2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/host-utils.h"
32 #include "exec/exec-all.h"
33 #include "exec/cpu_ldst.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/timer.h"
37 void xtensa_cpu_do_unaligned_access(CPUState
*cs
,
38 vaddr addr
, int is_write
, int is_user
, uintptr_t retaddr
)
40 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
41 CPUXtensaState
*env
= &cpu
->env
;
43 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
44 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
45 cpu_restore_state(CPU(cpu
), retaddr
);
46 HELPER(exception_cause_vaddr
)(env
,
47 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
51 void tlb_fill(CPUState
*cs
,
52 target_ulong vaddr
, int is_write
, int mmu_idx
, uintptr_t retaddr
)
54 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
55 CPUXtensaState
*env
= &cpu
->env
;
59 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, is_write
, mmu_idx
,
60 &paddr
, &page_size
, &access
);
62 qemu_log_mask(CPU_LOG_MMU
, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
63 __func__
, vaddr
, is_write
, mmu_idx
, paddr
, ret
);
67 vaddr
& TARGET_PAGE_MASK
,
68 paddr
& TARGET_PAGE_MASK
,
69 access
, mmu_idx
, page_size
);
71 cpu_restore_state(cs
, retaddr
);
72 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
76 void xtensa_cpu_do_unassigned_access(CPUState
*cs
, hwaddr addr
,
77 bool is_write
, bool is_exec
, int opaque
,
80 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
81 CPUXtensaState
*env
= &cpu
->env
;
83 HELPER(exception_cause_vaddr
)(env
, env
->pc
,
85 INSTR_PIF_ADDR_ERROR_CAUSE
:
86 LOAD_STORE_PIF_ADDR_ERROR_CAUSE
,
87 is_exec
? addr
: cs
->mem_io_vaddr
);
90 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
95 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
96 &paddr
, &page_size
, &access
);
98 tb_invalidate_phys_addr(&address_space_memory
, paddr
);
102 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
104 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
106 cs
->exception_index
= excp
;
107 if (excp
== EXCP_DEBUG
) {
108 env
->exception_taken
= 0;
113 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
118 if (env
->sregs
[PS
] & PS_EXCM
) {
119 if (env
->config
->ndepc
) {
120 env
->sregs
[DEPC
] = pc
;
122 env
->sregs
[EPC1
] = pc
;
126 env
->sregs
[EPC1
] = pc
;
127 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
130 env
->sregs
[EXCCAUSE
] = cause
;
131 env
->sregs
[PS
] |= PS_EXCM
;
133 HELPER(exception
)(env
, vector
);
136 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
137 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
139 env
->sregs
[EXCVADDR
] = vaddr
;
140 HELPER(exception_cause
)(env
, pc
, cause
);
143 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
145 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
146 HELPER(debug_exception
)(env
, env
->pc
, cause
);
150 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
152 unsigned level
= env
->config
->debug_level
;
155 env
->sregs
[DEBUGCAUSE
] = cause
;
156 env
->sregs
[EPC1
+ level
- 1] = pc
;
157 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
158 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
159 (level
<< PS_INTLEVEL_SHIFT
);
160 HELPER(exception
)(env
, EXC_DEBUG
);
163 uint32_t HELPER(nsa
)(uint32_t v
)
165 if (v
& 0x80000000) {
168 return v
? clz32(v
) - 1 : 31;
171 uint32_t HELPER(nsau
)(uint32_t v
)
173 return v
? clz32(v
) : 32;
176 static void copy_window_from_phys(CPUXtensaState
*env
,
177 uint32_t window
, uint32_t phys
, uint32_t n
)
179 assert(phys
< env
->config
->nareg
);
180 if (phys
+ n
<= env
->config
->nareg
) {
181 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
182 n
* sizeof(uint32_t));
184 uint32_t n1
= env
->config
->nareg
- phys
;
185 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
186 n1
* sizeof(uint32_t));
187 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
188 (n
- n1
) * sizeof(uint32_t));
192 static void copy_phys_from_window(CPUXtensaState
*env
,
193 uint32_t phys
, uint32_t window
, uint32_t n
)
195 assert(phys
< env
->config
->nareg
);
196 if (phys
+ n
<= env
->config
->nareg
) {
197 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
198 n
* sizeof(uint32_t));
200 uint32_t n1
= env
->config
->nareg
- phys
;
201 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
202 n1
* sizeof(uint32_t));
203 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
204 (n
- n1
) * sizeof(uint32_t));
209 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
211 return a
& (env
->config
->nareg
/ 4 - 1);
214 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
216 return 1 << windowbase_bound(a
, env
);
219 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
221 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
224 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
226 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
229 static void rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
231 xtensa_sync_phys_from_window(env
);
232 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
233 xtensa_sync_window_from_phys(env
);
236 static void rotate_window(CPUXtensaState
*env
, uint32_t delta
)
238 rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
241 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
243 rotate_window_abs(env
, v
);
246 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
248 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
249 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
250 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal entry instruction(pc = %08x), PS = %08x\n",
252 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
254 uint32_t windowstart
= xtensa_replicate_windowstart(env
) >>
255 (env
->sregs
[WINDOW_BASE
] + 1);
257 if (windowstart
& ((1 << callinc
) - 1)) {
258 HELPER(window_check
)(env
, pc
, callinc
);
260 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
261 rotate_window(env
, callinc
);
262 env
->sregs
[WINDOW_START
] |=
263 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
267 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
269 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
270 uint32_t windowstart
= xtensa_replicate_windowstart(env
) >>
271 (env
->sregs
[WINDOW_BASE
] + 1);
272 uint32_t n
= ctz32(windowstart
) + 1;
276 rotate_window(env
, n
);
277 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
278 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
279 env
->sregs
[EPC1
] = env
->pc
= pc
;
281 switch (ctz32(windowstart
>> n
)) {
283 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
286 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
289 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
294 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
296 int n
= (env
->regs
[0] >> 30) & 0x3;
298 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
299 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
302 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
304 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
306 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
310 if (n
== 0 || (m
!= 0 && m
!= n
) ||
311 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
312 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal retw instruction(pc = %08x), "
313 "PS = %08x, m = %d, n = %d\n",
314 pc
, env
->sregs
[PS
], m
, n
);
315 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
317 int owb
= windowbase
;
319 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
321 rotate_window(env
, -n
);
322 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
323 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
325 /* window underflow */
326 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
327 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
328 env
->sregs
[EPC1
] = env
->pc
= pc
;
331 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
333 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
335 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
342 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
344 rotate_window(env
, imm4
);
347 void HELPER(restore_owb
)(CPUXtensaState
*env
)
349 rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
352 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
354 if ((env
->sregs
[WINDOW_START
] &
355 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
356 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
357 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
358 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
362 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
364 if (env
->sregs
[LBEG
] != v
) {
365 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
366 env
->sregs
[LBEG
] = v
;
370 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
372 if (env
->sregs
[LEND
] != v
) {
373 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
374 env
->sregs
[LEND
] = v
;
375 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
379 void HELPER(dump_state
)(CPUXtensaState
*env
)
381 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
383 cpu_dump_state(CPU(cpu
), stderr
, fprintf
, 0);
386 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
391 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
392 (intlevel
<< PS_INTLEVEL_SHIFT
);
393 check_interrupts(env
);
394 if (env
->pending_irq_level
) {
395 cpu_loop_exit(CPU(xtensa_env_get_cpu(env
)));
399 cpu
= CPU(xtensa_env_get_cpu(env
));
400 env
->halt_clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
402 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
403 xtensa_rearm_ccompare_timer(env
);
405 HELPER(exception
)(env
, EXCP_HLT
);
408 void HELPER(timer_irq
)(CPUXtensaState
*env
, uint32_t id
, uint32_t active
)
410 xtensa_timer_irq(env
, id
, active
);
413 void HELPER(advance_ccount
)(CPUXtensaState
*env
, uint32_t d
)
415 xtensa_advance_ccount(env
, d
);
418 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
420 check_interrupts(env
);
423 void HELPER(itlb_hit_test
)(CPUXtensaState
*env
, uint32_t vaddr
)
425 get_page_addr_code(env
, vaddr
);
429 * Check vaddr accessibility/cache attributes and raise an exception if
430 * specified by the ATOMCTL SR.
432 * Note: local memory exclusion is not implemented
434 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
436 uint32_t paddr
, page_size
, access
;
437 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
438 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
439 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
442 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
443 * see opcode description in the ISA
446 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
447 rc
= STORE_PROHIBITED_CAUSE
;
451 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
455 * When data cache is not configured use ATOMCTL bypass field.
456 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
457 * under the Conditional Store Option.
459 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
460 access
= PAGE_CACHE_BYPASS
;
463 switch (access
& PAGE_CACHE_MASK
) {
470 case PAGE_CACHE_BYPASS
:
471 if ((atomctl
& 0x3) == 0) {
472 HELPER(exception_cause_vaddr
)(env
, pc
,
473 LOAD_STORE_ERROR_CAUSE
, vaddr
);
477 case PAGE_CACHE_ISOLATE
:
478 HELPER(exception_cause_vaddr
)(env
, pc
,
479 LOAD_STORE_ERROR_CAUSE
, vaddr
);
487 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
489 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
491 v
= (v
& 0xffffff00) | 0x1;
492 if (v
!= env
->sregs
[RASID
]) {
493 env
->sregs
[RASID
] = v
;
494 tlb_flush(CPU(cpu
), 1);
498 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
500 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
504 return (tlbcfg
>> 16) & 0x3;
507 return (tlbcfg
>> 20) & 0x1;
510 return (tlbcfg
>> 24) & 0x1;
518 * Get bit mask for the virtual address bits translated by the TLB way
520 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
522 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
523 bool varway56
= dtlb
?
524 env
->config
->dtlb
.varway56
:
525 env
->config
->itlb
.varway56
;
529 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
533 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
540 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
549 return REGION_PAGE_MASK
;
554 * Get bit mask for the 'VPN without index' field.
555 * See ISA, 4.6.5.6, data format for RxTLB0
557 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
561 env
->config
->dtlb
.nrefillentries
:
562 env
->config
->itlb
.nrefillentries
) == 32;
563 return is32
? 0xffff8000 : 0xffffc000;
564 } else if (way
== 4) {
565 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
566 } else if (way
<= 6) {
567 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
568 bool varway56
= dtlb
?
569 env
->config
->dtlb
.varway56
:
570 env
->config
->itlb
.varway56
;
573 return mask
<< (way
== 5 ? 2 : 3);
583 * Split virtual address into VPN (with index) and entry index
584 * for the given TLB way
586 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
587 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
589 bool varway56
= dtlb
?
590 env
->config
->dtlb
.varway56
:
591 env
->config
->itlb
.varway56
;
599 env
->config
->dtlb
.nrefillentries
:
600 env
->config
->itlb
.nrefillentries
) == 32;
601 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
606 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
607 *ei
= (v
>> eibase
) & 0x3;
613 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
614 *ei
= (v
>> eibase
) & 0x3;
616 *ei
= (v
>> 27) & 0x1;
622 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
623 *ei
= (v
>> eibase
) & 0x7;
625 *ei
= (v
>> 28) & 0x1;
634 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
638 * Split TLB address into TLB way, entry index and VPN (with index).
639 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
641 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
642 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
644 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
645 *wi
= v
& (dtlb
? 0xf : 0x7);
646 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
648 *vpn
= v
& REGION_PAGE_MASK
;
650 *ei
= (v
>> 29) & 0x7;
654 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
655 uint32_t v
, bool dtlb
, uint32_t *pwi
)
661 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
665 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
668 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
670 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
672 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
673 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
675 return v
& REGION_PAGE_MASK
;
679 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
681 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
682 return entry
->paddr
| entry
->attr
;
685 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
687 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
689 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
690 if (entry
->variable
&& entry
->asid
) {
691 tlb_flush_page(CPU(xtensa_env_get_cpu(env
)), entry
->vaddr
);
697 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
699 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
703 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
707 if (ring
>= xtensa_get_ring(env
)) {
708 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
712 case INST_TLB_MULTI_HIT_CAUSE
:
713 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
714 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
719 return (v
& REGION_PAGE_MASK
) | 0x1;
723 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
724 xtensa_tlb_entry
*entry
, bool dtlb
,
725 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
728 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
729 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
730 entry
->attr
= pte
& 0xf;
733 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
734 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
736 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
737 CPUState
*cs
= CPU(cpu
);
738 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
740 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
741 if (entry
->variable
) {
743 tlb_flush_page(cs
, entry
->vaddr
);
745 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
746 tlb_flush_page(cs
, entry
->vaddr
);
748 qemu_log_mask(LOG_GUEST_ERROR
, "%s %d, %d, %d trying to set immutable entry\n",
749 __func__
, dtlb
, wi
, ei
);
752 tlb_flush_page(cs
, entry
->vaddr
);
753 if (xtensa_option_enabled(env
->config
,
754 XTENSA_OPTION_REGION_TRANSLATION
)) {
755 entry
->paddr
= pte
& REGION_PAGE_MASK
;
757 entry
->attr
= pte
& 0xf;
761 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
766 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
767 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
771 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
773 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
776 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
777 if (change
& (1 << i
)) {
778 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
781 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
784 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
786 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
787 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
788 tb_invalidate_virtual_addr(env
, v
);
790 env
->sregs
[IBREAKA
+ i
] = v
;
793 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
796 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
797 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
798 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
800 if (env
->cpu_watchpoint
[i
]) {
801 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
803 if (dbreakc
& DBREAKC_SB
) {
804 flags
|= BP_MEM_WRITE
;
806 if (dbreakc
& DBREAKC_LB
) {
807 flags
|= BP_MEM_READ
;
809 /* contiguous mask after inversion is one less than some power of 2 */
810 if ((~mask
+ 1) & ~mask
) {
811 qemu_log_mask(LOG_GUEST_ERROR
, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
812 /* cut mask after the first zero bit */
813 mask
= 0xffffffff << (32 - clo32(mask
));
815 if (cpu_watchpoint_insert(cs
, dbreaka
& mask
, ~mask
+ 1,
816 flags
, &env
->cpu_watchpoint
[i
])) {
817 env
->cpu_watchpoint
[i
] = NULL
;
818 qemu_log_mask(LOG_GUEST_ERROR
, "Failed to set data breakpoint at 0x%08x/%d\n",
819 dbreaka
& mask
, ~mask
+ 1);
823 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
825 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
827 if ((dbreakc
& DBREAKC_SB_LB
) &&
828 env
->sregs
[DBREAKA
+ i
] != v
) {
829 set_dbreak(env
, i
, v
, dbreakc
);
831 env
->sregs
[DBREAKA
+ i
] = v
;
834 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
836 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
837 if (v
& DBREAKC_SB_LB
) {
838 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
840 if (env
->cpu_watchpoint
[i
]) {
841 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
843 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
844 env
->cpu_watchpoint
[i
] = NULL
;
848 env
->sregs
[DBREAKC
+ i
] = v
;
851 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
853 static const int rounding_mode
[] = {
854 float_round_nearest_even
,
860 env
->uregs
[FCR
] = v
& 0xfffff07f;
861 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
864 float32
HELPER(abs_s
)(float32 v
)
866 return float32_abs(v
);
869 float32
HELPER(neg_s
)(float32 v
)
871 return float32_chs(v
);
874 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
876 return float32_add(a
, b
, &env
->fp_status
);
879 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
881 return float32_sub(a
, b
, &env
->fp_status
);
884 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
886 return float32_mul(a
, b
, &env
->fp_status
);
889 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
891 return float32_muladd(b
, c
, a
, 0,
895 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
897 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
901 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
903 float_status fp_status
= {0};
905 set_float_rounding_mode(rounding_mode
, &fp_status
);
906 return float32_to_int32(
907 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
910 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
912 float_status fp_status
= {0};
915 set_float_rounding_mode(rounding_mode
, &fp_status
);
917 res
= float32_scalbn(v
, scale
, &fp_status
);
919 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
920 return float32_to_int32(res
, &fp_status
);
922 return float32_to_uint32(res
, &fp_status
);
926 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
928 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
929 (int32_t)scale
, &env
->fp_status
);
932 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
934 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
935 (int32_t)scale
, &env
->fp_status
);
938 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
941 env
->sregs
[BR
] |= br
;
943 env
->sregs
[BR
] &= ~br
;
947 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
949 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
952 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
954 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
957 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
959 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
960 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
963 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
965 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
968 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
970 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
971 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
974 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
976 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
979 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
981 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
982 set_br(env
, v
!= float_relation_greater
, br
);