for (i = 0; i < info->num_cpus; i++) {
1438 char *name = g_strdup_printf("cachectrl%d", i);
1439 MemoryRegion *mr;
1441 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1442 g_free(name);
1443 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1444 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1445 return;
1448 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1449 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1452 if (info->has_cpusecctrl) {
1453 for (i = 0; i < info->num_cpus; i++) {
1454 char *name = g_strdup_printf("CPUSECCTRL%d", i);
1455 MemoryRegion *mr;
1457 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1458 g_free(name);
1459 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1460 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1461 return;
1464 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1465 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1468 if (info->has_cpuid) {
1469 for (i = 0; i < info->num_cpus; i++) {
1470 MemoryRegion *mr;
1472 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1473 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1474 return;
1477 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1478 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1481 if (info->has_cpu_pwrctrl) {
1482 for (i = 0; i < info->num_cpus; i++) {
1483 MemoryRegion *mr;
1485 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1486 return;
1489 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1490 memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1494 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1495 return;
1498 dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1499 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1500 qdev_get_gpio_in_named(dev_apb_ppc1,
1501 "cfg_nonsec", 0));
1502 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1503 qdev_get_gpio_in_named(dev_apb_ppc1,
1504 "cfg_ap", 0));
1505 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1506 qdev_get_gpio_in_named(dev_apb_ppc1,
1507 "irq_enable", 0));
1508 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1509 qdev_get_gpio_in_named(dev_apb_ppc1,
1510 "irq_clear", 0));
1511 qdev_connect_gpio_out(dev_splitter, 1,
1512 qdev_get_gpio_in_named(dev_apb_ppc1,
1513 "cfg_sec_resp", 0));
1516 * Now both PPCs are realized we can map the upstream ends of
1517 * ports which correspond to entries in the devinfo array.
1518 * The ports which are connected to non-devinfo devices have
1519 * already been mapped.
1521 for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1522 SysBusDevice *ppc_sbd;
1524 if (devinfo->ppc == NO_PPC) {
1525 continue;
1527 ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1528 mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1529 memory_region_add_subregion(&s->container, devinfo->addr, mr);
1532 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1533 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1535 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1536 return;
1538 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1539 return;
1543 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1544 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1546 armsse_forward_ppc(s, ppcname, i);
1547 g_free(ppcname);
1550 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1551 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1553 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1554 g_free(ppcname);
1557 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1558 /* Wire up IRQ splitter for internal PPCs */
1559 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1560 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1561 i - NUM_EXTERNAL_PPCS);
1562 TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1564 qdev_connect_gpio_out(devs, 0,
1565 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1566 qdev_connect_gpio_out(devs, 1,
1567 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1568 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1569 qdev_get_gpio_in(devs, 0));
1570 g_free(gpioname);
1573 /* Wire up the splitters for the MPC IRQs */
1574 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1575 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1576 DeviceState *dev_splitter = DEVICE(splitter);
1578 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1579 errp)) {
1580 return;
1582 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1583 return;
1586 if (i < IOTS_NUM_EXP_MPC) {
1587 /* Splitter input is from GPIO input line */
1588 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1589 qdev_connect_gpio_out(dev_splitter, 0,
1590 qdev_get_gpio_in_named(dev_secctl,
1591 "mpcexp_status", i));
1592 } else {
1593 /* Splitter input is from our own MPC */
1594 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1595 "irq", 0,
1596 qdev_get_gpio_in(dev_splitter, 0));
1597 qdev_connect_gpio_out(dev_splitter, 0,
1598 qdev_get_gpio_in_named(dev_secctl,
1599 "mpc_status",
1600 i - IOTS_NUM_EXP_MPC));
1603 qdev_connect_gpio_out(dev_splitter, 1,
1604 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1606 /* Create GPIO inputs which will pass the line state for our
1607 * mpcexp_irq inputs to the correct splitter devices.
1609 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1610 IOTS_NUM_EXP_MPC);
1612 armsse_forward_sec_resp_cfg(s);
1614 /* Forward the MSC related signals */
1615 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1616 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1617 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1618 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1619 armsse_get_common_irq_in(s, 11));
1622 * Expose our container region to the board model; this corresponds
1623 * to the AHB Slave Expansion ports which allow bus master devices
1624 * (eg DMA controllers) in the board model to make transactions into
1625 * devices in the ARMSSE.
1627 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1629 /* Set initial system_clock_scale from MAINCLK */
1630 armsse_mainclk_update(s, ClockUpdate);
1633 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1634 int *iregion, bool *exempt, bool *ns, bool *nsc)
1637 * For ARMSSE systems the IDAU responses are simple logical functions
1638 * of the address bits. The NSC attribute is guest-adjustable via the
1639 * NSCCFG register in the security controller.
1641 ARMSSE *s = ARM_SSE(ii);
1642 int region = extract32(address, 28, 4);
1644 *ns = !(region & 1);
1645 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1646 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1647 *exempt = (address & 0xeff00000) == 0xe0000000;
1648 *iregion = region;
1651 static const VMStateDescription armsse_vmstate = {
1652 .name = "iotkit",
1653 .version_id = 2,
1654 .minimum_version_id = 2,
1655 .fields = (VMStateField[]) {
1656 VMSTATE_CLOCK(mainclk, ARMSSE),
1657 VMSTATE_CLOCK(s32kclk, ARMSSE),
1658 VMSTATE_UINT32(nsccfg, ARMSSE),
1659 VMSTATE_END_OF_LIST()
1663 static void armsse_reset(DeviceState *dev)
1665 ARMSSE *s = ARM_SSE(dev);
1667 s->nsccfg = 0;
1670 static void armsse_class_init(ObjectClass *klass, void *data)
1672 DeviceClass *dc = DEVICE_CLASS(klass);
1673 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1674 ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1675 const ARMSSEInfo *info = data;
1677 dc->realize = armsse_realize;
1678 dc->vmsd = &armsse_vmstate;
1679 device_class_set_props(dc, info->props);
1680 dc->reset = armsse_reset;
1681 iic->check = armsse_idau_check;
1682 asc->info = info;
1685 static const TypeInfo armsse_info = {
1686 .name = TYPE_ARM_SSE,
1687 .parent = TYPE_SYS_BUS_DEVICE,
1688 .instance_size = sizeof(ARMSSE),
1689 .class_size = sizeof(ARMSSEClass),
1690 .instance_init = armsse_init,
1691 .abstract = true,
1692 .interfaces = (InterfaceInfo[]) {
1693 { TYPE_IDAU_INTERFACE },
1698 static void armsse_register_types(void)
1700 int i;
1702 type_register_static(&armsse_info);
1704 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1705 TypeInfo ti = {
1706 .name = armsse_variants[i].name,
1707 .parent = TYPE_ARM_SSE,
1708 .class_init = armsse_class_init,
1709 .class_data = (void *)&armsse_variants[i],
1711 type_register(&ti);
1715 type_init(armsse_register_types);