target/arm: Convert BFMLALB, BFMLALT to decodetree
[qemu/ar7.git] / target / arm / tcg / translate-a64.c
blob95be862dde4a86a0d1dcb1180a1597a10fc091f3
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
35 static const char *regnames[] = {
36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
42 enum a64_shift_type {
43 A64_SHIFT_TYPE_LSL = 0,
44 A64_SHIFT_TYPE_LSR = 1,
45 A64_SHIFT_TYPE_ASR = 2,
46 A64_SHIFT_TYPE_ROR = 3
50 * Helpers for extracting complex instruction fields
54 * For load/store with an unsigned 12 bit immediate scaled by the element
55 * size. The input has the immediate field in bits [14:3] and the element
56 * size in [2:0].
58 static int uimm_scaled(DisasContext *s, int x)
60 unsigned imm = x >> 3;
61 unsigned scale = extract32(x, 0, 3);
62 return imm << scale;
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
68 return x << LOG2_TAG_GRANULE;
72 * Include the generated decoders.
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
78 /* Table based decoder typedefs - used when the relevant bits for decode
79 * are too awkwardly scattered across the instruction (eg SIMD).
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
83 typedef struct AArch64DecodeTable {
84 uint32_t pattern;
85 uint32_t mask;
86 AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
89 /* initialize TCG globals. */
90 void a64_translate_init(void)
92 int i;
94 cpu_pc = tcg_global_mem_new_i64(tcg_env,
95 offsetof(CPUARMState, pc),
96 "pc");
97 for (i = 0; i < 32; i++) {
98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99 offsetof(CPUARMState, xregs[i]),
100 regnames[i]);
103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104 offsetof(CPUARMState, exclusive_high), "exclusive_high");
108 * Return the core mmu_idx to use for A64 load/store insns which
109 * have a "unprivileged load/store" variant. Those insns access
110 * EL0 if executed from an EL which has control over EL0 (usually
111 * EL1) but behave like normal loads and stores if executed from
112 * elsewhere (eg EL3).
114 * @unpriv : true for the unprivileged encoding; false for the
115 * normal encoding (in which case we will return the same
116 * thing as get_mem_index().
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122 * which is the usual mmu_idx for this cpu state.
124 ARMMMUIdx useridx = s->mmu_idx;
126 if (unpriv && s->unpriv) {
128 * We have pre-computed the condition for AccType_UNPRIV.
129 * Therefore we should never get here with a mmu_idx for
130 * which we do not know the corresponding user mmu_idx.
132 switch (useridx) {
133 case ARMMMUIdx_E10_1:
134 case ARMMMUIdx_E10_1_PAN:
135 useridx = ARMMMUIdx_E10_0;
136 break;
137 case ARMMMUIdx_E20_2:
138 case ARMMMUIdx_E20_2_PAN:
139 useridx = ARMMMUIdx_E20_0;
140 break;
141 default:
142 g_assert_not_reached();
145 return arm_to_core_mmu_idx(useridx);
148 static void set_btype_raw(int val)
150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151 offsetof(CPUARMState, btype));
154 static void set_btype(DisasContext *s, int val)
156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
157 tcg_debug_assert(val >= 1 && val <= 3);
158 set_btype_raw(val);
159 s->btype = -1;
162 static void reset_btype(DisasContext *s)
164 if (s->btype != 0) {
165 set_btype_raw(0);
166 s->btype = 0;
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
172 assert(s->pc_save != -1);
173 if (tb_cflags(s->base.tb) & CF_PCREL) {
174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175 } else {
176 tcg_gen_movi_i64(dest, s->pc_curr + diff);
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
182 gen_pc_plus_diff(s, cpu_pc, diff);
183 s->pc_save = s->pc_curr + diff;
187 * Handle Top Byte Ignore (TBI) bits.
189 * If address tagging is enabled via the TCR TBI bits:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addresses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
197 * Here We have concatenated TBI{1,0} into tbi.
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200 TCGv_i64 src, int tbi)
202 if (tbi == 0) {
203 /* Load unmodified address */
204 tcg_gen_mov_i64(dst, src);
205 } else if (!regime_has_2_ranges(s->mmu_idx)) {
206 /* Force tag byte to all zero */
207 tcg_gen_extract_i64(dst, src, 0, 56);
208 } else {
209 /* Sign-extend from bit 55. */
210 tcg_gen_sextract_i64(dst, src, 0, 56);
212 switch (tbi) {
213 case 1:
214 /* tbi0 but !tbi1: only use the extension if positive */
215 tcg_gen_and_i64(dst, dst, src);
216 break;
217 case 2:
218 /* !tbi0 but tbi1: only use the extension if negative */
219 tcg_gen_or_i64(dst, dst, src);
220 break;
221 case 3:
222 /* tbi0 and tbi1: always use the extension */
223 break;
224 default:
225 g_assert_not_reached();
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
233 * If address tagging is enabled for instructions via the TCR TBI bits,
234 * then loading an address into the PC will clear out any tag.
236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237 s->pc_save = -1;
241 * Handle MTE and/or TBI.
243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
244 * for the tag to be present in the FAR_ELx register. But for user-only
245 * mode we do not have a TLB with which to implement this, so we must
246 * remove the top byte now.
248 * Always return a fresh temporary that we can increment independently
249 * of the write-back address.
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
254 TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256 gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258 tcg_gen_mov_i64(clean, addr);
259 #endif
260 return clean;
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270 MMUAccessType acc, int log2_size)
272 gen_helper_probe_access(tcg_env, ptr,
273 tcg_constant_i32(acc),
274 tcg_constant_i32(get_mem_index(s)),
275 tcg_constant_i32(1 << log2_size));
279 * For MTE, check a single logical or atomic access. This probes a single
280 * address, the exact one specified. The size and alignment of the access
281 * is not relevant to MTE, per se, but watchpoints do require the size,
282 * and we want to recognize those before making any other changes to state.
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285 bool is_write, bool tag_checked,
286 MemOp memop, bool is_unpriv,
287 int core_idx)
289 if (tag_checked && s->mte_active[is_unpriv]) {
290 TCGv_i64 ret;
291 int desc = 0;
293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
300 ret = tcg_temp_new_i64();
301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
303 return ret;
305 return clean_data_tbi(s, addr);
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309 bool tag_checked, MemOp memop)
311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312 false, get_mem_index(s));
316 * For MTE, check multiple logical sequential accesses.
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319 bool tag_checked, int total_size, MemOp single_mop)
321 if (tag_checked && s->mte_active[0]) {
322 TCGv_i64 ret;
323 int desc = 0;
325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
332 ret = tcg_temp_new_i64();
333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
335 return ret;
337 return clean_data_tbi(s, addr);
341 * Generate the special alignment check that applies to AccType_ATOMIC
342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343 * naturally aligned, but it must not cross a 16-byte boundary.
344 * See AArch64.CheckAlignment().
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347 bool is_write, MemOp mop)
349 TCGv_i32 tmp;
350 TCGv_i64 addr;
351 TCGLabel *over_label;
352 MMUAccessType type;
353 int mmu_idx;
355 tmp = tcg_temp_new_i32();
356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357 tcg_gen_addi_i32(tmp, tmp, imm & 15);
358 tcg_gen_andi_i32(tmp, tmp, 15);
359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
361 over_label = gen_new_label();
362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
364 addr = tcg_temp_new_i64();
365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368 mmu_idx = get_mem_index(s);
369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370 tcg_constant_i32(mmu_idx));
372 gen_set_label(over_label);
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
379 MemOp size = mop & MO_SIZE;
381 if (size == MO_8) {
382 return mop;
386 * If size == MO_128, this is a LDXP, and the operation is single-copy
387 * atomic for each doubleword, not the entire quadword; it still must
388 * be quadword aligned.
390 if (size == MO_128) {
391 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392 MO_ATOM_IFALIGN_PAIR);
394 if (dc_isar_feature(aa64_lse2, s)) {
395 check_lse2_align(s, rn, 0, true, mop);
396 } else {
397 mop |= MO_ALIGN;
399 return finalize_memop(s, mop);
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404 bool is_write, MemOp mop)
406 MemOp size = mop & MO_SIZE;
408 if (size == MO_8) {
409 return mop;
411 if (size == MO_128) {
412 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413 MO_ATOM_IFALIGN_PAIR);
415 if (!dc_isar_feature(aa64_lse2, s)) {
416 mop |= MO_ALIGN;
417 } else if (!s->naa) {
418 check_lse2_align(s, rn, imm, is_write, mop);
420 return finalize_memop(s, mop);
423 typedef struct DisasCompare64 {
424 TCGCond cond;
425 TCGv_i64 value;
426 } DisasCompare64;
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
430 DisasCompare c32;
432 arm_test_cc(&c32, cc);
435 * Sign-extend the 32-bit value so that the GE/LT comparisons work
436 * properly. The NE/EQ comparisons are also fine with this choice.
438 c64->cond = c32.cond;
439 c64->value = tcg_temp_new_i64();
440 tcg_gen_ext_i32_i64(c64->value, c32.value);
443 static void gen_rebuild_hflags(DisasContext *s)
445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
448 static void gen_exception_internal(int excp)
450 assert(excp_is_internal(excp));
451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
456 gen_a64_update_pc(s, 0);
457 gen_exception_internal(excp);
458 s->base.is_jmp = DISAS_NORETURN;
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
463 gen_a64_update_pc(s, 0);
464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465 s->base.is_jmp = DISAS_NORETURN;
468 static void gen_step_complete_exception(DisasContext *s)
470 /* We just completed step of an insn. Move from Active-not-pending
471 * to Active-pending, and then also take the swstep exception.
472 * This corresponds to making the (IMPDEF) choice to prioritize
473 * swstep exceptions over asynchronous exceptions taken to an exception
474 * level where debug is disabled. This choice has the advantage that
475 * we do not need to maintain internal state corresponding to the
476 * ISV/EX syndrome bits between completion of the step and generation
477 * of the exception, and our syndrome information is always correct.
479 gen_ss_advance(s);
480 gen_swstep_exception(s, 1, s->is_ldex);
481 s->base.is_jmp = DISAS_NORETURN;
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
486 if (s->ss_active) {
487 return false;
489 return translator_use_goto_tb(&s->base, dest);
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
494 if (use_goto_tb(s, s->pc_curr + diff)) {
496 * For pcrel, the pc must always be up-to-date on entry to
497 * the linked TB, so that it can use simple additions for all
498 * further adjustments. For !pcrel, the linked TB is compiled
499 * to know its full virtual address, so we can delay the
500 * update to pc to the unlinked path. A long chain of links
501 * can thus avoid many updates to the PC.
503 if (tb_cflags(s->base.tb) & CF_PCREL) {
504 gen_a64_update_pc(s, diff);
505 tcg_gen_goto_tb(n);
506 } else {
507 tcg_gen_goto_tb(n);
508 gen_a64_update_pc(s, diff);
510 tcg_gen_exit_tb(s->base.tb, n);
511 s->base.is_jmp = DISAS_NORETURN;
512 } else {
513 gen_a64_update_pc(s, diff);
514 if (s->ss_active) {
515 gen_step_complete_exception(s);
516 } else {
517 tcg_gen_lookup_and_goto_ptr();
518 s->base.is_jmp = DISAS_NORETURN;
524 * Register access functions
526 * These functions are used for directly accessing a register in where
527 * changes to the final register value are likely to be made. If you
528 * need to use a register for temporary calculation (e.g. index type
529 * operations) use the read_* form.
531 * B1.2.1 Register mappings
533 * In instruction register encoding 31 can refer to ZR (zero register) or
534 * the SP (stack pointer) depending on context. In QEMU's case we map SP
535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536 * This is the point of the _sp forms.
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
540 if (reg == 31) {
541 TCGv_i64 t = tcg_temp_new_i64();
542 tcg_gen_movi_i64(t, 0);
543 return t;
544 } else {
545 return cpu_X[reg];
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
552 return cpu_X[reg];
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556 * representing the register contents. This TCGv is an auto-freed
557 * temporary so it need not be explicitly freed, and may be modified.
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
561 TCGv_i64 v = tcg_temp_new_i64();
562 if (reg != 31) {
563 if (sf) {
564 tcg_gen_mov_i64(v, cpu_X[reg]);
565 } else {
566 tcg_gen_ext32u_i64(v, cpu_X[reg]);
568 } else {
569 tcg_gen_movi_i64(v, 0);
571 return v;
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
576 TCGv_i64 v = tcg_temp_new_i64();
577 if (sf) {
578 tcg_gen_mov_i64(v, cpu_X[reg]);
579 } else {
580 tcg_gen_ext32u_i64(v, cpu_X[reg]);
582 return v;
585 /* Return the offset into CPUARMState of a slice (from
586 * the least significant end) of FP register Qn (ie
587 * Dn, Sn, Hn or Bn).
588 * (Note that this is not the same mapping as for A32; see cpu.h)
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
592 return vec_reg_offset(s, regno, 0, size);
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
598 return vec_reg_offset(s, regno, 1, MO_64);
601 /* Convenience accessors for reading and writing single and double
602 * FP registers. Writing clears the upper parts of the associated
603 * 128 bit vector register, as required by the architecture.
604 * Note that unlike the GP register accessors, the values returned
605 * by the read functions must be manually freed.
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
609 TCGv_i64 v = tcg_temp_new_i64();
611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612 return v;
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
617 TCGv_i32 v = tcg_temp_new_i32();
619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620 return v;
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
625 TCGv_i32 v = tcg_temp_new_i32();
627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628 return v;
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632 * If SVE is not enabled, then there are only 128 bits in the vector.
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
636 unsigned ofs = fp_reg_offset(s, rd, MO_64);
637 unsigned vsz = vec_full_reg_size(s);
639 /* Nop move, with side effect of clearing the tail. */
640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
645 unsigned ofs = fp_reg_offset(s, reg, MO_64);
647 tcg_gen_st_i64(v, tcg_env, ofs);
648 clear_vec_high(s, false, reg);
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
653 TCGv_i64 tmp = tcg_temp_new_i64();
655 tcg_gen_extu_i32_i64(tmp, v);
656 write_fp_dreg(s, reg, tmp);
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661 GVecGen2Fn *gvec_fn, int vece)
663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664 is_q ? 16 : 8, vec_full_reg_size(s));
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668 * an expander function.
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674 imm, is_q ? 16 : 8, vec_full_reg_size(s));
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679 GVecGen3Fn *gvec_fn, int vece)
681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687 int rx, GVecGen4Fn *gvec_fn, int vece)
689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691 is_q ? 16 : 8, vec_full_reg_size(s));
694 /* Expand a 2-operand operation using an out-of-line helper. */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696 int rn, int data, gen_helper_gvec_2 *fn)
698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699 vec_full_reg_offset(s, rn),
700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
703 /* Expand a 3-operand operation using an out-of-line helper. */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705 int rn, int rm, int data, gen_helper_gvec_3 *fn)
707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708 vec_full_reg_offset(s, rn),
709 vec_full_reg_offset(s, rm),
710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714 * an out-of-line helper.
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717 int rm, bool is_fp16, int data,
718 gen_helper_gvec_3_ptr *fn)
720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722 vec_full_reg_offset(s, rn),
723 vec_full_reg_offset(s, rm), fpst,
724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
727 /* Expand a 4-operand operation using an out-of-line helper. */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729 int rm, int ra, int data, gen_helper_gvec_4 *fn)
731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732 vec_full_reg_offset(s, rn),
733 vec_full_reg_offset(s, rm),
734 vec_full_reg_offset(s, ra),
735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
739 * Expand a 4-operand + fpstatus pointer + simd data value operation using
740 * an out-of-line helper.
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743 int rm, int ra, bool is_fp16, int data,
744 gen_helper_gvec_4_ptr *fn)
746 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748 vec_full_reg_offset(s, rn),
749 vec_full_reg_offset(s, rm),
750 vec_full_reg_offset(s, ra), fpst,
751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755 * than the 32 bit equivalent.
757 static inline void gen_set_NZ64(TCGv_i64 result)
759 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
766 if (sf) {
767 gen_set_NZ64(result);
768 } else {
769 tcg_gen_extrl_i64_i32(cpu_ZF, result);
770 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
772 tcg_gen_movi_i32(cpu_CF, 0);
773 tcg_gen_movi_i32(cpu_VF, 0);
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
779 TCGv_i64 result, flag, tmp;
780 result = tcg_temp_new_i64();
781 flag = tcg_temp_new_i64();
782 tmp = tcg_temp_new_i64();
784 tcg_gen_movi_i64(tmp, 0);
785 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
787 tcg_gen_extrl_i64_i32(cpu_CF, flag);
789 gen_set_NZ64(result);
791 tcg_gen_xor_i64(flag, result, t0);
792 tcg_gen_xor_i64(tmp, t0, t1);
793 tcg_gen_andc_i64(flag, flag, tmp);
794 tcg_gen_extrh_i64_i32(cpu_VF, flag);
796 tcg_gen_mov_i64(dest, result);
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
801 TCGv_i32 t0_32 = tcg_temp_new_i32();
802 TCGv_i32 t1_32 = tcg_temp_new_i32();
803 TCGv_i32 tmp = tcg_temp_new_i32();
805 tcg_gen_movi_i32(tmp, 0);
806 tcg_gen_extrl_i64_i32(t0_32, t0);
807 tcg_gen_extrl_i64_i32(t1_32, t1);
808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811 tcg_gen_xor_i32(tmp, t0_32, t1_32);
812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813 tcg_gen_extu_i32_i64(dest, cpu_NF);
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
818 if (sf) {
819 gen_add64_CC(dest, t0, t1);
820 } else {
821 gen_add32_CC(dest, t0, t1);
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
828 /* 64 bit arithmetic */
829 TCGv_i64 result, flag, tmp;
831 result = tcg_temp_new_i64();
832 flag = tcg_temp_new_i64();
833 tcg_gen_sub_i64(result, t0, t1);
835 gen_set_NZ64(result);
837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838 tcg_gen_extrl_i64_i32(cpu_CF, flag);
840 tcg_gen_xor_i64(flag, result, t0);
841 tmp = tcg_temp_new_i64();
842 tcg_gen_xor_i64(tmp, t0, t1);
843 tcg_gen_and_i64(flag, flag, tmp);
844 tcg_gen_extrh_i64_i32(cpu_VF, flag);
845 tcg_gen_mov_i64(dest, result);
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
850 /* 32 bit arithmetic */
851 TCGv_i32 t0_32 = tcg_temp_new_i32();
852 TCGv_i32 t1_32 = tcg_temp_new_i32();
853 TCGv_i32 tmp;
855 tcg_gen_extrl_i64_i32(t0_32, t0);
856 tcg_gen_extrl_i64_i32(t1_32, t1);
857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861 tmp = tcg_temp_new_i32();
862 tcg_gen_xor_i32(tmp, t0_32, t1_32);
863 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864 tcg_gen_extu_i32_i64(dest, cpu_NF);
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
869 if (sf) {
870 gen_sub64_CC(dest, t0, t1);
871 } else {
872 gen_sub32_CC(dest, t0, t1);
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
879 TCGv_i64 flag = tcg_temp_new_i64();
880 tcg_gen_extu_i32_i64(flag, cpu_CF);
881 tcg_gen_add_i64(dest, t0, t1);
882 tcg_gen_add_i64(dest, dest, flag);
884 if (!sf) {
885 tcg_gen_ext32u_i64(dest, dest);
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 if (sf) {
893 TCGv_i64 result = tcg_temp_new_i64();
894 TCGv_i64 cf_64 = tcg_temp_new_i64();
895 TCGv_i64 vf_64 = tcg_temp_new_i64();
896 TCGv_i64 tmp = tcg_temp_new_i64();
897 TCGv_i64 zero = tcg_constant_i64(0);
899 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903 gen_set_NZ64(result);
905 tcg_gen_xor_i64(vf_64, result, t0);
906 tcg_gen_xor_i64(tmp, t0, t1);
907 tcg_gen_andc_i64(vf_64, vf_64, tmp);
908 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
910 tcg_gen_mov_i64(dest, result);
911 } else {
912 TCGv_i32 t0_32 = tcg_temp_new_i32();
913 TCGv_i32 t1_32 = tcg_temp_new_i32();
914 TCGv_i32 tmp = tcg_temp_new_i32();
915 TCGv_i32 zero = tcg_constant_i32(0);
917 tcg_gen_extrl_i64_i32(t0_32, t0);
918 tcg_gen_extrl_i64_i32(t1_32, t1);
919 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
922 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924 tcg_gen_xor_i32(tmp, t0_32, t1_32);
925 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926 tcg_gen_extu_i32_i64(dest, cpu_NF);
931 * Load/Store generators
935 * Store from GPR register to memory.
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938 TCGv_i64 tcg_addr, MemOp memop, int memidx,
939 bool iss_valid,
940 unsigned int iss_srt,
941 bool iss_sf, bool iss_ar)
943 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
945 if (iss_valid) {
946 uint32_t syn;
948 syn = syn_data_abort_with_iss(0,
949 (memop & MO_SIZE),
950 false,
951 iss_srt,
952 iss_sf,
953 iss_ar,
954 0, 0, 0, 0, 0, false);
955 disas_set_insn_syndrome(s, syn);
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960 TCGv_i64 tcg_addr, MemOp memop,
961 bool iss_valid,
962 unsigned int iss_srt,
963 bool iss_sf, bool iss_ar)
965 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966 iss_valid, iss_srt, iss_sf, iss_ar);
970 * Load from memory to GPR register
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973 MemOp memop, bool extend, int memidx,
974 bool iss_valid, unsigned int iss_srt,
975 bool iss_sf, bool iss_ar)
977 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
979 if (extend && (memop & MO_SIGN)) {
980 g_assert((memop & MO_SIZE) <= MO_32);
981 tcg_gen_ext32u_i64(dest, dest);
984 if (iss_valid) {
985 uint32_t syn;
987 syn = syn_data_abort_with_iss(0,
988 (memop & MO_SIZE),
989 (memop & MO_SIGN) != 0,
990 iss_srt,
991 iss_sf,
992 iss_ar,
993 0, 0, 0, 0, 0, false);
994 disas_set_insn_syndrome(s, syn);
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999 MemOp memop, bool extend,
1000 bool iss_valid, unsigned int iss_srt,
1001 bool iss_sf, bool iss_ar)
1003 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004 iss_valid, iss_srt, iss_sf, iss_ar);
1008 * Store from FP register to memory
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013 TCGv_i64 tmplo = tcg_temp_new_i64();
1015 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1017 if ((mop & MO_SIZE) < MO_128) {
1018 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019 } else {
1020 TCGv_i64 tmphi = tcg_temp_new_i64();
1021 TCGv_i128 t16 = tcg_temp_new_i128();
1023 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1026 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1031 * Load from memory to FP register
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1035 /* This always zero-extends and writes to a full 128 bit wide vector */
1036 TCGv_i64 tmplo = tcg_temp_new_i64();
1037 TCGv_i64 tmphi = NULL;
1039 if ((mop & MO_SIZE) < MO_128) {
1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041 } else {
1042 TCGv_i128 t16 = tcg_temp_new_i128();
1044 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1046 tmphi = tcg_temp_new_i64();
1047 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1050 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1052 if (tmphi) {
1053 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1055 clear_vec_high(s, tmphi != NULL, destidx);
1059 * Vector load/store helpers.
1061 * The principal difference between this and a FP load is that we don't
1062 * zero extend as we are filling a partial chunk of the vector register.
1063 * These functions don't support 128 bit loads/stores, which would be
1064 * normal load/store operations.
1066 * The _i32 versions are useful when operating on 32 bit quantities
1067 * (eg for floating point single or using Neon helper functions).
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072 int element, MemOp memop)
1074 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075 switch ((unsigned)memop) {
1076 case MO_8:
1077 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078 break;
1079 case MO_16:
1080 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081 break;
1082 case MO_32:
1083 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084 break;
1085 case MO_8|MO_SIGN:
1086 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087 break;
1088 case MO_16|MO_SIGN:
1089 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090 break;
1091 case MO_32|MO_SIGN:
1092 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093 break;
1094 case MO_64:
1095 case MO_64|MO_SIGN:
1096 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097 break;
1098 default:
1099 g_assert_not_reached();
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104 int element, MemOp memop)
1106 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107 switch (memop) {
1108 case MO_8:
1109 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110 break;
1111 case MO_16:
1112 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113 break;
1114 case MO_8|MO_SIGN:
1115 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116 break;
1117 case MO_16|MO_SIGN:
1118 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119 break;
1120 case MO_32:
1121 case MO_32|MO_SIGN:
1122 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123 break;
1124 default:
1125 g_assert_not_reached();
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131 int element, MemOp memop)
1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134 switch (memop) {
1135 case MO_8:
1136 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137 break;
1138 case MO_16:
1139 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140 break;
1141 case MO_32:
1142 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143 break;
1144 case MO_64:
1145 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146 break;
1147 default:
1148 g_assert_not_reached();
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153 int destidx, int element, MemOp memop)
1155 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156 switch (memop) {
1157 case MO_8:
1158 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159 break;
1160 case MO_16:
1161 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162 break;
1163 case MO_32:
1164 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165 break;
1166 default:
1167 g_assert_not_reached();
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173 TCGv_i64 tcg_addr, MemOp mop)
1175 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1177 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183 TCGv_i64 tcg_addr, MemOp mop)
1185 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1187 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1191 /* Check that FP/Neon access is enabled. If it is, return
1192 * true. If not, emit code to generate an appropriate exception,
1193 * and return false; the caller should not emit any code for
1194 * the instruction. Note that this check must happen after all
1195 * unallocated-encoding checks (otherwise the syndrome information
1196 * for the resulting exception will be incorrect).
1198 static bool fp_access_check_only(DisasContext *s)
1200 if (s->fp_excp_el) {
1201 assert(!s->fp_access_checked);
1202 s->fp_access_checked = true;
1204 gen_exception_insn_el(s, 0, EXCP_UDEF,
1205 syn_fp_access_trap(1, 0xe, false, 0),
1206 s->fp_excp_el);
1207 return false;
1209 s->fp_access_checked = true;
1210 return true;
1213 static bool fp_access_check(DisasContext *s)
1215 if (!fp_access_check_only(s)) {
1216 return false;
1218 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219 gen_exception_insn(s, 0, EXCP_UDEF,
1220 syn_smetrap(SME_ET_Streaming, false));
1221 return false;
1223 return true;
1227 * Check that SVE access is enabled. If it is, return true.
1228 * If not, emit code to generate an appropriate exception and return false.
1229 * This function corresponds to CheckSVEEnabled().
1231 bool sve_access_check(DisasContext *s)
1233 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234 assert(dc_isar_feature(aa64_sme, s));
1235 if (!sme_sm_enabled_check(s)) {
1236 goto fail_exit;
1238 } else if (s->sve_excp_el) {
1239 gen_exception_insn_el(s, 0, EXCP_UDEF,
1240 syn_sve_access_trap(), s->sve_excp_el);
1241 goto fail_exit;
1243 s->sve_access_checked = true;
1244 return fp_access_check(s);
1246 fail_exit:
1247 /* Assert that we only raise one exception per instruction. */
1248 assert(!s->sve_access_checked);
1249 s->sve_access_checked = true;
1250 return false;
1254 * Check that SME access is enabled, raise an exception if not.
1255 * Note that this function corresponds to CheckSMEAccess and is
1256 * only used directly for cpregs.
1258 static bool sme_access_check(DisasContext *s)
1260 if (s->sme_excp_el) {
1261 gen_exception_insn_el(s, 0, EXCP_UDEF,
1262 syn_smetrap(SME_ET_AccessTrap, false),
1263 s->sme_excp_el);
1264 return false;
1266 return true;
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1273 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274 * to be zero when fp_excp_el has priority. This is because we need
1275 * sme_excp_el by itself for cpregs access checks.
1277 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278 s->fp_access_checked = true;
1279 return sme_access_check(s);
1281 return fp_access_check_only(s);
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1287 if (!sme_enabled_check(s)) {
1288 return false;
1290 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291 gen_exception_insn(s, 0, EXCP_UDEF,
1292 syn_smetrap(SME_ET_NotStreaming, false));
1293 return false;
1295 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296 gen_exception_insn(s, 0, EXCP_UDEF,
1297 syn_smetrap(SME_ET_InactiveZA, false));
1298 return false;
1300 return true;
1304 * Expanders for AdvSIMD translation functions.
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308 gen_helper_gvec_2 *fn)
1310 if (!a->q && a->esz == MO_64) {
1311 return false;
1313 if (fp_access_check(s)) {
1314 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1316 return true;
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320 gen_helper_gvec_3 *fn)
1322 if (!a->q && a->esz == MO_64) {
1323 return false;
1325 if (fp_access_check(s)) {
1326 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1328 return true;
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1333 if (!a->q && a->esz == MO_64) {
1334 return false;
1336 if (fp_access_check(s)) {
1337 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1339 return true;
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1344 if (a->esz == MO_64) {
1345 return false;
1347 if (fp_access_check(s)) {
1348 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1350 return true;
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1355 if (a->esz == MO_8) {
1356 return false;
1358 return do_gvec_fn3_no64(s, a, fn);
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1363 if (!a->q && a->esz == MO_64) {
1364 return false;
1366 if (fp_access_check(s)) {
1367 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1369 return true;
1373 * This utility function is for doing register extension with an
1374 * optional shift. You will likely want to pass a temporary for the
1375 * destination register. See DecodeRegExtend() in the ARM ARM.
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378 int option, unsigned int shift)
1380 int extsize = extract32(option, 0, 2);
1381 bool is_signed = extract32(option, 2, 1);
1383 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1389 /* The AArch64 architecture mandates that (if enabled via PSTATE
1390 * or SCTLR bits) there is a check that SP is 16-aligned on every
1391 * SP-relative load or store (with an exception generated if it is not).
1392 * In line with general QEMU practice regarding misaligned accesses,
1393 * we omit these checks for the sake of guest program performance.
1394 * This function is provided as a hook so we can more easily add these
1395 * checks in future (possibly as a "favour catching guest program bugs
1396 * over speed" user selectable option).
1401 * This provides a simple table based table lookup decoder. It is
1402 * intended to be used when the relevant bits for decode are too
1403 * awkwardly placed and switch/if based logic would be confusing and
1404 * deeply nested. Since it's a linear search through the table, tables
1405 * should be kept small.
1407 * It returns the first handler where insn & mask == pattern, or
1408 * NULL if there is no match.
1409 * The table is terminated by an empty mask (i.e. 0)
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412 uint32_t insn)
1414 const AArch64DecodeTable *tptr = table;
1416 while (tptr->mask) {
1417 if ((insn & tptr->mask) == tptr->pattern) {
1418 return tptr->disas_fn;
1420 tptr++;
1422 return NULL;
1426 * The instruction disassembly implemented here matches
1427 * the instruction encoding classifications in chapter C4
1428 * of the ARM Architecture Reference Manual (DDI0487B_a);
1429 * classification names and decode diagrams here should generally
1430 * match up with those in the manual.
1433 static bool trans_B(DisasContext *s, arg_i *a)
1435 reset_btype(s);
1436 gen_goto_tb(s, 0, a->imm);
1437 return true;
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1442 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443 reset_btype(s);
1444 gen_goto_tb(s, 0, a->imm);
1445 return true;
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1451 DisasLabel match;
1452 TCGv_i64 tcg_cmp;
1454 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455 reset_btype(s);
1457 match = gen_disas_label(s);
1458 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459 tcg_cmp, 0, match.label);
1460 gen_goto_tb(s, 0, 4);
1461 set_disas_label(s, match);
1462 gen_goto_tb(s, 1, a->imm);
1463 return true;
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1468 DisasLabel match;
1469 TCGv_i64 tcg_cmp;
1471 tcg_cmp = tcg_temp_new_i64();
1472 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1474 reset_btype(s);
1476 match = gen_disas_label(s);
1477 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478 tcg_cmp, 0, match.label);
1479 gen_goto_tb(s, 0, 4);
1480 set_disas_label(s, match);
1481 gen_goto_tb(s, 1, a->imm);
1482 return true;
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1487 /* BC.cond is only present with FEAT_HBC */
1488 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489 return false;
1491 reset_btype(s);
1492 if (a->cond < 0x0e) {
1493 /* genuinely conditional branches */
1494 DisasLabel match = gen_disas_label(s);
1495 arm_gen_test_cc(a->cond, match.label);
1496 gen_goto_tb(s, 0, 4);
1497 set_disas_label(s, match);
1498 gen_goto_tb(s, 1, a->imm);
1499 } else {
1500 /* 0xe and 0xf are both "always" conditions */
1501 gen_goto_tb(s, 0, a->imm);
1503 return true;
1506 static void set_btype_for_br(DisasContext *s, int rn)
1508 if (dc_isar_feature(aa64_bti, s)) {
1509 /* BR to {x16,x17} or !guard -> 1, else 3. */
1510 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1514 static void set_btype_for_blr(DisasContext *s)
1516 if (dc_isar_feature(aa64_bti, s)) {
1517 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1518 set_btype(s, 2);
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1524 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525 set_btype_for_br(s, a->rn);
1526 s->base.is_jmp = DISAS_JUMP;
1527 return true;
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1532 TCGv_i64 dst = cpu_reg(s, a->rn);
1533 TCGv_i64 lr = cpu_reg(s, 30);
1534 if (dst == lr) {
1535 TCGv_i64 tmp = tcg_temp_new_i64();
1536 tcg_gen_mov_i64(tmp, dst);
1537 dst = tmp;
1539 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540 gen_a64_set_pc(s, dst);
1541 set_btype_for_blr(s);
1542 s->base.is_jmp = DISAS_JUMP;
1543 return true;
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1548 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549 s->base.is_jmp = DISAS_JUMP;
1550 return true;
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554 TCGv_i64 modifier, bool use_key_a)
1556 TCGv_i64 truedst;
1558 * Return the branch target for a BRAA/RETA/etc, which is either
1559 * just the destination dst, or that value with the pauth check
1560 * done and the code removed from the high bits.
1562 if (!s->pauth_active) {
1563 return dst;
1566 truedst = tcg_temp_new_i64();
1567 if (use_key_a) {
1568 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569 } else {
1570 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1572 return truedst;
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1577 TCGv_i64 dst;
1579 if (!dc_isar_feature(aa64_pauth, s)) {
1580 return false;
1583 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584 gen_a64_set_pc(s, dst);
1585 set_btype_for_br(s, a->rn);
1586 s->base.is_jmp = DISAS_JUMP;
1587 return true;
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1592 TCGv_i64 dst, lr;
1594 if (!dc_isar_feature(aa64_pauth, s)) {
1595 return false;
1598 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599 lr = cpu_reg(s, 30);
1600 if (dst == lr) {
1601 TCGv_i64 tmp = tcg_temp_new_i64();
1602 tcg_gen_mov_i64(tmp, dst);
1603 dst = tmp;
1605 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606 gen_a64_set_pc(s, dst);
1607 set_btype_for_blr(s);
1608 s->base.is_jmp = DISAS_JUMP;
1609 return true;
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1614 TCGv_i64 dst;
1616 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617 gen_a64_set_pc(s, dst);
1618 s->base.is_jmp = DISAS_JUMP;
1619 return true;
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1624 TCGv_i64 dst;
1626 if (!dc_isar_feature(aa64_pauth, s)) {
1627 return false;
1629 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630 gen_a64_set_pc(s, dst);
1631 set_btype_for_br(s, a->rn);
1632 s->base.is_jmp = DISAS_JUMP;
1633 return true;
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1638 TCGv_i64 dst, lr;
1640 if (!dc_isar_feature(aa64_pauth, s)) {
1641 return false;
1643 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644 lr = cpu_reg(s, 30);
1645 if (dst == lr) {
1646 TCGv_i64 tmp = tcg_temp_new_i64();
1647 tcg_gen_mov_i64(tmp, dst);
1648 dst = tmp;
1650 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651 gen_a64_set_pc(s, dst);
1652 set_btype_for_blr(s);
1653 s->base.is_jmp = DISAS_JUMP;
1654 return true;
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1659 TCGv_i64 dst;
1661 if (s->current_el == 0) {
1662 return false;
1664 if (s->trap_eret) {
1665 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666 return true;
1668 dst = tcg_temp_new_i64();
1669 tcg_gen_ld_i64(dst, tcg_env,
1670 offsetof(CPUARMState, elr_el[s->current_el]));
1672 translator_io_start(&s->base);
1674 gen_helper_exception_return(tcg_env, dst);
1675 /* Must exit loop to check un-masked IRQs */
1676 s->base.is_jmp = DISAS_EXIT;
1677 return true;
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1682 TCGv_i64 dst;
1684 if (!dc_isar_feature(aa64_pauth, s)) {
1685 return false;
1687 if (s->current_el == 0) {
1688 return false;
1690 /* The FGT trap takes precedence over an auth trap. */
1691 if (s->trap_eret) {
1692 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693 return true;
1695 dst = tcg_temp_new_i64();
1696 tcg_gen_ld_i64(dst, tcg_env,
1697 offsetof(CPUARMState, elr_el[s->current_el]));
1699 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1701 translator_io_start(&s->base);
1703 gen_helper_exception_return(tcg_env, dst);
1704 /* Must exit loop to check un-masked IRQs */
1705 s->base.is_jmp = DISAS_EXIT;
1706 return true;
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1711 return true;
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1717 * When running in MTTCG we don't generate jumps to the yield and
1718 * WFE helpers as it won't affect the scheduling of other vCPUs.
1719 * If we wanted to more completely model WFE/SEV so we don't busy
1720 * spin unnecessarily we would need to do something more involved.
1722 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723 s->base.is_jmp = DISAS_YIELD;
1725 return true;
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1730 s->base.is_jmp = DISAS_WFI;
1731 return true;
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1737 * When running in MTTCG we don't generate jumps to the yield and
1738 * WFE helpers as it won't affect the scheduling of other vCPUs.
1739 * If we wanted to more completely model WFE/SEV so we don't busy
1740 * spin unnecessarily we would need to do something more involved.
1742 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743 s->base.is_jmp = DISAS_WFE;
1745 return true;
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1750 if (!dc_isar_feature(aa64_wfxt, s)) {
1751 return false;
1755 * Because we need to pass the register value to the helper,
1756 * it's easier to emit the code now, unlike trans_WFI which
1757 * defers it to aarch64_tr_tb_stop(). That means we need to
1758 * check ss_active so that single-stepping a WFIT doesn't halt.
1760 if (s->ss_active) {
1761 /* Act like a NOP under architectural singlestep */
1762 return true;
1765 gen_a64_update_pc(s, 4);
1766 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767 /* Go back to the main loop to check for interrupts */
1768 s->base.is_jmp = DISAS_EXIT;
1769 return true;
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1774 if (!dc_isar_feature(aa64_wfxt, s)) {
1775 return false;
1779 * We rely here on our WFE implementation being a NOP, so we
1780 * don't need to do anything different to handle the WFET timeout
1781 * from what trans_WFE does.
1783 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784 s->base.is_jmp = DISAS_WFE;
1786 return true;
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1791 if (s->pauth_active) {
1792 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1794 return true;
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1799 if (s->pauth_active) {
1800 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1802 return true;
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1807 if (s->pauth_active) {
1808 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1810 return true;
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1815 if (s->pauth_active) {
1816 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1818 return true;
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1823 if (s->pauth_active) {
1824 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1826 return true;
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1831 /* Without RAS, we must implement this as NOP. */
1832 if (dc_isar_feature(aa64_ras, s)) {
1834 * QEMU does not have a source of physical SErrors,
1835 * so we are only concerned with virtual SErrors.
1836 * The pseudocode in the ARM for this case is
1837 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838 * AArch64.vESBOperation();
1839 * Most of the condition can be evaluated at translation time.
1840 * Test for EL2 present, and defer test for SEL2 to runtime.
1842 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843 gen_helper_vesb(tcg_env);
1846 return true;
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1851 if (s->pauth_active) {
1852 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854 return true;
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1859 if (s->pauth_active) {
1860 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862 return true;
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1867 if (s->pauth_active) {
1868 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1870 return true;
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1875 if (s->pauth_active) {
1876 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1878 return true;
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1883 if (s->pauth_active) {
1884 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1886 return true;
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1891 if (s->pauth_active) {
1892 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1894 return true;
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1899 if (s->pauth_active) {
1900 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1902 return true;
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1907 if (s->pauth_active) {
1908 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1910 return true;
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1915 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916 return true;
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1921 /* We handle DSB and DMB the same way */
1922 TCGBar bar;
1924 switch (a->types) {
1925 case 1: /* MBReqTypes_Reads */
1926 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927 break;
1928 case 2: /* MBReqTypes_Writes */
1929 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930 break;
1931 default: /* MBReqTypes_All */
1932 bar = TCG_BAR_SC | TCG_MO_ALL;
1933 break;
1935 tcg_gen_mb(bar);
1936 return true;
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1942 * We need to break the TB after this insn to execute
1943 * self-modifying code correctly and also to take
1944 * any pending interrupts immediately.
1946 reset_btype(s);
1947 gen_goto_tb(s, 0, 4);
1948 return true;
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1953 if (!dc_isar_feature(aa64_sb, s)) {
1954 return false;
1957 * TODO: There is no speculation barrier opcode for TCG;
1958 * MB and end the TB instead.
1960 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961 gen_goto_tb(s, 0, 4);
1962 return true;
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1967 if (!dc_isar_feature(aa64_condm_4, s)) {
1968 return false;
1970 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971 return true;
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1976 TCGv_i32 z;
1978 if (!dc_isar_feature(aa64_condm_5, s)) {
1979 return false;
1982 z = tcg_temp_new_i32();
1984 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1987 * (!C & !Z) << 31
1988 * (!(C | Z)) << 31
1989 * ~((C | Z) << 31)
1990 * ~-(C | Z)
1991 * (C | Z) - 1
1993 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1996 /* !(Z & C) */
1997 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2000 /* (!C & Z) << 31 -> -(Z & ~C) */
2001 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002 tcg_gen_neg_i32(cpu_VF, cpu_VF);
2004 /* C | Z */
2005 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2007 return true;
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2012 if (!dc_isar_feature(aa64_condm_5, s)) {
2013 return false;
2016 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
2017 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
2019 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2022 tcg_gen_movi_i32(cpu_NF, 0);
2023 tcg_gen_movi_i32(cpu_VF, 0);
2025 return true;
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2030 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031 return false;
2033 if (a->imm & 1) {
2034 set_pstate_bits(PSTATE_UAO);
2035 } else {
2036 clear_pstate_bits(PSTATE_UAO);
2038 gen_rebuild_hflags(s);
2039 s->base.is_jmp = DISAS_TOO_MANY;
2040 return true;
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2045 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046 return false;
2048 if (a->imm & 1) {
2049 set_pstate_bits(PSTATE_PAN);
2050 } else {
2051 clear_pstate_bits(PSTATE_PAN);
2053 gen_rebuild_hflags(s);
2054 s->base.is_jmp = DISAS_TOO_MANY;
2055 return true;
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2060 if (s->current_el == 0) {
2061 return false;
2063 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064 s->base.is_jmp = DISAS_TOO_MANY;
2065 return true;
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2070 if (!dc_isar_feature(aa64_ssbs, s)) {
2071 return false;
2073 if (a->imm & 1) {
2074 set_pstate_bits(PSTATE_SSBS);
2075 } else {
2076 clear_pstate_bits(PSTATE_SSBS);
2078 /* Don't need to rebuild hflags since SSBS is a nop */
2079 s->base.is_jmp = DISAS_TOO_MANY;
2080 return true;
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2085 if (!dc_isar_feature(aa64_dit, s)) {
2086 return false;
2088 if (a->imm & 1) {
2089 set_pstate_bits(PSTATE_DIT);
2090 } else {
2091 clear_pstate_bits(PSTATE_DIT);
2093 /* There's no need to rebuild hflags because DIT is a nop */
2094 s->base.is_jmp = DISAS_TOO_MANY;
2095 return true;
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2100 if (dc_isar_feature(aa64_mte, s)) {
2101 /* Full MTE is enabled -- set the TCO bit as directed. */
2102 if (a->imm & 1) {
2103 set_pstate_bits(PSTATE_TCO);
2104 } else {
2105 clear_pstate_bits(PSTATE_TCO);
2107 gen_rebuild_hflags(s);
2108 /* Many factors, including TCO, go into MTE_ACTIVE. */
2109 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110 return true;
2111 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2113 return true;
2114 } else {
2115 /* Insn not present */
2116 return false;
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2122 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123 s->base.is_jmp = DISAS_TOO_MANY;
2124 return true;
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2129 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130 /* Exit the cpu loop to re-evaluate pending IRQs. */
2131 s->base.is_jmp = DISAS_UPDATE_EXIT;
2132 return true;
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2137 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138 return false;
2141 if (a->imm == 0) {
2142 clear_pstate_bits(PSTATE_ALLINT);
2143 } else if (s->current_el > 1) {
2144 set_pstate_bits(PSTATE_ALLINT);
2145 } else {
2146 gen_helper_msr_set_allint_el1(tcg_env);
2149 /* Exit the cpu loop to re-evaluate pending IRQs. */
2150 s->base.is_jmp = DISAS_UPDATE_EXIT;
2151 return true;
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2156 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157 return false;
2159 if (sme_access_check(s)) {
2160 int old = s->pstate_sm | (s->pstate_za << 1);
2161 int new = a->imm * 3;
2163 if ((old ^ new) & a->mask) {
2164 /* At least one bit changes. */
2165 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166 tcg_constant_i32(a->mask));
2167 s->base.is_jmp = DISAS_TOO_MANY;
2170 return true;
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2175 TCGv_i32 tmp = tcg_temp_new_i32();
2176 TCGv_i32 nzcv = tcg_temp_new_i32();
2178 /* build bit 31, N */
2179 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180 /* build bit 30, Z */
2181 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183 /* build bit 29, C */
2184 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185 /* build bit 28, V */
2186 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188 /* generate result */
2189 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2194 TCGv_i32 nzcv = tcg_temp_new_i32();
2196 /* take NZCV from R[t] */
2197 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2199 /* bit 31, N */
2200 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201 /* bit 30, Z */
2202 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204 /* bit 29, C */
2205 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207 /* bit 28, V */
2208 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213 uint8_t op0, uint8_t op1, uint8_t op2,
2214 uint8_t crn, uint8_t crm, uint8_t rt)
2217 * Generate code to emit an UNDEF with correct syndrome
2218 * information for a failed system register access.
2219 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220 * but if FEAT_IDST is implemented then read accesses to registers
2221 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222 * syndrome.
2224 uint32_t syndrome;
2226 if (isread && dc_isar_feature(aa64_ids, s) &&
2227 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229 } else {
2230 syndrome = syn_uncategorized();
2232 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2235 /* MRS - move from system register
2236 * MSR (register) - move to system register
2237 * SYS
2238 * SYSL
2239 * These are all essentially the same insn in 'read' and 'write'
2240 * versions, with varying op0 fields.
2242 static void handle_sys(DisasContext *s, bool isread,
2243 unsigned int op0, unsigned int op1, unsigned int op2,
2244 unsigned int crn, unsigned int crm, unsigned int rt)
2246 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247 crn, crm, op0, op1, op2);
2248 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249 bool need_exit_tb = false;
2250 bool nv_trap_to_el2 = false;
2251 bool nv_redirect_reg = false;
2252 bool skip_fp_access_checks = false;
2253 bool nv2_mem_redirect = false;
2254 TCGv_ptr tcg_ri = NULL;
2255 TCGv_i64 tcg_rt;
2256 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2258 if (crn == 11 || crn == 15) {
2260 * Check for TIDCP trap, which must take precedence over
2261 * the UNDEF for "no such register" etc.
2263 switch (s->current_el) {
2264 case 0:
2265 if (dc_isar_feature(aa64_tidcp1, s)) {
2266 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2268 break;
2269 case 1:
2270 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271 break;
2275 if (!ri) {
2276 /* Unknown register; this might be a guest error or a QEMU
2277 * unimplemented feature.
2279 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281 isread ? "read" : "write", op0, op1, crn, crm, op2);
2282 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283 return;
2286 if (s->nv2 && ri->nv2_redirect_offset) {
2288 * Some registers always redirect to memory; some only do so if
2289 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290 * pairs which share an offset; see the table in R_CSRPQ).
2292 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293 nv2_mem_redirect = s->nv1;
2294 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295 nv2_mem_redirect = !s->nv1;
2296 } else {
2297 nv2_mem_redirect = true;
2301 /* Check access permissions */
2302 if (!cp_access_ok(s->current_el, ri, isread)) {
2304 * FEAT_NV/NV2 handling does not do the usual FP access checks
2305 * for registers only accessible at EL2 (though it *does* do them
2306 * for registers accessible at EL1).
2308 skip_fp_access_checks = true;
2309 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2311 * This is one of the few EL2 registers which should redirect
2312 * to the equivalent EL1 register. We do that after running
2313 * the EL2 register's accessfn.
2315 nv_redirect_reg = true;
2316 assert(!nv2_mem_redirect);
2317 } else if (nv2_mem_redirect) {
2319 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320 * UNDEF to EL1.
2322 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2324 * This register / instruction exists and is an EL2 register, so
2325 * we must trap to EL2 if accessed in nested virtualization EL1
2326 * instead of UNDEFing. We'll do that after the usual access checks.
2327 * (This makes a difference only for a couple of registers like
2328 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330 * an accessfn which does nothing when called from EL1, because
2331 * the trap-to-EL3 controls which would apply to that register
2332 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2334 nv_trap_to_el2 = true;
2335 } else {
2336 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337 return;
2341 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342 /* Emit code to perform further access permissions checks at
2343 * runtime; this may result in an exception.
2345 gen_a64_update_pc(s, 0);
2346 tcg_ri = tcg_temp_new_ptr();
2347 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348 tcg_constant_i32(key),
2349 tcg_constant_i32(syndrome),
2350 tcg_constant_i32(isread));
2351 } else if (ri->type & ARM_CP_RAISES_EXC) {
2353 * The readfn or writefn might raise an exception;
2354 * synchronize the CPU state in case it does.
2356 gen_a64_update_pc(s, 0);
2359 if (!skip_fp_access_checks) {
2360 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361 return;
2362 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363 return;
2364 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365 return;
2369 if (nv_trap_to_el2) {
2370 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371 return;
2374 if (nv_redirect_reg) {
2376 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377 * Conveniently in all cases the encoding of the EL1 register is
2378 * identical to the EL2 register except that opc1 is 0.
2379 * Get the reginfo for the EL1 register to use for the actual access.
2380 * We don't use the EL1 register's access function, and
2381 * fine-grained-traps on EL1 also do not apply here.
2383 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384 crn, crm, op0, 0, op2);
2385 ri = get_arm_cp_reginfo(s->cp_regs, key);
2386 assert(ri);
2387 assert(cp_access_ok(s->current_el, ri, isread));
2389 * We might not have done an update_pc earlier, so check we don't
2390 * need it. We could support this in future if necessary.
2392 assert(!(ri->type & ARM_CP_RAISES_EXC));
2395 if (nv2_mem_redirect) {
2397 * This system register is being redirected into an EL2 memory access.
2398 * This means it is not an IO operation, doesn't change hflags,
2399 * and need not end the TB, because it has no side effects.
2401 * The access is 64-bit single copy atomic, guaranteed aligned because
2402 * of the definition of VCNR_EL2. Its endianness depends on
2403 * SCTLR_EL2.EE, not on the data endianness of EL1.
2404 * It is done under either the EL2 translation regime or the EL2&0
2405 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406 * PSTATE.PAN is 0.
2408 TCGv_i64 ptr = tcg_temp_new_i64();
2409 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411 int memidx = arm_to_core_mmu_idx(armmemidx);
2412 uint32_t syn;
2414 mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2416 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417 tcg_gen_addi_i64(ptr, ptr,
2418 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419 tcg_rt = cpu_reg(s, rt);
2421 syn = syn_data_abort_vncr(0, !isread, 0);
2422 disas_set_insn_syndrome(s, syn);
2423 if (isread) {
2424 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425 } else {
2426 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2428 return;
2431 /* Handle special cases first */
2432 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433 case 0:
2434 break;
2435 case ARM_CP_NOP:
2436 return;
2437 case ARM_CP_NZCV:
2438 tcg_rt = cpu_reg(s, rt);
2439 if (isread) {
2440 gen_get_nzcv(tcg_rt);
2441 } else {
2442 gen_set_nzcv(tcg_rt);
2444 return;
2445 case ARM_CP_CURRENTEL:
2448 * Reads as current EL value from pstate, which is
2449 * guaranteed to be constant by the tb flags.
2450 * For nested virt we should report EL2.
2452 int el = s->nv ? 2 : s->current_el;
2453 tcg_rt = cpu_reg(s, rt);
2454 tcg_gen_movi_i64(tcg_rt, el << 2);
2455 return;
2457 case ARM_CP_DC_ZVA:
2458 /* Writes clear the aligned block of memory which rt points into. */
2459 if (s->mte_active[0]) {
2460 int desc = 0;
2462 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2466 tcg_rt = tcg_temp_new_i64();
2467 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468 tcg_constant_i32(desc), cpu_reg(s, rt));
2469 } else {
2470 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2472 gen_helper_dc_zva(tcg_env, tcg_rt);
2473 return;
2474 case ARM_CP_DC_GVA:
2476 TCGv_i64 clean_addr, tag;
2479 * DC_GVA, like DC_ZVA, requires that we supply the original
2480 * pointer for an invalid page. Probe that address first.
2482 tcg_rt = cpu_reg(s, rt);
2483 clean_addr = clean_data_tbi(s, tcg_rt);
2484 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2486 if (s->ata[0]) {
2487 /* Extract the tag from the register to match STZGM. */
2488 tag = tcg_temp_new_i64();
2489 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2493 return;
2494 case ARM_CP_DC_GZVA:
2496 TCGv_i64 clean_addr, tag;
2498 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499 tcg_rt = cpu_reg(s, rt);
2500 clean_addr = clean_data_tbi(s, tcg_rt);
2501 gen_helper_dc_zva(tcg_env, clean_addr);
2503 if (s->ata[0]) {
2504 /* Extract the tag from the register to match STZGM. */
2505 tag = tcg_temp_new_i64();
2506 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2510 return;
2511 default:
2512 g_assert_not_reached();
2515 if (ri->type & ARM_CP_IO) {
2516 /* I/O operations must end the TB here (whether read or write) */
2517 need_exit_tb = translator_io_start(&s->base);
2520 tcg_rt = cpu_reg(s, rt);
2522 if (isread) {
2523 if (ri->type & ARM_CP_CONST) {
2524 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525 } else if (ri->readfn) {
2526 if (!tcg_ri) {
2527 tcg_ri = gen_lookup_cp_reg(key);
2529 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530 } else {
2531 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2533 } else {
2534 if (ri->type & ARM_CP_CONST) {
2535 /* If not forbidden by access permissions, treat as WI */
2536 return;
2537 } else if (ri->writefn) {
2538 if (!tcg_ri) {
2539 tcg_ri = gen_lookup_cp_reg(key);
2541 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542 } else {
2543 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2547 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2549 * A write to any coprocessor register that ends a TB
2550 * must rebuild the hflags for the next TB.
2552 gen_rebuild_hflags(s);
2554 * We default to ending the TB on a coprocessor register write,
2555 * but allow this to be suppressed by the register definition
2556 * (usually only necessary to work around guest bugs).
2558 need_exit_tb = true;
2560 if (need_exit_tb) {
2561 s->base.is_jmp = DISAS_UPDATE_EXIT;
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2567 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568 return true;
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2574 * For SVC, HVC and SMC we advance the single-step state
2575 * machine before taking the exception. This is architecturally
2576 * mandated, to ensure that single-stepping a system call
2577 * instruction works properly.
2579 uint32_t syndrome = syn_aa64_svc(a->imm);
2580 if (s->fgt_svc) {
2581 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582 return true;
2584 gen_ss_advance(s);
2585 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586 return true;
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2591 int target_el = s->current_el == 3 ? 3 : 2;
2593 if (s->current_el == 0) {
2594 unallocated_encoding(s);
2595 return true;
2598 * The pre HVC helper handles cases when HVC gets trapped
2599 * as an undefined insn by runtime configuration.
2601 gen_a64_update_pc(s, 0);
2602 gen_helper_pre_hvc(tcg_env);
2603 /* Architecture requires ss advance before we do the actual work */
2604 gen_ss_advance(s);
2605 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606 return true;
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2611 if (s->current_el == 0) {
2612 unallocated_encoding(s);
2613 return true;
2615 gen_a64_update_pc(s, 0);
2616 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617 /* Architecture requires ss advance before we do the actual work */
2618 gen_ss_advance(s);
2619 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620 return true;
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2625 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626 return true;
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2632 * HLT. This has two purposes.
2633 * Architecturally, it is an external halting debug instruction.
2634 * Since QEMU doesn't implement external debug, we treat this as
2635 * it is required for halting debug disabled: it will UNDEF.
2636 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2638 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640 } else {
2641 unallocated_encoding(s);
2643 return true;
2647 * Load/Store exclusive instructions are implemented by remembering
2648 * the value/address loaded, and seeing if these are the same
2649 * when the store is performed. This is not actually the architecturally
2650 * mandated semantics, but it works for typical guest code sequences
2651 * and avoids having to monitor regular stores.
2653 * The store exclusive uses the atomic cmpxchg primitives to avoid
2654 * races in multi-threaded linux-user and when MTTCG softmmu is
2655 * enabled.
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658 int size, bool is_pair)
2660 int idx = get_mem_index(s);
2661 TCGv_i64 dirty_addr, clean_addr;
2662 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2664 s->is_ldex = true;
2665 dirty_addr = cpu_reg_sp(s, rn);
2666 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2668 g_assert(size <= 3);
2669 if (is_pair) {
2670 g_assert(size >= 2);
2671 if (size == 2) {
2672 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673 if (s->be_data == MO_LE) {
2674 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676 } else {
2677 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2680 } else {
2681 TCGv_i128 t16 = tcg_temp_new_i128();
2683 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2685 if (s->be_data == MO_LE) {
2686 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687 cpu_exclusive_high, t16);
2688 } else {
2689 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690 cpu_exclusive_val, t16);
2692 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2695 } else {
2696 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2699 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703 int rn, int size, int is_pair)
2705 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707 * [addr] = {Rt};
2708 * if (is_pair) {
2709 * [addr + datasize] = {Rt2};
2711 * {Rd} = 0;
2712 * } else {
2713 * {Rd} = 1;
2715 * env->exclusive_addr = -1;
2717 TCGLabel *fail_label = gen_new_label();
2718 TCGLabel *done_label = gen_new_label();
2719 TCGv_i64 tmp, clean_addr;
2720 MemOp memop;
2723 * FIXME: We are out of spec here. We have recorded only the address
2724 * from load_exclusive, not the entire range, and we assume that the
2725 * size of the access on both sides match. The architecture allows the
2726 * store to be smaller than the load, so long as the stored bytes are
2727 * within the range recorded by the load.
2730 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2735 * The write, and any associated faults, only happen if the virtual
2736 * and physical addresses pass the exclusive monitor check. These
2737 * faults are exceedingly unlikely, because normally the guest uses
2738 * the exact same address register for the load_exclusive, and we
2739 * would have recognized these faults there.
2741 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742 * unaligned 4-byte write within the range of an aligned 8-byte load.
2743 * With LSE2, the store would need to cross a 16-byte boundary when the
2744 * load did not, which would mean the store is outside the range
2745 * recorded for the monitor, which would have failed a corrected monitor
2746 * check above. For now, we assume no size change and retain the
2747 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2749 * It is possible to trigger an MTE fault, by performing the load with
2750 * a virtual address with a valid tag and performing the store with the
2751 * same virtual address and a different invalid tag.
2753 memop = size + is_pair;
2754 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755 memop |= MO_ALIGN;
2757 memop = finalize_memop(s, memop);
2758 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2760 tmp = tcg_temp_new_i64();
2761 if (is_pair) {
2762 if (size == 2) {
2763 if (s->be_data == MO_LE) {
2764 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765 } else {
2766 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2768 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769 cpu_exclusive_val, tmp,
2770 get_mem_index(s), memop);
2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772 } else {
2773 TCGv_i128 t16 = tcg_temp_new_i128();
2774 TCGv_i128 c16 = tcg_temp_new_i128();
2775 TCGv_i64 a, b;
2777 if (s->be_data == MO_LE) {
2778 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780 cpu_exclusive_high);
2781 } else {
2782 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784 cpu_exclusive_val);
2787 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788 get_mem_index(s), memop);
2790 a = tcg_temp_new_i64();
2791 b = tcg_temp_new_i64();
2792 if (s->be_data == MO_LE) {
2793 tcg_gen_extr_i128_i64(a, b, t16);
2794 } else {
2795 tcg_gen_extr_i128_i64(b, a, t16);
2798 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800 tcg_gen_or_i64(tmp, a, b);
2802 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2804 } else {
2805 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806 cpu_reg(s, rt), get_mem_index(s), memop);
2807 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2809 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810 tcg_gen_br(done_label);
2812 gen_set_label(fail_label);
2813 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814 gen_set_label(done_label);
2815 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819 int rn, int size)
2821 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823 int memidx = get_mem_index(s);
2824 TCGv_i64 clean_addr;
2825 MemOp memop;
2827 if (rn == 31) {
2828 gen_check_sp_alignment(s);
2830 memop = check_atomic_align(s, rn, size);
2831 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833 memidx, memop);
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837 int rn, int size)
2839 TCGv_i64 s1 = cpu_reg(s, rs);
2840 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841 TCGv_i64 t1 = cpu_reg(s, rt);
2842 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843 TCGv_i64 clean_addr;
2844 int memidx = get_mem_index(s);
2845 MemOp memop;
2847 if (rn == 31) {
2848 gen_check_sp_alignment(s);
2851 /* This is a single atomic access, despite the "pair". */
2852 memop = check_atomic_align(s, rn, size + 1);
2853 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2855 if (size == 2) {
2856 TCGv_i64 cmp = tcg_temp_new_i64();
2857 TCGv_i64 val = tcg_temp_new_i64();
2859 if (s->be_data == MO_LE) {
2860 tcg_gen_concat32_i64(val, t1, t2);
2861 tcg_gen_concat32_i64(cmp, s1, s2);
2862 } else {
2863 tcg_gen_concat32_i64(val, t2, t1);
2864 tcg_gen_concat32_i64(cmp, s2, s1);
2867 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2869 if (s->be_data == MO_LE) {
2870 tcg_gen_extr32_i64(s1, s2, cmp);
2871 } else {
2872 tcg_gen_extr32_i64(s2, s1, cmp);
2874 } else {
2875 TCGv_i128 cmp = tcg_temp_new_i128();
2876 TCGv_i128 val = tcg_temp_new_i128();
2878 if (s->be_data == MO_LE) {
2879 tcg_gen_concat_i64_i128(val, t1, t2);
2880 tcg_gen_concat_i64_i128(cmp, s1, s2);
2881 } else {
2882 tcg_gen_concat_i64_i128(val, t2, t1);
2883 tcg_gen_concat_i64_i128(cmp, s2, s1);
2886 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2888 if (s->be_data == MO_LE) {
2889 tcg_gen_extr_i128_i64(s1, s2, cmp);
2890 } else {
2891 tcg_gen_extr_i128_i64(s2, s1, cmp);
2897 * Compute the ISS.SF bit for syndrome information if an exception
2898 * is taken on a load or store. This indicates whether the instruction
2899 * is accessing a 32-bit or 64-bit register. This logic is derived
2900 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2905 if (sign) {
2907 * Signed loads are 64 bit results if we are not going to
2908 * do a zero-extend from 32 to 64 after the load.
2909 * (For a store, sign and ext are always false.)
2911 return !ext;
2912 } else {
2913 /* Unsigned loads/stores work at the specified size */
2914 return size == MO_64;
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2920 if (a->rn == 31) {
2921 gen_check_sp_alignment(s);
2923 if (a->lasr) {
2924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2926 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927 return true;
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2932 if (a->rn == 31) {
2933 gen_check_sp_alignment(s);
2935 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936 if (a->lasr) {
2937 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2939 return true;
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2944 TCGv_i64 clean_addr;
2945 MemOp memop;
2946 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2949 * StoreLORelease is the same as Store-Release for QEMU, but
2950 * needs the feature-test.
2952 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953 return false;
2955 /* Generate ISS for non-exclusive accesses including LASR. */
2956 if (a->rn == 31) {
2957 gen_check_sp_alignment(s);
2959 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962 true, a->rn != 31, memop);
2963 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964 iss_sf, a->lasr);
2965 return true;
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2970 TCGv_i64 clean_addr;
2971 MemOp memop;
2972 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2974 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2975 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976 return false;
2978 /* Generate ISS for non-exclusive accesses including LASR. */
2979 if (a->rn == 31) {
2980 gen_check_sp_alignment(s);
2982 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984 false, a->rn != 31, memop);
2985 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986 a->rt, iss_sf, a->lasr);
2987 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988 return true;
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2993 if (a->rn == 31) {
2994 gen_check_sp_alignment(s);
2996 if (a->lasr) {
2997 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2999 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000 return true;
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3005 if (a->rn == 31) {
3006 gen_check_sp_alignment(s);
3008 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009 if (a->lasr) {
3010 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3012 return true;
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3017 if (!dc_isar_feature(aa64_atomics, s)) {
3018 return false;
3020 if (((a->rt | a->rs) & 1) != 0) {
3021 return false;
3024 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025 return true;
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3030 if (!dc_isar_feature(aa64_atomics, s)) {
3031 return false;
3033 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034 return true;
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3039 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041 TCGv_i64 clean_addr = tcg_temp_new_i64();
3042 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3044 gen_pc_plus_diff(s, clean_addr, a->imm);
3045 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046 false, true, a->rt, iss_sf, false);
3047 return true;
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3052 /* Load register (literal), vector version */
3053 TCGv_i64 clean_addr;
3054 MemOp memop;
3056 if (!fp_access_check(s)) {
3057 return true;
3059 memop = finalize_memop_asimd(s, a->sz);
3060 clean_addr = tcg_temp_new_i64();
3061 gen_pc_plus_diff(s, clean_addr, a->imm);
3062 do_fp_ld(s, a->rt, clean_addr, memop);
3063 return true;
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068 uint64_t offset, bool is_store, MemOp mop)
3070 if (a->rn == 31) {
3071 gen_check_sp_alignment(s);
3074 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075 if (!a->p) {
3076 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3079 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080 (a->w || a->rn != 31), 2 << a->sz, mop);
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084 TCGv_i64 dirty_addr, uint64_t offset)
3086 if (a->w) {
3087 if (a->p) {
3088 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3090 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3096 uint64_t offset = a->imm << a->sz;
3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098 MemOp mop = finalize_memop(s, a->sz);
3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101 tcg_rt = cpu_reg(s, a->rt);
3102 tcg_rt2 = cpu_reg(s, a->rt2);
3104 * We built mop above for the single logical access -- rebuild it
3105 * now for the paired operation.
3107 * With LSE2, non-sign-extending pairs are treated atomically if
3108 * aligned, and if unaligned one of the pair will be completely
3109 * within a 16-byte block and that element will be atomic.
3110 * Otherwise each element is separately atomic.
3111 * In all cases, issue one operation with the correct atomicity.
3113 mop = a->sz + 1;
3114 if (s->align_mem) {
3115 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3117 mop = finalize_memop_pair(s, mop);
3118 if (a->sz == 2) {
3119 TCGv_i64 tmp = tcg_temp_new_i64();
3121 if (s->be_data == MO_LE) {
3122 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123 } else {
3124 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3126 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127 } else {
3128 TCGv_i128 tmp = tcg_temp_new_i128();
3130 if (s->be_data == MO_LE) {
3131 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132 } else {
3133 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3135 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3137 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138 return true;
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3143 uint64_t offset = a->imm << a->sz;
3144 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145 MemOp mop = finalize_memop(s, a->sz);
3147 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148 tcg_rt = cpu_reg(s, a->rt);
3149 tcg_rt2 = cpu_reg(s, a->rt2);
3152 * We built mop above for the single logical access -- rebuild it
3153 * now for the paired operation.
3155 * With LSE2, non-sign-extending pairs are treated atomically if
3156 * aligned, and if unaligned one of the pair will be completely
3157 * within a 16-byte block and that element will be atomic.
3158 * Otherwise each element is separately atomic.
3159 * In all cases, issue one operation with the correct atomicity.
3161 * This treats sign-extending loads like zero-extending loads,
3162 * since that reuses the most code below.
3164 mop = a->sz + 1;
3165 if (s->align_mem) {
3166 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3168 mop = finalize_memop_pair(s, mop);
3169 if (a->sz == 2) {
3170 int o2 = s->be_data == MO_LE ? 32 : 0;
3171 int o1 = o2 ^ 32;
3173 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174 if (a->sign) {
3175 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177 } else {
3178 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3181 } else {
3182 TCGv_i128 tmp = tcg_temp_new_i128();
3184 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185 if (s->be_data == MO_LE) {
3186 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187 } else {
3188 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3191 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192 return true;
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3197 uint64_t offset = a->imm << a->sz;
3198 TCGv_i64 clean_addr, dirty_addr;
3199 MemOp mop;
3201 if (!fp_access_check(s)) {
3202 return true;
3205 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206 mop = finalize_memop_asimd(s, a->sz);
3207 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208 do_fp_st(s, a->rt, clean_addr, mop);
3209 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210 do_fp_st(s, a->rt2, clean_addr, mop);
3211 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212 return true;
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3217 uint64_t offset = a->imm << a->sz;
3218 TCGv_i64 clean_addr, dirty_addr;
3219 MemOp mop;
3221 if (!fp_access_check(s)) {
3222 return true;
3225 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226 mop = finalize_memop_asimd(s, a->sz);
3227 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228 do_fp_ld(s, a->rt, clean_addr, mop);
3229 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230 do_fp_ld(s, a->rt2, clean_addr, mop);
3231 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232 return true;
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3237 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239 MemOp mop;
3240 TCGv_i128 tmp;
3242 /* STGP only comes in one size. */
3243 tcg_debug_assert(a->sz == MO_64);
3245 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246 return false;
3249 if (a->rn == 31) {
3250 gen_check_sp_alignment(s);
3253 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254 if (!a->p) {
3255 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3258 clean_addr = clean_data_tbi(s, dirty_addr);
3259 tcg_rt = cpu_reg(s, a->rt);
3260 tcg_rt2 = cpu_reg(s, a->rt2);
3263 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264 * and one tag operation. We implement it as one single aligned 16-byte
3265 * memory operation for convenience. Note that the alignment ensures
3266 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3268 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3270 tmp = tcg_temp_new_i128();
3271 if (s->be_data == MO_LE) {
3272 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273 } else {
3274 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3276 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3278 /* Perform the tag store, if tag access enabled. */
3279 if (s->ata[0]) {
3280 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282 } else {
3283 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3287 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288 return true;
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293 uint64_t offset, bool is_store, MemOp mop)
3295 int memidx;
3297 if (a->rn == 31) {
3298 gen_check_sp_alignment(s);
3301 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302 if (!a->p) {
3303 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3305 memidx = get_a64_user_mem_index(s, a->unpriv);
3306 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307 a->w || a->rn != 31,
3308 mop, a->unpriv, memidx);
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312 TCGv_i64 dirty_addr, uint64_t offset)
3314 if (a->w) {
3315 if (a->p) {
3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3318 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3324 bool iss_sf, iss_valid = !a->w;
3325 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326 int memidx = get_a64_user_mem_index(s, a->unpriv);
3327 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3329 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3331 tcg_rt = cpu_reg(s, a->rt);
3332 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3334 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335 iss_valid, a->rt, iss_sf, false);
3336 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337 return true;
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3342 bool iss_sf, iss_valid = !a->w;
3343 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344 int memidx = get_a64_user_mem_index(s, a->unpriv);
3345 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3347 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3349 tcg_rt = cpu_reg(s, a->rt);
3350 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3352 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355 return true;
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3360 TCGv_i64 clean_addr, dirty_addr;
3361 MemOp mop;
3363 if (!fp_access_check(s)) {
3364 return true;
3366 mop = finalize_memop_asimd(s, a->sz);
3367 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368 do_fp_st(s, a->rt, clean_addr, mop);
3369 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370 return true;
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3375 TCGv_i64 clean_addr, dirty_addr;
3376 MemOp mop;
3378 if (!fp_access_check(s)) {
3379 return true;
3381 mop = finalize_memop_asimd(s, a->sz);
3382 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383 do_fp_ld(s, a->rt, clean_addr, mop);
3384 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385 return true;
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390 bool is_store, MemOp memop)
3392 TCGv_i64 tcg_rm;
3394 if (a->rn == 31) {
3395 gen_check_sp_alignment(s);
3397 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3399 tcg_rm = read_cpu_reg(s, a->rm, 1);
3400 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3402 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3408 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410 MemOp memop;
3412 if (extract32(a->opt, 1, 1) == 0) {
3413 return false;
3416 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418 tcg_rt = cpu_reg(s, a->rt);
3419 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420 a->ext, true, a->rt, iss_sf, false);
3421 return true;
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3426 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428 MemOp memop;
3430 if (extract32(a->opt, 1, 1) == 0) {
3431 return false;
3434 memop = finalize_memop(s, a->sz);
3435 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436 tcg_rt = cpu_reg(s, a->rt);
3437 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438 return true;
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3443 TCGv_i64 clean_addr, dirty_addr;
3444 MemOp memop;
3446 if (extract32(a->opt, 1, 1) == 0) {
3447 return false;
3450 if (!fp_access_check(s)) {
3451 return true;
3454 memop = finalize_memop_asimd(s, a->sz);
3455 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456 do_fp_ld(s, a->rt, clean_addr, memop);
3457 return true;
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3462 TCGv_i64 clean_addr, dirty_addr;
3463 MemOp memop;
3465 if (extract32(a->opt, 1, 1) == 0) {
3466 return false;
3469 if (!fp_access_check(s)) {
3470 return true;
3473 memop = finalize_memop_asimd(s, a->sz);
3474 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475 do_fp_st(s, a->rt, clean_addr, memop);
3476 return true;
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481 int sign, bool invert)
3483 MemOp mop = a->sz | sign;
3484 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3486 if (a->rn == 31) {
3487 gen_check_sp_alignment(s);
3489 mop = check_atomic_align(s, a->rn, mop);
3490 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491 a->rn != 31, mop);
3492 tcg_rs = read_cpu_reg(s, a->rs, true);
3493 tcg_rt = cpu_reg(s, a->rt);
3494 if (invert) {
3495 tcg_gen_not_i64(tcg_rs, tcg_rs);
3498 * The tcg atomic primitives are all full barriers. Therefore we
3499 * can ignore the Acquire and Release bits of this instruction.
3501 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3503 if (mop & MO_SIGN) {
3504 switch (a->sz) {
3505 case MO_8:
3506 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507 break;
3508 case MO_16:
3509 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510 break;
3511 case MO_32:
3512 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513 break;
3514 case MO_64:
3515 break;
3516 default:
3517 g_assert_not_reached();
3520 return true;
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3535 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536 TCGv_i64 clean_addr;
3537 MemOp mop;
3539 if (!dc_isar_feature(aa64_atomics, s) ||
3540 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541 return false;
3543 if (a->rn == 31) {
3544 gen_check_sp_alignment(s);
3546 mop = check_atomic_align(s, a->rn, a->sz);
3547 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548 a->rn != 31, mop);
3550 * LDAPR* are a special case because they are a simple load, not a
3551 * fetch-and-do-something op.
3552 * The architectural consistency requirements here are weaker than
3553 * full load-acquire (we only need "load-acquire processor consistent"),
3554 * but we choose to implement them as full LDAQ.
3556 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557 true, a->rt, iss_sf, true);
3558 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559 return true;
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3564 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565 MemOp memop;
3567 /* Load with pointer authentication */
3568 if (!dc_isar_feature(aa64_pauth, s)) {
3569 return false;
3572 if (a->rn == 31) {
3573 gen_check_sp_alignment(s);
3575 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3577 if (s->pauth_active) {
3578 if (!a->m) {
3579 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580 tcg_constant_i64(0));
3581 } else {
3582 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583 tcg_constant_i64(0));
3587 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3589 memop = finalize_memop(s, MO_64);
3591 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3592 clean_addr = gen_mte_check1(s, dirty_addr, false,
3593 a->w || a->rn != 31, memop);
3595 tcg_rt = cpu_reg(s, a->rt);
3596 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597 /* extend */ false, /* iss_valid */ !a->w,
3598 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3600 if (a->w) {
3601 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3603 return true;
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3608 TCGv_i64 clean_addr, dirty_addr;
3609 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3612 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613 return false;
3616 if (a->rn == 31) {
3617 gen_check_sp_alignment(s);
3620 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623 clean_addr = clean_data_tbi(s, dirty_addr);
3626 * Load-AcquirePC semantics; we implement as the slightly more
3627 * restrictive Load-Acquire.
3629 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630 a->rt, iss_sf, true);
3631 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632 return true;
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3637 TCGv_i64 clean_addr, dirty_addr;
3638 MemOp mop = a->sz;
3639 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3641 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642 return false;
3645 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3647 if (a->rn == 31) {
3648 gen_check_sp_alignment(s);
3651 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654 clean_addr = clean_data_tbi(s, dirty_addr);
3656 /* Store-Release semantics */
3657 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659 return true;
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3664 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665 MemOp endian, align, mop;
3667 int total; /* total bytes */
3668 int elements; /* elements per vector */
3669 int r;
3670 int size = a->sz;
3672 if (!a->p && a->rm != 0) {
3673 /* For non-postindexed accesses the Rm field must be 0 */
3674 return false;
3676 if (size == 3 && !a->q && a->selem != 1) {
3677 return false;
3679 if (!fp_access_check(s)) {
3680 return true;
3683 if (a->rn == 31) {
3684 gen_check_sp_alignment(s);
3687 /* For our purposes, bytes are always little-endian. */
3688 endian = s->be_data;
3689 if (size == 0) {
3690 endian = MO_LE;
3693 total = a->rpt * a->selem * (a->q ? 16 : 8);
3694 tcg_rn = cpu_reg_sp(s, a->rn);
3697 * Issue the MTE check vs the logical repeat count, before we
3698 * promote consecutive little-endian elements below.
3700 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701 finalize_memop_asimd(s, size));
3704 * Consecutive little-endian elements from a single register
3705 * can be promoted to a larger little-endian operation.
3707 align = MO_ALIGN;
3708 if (a->selem == 1 && endian == MO_LE) {
3709 align = pow2_align(size);
3710 size = 3;
3712 if (!s->align_mem) {
3713 align = 0;
3715 mop = endian | size | align;
3717 elements = (a->q ? 16 : 8) >> size;
3718 tcg_ebytes = tcg_constant_i64(1 << size);
3719 for (r = 0; r < a->rpt; r++) {
3720 int e;
3721 for (e = 0; e < elements; e++) {
3722 int xs;
3723 for (xs = 0; xs < a->selem; xs++) {
3724 int tt = (a->rt + r + xs) % 32;
3725 do_vec_ld(s, tt, e, clean_addr, mop);
3726 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3732 * For non-quad operations, setting a slice of the low 64 bits of
3733 * the register clears the high 64 bits (in the ARM ARM pseudocode
3734 * this is implicit in the fact that 'rval' is a 64 bit wide
3735 * variable). For quad operations, we might still need to zero
3736 * the high bits of SVE.
3738 for (r = 0; r < a->rpt * a->selem; r++) {
3739 int tt = (a->rt + r) % 32;
3740 clear_vec_high(s, a->q, tt);
3743 if (a->p) {
3744 if (a->rm == 31) {
3745 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746 } else {
3747 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3750 return true;
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3755 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756 MemOp endian, align, mop;
3758 int total; /* total bytes */
3759 int elements; /* elements per vector */
3760 int r;
3761 int size = a->sz;
3763 if (!a->p && a->rm != 0) {
3764 /* For non-postindexed accesses the Rm field must be 0 */
3765 return false;
3767 if (size == 3 && !a->q && a->selem != 1) {
3768 return false;
3770 if (!fp_access_check(s)) {
3771 return true;
3774 if (a->rn == 31) {
3775 gen_check_sp_alignment(s);
3778 /* For our purposes, bytes are always little-endian. */
3779 endian = s->be_data;
3780 if (size == 0) {
3781 endian = MO_LE;
3784 total = a->rpt * a->selem * (a->q ? 16 : 8);
3785 tcg_rn = cpu_reg_sp(s, a->rn);
3788 * Issue the MTE check vs the logical repeat count, before we
3789 * promote consecutive little-endian elements below.
3791 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792 finalize_memop_asimd(s, size));
3795 * Consecutive little-endian elements from a single register
3796 * can be promoted to a larger little-endian operation.
3798 align = MO_ALIGN;
3799 if (a->selem == 1 && endian == MO_LE) {
3800 align = pow2_align(size);
3801 size = 3;
3803 if (!s->align_mem) {
3804 align = 0;
3806 mop = endian | size | align;
3808 elements = (a->q ? 16 : 8) >> size;
3809 tcg_ebytes = tcg_constant_i64(1 << size);
3810 for (r = 0; r < a->rpt; r++) {
3811 int e;
3812 for (e = 0; e < elements; e++) {
3813 int xs;
3814 for (xs = 0; xs < a->selem; xs++) {
3815 int tt = (a->rt + r + xs) % 32;
3816 do_vec_st(s, tt, e, clean_addr, mop);
3817 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3822 if (a->p) {
3823 if (a->rm == 31) {
3824 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825 } else {
3826 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3829 return true;
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3834 int xs, total, rt;
3835 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836 MemOp mop;
3838 if (!a->p && a->rm != 0) {
3839 return false;
3841 if (!fp_access_check(s)) {
3842 return true;
3845 if (a->rn == 31) {
3846 gen_check_sp_alignment(s);
3849 total = a->selem << a->scale;
3850 tcg_rn = cpu_reg_sp(s, a->rn);
3852 mop = finalize_memop_asimd(s, a->scale);
3853 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854 total, mop);
3856 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858 do_vec_st(s, rt, a->index, clean_addr, mop);
3859 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3862 if (a->p) {
3863 if (a->rm == 31) {
3864 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865 } else {
3866 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3869 return true;
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3874 int xs, total, rt;
3875 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876 MemOp mop;
3878 if (!a->p && a->rm != 0) {
3879 return false;
3881 if (!fp_access_check(s)) {
3882 return true;
3885 if (a->rn == 31) {
3886 gen_check_sp_alignment(s);
3889 total = a->selem << a->scale;
3890 tcg_rn = cpu_reg_sp(s, a->rn);
3892 mop = finalize_memop_asimd(s, a->scale);
3893 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894 total, mop);
3896 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898 do_vec_ld(s, rt, a->index, clean_addr, mop);
3899 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3902 if (a->p) {
3903 if (a->rm == 31) {
3904 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905 } else {
3906 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3909 return true;
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3914 int xs, total, rt;
3915 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916 MemOp mop;
3918 if (!a->p && a->rm != 0) {
3919 return false;
3921 if (!fp_access_check(s)) {
3922 return true;
3925 if (a->rn == 31) {
3926 gen_check_sp_alignment(s);
3929 total = a->selem << a->scale;
3930 tcg_rn = cpu_reg_sp(s, a->rn);
3932 mop = finalize_memop_asimd(s, a->scale);
3933 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934 total, mop);
3936 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938 /* Load and replicate to all elements */
3939 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3941 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3947 if (a->p) {
3948 if (a->rm == 31) {
3949 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950 } else {
3951 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3954 return true;
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3959 TCGv_i64 addr, clean_addr, tcg_rt;
3960 int size = 4 << s->dcz_blocksize;
3962 if (!dc_isar_feature(aa64_mte, s)) {
3963 return false;
3965 if (s->current_el == 0) {
3966 return false;
3969 if (a->rn == 31) {
3970 gen_check_sp_alignment(s);
3973 addr = read_cpu_reg_sp(s, a->rn, true);
3974 tcg_gen_addi_i64(addr, addr, a->imm);
3975 tcg_rt = cpu_reg(s, a->rt);
3977 if (s->ata[0]) {
3978 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3981 * The non-tags portion of STZGM is mostly like DC_ZVA,
3982 * except the alignment happens before the access.
3984 clean_addr = clean_data_tbi(s, addr);
3985 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986 gen_helper_dc_zva(tcg_env, clean_addr);
3987 return true;
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3992 TCGv_i64 addr, clean_addr, tcg_rt;
3994 if (!dc_isar_feature(aa64_mte, s)) {
3995 return false;
3997 if (s->current_el == 0) {
3998 return false;
4001 if (a->rn == 31) {
4002 gen_check_sp_alignment(s);
4005 addr = read_cpu_reg_sp(s, a->rn, true);
4006 tcg_gen_addi_i64(addr, addr, a->imm);
4007 tcg_rt = cpu_reg(s, a->rt);
4009 if (s->ata[0]) {
4010 gen_helper_stgm(tcg_env, addr, tcg_rt);
4011 } else {
4012 MMUAccessType acc = MMU_DATA_STORE;
4013 int size = 4 << s->gm_blocksize;
4015 clean_addr = clean_data_tbi(s, addr);
4016 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017 gen_probe_access(s, clean_addr, acc, size);
4019 return true;
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4024 TCGv_i64 addr, clean_addr, tcg_rt;
4026 if (!dc_isar_feature(aa64_mte, s)) {
4027 return false;
4029 if (s->current_el == 0) {
4030 return false;
4033 if (a->rn == 31) {
4034 gen_check_sp_alignment(s);
4037 addr = read_cpu_reg_sp(s, a->rn, true);
4038 tcg_gen_addi_i64(addr, addr, a->imm);
4039 tcg_rt = cpu_reg(s, a->rt);
4041 if (s->ata[0]) {
4042 gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043 } else {
4044 MMUAccessType acc = MMU_DATA_LOAD;
4045 int size = 4 << s->gm_blocksize;
4047 clean_addr = clean_data_tbi(s, addr);
4048 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049 gen_probe_access(s, clean_addr, acc, size);
4050 /* The result tags are zeros. */
4051 tcg_gen_movi_i64(tcg_rt, 0);
4053 return true;
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4058 TCGv_i64 addr, clean_addr, tcg_rt;
4060 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061 return false;
4064 if (a->rn == 31) {
4065 gen_check_sp_alignment(s);
4068 addr = read_cpu_reg_sp(s, a->rn, true);
4069 if (!a->p) {
4070 /* pre-index or signed offset */
4071 tcg_gen_addi_i64(addr, addr, a->imm);
4074 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075 tcg_rt = cpu_reg(s, a->rt);
4076 if (s->ata[0]) {
4077 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078 } else {
4080 * Tag access disabled: we must check for aborts on the load
4081 * load from [rn+offset], and then insert a 0 tag into rt.
4083 clean_addr = clean_data_tbi(s, addr);
4084 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4088 if (a->w) {
4089 /* pre-index or post-index */
4090 if (a->p) {
4091 /* post-index */
4092 tcg_gen_addi_i64(addr, addr, a->imm);
4094 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4096 return true;
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4101 TCGv_i64 addr, tcg_rt;
4103 if (a->rn == 31) {
4104 gen_check_sp_alignment(s);
4107 addr = read_cpu_reg_sp(s, a->rn, true);
4108 if (!a->p) {
4109 /* pre-index or signed offset */
4110 tcg_gen_addi_i64(addr, addr, a->imm);
4112 tcg_rt = cpu_reg_sp(s, a->rt);
4113 if (!s->ata[0]) {
4115 * For STG and ST2G, we need to check alignment and probe memory.
4116 * TODO: For STZG and STZ2G, we could rely on the stores below,
4117 * at least for system mode; user-only won't enforce alignment.
4119 if (is_pair) {
4120 gen_helper_st2g_stub(tcg_env, addr);
4121 } else {
4122 gen_helper_stg_stub(tcg_env, addr);
4124 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125 if (is_pair) {
4126 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127 } else {
4128 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4130 } else {
4131 if (is_pair) {
4132 gen_helper_st2g(tcg_env, addr, tcg_rt);
4133 } else {
4134 gen_helper_stg(tcg_env, addr, tcg_rt);
4138 if (is_zero) {
4139 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140 TCGv_i64 zero64 = tcg_constant_i64(0);
4141 TCGv_i128 zero128 = tcg_temp_new_i128();
4142 int mem_index = get_mem_index(s);
4143 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4145 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4147 /* This is 1 or 2 atomic 16-byte operations. */
4148 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149 if (is_pair) {
4150 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4155 if (a->w) {
4156 /* pre-index or post-index */
4157 if (a->p) {
4158 /* post-index */
4159 tcg_gen_addi_i64(addr, addr, a->imm);
4161 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4163 return true;
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174 bool is_setg, SetFn fn)
4176 int memidx;
4177 uint32_t syndrome, desc = 0;
4179 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180 return false;
4184 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185 * us to pull this check before the CheckMOPSEnabled() test
4186 * (which we do in the helper function)
4188 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189 a->rd == 31 || a->rn == 31) {
4190 return false;
4193 memidx = get_a64_user_mem_index(s, a->unpriv);
4196 * We pass option_a == true, matching our implementation;
4197 * we pass wrong_option == false: helper function may set that bit.
4199 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200 is_epilogue, false, true, a->rd, a->rs, a->rn);
4202 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203 /* We may need to do MTE tag checking, so assemble the descriptor */
4204 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4209 /* The helper function always needs the memidx even with MTE disabled */
4210 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4213 * The helper needs the register numbers, but since they're in
4214 * the syndrome anyway, we let it extract them from there rather
4215 * than passing in an extra three integer arguments.
4217 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218 return true;
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4232 int rmemidx, wmemidx;
4233 uint32_t syndrome, rdesc = 0, wdesc = 0;
4234 bool wunpriv = extract32(a->options, 0, 1);
4235 bool runpriv = extract32(a->options, 1, 1);
4238 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239 * us to pull this check before the CheckMOPSEnabled() test
4240 * (which we do in the helper function)
4242 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244 return false;
4247 rmemidx = get_a64_user_mem_index(s, runpriv);
4248 wmemidx = get_a64_user_mem_index(s, wunpriv);
4251 * We pass option_a == true, matching our implementation;
4252 * we pass wrong_option == false: helper function may set that bit.
4254 syndrome = syn_mop(false, false, a->options, is_epilogue,
4255 false, true, a->rd, a->rs, a->rn);
4257 /* If we need to do MTE tag checking, assemble the descriptors */
4258 if (s->mte_active[runpriv]) {
4259 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4262 if (s->mte_active[wunpriv]) {
4263 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4267 /* The helper function needs these parts of the descriptor regardless */
4268 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4272 * The helper needs the register numbers, but since they're in
4273 * the syndrome anyway, we let it extract them from there rather
4274 * than passing in an extra three integer arguments.
4276 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277 tcg_constant_i32(rdesc));
4278 return true;
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4293 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4297 fn(tcg_rd, tcg_rn, tcg_imm);
4298 if (!a->sf) {
4299 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4301 return true;
4305 * PC-rel. addressing
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4310 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311 return true;
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4316 int64_t offset = (int64_t)a->imm << 12;
4318 /* The page offset is ok for CF_PCREL. */
4319 offset -= s->pc_curr & 0xfff;
4320 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321 return true;
4325 * Add/subtract (immediate)
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4333 * Add/subtract (immediate, with tags)
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337 bool sub_op)
4339 TCGv_i64 tcg_rn, tcg_rd;
4340 int imm;
4342 imm = a->uimm6 << LOG2_TAG_GRANULE;
4343 if (sub_op) {
4344 imm = -imm;
4347 tcg_rn = cpu_reg_sp(s, a->rn);
4348 tcg_rd = cpu_reg_sp(s, a->rd);
4350 if (s->ata[0]) {
4351 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352 tcg_constant_i32(imm),
4353 tcg_constant_i32(a->uimm4));
4354 } else {
4355 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4358 return true;
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4364 /* The input should be a value in the bottom e bits (with higher
4365 * bits zero); returns that value replicated into every element
4366 * of size e in a 64 bit integer.
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4370 assert(e != 0);
4371 while (e < 64) {
4372 mask |= mask << e;
4373 e *= 2;
4375 return mask;
4379 * Logical (immediate)
4383 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385 * value (ie should cause a guest UNDEF exception), and true if they are
4386 * valid, in which case the decoded bit pattern is written to result.
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389 unsigned int imms, unsigned int immr)
4391 uint64_t mask;
4392 unsigned e, levels, s, r;
4393 int len;
4395 assert(immn < 2 && imms < 64 && immr < 64);
4397 /* The bit patterns we create here are 64 bit patterns which
4398 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399 * 64 bits each. Each element contains the same value: a run
4400 * of between 1 and e-1 non-zero bits, rotated within the
4401 * element by between 0 and e-1 bits.
4403 * The element size and run length are encoded into immn (1 bit)
4404 * and imms (6 bits) as follows:
4405 * 64 bit elements: immn = 1, imms = <length of run - 1>
4406 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411 * Notice that immn = 0, imms = 11111x is the only combination
4412 * not covered by one of the above options; this is reserved.
4413 * Further, <length of run - 1> all-ones is a reserved pattern.
4415 * In all cases the rotation is by immr % e (and immr is 6 bits).
4418 /* First determine the element size */
4419 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420 if (len < 1) {
4421 /* This is the immn == 0, imms == 0x11111x case */
4422 return false;
4424 e = 1 << len;
4426 levels = e - 1;
4427 s = imms & levels;
4428 r = immr & levels;
4430 if (s == levels) {
4431 /* <length of run - 1> mustn't be all-ones. */
4432 return false;
4435 /* Create the value of one element: s+1 set bits rotated
4436 * by r within the element (which is e bits wide)...
4438 mask = MAKE_64BIT_MASK(0, s + 1);
4439 if (r) {
4440 mask = (mask >> r) | (mask << (e - r));
4441 mask &= MAKE_64BIT_MASK(0, e);
4443 /* ...then replicate the element over the whole 64 bit value */
4444 mask = bitfield_replicate(mask, e);
4445 *result = mask;
4446 return true;
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4452 TCGv_i64 tcg_rd, tcg_rn;
4453 uint64_t imm;
4455 /* Some immediate field values are reserved. */
4456 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457 extract32(a->dbm, 0, 6),
4458 extract32(a->dbm, 6, 6))) {
4459 return false;
4461 if (!a->sf) {
4462 imm &= 0xffffffffull;
4465 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466 tcg_rn = cpu_reg(s, a->rn);
4468 fn(tcg_rd, tcg_rn, imm);
4469 if (set_cc) {
4470 gen_logic_CC(a->sf, tcg_rd);
4472 if (!a->sf) {
4473 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4475 return true;
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4484 * Move wide (immediate)
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4489 int pos = a->hw << 4;
4490 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491 return true;
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4496 int pos = a->hw << 4;
4497 uint64_t imm = a->imm;
4499 imm = ~(imm << pos);
4500 if (!a->sf) {
4501 imm = (uint32_t)imm;
4503 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504 return true;
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4509 int pos = a->hw << 4;
4510 TCGv_i64 tcg_rd, tcg_im;
4512 tcg_rd = cpu_reg(s, a->rd);
4513 tcg_im = tcg_constant_i64(a->imm);
4514 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515 if (!a->sf) {
4516 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4518 return true;
4522 * Bitfield
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4527 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 unsigned int bitsize = a->sf ? 64 : 32;
4530 unsigned int ri = a->immr;
4531 unsigned int si = a->imms;
4532 unsigned int pos, len;
4534 if (si >= ri) {
4535 /* Wd<s-r:0> = Wn<s:r> */
4536 len = (si - ri) + 1;
4537 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538 if (!a->sf) {
4539 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4541 } else {
4542 /* Wd<32+s-r,32-r> = Wn<s:0> */
4543 len = si + 1;
4544 pos = (bitsize - ri) & (bitsize - 1);
4546 if (len < ri) {
4548 * Sign extend the destination field from len to fill the
4549 * balance of the word. Let the deposit below insert all
4550 * of those sign bits.
4552 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553 len = ri;
4557 * We start with zero, and we haven't modified any bits outside
4558 * bitsize, therefore no final zero-extension is unneeded for !sf.
4560 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4562 return true;
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4567 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569 unsigned int bitsize = a->sf ? 64 : 32;
4570 unsigned int ri = a->immr;
4571 unsigned int si = a->imms;
4572 unsigned int pos, len;
4574 tcg_rd = cpu_reg(s, a->rd);
4575 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4577 if (si >= ri) {
4578 /* Wd<s-r:0> = Wn<s:r> */
4579 len = (si - ri) + 1;
4580 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581 } else {
4582 /* Wd<32+s-r,32-r> = Wn<s:0> */
4583 len = si + 1;
4584 pos = (bitsize - ri) & (bitsize - 1);
4585 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4587 return true;
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4592 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594 unsigned int bitsize = a->sf ? 64 : 32;
4595 unsigned int ri = a->immr;
4596 unsigned int si = a->imms;
4597 unsigned int pos, len;
4599 tcg_rd = cpu_reg(s, a->rd);
4600 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4602 if (si >= ri) {
4603 /* Wd<s-r:0> = Wn<s:r> */
4604 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605 len = (si - ri) + 1;
4606 pos = 0;
4607 } else {
4608 /* Wd<32+s-r,32-r> = Wn<s:0> */
4609 len = si + 1;
4610 pos = (bitsize - ri) & (bitsize - 1);
4613 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614 if (!a->sf) {
4615 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4617 return true;
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4622 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4624 tcg_rd = cpu_reg(s, a->rd);
4626 if (unlikely(a->imm == 0)) {
4628 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629 * so an extract from bit 0 is a special case.
4631 if (a->sf) {
4632 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633 } else {
4634 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4636 } else {
4637 tcg_rm = cpu_reg(s, a->rm);
4638 tcg_rn = cpu_reg(s, a->rn);
4640 if (a->sf) {
4641 /* Specialization to ROR happens in EXTRACT2. */
4642 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643 } else {
4644 TCGv_i32 t0 = tcg_temp_new_i32();
4646 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647 if (a->rm == a->rn) {
4648 tcg_gen_rotri_i32(t0, t0, a->imm);
4649 } else {
4650 TCGv_i32 t1 = tcg_temp_new_i32();
4651 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4654 tcg_gen_extu_i32_i64(tcg_rd, t0);
4657 return true;
4661 * Cryptographic AES, SHA, SHA512
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4698 if (!dc_isar_feature(aa64_sm3, s)) {
4699 return false;
4701 if (fp_access_check(s)) {
4702 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704 TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705 TCGv_i32 tcg_res = tcg_temp_new_i32();
4706 unsigned vsz, dofs;
4708 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4712 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4717 /* Clear the whole register first, then store bits [127:96]. */
4718 vsz = vec_full_reg_size(s);
4719 dofs = vec_full_reg_offset(s, a->rd);
4720 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4723 return true;
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4728 if (fp_access_check(s)) {
4729 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4731 return true;
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4740 if (!dc_isar_feature(aa64_sha3, s)) {
4741 return false;
4743 if (fp_access_check(s)) {
4744 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745 vec_full_reg_offset(s, a->rn),
4746 vec_full_reg_offset(s, a->rm), a->imm, 16,
4747 vec_full_reg_size(s));
4749 return true;
4753 * Advanced SIMD copy
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4758 unsigned esz = ctz32(imm);
4759 if (esz <= MO_64) {
4760 *pesz = esz;
4761 *pidx = imm >> (esz + 1);
4762 return true;
4764 return false;
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4769 MemOp esz;
4770 unsigned idx;
4772 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773 return false;
4775 if (fp_access_check(s)) {
4777 * This instruction just extracts the specified element and
4778 * zero-extends it into the bottom of the destination register.
4780 TCGv_i64 tmp = tcg_temp_new_i64();
4781 read_vec_element(s, tmp, a->rn, idx, esz);
4782 write_fp_dreg(s, a->rd, tmp);
4784 return true;
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4789 MemOp esz;
4790 unsigned idx;
4792 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793 return false;
4795 if (esz == MO_64 && !a->q) {
4796 return false;
4798 if (fp_access_check(s)) {
4799 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800 vec_reg_offset(s, a->rn, idx, esz),
4801 a->q ? 16 : 8, vec_full_reg_size(s));
4803 return true;
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4808 MemOp esz;
4809 unsigned idx;
4811 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812 return false;
4814 if (esz == MO_64 && !a->q) {
4815 return false;
4817 if (fp_access_check(s)) {
4818 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819 a->q ? 16 : 8, vec_full_reg_size(s),
4820 cpu_reg(s, a->rn));
4822 return true;
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4827 MemOp esz;
4828 unsigned idx;
4830 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831 return false;
4833 if (is_signed) {
4834 if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835 return false;
4837 } else {
4838 if (esz == MO_64 ? !a->q : a->q) {
4839 return false;
4842 if (fp_access_check(s)) {
4843 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845 if (is_signed && !a->q) {
4846 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4849 return true;
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4857 MemOp esz;
4858 unsigned idx;
4860 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861 return false;
4863 if (fp_access_check(s)) {
4864 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865 clear_vec_high(s, true, a->rd);
4867 return true;
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4872 MemOp esz;
4873 unsigned didx, sidx;
4875 if (!decode_esz_idx(a->di, &esz, &didx)) {
4876 return false;
4878 sidx = a->si >> esz;
4879 if (fp_access_check(s)) {
4880 TCGv_i64 tmp = tcg_temp_new_i64();
4882 read_vec_element(s, tmp, a->rn, sidx, esz);
4883 write_vec_element(s, tmp, a->rd, didx, esz);
4885 /* INS is considered a 128-bit write for SVE. */
4886 clear_vec_high(s, true, a->rd);
4888 return true;
4892 * Advanced SIMD three same
4895 typedef struct FPScalar {
4896 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4903 switch (a->esz) {
4904 case MO_64:
4905 if (fp_access_check(s)) {
4906 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909 write_fp_dreg(s, a->rd, t0);
4911 break;
4912 case MO_32:
4913 if (fp_access_check(s)) {
4914 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915 TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917 write_fp_sreg(s, a->rd, t0);
4919 break;
4920 case MO_16:
4921 if (!dc_isar_feature(aa64_fp16, s)) {
4922 return false;
4924 if (fp_access_check(s)) {
4925 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926 TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928 write_fp_sreg(s, a->rd, t0);
4930 break;
4931 default:
4932 return false;
4934 return true;
4937 static const FPScalar f_scalar_fadd = {
4938 gen_helper_vfp_addh,
4939 gen_helper_vfp_adds,
4940 gen_helper_vfp_addd,
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4944 static const FPScalar f_scalar_fsub = {
4945 gen_helper_vfp_subh,
4946 gen_helper_vfp_subs,
4947 gen_helper_vfp_subd,
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4951 static const FPScalar f_scalar_fdiv = {
4952 gen_helper_vfp_divh,
4953 gen_helper_vfp_divs,
4954 gen_helper_vfp_divd,
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4958 static const FPScalar f_scalar_fmul = {
4959 gen_helper_vfp_mulh,
4960 gen_helper_vfp_muls,
4961 gen_helper_vfp_muld,
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4965 static const FPScalar f_scalar_fmax = {
4966 gen_helper_advsimd_maxh,
4967 gen_helper_vfp_maxs,
4968 gen_helper_vfp_maxd,
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4972 static const FPScalar f_scalar_fmin = {
4973 gen_helper_advsimd_minh,
4974 gen_helper_vfp_mins,
4975 gen_helper_vfp_mind,
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4979 static const FPScalar f_scalar_fmaxnm = {
4980 gen_helper_advsimd_maxnumh,
4981 gen_helper_vfp_maxnums,
4982 gen_helper_vfp_maxnumd,
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4986 static const FPScalar f_scalar_fminnm = {
4987 gen_helper_advsimd_minnumh,
4988 gen_helper_vfp_minnums,
4989 gen_helper_vfp_minnumd,
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4993 static const FPScalar f_scalar_fmulx = {
4994 gen_helper_advsimd_mulxh,
4995 gen_helper_vfp_mulxs,
4996 gen_helper_vfp_mulxd,
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5002 gen_helper_vfp_mulh(d, n, m, s);
5003 gen_vfp_negh(d, d);
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5008 gen_helper_vfp_muls(d, n, m, s);
5009 gen_vfp_negs(d, d);
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5014 gen_helper_vfp_muld(d, n, m, s);
5015 gen_vfp_negd(d, d);
5018 static const FPScalar f_scalar_fnmul = {
5019 gen_fnmul_h,
5020 gen_fnmul_s,
5021 gen_fnmul_d,
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5025 static const FPScalar f_scalar_fcmeq = {
5026 gen_helper_advsimd_ceq_f16,
5027 gen_helper_neon_ceq_f32,
5028 gen_helper_neon_ceq_f64,
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5032 static const FPScalar f_scalar_fcmge = {
5033 gen_helper_advsimd_cge_f16,
5034 gen_helper_neon_cge_f32,
5035 gen_helper_neon_cge_f64,
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5039 static const FPScalar f_scalar_fcmgt = {
5040 gen_helper_advsimd_cgt_f16,
5041 gen_helper_neon_cgt_f32,
5042 gen_helper_neon_cgt_f64,
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5046 static const FPScalar f_scalar_facge = {
5047 gen_helper_advsimd_acge_f16,
5048 gen_helper_neon_acge_f32,
5049 gen_helper_neon_acge_f64,
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5053 static const FPScalar f_scalar_facgt = {
5054 gen_helper_advsimd_acgt_f16,
5055 gen_helper_neon_acgt_f32,
5056 gen_helper_neon_acgt_f64,
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5062 gen_helper_vfp_subh(d, n, m, s);
5063 gen_vfp_absh(d, d);
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5068 gen_helper_vfp_subs(d, n, m, s);
5069 gen_vfp_abss(d, d);
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5074 gen_helper_vfp_subd(d, n, m, s);
5075 gen_vfp_absd(d, d);
5078 static const FPScalar f_scalar_fabd = {
5079 gen_fabd_h,
5080 gen_fabd_s,
5081 gen_fabd_d,
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5085 static const FPScalar f_scalar_frecps = {
5086 gen_helper_recpsf_f16,
5087 gen_helper_recpsf_f32,
5088 gen_helper_recpsf_f64,
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5092 static const FPScalar f_scalar_frsqrts = {
5093 gen_helper_rsqrtsf_f16,
5094 gen_helper_rsqrtsf_f32,
5095 gen_helper_rsqrtsf_f64,
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100 MemOp sgn_n, MemOp sgn_m,
5101 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5104 TCGv_i64 t0, t1, t2, qc;
5105 MemOp esz = a->esz;
5107 if (!fp_access_check(s)) {
5108 return true;
5111 t0 = tcg_temp_new_i64();
5112 t1 = tcg_temp_new_i64();
5113 t2 = tcg_temp_new_i64();
5114 qc = tcg_temp_new_i64();
5115 read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116 read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5119 if (esz == MO_64) {
5120 gen_d(t0, qc, t1, t2);
5121 } else {
5122 gen_bhs(t0, qc, t1, t2, esz);
5123 tcg_gen_ext_i64(t0, t0, esz);
5126 write_fp_dreg(s, a->rd, t0);
5127 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128 return true;
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5141 if (fp_access_check(s)) {
5142 TCGv_i64 t0 = tcg_temp_new_i64();
5143 TCGv_i64 t1 = tcg_temp_new_i64();
5145 read_vec_element(s, t0, a->rn, 0, MO_64);
5146 read_vec_element(s, t1, a->rm, 0, MO_64);
5147 fn(t0, t0, t1);
5148 write_fp_dreg(s, a->rd, t0);
5150 return true;
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5160 typedef struct ENVScalar2 {
5161 NeonGenTwoOpEnvFn *gen_bhs[3];
5162 NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5167 if (!fp_access_check(s)) {
5168 return true;
5170 if (a->esz == MO_64) {
5171 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173 f->gen_d(t0, tcg_env, t0, t1);
5174 write_fp_dreg(s, a->rd, t0);
5175 } else {
5176 TCGv_i32 t0 = tcg_temp_new_i32();
5177 TCGv_i32 t1 = tcg_temp_new_i32();
5179 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182 write_fp_sreg(s, a->rd, t0);
5184 return true;
5187 static const ENVScalar2 f_scalar_sqshl = {
5188 { gen_helper_neon_qshl_s8,
5189 gen_helper_neon_qshl_s16,
5190 gen_helper_neon_qshl_s32 },
5191 gen_helper_neon_qshl_s64,
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5195 static const ENVScalar2 f_scalar_uqshl = {
5196 { gen_helper_neon_qshl_u8,
5197 gen_helper_neon_qshl_u16,
5198 gen_helper_neon_qshl_u32 },
5199 gen_helper_neon_qshl_u64,
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204 { gen_helper_neon_qrshl_s8,
5205 gen_helper_neon_qrshl_s16,
5206 gen_helper_neon_qrshl_s32 },
5207 gen_helper_neon_qrshl_s64,
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212 { gen_helper_neon_qrshl_u8,
5213 gen_helper_neon_qrshl_u16,
5214 gen_helper_neon_qrshl_u32 },
5215 gen_helper_neon_qrshl_u64,
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220 const ENVScalar2 *f)
5222 if (a->esz == MO_16 || a->esz == MO_32) {
5223 return do_env_scalar2(s, a, f);
5225 return false;
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5238 typedef struct ENVScalar3 {
5239 NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243 const ENVScalar3 *f)
5245 TCGv_i32 t0, t1, t2;
5247 if (a->esz != MO_16 && a->esz != MO_32) {
5248 return false;
5250 if (!fp_access_check(s)) {
5251 return true;
5254 t0 = tcg_temp_new_i32();
5255 t1 = tcg_temp_new_i32();
5256 t2 = tcg_temp_new_i32();
5257 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261 write_fp_sreg(s, a->rd, t0);
5262 return true;
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5277 if (fp_access_check(s)) {
5278 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280 tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281 write_fp_dreg(s, a->rd, t0);
5283 return true;
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5294 gen_helper_gvec_3_ptr * const fns[3])
5296 MemOp esz = a->esz;
5298 switch (esz) {
5299 case MO_64:
5300 if (!a->q) {
5301 return false;
5303 break;
5304 case MO_32:
5305 break;
5306 case MO_16:
5307 if (!dc_isar_feature(aa64_fp16, s)) {
5308 return false;
5310 break;
5311 default:
5312 return false;
5314 if (fp_access_check(s)) {
5315 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316 esz == MO_16, 0, fns[esz - 1]);
5318 return true;
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322 gen_helper_gvec_fadd_h,
5323 gen_helper_gvec_fadd_s,
5324 gen_helper_gvec_fadd_d,
5326 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329 gen_helper_gvec_fsub_h,
5330 gen_helper_gvec_fsub_s,
5331 gen_helper_gvec_fsub_d,
5333 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336 gen_helper_gvec_fdiv_h,
5337 gen_helper_gvec_fdiv_s,
5338 gen_helper_gvec_fdiv_d,
5340 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343 gen_helper_gvec_fmul_h,
5344 gen_helper_gvec_fmul_s,
5345 gen_helper_gvec_fmul_d,
5347 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350 gen_helper_gvec_fmax_h,
5351 gen_helper_gvec_fmax_s,
5352 gen_helper_gvec_fmax_d,
5354 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357 gen_helper_gvec_fmin_h,
5358 gen_helper_gvec_fmin_s,
5359 gen_helper_gvec_fmin_d,
5361 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364 gen_helper_gvec_fmaxnum_h,
5365 gen_helper_gvec_fmaxnum_s,
5366 gen_helper_gvec_fmaxnum_d,
5368 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371 gen_helper_gvec_fminnum_h,
5372 gen_helper_gvec_fminnum_s,
5373 gen_helper_gvec_fminnum_d,
5375 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378 gen_helper_gvec_fmulx_h,
5379 gen_helper_gvec_fmulx_s,
5380 gen_helper_gvec_fmulx_d,
5382 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385 gen_helper_gvec_vfma_h,
5386 gen_helper_gvec_vfma_s,
5387 gen_helper_gvec_vfma_d,
5389 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392 gen_helper_gvec_vfms_h,
5393 gen_helper_gvec_vfms_s,
5394 gen_helper_gvec_vfms_d,
5396 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399 gen_helper_gvec_fceq_h,
5400 gen_helper_gvec_fceq_s,
5401 gen_helper_gvec_fceq_d,
5403 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406 gen_helper_gvec_fcge_h,
5407 gen_helper_gvec_fcge_s,
5408 gen_helper_gvec_fcge_d,
5410 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413 gen_helper_gvec_fcgt_h,
5414 gen_helper_gvec_fcgt_s,
5415 gen_helper_gvec_fcgt_d,
5417 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420 gen_helper_gvec_facge_h,
5421 gen_helper_gvec_facge_s,
5422 gen_helper_gvec_facge_d,
5424 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427 gen_helper_gvec_facgt_h,
5428 gen_helper_gvec_facgt_s,
5429 gen_helper_gvec_facgt_d,
5431 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434 gen_helper_gvec_fabd_h,
5435 gen_helper_gvec_fabd_s,
5436 gen_helper_gvec_fabd_d,
5438 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441 gen_helper_gvec_recps_h,
5442 gen_helper_gvec_recps_s,
5443 gen_helper_gvec_recps_d,
5445 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448 gen_helper_gvec_rsqrts_h,
5449 gen_helper_gvec_rsqrts_s,
5450 gen_helper_gvec_rsqrts_d,
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455 gen_helper_gvec_faddp_h,
5456 gen_helper_gvec_faddp_s,
5457 gen_helper_gvec_faddp_d,
5459 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462 gen_helper_gvec_fmaxp_h,
5463 gen_helper_gvec_fmaxp_s,
5464 gen_helper_gvec_fmaxp_d,
5466 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469 gen_helper_gvec_fminp_h,
5470 gen_helper_gvec_fminp_s,
5471 gen_helper_gvec_fminp_d,
5473 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476 gen_helper_gvec_fmaxnump_h,
5477 gen_helper_gvec_fmaxnump_s,
5478 gen_helper_gvec_fmaxnump_d,
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483 gen_helper_gvec_fminnump_h,
5484 gen_helper_gvec_fminnump_s,
5485 gen_helper_gvec_fminnump_d,
5487 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5491 if (fp_access_check(s)) {
5492 int data = (is_2 << 1) | is_s;
5493 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494 vec_full_reg_offset(s, a->rn),
5495 vec_full_reg_offset(s, a->rm), tcg_env,
5496 a->q ? 16 : 8, vec_full_reg_size(s),
5497 data, gen_helper_gvec_fmlal_a64);
5499 return true;
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5521 if (fp_access_check(s)) {
5522 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5524 return true;
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5570 if (a->esz == MO_64 && !a->q) {
5571 return false;
5573 if (fp_access_check(s)) {
5574 tcg_gen_gvec_cmp(cond, a->esz,
5575 vec_full_reg_offset(s, a->rd),
5576 vec_full_reg_offset(s, a->rn),
5577 vec_full_reg_offset(s, a->rm),
5578 a->q ? 16 : 8, vec_full_reg_size(s));
5580 return true;
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596 gen_helper_gvec_4 *fn)
5598 if (fp_access_check(s)) {
5599 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5601 return true;
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5609 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5611 if (!dc_isar_feature(aa64_bf16, s)) {
5612 return false;
5614 if (fp_access_check(s)) {
5615 /* Q bit selects BFMLALB vs BFMLALT. */
5616 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5617 gen_helper_gvec_bfmlal);
5619 return true;
5623 * Advanced SIMD scalar/vector x indexed element
5626 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5628 switch (a->esz) {
5629 case MO_64:
5630 if (fp_access_check(s)) {
5631 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5632 TCGv_i64 t1 = tcg_temp_new_i64();
5634 read_vec_element(s, t1, a->rm, a->idx, MO_64);
5635 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5636 write_fp_dreg(s, a->rd, t0);
5638 break;
5639 case MO_32:
5640 if (fp_access_check(s)) {
5641 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5642 TCGv_i32 t1 = tcg_temp_new_i32();
5644 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5645 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5646 write_fp_sreg(s, a->rd, t0);
5648 break;
5649 case MO_16:
5650 if (!dc_isar_feature(aa64_fp16, s)) {
5651 return false;
5653 if (fp_access_check(s)) {
5654 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5655 TCGv_i32 t1 = tcg_temp_new_i32();
5657 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5658 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5659 write_fp_sreg(s, a->rd, t0);
5661 break;
5662 default:
5663 g_assert_not_reached();
5665 return true;
5668 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5669 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5671 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5673 switch (a->esz) {
5674 case MO_64:
5675 if (fp_access_check(s)) {
5676 TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5677 TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5678 TCGv_i64 t2 = tcg_temp_new_i64();
5680 read_vec_element(s, t2, a->rm, a->idx, MO_64);
5681 if (neg) {
5682 gen_vfp_negd(t1, t1);
5684 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5685 write_fp_dreg(s, a->rd, t0);
5687 break;
5688 case MO_32:
5689 if (fp_access_check(s)) {
5690 TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5691 TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5692 TCGv_i32 t2 = tcg_temp_new_i32();
5694 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5695 if (neg) {
5696 gen_vfp_negs(t1, t1);
5698 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5699 write_fp_sreg(s, a->rd, t0);
5701 break;
5702 case MO_16:
5703 if (!dc_isar_feature(aa64_fp16, s)) {
5704 return false;
5706 if (fp_access_check(s)) {
5707 TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5708 TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5709 TCGv_i32 t2 = tcg_temp_new_i32();
5711 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5712 if (neg) {
5713 gen_vfp_negh(t1, t1);
5715 gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5716 fpstatus_ptr(FPST_FPCR_F16));
5717 write_fp_sreg(s, a->rd, t0);
5719 break;
5720 default:
5721 g_assert_not_reached();
5723 return true;
5726 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5727 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5729 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5730 const ENVScalar2 *f)
5732 if (a->esz < MO_16 || a->esz > MO_32) {
5733 return false;
5735 if (fp_access_check(s)) {
5736 TCGv_i32 t0 = tcg_temp_new_i32();
5737 TCGv_i32 t1 = tcg_temp_new_i32();
5739 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5740 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5741 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5742 write_fp_sreg(s, a->rd, t0);
5744 return true;
5747 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5748 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5750 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5751 const ENVScalar3 *f)
5753 if (a->esz < MO_16 || a->esz > MO_32) {
5754 return false;
5756 if (fp_access_check(s)) {
5757 TCGv_i32 t0 = tcg_temp_new_i32();
5758 TCGv_i32 t1 = tcg_temp_new_i32();
5759 TCGv_i32 t2 = tcg_temp_new_i32();
5761 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5762 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5763 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5764 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5765 write_fp_sreg(s, a->rd, t0);
5767 return true;
5770 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5771 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5773 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5774 gen_helper_gvec_3_ptr * const fns[3])
5776 MemOp esz = a->esz;
5778 switch (esz) {
5779 case MO_64:
5780 if (!a->q) {
5781 return false;
5783 break;
5784 case MO_32:
5785 break;
5786 case MO_16:
5787 if (!dc_isar_feature(aa64_fp16, s)) {
5788 return false;
5790 break;
5791 default:
5792 g_assert_not_reached();
5794 if (fp_access_check(s)) {
5795 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5796 esz == MO_16, a->idx, fns[esz - 1]);
5798 return true;
5801 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5802 gen_helper_gvec_fmul_idx_h,
5803 gen_helper_gvec_fmul_idx_s,
5804 gen_helper_gvec_fmul_idx_d,
5806 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5808 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5809 gen_helper_gvec_fmulx_idx_h,
5810 gen_helper_gvec_fmulx_idx_s,
5811 gen_helper_gvec_fmulx_idx_d,
5813 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5815 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5817 static gen_helper_gvec_4_ptr * const fns[3] = {
5818 gen_helper_gvec_fmla_idx_h,
5819 gen_helper_gvec_fmla_idx_s,
5820 gen_helper_gvec_fmla_idx_d,
5822 MemOp esz = a->esz;
5824 switch (esz) {
5825 case MO_64:
5826 if (!a->q) {
5827 return false;
5829 break;
5830 case MO_32:
5831 break;
5832 case MO_16:
5833 if (!dc_isar_feature(aa64_fp16, s)) {
5834 return false;
5836 break;
5837 default:
5838 g_assert_not_reached();
5840 if (fp_access_check(s)) {
5841 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5842 esz == MO_16, (a->idx << 1) | neg,
5843 fns[esz - 1]);
5845 return true;
5848 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5849 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5851 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5853 if (fp_access_check(s)) {
5854 int data = (a->idx << 2) | (is_2 << 1) | is_s;
5855 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5856 vec_full_reg_offset(s, a->rn),
5857 vec_full_reg_offset(s, a->rm), tcg_env,
5858 a->q ? 16 : 8, vec_full_reg_size(s),
5859 data, gen_helper_gvec_fmlal_idx_a64);
5861 return true;
5864 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5865 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5866 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5867 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5869 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5870 gen_helper_gvec_3 * const fns[2])
5872 assert(a->esz == MO_16 || a->esz == MO_32);
5873 if (fp_access_check(s)) {
5874 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5876 return true;
5879 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5880 gen_helper_gvec_mul_idx_h,
5881 gen_helper_gvec_mul_idx_s,
5883 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5885 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5887 static gen_helper_gvec_4 * const fns[2][2] = {
5888 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5889 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5892 assert(a->esz == MO_16 || a->esz == MO_32);
5893 if (fp_access_check(s)) {
5894 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5895 a->idx, fns[a->esz - 1][sub]);
5897 return true;
5900 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5901 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5903 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5904 gen_helper_gvec_4 * const fns[2])
5906 assert(a->esz == MO_16 || a->esz == MO_32);
5907 if (fp_access_check(s)) {
5908 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5909 vec_full_reg_offset(s, a->rn),
5910 vec_full_reg_offset(s, a->rm),
5911 offsetof(CPUARMState, vfp.qc),
5912 a->q ? 16 : 8, vec_full_reg_size(s),
5913 a->idx, fns[a->esz - 1]);
5915 return true;
5918 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5919 gen_helper_neon_sqdmulh_idx_h,
5920 gen_helper_neon_sqdmulh_idx_s,
5922 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5924 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5925 gen_helper_neon_sqrdmulh_idx_h,
5926 gen_helper_neon_sqrdmulh_idx_s,
5928 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5930 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5931 gen_helper_neon_sqrdmlah_idx_h,
5932 gen_helper_neon_sqrdmlah_idx_s,
5934 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5935 f_vector_idx_sqrdmlah)
5937 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5938 gen_helper_neon_sqrdmlsh_idx_h,
5939 gen_helper_neon_sqrdmlsh_idx_s,
5941 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5942 f_vector_idx_sqrdmlsh)
5944 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
5945 gen_helper_gvec_4 *fn)
5947 if (fp_access_check(s)) {
5948 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
5950 return true;
5953 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
5954 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
5955 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5956 gen_helper_gvec_sudot_idx_b)
5957 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
5958 gen_helper_gvec_usdot_idx_b)
5959 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
5960 gen_helper_gvec_bfdot_idx)
5962 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
5964 if (!dc_isar_feature(aa64_bf16, s)) {
5965 return false;
5967 if (fp_access_check(s)) {
5968 /* Q bit selects BFMLALB vs BFMLALT. */
5969 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
5970 (a->idx << 1) | a->q,
5971 gen_helper_gvec_bfmlal_idx);
5973 return true;
5977 * Advanced SIMD scalar pairwise
5980 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5982 switch (a->esz) {
5983 case MO_64:
5984 if (fp_access_check(s)) {
5985 TCGv_i64 t0 = tcg_temp_new_i64();
5986 TCGv_i64 t1 = tcg_temp_new_i64();
5988 read_vec_element(s, t0, a->rn, 0, MO_64);
5989 read_vec_element(s, t1, a->rn, 1, MO_64);
5990 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5991 write_fp_dreg(s, a->rd, t0);
5993 break;
5994 case MO_32:
5995 if (fp_access_check(s)) {
5996 TCGv_i32 t0 = tcg_temp_new_i32();
5997 TCGv_i32 t1 = tcg_temp_new_i32();
5999 read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6000 read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6001 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6002 write_fp_sreg(s, a->rd, t0);
6004 break;
6005 case MO_16:
6006 if (!dc_isar_feature(aa64_fp16, s)) {
6007 return false;
6009 if (fp_access_check(s)) {
6010 TCGv_i32 t0 = tcg_temp_new_i32();
6011 TCGv_i32 t1 = tcg_temp_new_i32();
6013 read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6014 read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6015 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6016 write_fp_sreg(s, a->rd, t0);
6018 break;
6019 default:
6020 g_assert_not_reached();
6022 return true;
6025 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6026 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6027 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6028 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6029 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6031 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6033 if (fp_access_check(s)) {
6034 TCGv_i64 t0 = tcg_temp_new_i64();
6035 TCGv_i64 t1 = tcg_temp_new_i64();
6037 read_vec_element(s, t0, a->rn, 0, MO_64);
6038 read_vec_element(s, t1, a->rn, 1, MO_64);
6039 tcg_gen_add_i64(t0, t0, t1);
6040 write_fp_dreg(s, a->rd, t0);
6042 return true;
6046 * Floating-point conditional select
6049 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6051 TCGv_i64 t_true, t_false;
6052 DisasCompare64 c;
6054 switch (a->esz) {
6055 case MO_32:
6056 case MO_64:
6057 break;
6058 case MO_16:
6059 if (!dc_isar_feature(aa64_fp16, s)) {
6060 return false;
6062 break;
6063 default:
6064 return false;
6067 if (!fp_access_check(s)) {
6068 return true;
6071 /* Zero extend sreg & hreg inputs to 64 bits now. */
6072 t_true = tcg_temp_new_i64();
6073 t_false = tcg_temp_new_i64();
6074 read_vec_element(s, t_true, a->rn, 0, a->esz);
6075 read_vec_element(s, t_false, a->rm, 0, a->esz);
6077 a64_test_cc(&c, a->cond);
6078 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6079 t_true, t_false);
6082 * Note that sregs & hregs write back zeros to the high bits,
6083 * and we've already done the zero-extension.
6085 write_fp_dreg(s, a->rd, t_true);
6086 return true;
6090 * Floating-point data-processing (3 source)
6093 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6095 TCGv_ptr fpst;
6098 * These are fused multiply-add. Note that doing the negations here
6099 * as separate steps is correct: an input NaN should come out with
6100 * its sign bit flipped if it is a negated-input.
6102 switch (a->esz) {
6103 case MO_64:
6104 if (fp_access_check(s)) {
6105 TCGv_i64 tn = read_fp_dreg(s, a->rn);
6106 TCGv_i64 tm = read_fp_dreg(s, a->rm);
6107 TCGv_i64 ta = read_fp_dreg(s, a->ra);
6109 if (neg_a) {
6110 gen_vfp_negd(ta, ta);
6112 if (neg_n) {
6113 gen_vfp_negd(tn, tn);
6115 fpst = fpstatus_ptr(FPST_FPCR);
6116 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6117 write_fp_dreg(s, a->rd, ta);
6119 break;
6121 case MO_32:
6122 if (fp_access_check(s)) {
6123 TCGv_i32 tn = read_fp_sreg(s, a->rn);
6124 TCGv_i32 tm = read_fp_sreg(s, a->rm);
6125 TCGv_i32 ta = read_fp_sreg(s, a->ra);
6127 if (neg_a) {
6128 gen_vfp_negs(ta, ta);
6130 if (neg_n) {
6131 gen_vfp_negs(tn, tn);
6133 fpst = fpstatus_ptr(FPST_FPCR);
6134 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6135 write_fp_sreg(s, a->rd, ta);
6137 break;
6139 case MO_16:
6140 if (!dc_isar_feature(aa64_fp16, s)) {
6141 return false;
6143 if (fp_access_check(s)) {
6144 TCGv_i32 tn = read_fp_hreg(s, a->rn);
6145 TCGv_i32 tm = read_fp_hreg(s, a->rm);
6146 TCGv_i32 ta = read_fp_hreg(s, a->ra);
6148 if (neg_a) {
6149 gen_vfp_negh(ta, ta);
6151 if (neg_n) {
6152 gen_vfp_negh(tn, tn);
6154 fpst = fpstatus_ptr(FPST_FPCR_F16);
6155 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6156 write_fp_sreg(s, a->rd, ta);
6158 break;
6160 default:
6161 return false;
6163 return true;
6166 TRANS(FMADD, do_fmadd, a, false, false)
6167 TRANS(FNMADD, do_fmadd, a, true, true)
6168 TRANS(FMSUB, do_fmadd, a, false, true)
6169 TRANS(FNMSUB, do_fmadd, a, true, false)
6171 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6172 * Note that it is the caller's responsibility to ensure that the
6173 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6174 * mandated semantics for out of range shifts.
6176 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6177 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6179 switch (shift_type) {
6180 case A64_SHIFT_TYPE_LSL:
6181 tcg_gen_shl_i64(dst, src, shift_amount);
6182 break;
6183 case A64_SHIFT_TYPE_LSR:
6184 tcg_gen_shr_i64(dst, src, shift_amount);
6185 break;
6186 case A64_SHIFT_TYPE_ASR:
6187 if (!sf) {
6188 tcg_gen_ext32s_i64(dst, src);
6190 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6191 break;
6192 case A64_SHIFT_TYPE_ROR:
6193 if (sf) {
6194 tcg_gen_rotr_i64(dst, src, shift_amount);
6195 } else {
6196 TCGv_i32 t0, t1;
6197 t0 = tcg_temp_new_i32();
6198 t1 = tcg_temp_new_i32();
6199 tcg_gen_extrl_i64_i32(t0, src);
6200 tcg_gen_extrl_i64_i32(t1, shift_amount);
6201 tcg_gen_rotr_i32(t0, t0, t1);
6202 tcg_gen_extu_i32_i64(dst, t0);
6204 break;
6205 default:
6206 assert(FALSE); /* all shift types should be handled */
6207 break;
6210 if (!sf) { /* zero extend final result */
6211 tcg_gen_ext32u_i64(dst, dst);
6215 /* Shift a TCGv src by immediate, put result in dst.
6216 * The shift amount must be in range (this should always be true as the
6217 * relevant instructions will UNDEF on bad shift immediates).
6219 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6220 enum a64_shift_type shift_type, unsigned int shift_i)
6222 assert(shift_i < (sf ? 64 : 32));
6224 if (shift_i == 0) {
6225 tcg_gen_mov_i64(dst, src);
6226 } else {
6227 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6231 /* Logical (shifted register)
6232 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
6233 * +----+-----+-----------+-------+---+------+--------+------+------+
6234 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
6235 * +----+-----+-----------+-------+---+------+--------+------+------+
6237 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6239 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6240 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6242 sf = extract32(insn, 31, 1);
6243 opc = extract32(insn, 29, 2);
6244 shift_type = extract32(insn, 22, 2);
6245 invert = extract32(insn, 21, 1);
6246 rm = extract32(insn, 16, 5);
6247 shift_amount = extract32(insn, 10, 6);
6248 rn = extract32(insn, 5, 5);
6249 rd = extract32(insn, 0, 5);
6251 if (!sf && (shift_amount & (1 << 5))) {
6252 unallocated_encoding(s);
6253 return;
6256 tcg_rd = cpu_reg(s, rd);
6258 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6259 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6260 * register-register MOV and MVN, so it is worth special casing.
6262 tcg_rm = cpu_reg(s, rm);
6263 if (invert) {
6264 tcg_gen_not_i64(tcg_rd, tcg_rm);
6265 if (!sf) {
6266 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6268 } else {
6269 if (sf) {
6270 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6271 } else {
6272 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6275 return;
6278 tcg_rm = read_cpu_reg(s, rm, sf);
6280 if (shift_amount) {
6281 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6284 tcg_rn = cpu_reg(s, rn);
6286 switch (opc | (invert << 2)) {
6287 case 0: /* AND */
6288 case 3: /* ANDS */
6289 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6290 break;
6291 case 1: /* ORR */
6292 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6293 break;
6294 case 2: /* EOR */
6295 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6296 break;
6297 case 4: /* BIC */
6298 case 7: /* BICS */
6299 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6300 break;
6301 case 5: /* ORN */
6302 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6303 break;
6304 case 6: /* EON */
6305 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6306 break;
6307 default:
6308 assert(FALSE);
6309 break;
6312 if (!sf) {
6313 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6316 if (opc == 3) {
6317 gen_logic_CC(sf, tcg_rd);
6322 * Add/subtract (extended register)
6324 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
6325 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6326 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
6327 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6329 * sf: 0 -> 32bit, 1 -> 64bit
6330 * op: 0 -> add , 1 -> sub
6331 * S: 1 -> set flags
6332 * opt: 00
6333 * option: extension type (see DecodeRegExtend)
6334 * imm3: optional shift to Rm
6336 * Rd = Rn + LSL(extend(Rm), amount)
6338 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6340 int rd = extract32(insn, 0, 5);
6341 int rn = extract32(insn, 5, 5);
6342 int imm3 = extract32(insn, 10, 3);
6343 int option = extract32(insn, 13, 3);
6344 int rm = extract32(insn, 16, 5);
6345 int opt = extract32(insn, 22, 2);
6346 bool setflags = extract32(insn, 29, 1);
6347 bool sub_op = extract32(insn, 30, 1);
6348 bool sf = extract32(insn, 31, 1);
6350 TCGv_i64 tcg_rm, tcg_rn; /* temps */
6351 TCGv_i64 tcg_rd;
6352 TCGv_i64 tcg_result;
6354 if (imm3 > 4 || opt != 0) {
6355 unallocated_encoding(s);
6356 return;
6359 /* non-flag setting ops may use SP */
6360 if (!setflags) {
6361 tcg_rd = cpu_reg_sp(s, rd);
6362 } else {
6363 tcg_rd = cpu_reg(s, rd);
6365 tcg_rn = read_cpu_reg_sp(s, rn, sf);
6367 tcg_rm = read_cpu_reg(s, rm, sf);
6368 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6370 tcg_result = tcg_temp_new_i64();
6372 if (!setflags) {
6373 if (sub_op) {
6374 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6375 } else {
6376 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6378 } else {
6379 if (sub_op) {
6380 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6381 } else {
6382 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6386 if (sf) {
6387 tcg_gen_mov_i64(tcg_rd, tcg_result);
6388 } else {
6389 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6394 * Add/subtract (shifted register)
6396 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
6397 * +--+--+--+-----------+-----+--+-------+---------+------+------+
6398 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
6399 * +--+--+--+-----------+-----+--+-------+---------+------+------+
6401 * sf: 0 -> 32bit, 1 -> 64bit
6402 * op: 0 -> add , 1 -> sub
6403 * S: 1 -> set flags
6404 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6405 * imm6: Shift amount to apply to Rm before the add/sub
6407 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6409 int rd = extract32(insn, 0, 5);
6410 int rn = extract32(insn, 5, 5);
6411 int imm6 = extract32(insn, 10, 6);
6412 int rm = extract32(insn, 16, 5);
6413 int shift_type = extract32(insn, 22, 2);
6414 bool setflags = extract32(insn, 29, 1);
6415 bool sub_op = extract32(insn, 30, 1);
6416 bool sf = extract32(insn, 31, 1);
6418 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6419 TCGv_i64 tcg_rn, tcg_rm;
6420 TCGv_i64 tcg_result;
6422 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6423 unallocated_encoding(s);
6424 return;
6427 tcg_rn = read_cpu_reg(s, rn, sf);
6428 tcg_rm = read_cpu_reg(s, rm, sf);
6430 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6432 tcg_result = tcg_temp_new_i64();
6434 if (!setflags) {
6435 if (sub_op) {
6436 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6437 } else {
6438 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6440 } else {
6441 if (sub_op) {
6442 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6443 } else {
6444 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6448 if (sf) {
6449 tcg_gen_mov_i64(tcg_rd, tcg_result);
6450 } else {
6451 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6455 /* Data-processing (3 source)
6457 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
6458 * +--+------+-----------+------+------+----+------+------+------+
6459 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
6460 * +--+------+-----------+------+------+----+------+------+------+
6462 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6464 int rd = extract32(insn, 0, 5);
6465 int rn = extract32(insn, 5, 5);
6466 int ra = extract32(insn, 10, 5);
6467 int rm = extract32(insn, 16, 5);
6468 int op_id = (extract32(insn, 29, 3) << 4) |
6469 (extract32(insn, 21, 3) << 1) |
6470 extract32(insn, 15, 1);
6471 bool sf = extract32(insn, 31, 1);
6472 bool is_sub = extract32(op_id, 0, 1);
6473 bool is_high = extract32(op_id, 2, 1);
6474 bool is_signed = false;
6475 TCGv_i64 tcg_op1;
6476 TCGv_i64 tcg_op2;
6477 TCGv_i64 tcg_tmp;
6479 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6480 switch (op_id) {
6481 case 0x42: /* SMADDL */
6482 case 0x43: /* SMSUBL */
6483 case 0x44: /* SMULH */
6484 is_signed = true;
6485 break;
6486 case 0x0: /* MADD (32bit) */
6487 case 0x1: /* MSUB (32bit) */
6488 case 0x40: /* MADD (64bit) */
6489 case 0x41: /* MSUB (64bit) */
6490 case 0x4a: /* UMADDL */
6491 case 0x4b: /* UMSUBL */
6492 case 0x4c: /* UMULH */
6493 break;
6494 default:
6495 unallocated_encoding(s);
6496 return;
6499 if (is_high) {
6500 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6501 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6502 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6503 TCGv_i64 tcg_rm = cpu_reg(s, rm);
6505 if (is_signed) {
6506 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6507 } else {
6508 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6510 return;
6513 tcg_op1 = tcg_temp_new_i64();
6514 tcg_op2 = tcg_temp_new_i64();
6515 tcg_tmp = tcg_temp_new_i64();
6517 if (op_id < 0x42) {
6518 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6519 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6520 } else {
6521 if (is_signed) {
6522 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6523 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6524 } else {
6525 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6526 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6530 if (ra == 31 && !is_sub) {
6531 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6532 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6533 } else {
6534 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6535 if (is_sub) {
6536 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6537 } else {
6538 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6542 if (!sf) {
6543 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6547 /* Add/subtract (with carry)
6548 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
6549 * +--+--+--+------------------------+------+-------------+------+-----+
6550 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
6551 * +--+--+--+------------------------+------+-------------+------+-----+
6554 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6556 unsigned int sf, op, setflags, rm, rn, rd;
6557 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6559 sf = extract32(insn, 31, 1);
6560 op = extract32(insn, 30, 1);
6561 setflags = extract32(insn, 29, 1);
6562 rm = extract32(insn, 16, 5);
6563 rn = extract32(insn, 5, 5);
6564 rd = extract32(insn, 0, 5);
6566 tcg_rd = cpu_reg(s, rd);
6567 tcg_rn = cpu_reg(s, rn);
6569 if (op) {
6570 tcg_y = tcg_temp_new_i64();
6571 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6572 } else {
6573 tcg_y = cpu_reg(s, rm);
6576 if (setflags) {
6577 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6578 } else {
6579 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6584 * Rotate right into flags
6585 * 31 30 29 21 15 10 5 4 0
6586 * +--+--+--+-----------------+--------+-----------+------+--+------+
6587 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
6588 * +--+--+--+-----------------+--------+-----------+------+--+------+
6590 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6592 int mask = extract32(insn, 0, 4);
6593 int o2 = extract32(insn, 4, 1);
6594 int rn = extract32(insn, 5, 5);
6595 int imm6 = extract32(insn, 15, 6);
6596 int sf_op_s = extract32(insn, 29, 3);
6597 TCGv_i64 tcg_rn;
6598 TCGv_i32 nzcv;
6600 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6601 unallocated_encoding(s);
6602 return;
6605 tcg_rn = read_cpu_reg(s, rn, 1);
6606 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6608 nzcv = tcg_temp_new_i32();
6609 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6611 if (mask & 8) { /* N */
6612 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6614 if (mask & 4) { /* Z */
6615 tcg_gen_not_i32(cpu_ZF, nzcv);
6616 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6618 if (mask & 2) { /* C */
6619 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6621 if (mask & 1) { /* V */
6622 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6627 * Evaluate into flags
6628 * 31 30 29 21 15 14 10 5 4 0
6629 * +--+--+--+-----------------+---------+----+---------+------+--+------+
6630 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
6631 * +--+--+--+-----------------+---------+----+---------+------+--+------+
6633 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6635 int o3_mask = extract32(insn, 0, 5);
6636 int rn = extract32(insn, 5, 5);
6637 int o2 = extract32(insn, 15, 6);
6638 int sz = extract32(insn, 14, 1);
6639 int sf_op_s = extract32(insn, 29, 3);
6640 TCGv_i32 tmp;
6641 int shift;
6643 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6644 !dc_isar_feature(aa64_condm_4, s)) {
6645 unallocated_encoding(s);
6646 return;
6648 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
6650 tmp = tcg_temp_new_i32();
6651 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6652 tcg_gen_shli_i32(cpu_NF, tmp, shift);
6653 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6654 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6655 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6658 /* Conditional compare (immediate / register)
6659 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6660 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6661 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
6662 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6663 * [1] y [0] [0]
6665 static void disas_cc(DisasContext *s, uint32_t insn)
6667 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6668 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6669 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6670 DisasCompare c;
6672 if (!extract32(insn, 29, 1)) {
6673 unallocated_encoding(s);
6674 return;
6676 if (insn & (1 << 10 | 1 << 4)) {
6677 unallocated_encoding(s);
6678 return;
6680 sf = extract32(insn, 31, 1);
6681 op = extract32(insn, 30, 1);
6682 is_imm = extract32(insn, 11, 1);
6683 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6684 cond = extract32(insn, 12, 4);
6685 rn = extract32(insn, 5, 5);
6686 nzcv = extract32(insn, 0, 4);
6688 /* Set T0 = !COND. */
6689 tcg_t0 = tcg_temp_new_i32();
6690 arm_test_cc(&c, cond);
6691 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6693 /* Load the arguments for the new comparison. */
6694 if (is_imm) {
6695 tcg_y = tcg_temp_new_i64();
6696 tcg_gen_movi_i64(tcg_y, y);
6697 } else {
6698 tcg_y = cpu_reg(s, y);
6700 tcg_rn = cpu_reg(s, rn);
6702 /* Set the flags for the new comparison. */
6703 tcg_tmp = tcg_temp_new_i64();
6704 if (op) {
6705 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6706 } else {
6707 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6710 /* If COND was false, force the flags to #nzcv. Compute two masks
6711 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6712 * For tcg hosts that support ANDC, we can make do with just T1.
6713 * In either case, allow the tcg optimizer to delete any unused mask.
6715 tcg_t1 = tcg_temp_new_i32();
6716 tcg_t2 = tcg_temp_new_i32();
6717 tcg_gen_neg_i32(tcg_t1, tcg_t0);
6718 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6720 if (nzcv & 8) { /* N */
6721 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6722 } else {
6723 if (TCG_TARGET_HAS_andc_i32) {
6724 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6725 } else {
6726 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6729 if (nzcv & 4) { /* Z */
6730 if (TCG_TARGET_HAS_andc_i32) {
6731 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6732 } else {
6733 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6735 } else {
6736 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6738 if (nzcv & 2) { /* C */
6739 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6740 } else {
6741 if (TCG_TARGET_HAS_andc_i32) {
6742 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6743 } else {
6744 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6747 if (nzcv & 1) { /* V */
6748 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6749 } else {
6750 if (TCG_TARGET_HAS_andc_i32) {
6751 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6752 } else {
6753 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6758 /* Conditional select
6759 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
6760 * +----+----+---+-----------------+------+------+-----+------+------+
6761 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
6762 * +----+----+---+-----------------+------+------+-----+------+------+
6764 static void disas_cond_select(DisasContext *s, uint32_t insn)
6766 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6767 TCGv_i64 tcg_rd, zero;
6768 DisasCompare64 c;
6770 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6771 /* S == 1 or op2<1> == 1 */
6772 unallocated_encoding(s);
6773 return;
6775 sf = extract32(insn, 31, 1);
6776 else_inv = extract32(insn, 30, 1);
6777 rm = extract32(insn, 16, 5);
6778 cond = extract32(insn, 12, 4);
6779 else_inc = extract32(insn, 10, 1);
6780 rn = extract32(insn, 5, 5);
6781 rd = extract32(insn, 0, 5);
6783 tcg_rd = cpu_reg(s, rd);
6785 a64_test_cc(&c, cond);
6786 zero = tcg_constant_i64(0);
6788 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6789 /* CSET & CSETM. */
6790 if (else_inv) {
6791 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6792 tcg_rd, c.value, zero);
6793 } else {
6794 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6795 tcg_rd, c.value, zero);
6797 } else {
6798 TCGv_i64 t_true = cpu_reg(s, rn);
6799 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6800 if (else_inv && else_inc) {
6801 tcg_gen_neg_i64(t_false, t_false);
6802 } else if (else_inv) {
6803 tcg_gen_not_i64(t_false, t_false);
6804 } else if (else_inc) {
6805 tcg_gen_addi_i64(t_false, t_false, 1);
6807 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6810 if (!sf) {
6811 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6815 static void handle_clz(DisasContext *s, unsigned int sf,
6816 unsigned int rn, unsigned int rd)
6818 TCGv_i64 tcg_rd, tcg_rn;
6819 tcg_rd = cpu_reg(s, rd);
6820 tcg_rn = cpu_reg(s, rn);
6822 if (sf) {
6823 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6824 } else {
6825 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6826 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6827 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6828 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6832 static void handle_cls(DisasContext *s, unsigned int sf,
6833 unsigned int rn, unsigned int rd)
6835 TCGv_i64 tcg_rd, tcg_rn;
6836 tcg_rd = cpu_reg(s, rd);
6837 tcg_rn = cpu_reg(s, rn);
6839 if (sf) {
6840 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6841 } else {
6842 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6843 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6844 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6845 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6849 static void handle_rbit(DisasContext *s, unsigned int sf,
6850 unsigned int rn, unsigned int rd)
6852 TCGv_i64 tcg_rd, tcg_rn;
6853 tcg_rd = cpu_reg(s, rd);
6854 tcg_rn = cpu_reg(s, rn);
6856 if (sf) {
6857 gen_helper_rbit64(tcg_rd, tcg_rn);
6858 } else {
6859 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6860 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6861 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6862 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6866 /* REV with sf==1, opcode==3 ("REV64") */
6867 static void handle_rev64(DisasContext *s, unsigned int sf,
6868 unsigned int rn, unsigned int rd)
6870 if (!sf) {
6871 unallocated_encoding(s);
6872 return;
6874 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6877 /* REV with sf==0, opcode==2
6878 * REV32 (sf==1, opcode==2)
6880 static void handle_rev32(DisasContext *s, unsigned int sf,
6881 unsigned int rn, unsigned int rd)
6883 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6884 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6886 if (sf) {
6887 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6888 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6889 } else {
6890 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6894 /* REV16 (opcode==1) */
6895 static void handle_rev16(DisasContext *s, unsigned int sf,
6896 unsigned int rn, unsigned int rd)
6898 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6899 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6900 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6901 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6903 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6904 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6905 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6906 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6907 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6910 /* Data-processing (1 source)
6911 * 31 30 29 28 21 20 16 15 10 9 5 4 0
6912 * +----+---+---+-----------------+---------+--------+------+------+
6913 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
6914 * +----+---+---+-----------------+---------+--------+------+------+
6916 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6918 unsigned int sf, opcode, opcode2, rn, rd;
6919 TCGv_i64 tcg_rd;
6921 if (extract32(insn, 29, 1)) {
6922 unallocated_encoding(s);
6923 return;
6926 sf = extract32(insn, 31, 1);
6927 opcode = extract32(insn, 10, 6);
6928 opcode2 = extract32(insn, 16, 5);
6929 rn = extract32(insn, 5, 5);
6930 rd = extract32(insn, 0, 5);
6932 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6934 switch (MAP(sf, opcode2, opcode)) {
6935 case MAP(0, 0x00, 0x00): /* RBIT */
6936 case MAP(1, 0x00, 0x00):
6937 handle_rbit(s, sf, rn, rd);
6938 break;
6939 case MAP(0, 0x00, 0x01): /* REV16 */
6940 case MAP(1, 0x00, 0x01):
6941 handle_rev16(s, sf, rn, rd);
6942 break;
6943 case MAP(0, 0x00, 0x02): /* REV/REV32 */
6944 case MAP(1, 0x00, 0x02):
6945 handle_rev32(s, sf, rn, rd);
6946 break;
6947 case MAP(1, 0x00, 0x03): /* REV64 */
6948 handle_rev64(s, sf, rn, rd);
6949 break;
6950 case MAP(0, 0x00, 0x04): /* CLZ */
6951 case MAP(1, 0x00, 0x04):
6952 handle_clz(s, sf, rn, rd);
6953 break;
6954 case MAP(0, 0x00, 0x05): /* CLS */
6955 case MAP(1, 0x00, 0x05):
6956 handle_cls(s, sf, rn, rd);
6957 break;
6958 case MAP(1, 0x01, 0x00): /* PACIA */
6959 if (s->pauth_active) {
6960 tcg_rd = cpu_reg(s, rd);
6961 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6962 } else if (!dc_isar_feature(aa64_pauth, s)) {
6963 goto do_unallocated;
6965 break;
6966 case MAP(1, 0x01, 0x01): /* PACIB */
6967 if (s->pauth_active) {
6968 tcg_rd = cpu_reg(s, rd);
6969 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6970 } else if (!dc_isar_feature(aa64_pauth, s)) {
6971 goto do_unallocated;
6973 break;
6974 case MAP(1, 0x01, 0x02): /* PACDA */
6975 if (s->pauth_active) {
6976 tcg_rd = cpu_reg(s, rd);
6977 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6978 } else if (!dc_isar_feature(aa64_pauth, s)) {
6979 goto do_unallocated;
6981 break;
6982 case MAP(1, 0x01, 0x03): /* PACDB */
6983 if (s->pauth_active) {
6984 tcg_rd = cpu_reg(s, rd);
6985 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6986 } else if (!dc_isar_feature(aa64_pauth, s)) {
6987 goto do_unallocated;
6989 break;
6990 case MAP(1, 0x01, 0x04): /* AUTIA */
6991 if (s->pauth_active) {
6992 tcg_rd = cpu_reg(s, rd);
6993 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6994 } else if (!dc_isar_feature(aa64_pauth, s)) {
6995 goto do_unallocated;
6997 break;
6998 case MAP(1, 0x01, 0x05): /* AUTIB */
6999 if (s->pauth_active) {
7000 tcg_rd = cpu_reg(s, rd);
7001 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7002 } else if (!dc_isar_feature(aa64_pauth, s)) {
7003 goto do_unallocated;
7005 break;
7006 case MAP(1, 0x01, 0x06): /* AUTDA */
7007 if (s->pauth_active) {
7008 tcg_rd = cpu_reg(s, rd);
7009 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7010 } else if (!dc_isar_feature(aa64_pauth, s)) {
7011 goto do_unallocated;
7013 break;
7014 case MAP(1, 0x01, 0x07): /* AUTDB */
7015 if (s->pauth_active) {
7016 tcg_rd = cpu_reg(s, rd);
7017 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7018 } else if (!dc_isar_feature(aa64_pauth, s)) {
7019 goto do_unallocated;
7021 break;
7022 case MAP(1, 0x01, 0x08): /* PACIZA */
7023 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7024 goto do_unallocated;
7025 } else if (s->pauth_active) {
7026 tcg_rd = cpu_reg(s, rd);
7027 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7029 break;
7030 case MAP(1, 0x01, 0x09): /* PACIZB */
7031 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7032 goto do_unallocated;
7033 } else if (s->pauth_active) {
7034 tcg_rd = cpu_reg(s, rd);
7035 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7037 break;
7038 case MAP(1, 0x01, 0x0a): /* PACDZA */
7039 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7040 goto do_unallocated;
7041 } else if (s->pauth_active) {
7042 tcg_rd = cpu_reg(s, rd);
7043 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7045 break;
7046 case MAP(1, 0x01, 0x0b): /* PACDZB */
7047 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7048 goto do_unallocated;
7049 } else if (s->pauth_active) {
7050 tcg_rd = cpu_reg(s, rd);
7051 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7053 break;
7054 case MAP(1, 0x01, 0x0c): /* AUTIZA */
7055 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7056 goto do_unallocated;
7057 } else if (s->pauth_active) {
7058 tcg_rd = cpu_reg(s, rd);
7059 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7061 break;
7062 case MAP(1, 0x01, 0x0d): /* AUTIZB */
7063 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7064 goto do_unallocated;
7065 } else if (s->pauth_active) {
7066 tcg_rd = cpu_reg(s, rd);
7067 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7069 break;
7070 case MAP(1, 0x01, 0x0e): /* AUTDZA */
7071 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7072 goto do_unallocated;
7073 } else if (s->pauth_active) {
7074 tcg_rd = cpu_reg(s, rd);
7075 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7077 break;
7078 case MAP(1, 0x01, 0x0f): /* AUTDZB */
7079 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7080 goto do_unallocated;
7081 } else if (s->pauth_active) {
7082 tcg_rd = cpu_reg(s, rd);
7083 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7085 break;
7086 case MAP(1, 0x01, 0x10): /* XPACI */
7087 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7088 goto do_unallocated;
7089 } else if (s->pauth_active) {
7090 tcg_rd = cpu_reg(s, rd);
7091 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7093 break;
7094 case MAP(1, 0x01, 0x11): /* XPACD */
7095 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7096 goto do_unallocated;
7097 } else if (s->pauth_active) {
7098 tcg_rd = cpu_reg(s, rd);
7099 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7101 break;
7102 default:
7103 do_unallocated:
7104 unallocated_encoding(s);
7105 break;
7108 #undef MAP
7111 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7112 unsigned int rm, unsigned int rn, unsigned int rd)
7114 TCGv_i64 tcg_n, tcg_m, tcg_rd;
7115 tcg_rd = cpu_reg(s, rd);
7117 if (!sf && is_signed) {
7118 tcg_n = tcg_temp_new_i64();
7119 tcg_m = tcg_temp_new_i64();
7120 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7121 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7122 } else {
7123 tcg_n = read_cpu_reg(s, rn, sf);
7124 tcg_m = read_cpu_reg(s, rm, sf);
7127 if (is_signed) {
7128 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7129 } else {
7130 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7133 if (!sf) { /* zero extend final result */
7134 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7138 /* LSLV, LSRV, ASRV, RORV */
7139 static void handle_shift_reg(DisasContext *s,
7140 enum a64_shift_type shift_type, unsigned int sf,
7141 unsigned int rm, unsigned int rn, unsigned int rd)
7143 TCGv_i64 tcg_shift = tcg_temp_new_i64();
7144 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7145 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7147 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7148 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7151 /* CRC32[BHWX], CRC32C[BHWX] */
7152 static void handle_crc32(DisasContext *s,
7153 unsigned int sf, unsigned int sz, bool crc32c,
7154 unsigned int rm, unsigned int rn, unsigned int rd)
7156 TCGv_i64 tcg_acc, tcg_val;
7157 TCGv_i32 tcg_bytes;
7159 if (!dc_isar_feature(aa64_crc32, s)
7160 || (sf == 1 && sz != 3)
7161 || (sf == 0 && sz == 3)) {
7162 unallocated_encoding(s);
7163 return;
7166 if (sz == 3) {
7167 tcg_val = cpu_reg(s, rm);
7168 } else {
7169 uint64_t mask;
7170 switch (sz) {
7171 case 0:
7172 mask = 0xFF;
7173 break;
7174 case 1:
7175 mask = 0xFFFF;
7176 break;
7177 case 2:
7178 mask = 0xFFFFFFFF;
7179 break;
7180 default:
7181 g_assert_not_reached();
7183 tcg_val = tcg_temp_new_i64();
7184 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7187 tcg_acc = cpu_reg(s, rn);
7188 tcg_bytes = tcg_constant_i32(1 << sz);
7190 if (crc32c) {
7191 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7192 } else {
7193 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7197 /* Data-processing (2 source)
7198 * 31 30 29 28 21 20 16 15 10 9 5 4 0
7199 * +----+---+---+-----------------+------+--------+------+------+
7200 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
7201 * +----+---+---+-----------------+------+--------+------+------+
7203 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7205 unsigned int sf, rm, opcode, rn, rd, setflag;
7206 sf = extract32(insn, 31, 1);
7207 setflag = extract32(insn, 29, 1);
7208 rm = extract32(insn, 16, 5);
7209 opcode = extract32(insn, 10, 6);
7210 rn = extract32(insn, 5, 5);
7211 rd = extract32(insn, 0, 5);
7213 if (setflag && opcode != 0) {
7214 unallocated_encoding(s);
7215 return;
7218 switch (opcode) {
7219 case 0: /* SUBP(S) */
7220 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7221 goto do_unallocated;
7222 } else {
7223 TCGv_i64 tcg_n, tcg_m, tcg_d;
7225 tcg_n = read_cpu_reg_sp(s, rn, true);
7226 tcg_m = read_cpu_reg_sp(s, rm, true);
7227 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7228 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7229 tcg_d = cpu_reg(s, rd);
7231 if (setflag) {
7232 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7233 } else {
7234 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7237 break;
7238 case 2: /* UDIV */
7239 handle_div(s, false, sf, rm, rn, rd);
7240 break;
7241 case 3: /* SDIV */
7242 handle_div(s, true, sf, rm, rn, rd);
7243 break;
7244 case 4: /* IRG */
7245 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7246 goto do_unallocated;
7248 if (s->ata[0]) {
7249 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7250 cpu_reg_sp(s, rn), cpu_reg(s, rm));
7251 } else {
7252 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7253 cpu_reg_sp(s, rn));
7255 break;
7256 case 5: /* GMI */
7257 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7258 goto do_unallocated;
7259 } else {
7260 TCGv_i64 t = tcg_temp_new_i64();
7262 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7263 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7264 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7266 break;
7267 case 8: /* LSLV */
7268 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7269 break;
7270 case 9: /* LSRV */
7271 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7272 break;
7273 case 10: /* ASRV */
7274 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7275 break;
7276 case 11: /* RORV */
7277 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7278 break;
7279 case 12: /* PACGA */
7280 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7281 goto do_unallocated;
7283 gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7284 cpu_reg(s, rn), cpu_reg_sp(s, rm));
7285 break;
7286 case 16:
7287 case 17:
7288 case 18:
7289 case 19:
7290 case 20:
7291 case 21:
7292 case 22:
7293 case 23: /* CRC32 */
7295 int sz = extract32(opcode, 0, 2);
7296 bool crc32c = extract32(opcode, 2, 1);
7297 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7298 break;
7300 default:
7301 do_unallocated:
7302 unallocated_encoding(s);
7303 break;
7308 * Data processing - register
7309 * 31 30 29 28 25 21 20 16 10 0
7310 * +--+---+--+---+-------+-----+-------+-------+---------+
7311 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
7312 * +--+---+--+---+-------+-----+-------+-------+---------+
7314 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7316 int op0 = extract32(insn, 30, 1);
7317 int op1 = extract32(insn, 28, 1);
7318 int op2 = extract32(insn, 21, 4);
7319 int op3 = extract32(insn, 10, 6);
7321 if (!op1) {
7322 if (op2 & 8) {
7323 if (op2 & 1) {
7324 /* Add/sub (extended register) */
7325 disas_add_sub_ext_reg(s, insn);
7326 } else {
7327 /* Add/sub (shifted register) */
7328 disas_add_sub_reg(s, insn);
7330 } else {
7331 /* Logical (shifted register) */
7332 disas_logic_reg(s, insn);
7334 return;
7337 switch (op2) {
7338 case 0x0:
7339 switch (op3) {
7340 case 0x00: /* Add/subtract (with carry) */
7341 disas_adc_sbc(s, insn);
7342 break;
7344 case 0x01: /* Rotate right into flags */
7345 case 0x21:
7346 disas_rotate_right_into_flags(s, insn);
7347 break;
7349 case 0x02: /* Evaluate into flags */
7350 case 0x12:
7351 case 0x22:
7352 case 0x32:
7353 disas_evaluate_into_flags(s, insn);
7354 break;
7356 default:
7357 goto do_unallocated;
7359 break;
7361 case 0x2: /* Conditional compare */
7362 disas_cc(s, insn); /* both imm and reg forms */
7363 break;
7365 case 0x4: /* Conditional select */
7366 disas_cond_select(s, insn);
7367 break;
7369 case 0x6: /* Data-processing */
7370 if (op0) { /* (1 source) */
7371 disas_data_proc_1src(s, insn);
7372 } else { /* (2 source) */
7373 disas_data_proc_2src(s, insn);
7375 break;
7376 case 0x8 ... 0xf: /* (3 source) */
7377 disas_data_proc_3src(s, insn);
7378 break;
7380 default:
7381 do_unallocated:
7382 unallocated_encoding(s);
7383 break;
7387 static void handle_fp_compare(DisasContext *s, int size,
7388 unsigned int rn, unsigned int rm,
7389 bool cmp_with_zero, bool signal_all_nans)
7391 TCGv_i64 tcg_flags = tcg_temp_new_i64();
7392 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7394 if (size == MO_64) {
7395 TCGv_i64 tcg_vn, tcg_vm;
7397 tcg_vn = read_fp_dreg(s, rn);
7398 if (cmp_with_zero) {
7399 tcg_vm = tcg_constant_i64(0);
7400 } else {
7401 tcg_vm = read_fp_dreg(s, rm);
7403 if (signal_all_nans) {
7404 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7405 } else {
7406 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7408 } else {
7409 TCGv_i32 tcg_vn = tcg_temp_new_i32();
7410 TCGv_i32 tcg_vm = tcg_temp_new_i32();
7412 read_vec_element_i32(s, tcg_vn, rn, 0, size);
7413 if (cmp_with_zero) {
7414 tcg_gen_movi_i32(tcg_vm, 0);
7415 } else {
7416 read_vec_element_i32(s, tcg_vm, rm, 0, size);
7419 switch (size) {
7420 case MO_32:
7421 if (signal_all_nans) {
7422 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7423 } else {
7424 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7426 break;
7427 case MO_16:
7428 if (signal_all_nans) {
7429 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7430 } else {
7431 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7433 break;
7434 default:
7435 g_assert_not_reached();
7439 gen_set_nzcv(tcg_flags);
7442 /* Floating point compare
7443 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
7444 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7445 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
7446 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7448 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7450 unsigned int mos, type, rm, op, rn, opc, op2r;
7451 int size;
7453 mos = extract32(insn, 29, 3);
7454 type = extract32(insn, 22, 2);
7455 rm = extract32(insn, 16, 5);
7456 op = extract32(insn, 14, 2);
7457 rn = extract32(insn, 5, 5);
7458 opc = extract32(insn, 3, 2);
7459 op2r = extract32(insn, 0, 3);
7461 if (mos || op || op2r) {
7462 unallocated_encoding(s);
7463 return;
7466 switch (type) {
7467 case 0:
7468 size = MO_32;
7469 break;
7470 case 1:
7471 size = MO_64;
7472 break;
7473 case 3:
7474 size = MO_16;
7475 if (dc_isar_feature(aa64_fp16, s)) {
7476 break;
7478 /* fallthru */
7479 default:
7480 unallocated_encoding(s);
7481 return;
7484 if (!fp_access_check(s)) {
7485 return;
7488 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7491 /* Floating point conditional compare
7492 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
7493 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7494 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
7495 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7497 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7499 unsigned int mos, type, rm, cond, rn, op, nzcv;
7500 TCGLabel *label_continue = NULL;
7501 int size;
7503 mos = extract32(insn, 29, 3);
7504 type = extract32(insn, 22, 2);
7505 rm = extract32(insn, 16, 5);
7506 cond = extract32(insn, 12, 4);
7507 rn = extract32(insn, 5, 5);
7508 op = extract32(insn, 4, 1);
7509 nzcv = extract32(insn, 0, 4);
7511 if (mos) {
7512 unallocated_encoding(s);
7513 return;
7516 switch (type) {
7517 case 0:
7518 size = MO_32;
7519 break;
7520 case 1:
7521 size = MO_64;
7522 break;
7523 case 3:
7524 size = MO_16;
7525 if (dc_isar_feature(aa64_fp16, s)) {
7526 break;
7528 /* fallthru */
7529 default:
7530 unallocated_encoding(s);
7531 return;
7534 if (!fp_access_check(s)) {
7535 return;
7538 if (cond < 0x0e) { /* not always */
7539 TCGLabel *label_match = gen_new_label();
7540 label_continue = gen_new_label();
7541 arm_gen_test_cc(cond, label_match);
7542 /* nomatch: */
7543 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7544 tcg_gen_br(label_continue);
7545 gen_set_label(label_match);
7548 handle_fp_compare(s, size, rn, rm, false, op);
7550 if (cond < 0x0e) {
7551 gen_set_label(label_continue);
7555 /* Floating-point data-processing (1 source) - half precision */
7556 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7558 TCGv_ptr fpst = NULL;
7559 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7560 TCGv_i32 tcg_res = tcg_temp_new_i32();
7562 switch (opcode) {
7563 case 0x0: /* FMOV */
7564 tcg_gen_mov_i32(tcg_res, tcg_op);
7565 break;
7566 case 0x1: /* FABS */
7567 gen_vfp_absh(tcg_res, tcg_op);
7568 break;
7569 case 0x2: /* FNEG */
7570 gen_vfp_negh(tcg_res, tcg_op);
7571 break;
7572 case 0x3: /* FSQRT */
7573 fpst = fpstatus_ptr(FPST_FPCR_F16);
7574 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7575 break;
7576 case 0x8: /* FRINTN */
7577 case 0x9: /* FRINTP */
7578 case 0xa: /* FRINTM */
7579 case 0xb: /* FRINTZ */
7580 case 0xc: /* FRINTA */
7582 TCGv_i32 tcg_rmode;
7584 fpst = fpstatus_ptr(FPST_FPCR_F16);
7585 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7586 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7587 gen_restore_rmode(tcg_rmode, fpst);
7588 break;
7590 case 0xe: /* FRINTX */
7591 fpst = fpstatus_ptr(FPST_FPCR_F16);
7592 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7593 break;
7594 case 0xf: /* FRINTI */
7595 fpst = fpstatus_ptr(FPST_FPCR_F16);
7596 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7597 break;
7598 default:
7599 g_assert_not_reached();
7602 write_fp_sreg(s, rd, tcg_res);
7605 /* Floating-point data-processing (1 source) - single precision */
7606 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7608 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7609 TCGv_i32 tcg_op, tcg_res;
7610 TCGv_ptr fpst;
7611 int rmode = -1;
7613 tcg_op = read_fp_sreg(s, rn);
7614 tcg_res = tcg_temp_new_i32();
7616 switch (opcode) {
7617 case 0x0: /* FMOV */
7618 tcg_gen_mov_i32(tcg_res, tcg_op);
7619 goto done;
7620 case 0x1: /* FABS */
7621 gen_vfp_abss(tcg_res, tcg_op);
7622 goto done;
7623 case 0x2: /* FNEG */
7624 gen_vfp_negs(tcg_res, tcg_op);
7625 goto done;
7626 case 0x3: /* FSQRT */
7627 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7628 goto done;
7629 case 0x6: /* BFCVT */
7630 gen_fpst = gen_helper_bfcvt;
7631 break;
7632 case 0x8: /* FRINTN */
7633 case 0x9: /* FRINTP */
7634 case 0xa: /* FRINTM */
7635 case 0xb: /* FRINTZ */
7636 case 0xc: /* FRINTA */
7637 rmode = opcode & 7;
7638 gen_fpst = gen_helper_rints;
7639 break;
7640 case 0xe: /* FRINTX */
7641 gen_fpst = gen_helper_rints_exact;
7642 break;
7643 case 0xf: /* FRINTI */
7644 gen_fpst = gen_helper_rints;
7645 break;
7646 case 0x10: /* FRINT32Z */
7647 rmode = FPROUNDING_ZERO;
7648 gen_fpst = gen_helper_frint32_s;
7649 break;
7650 case 0x11: /* FRINT32X */
7651 gen_fpst = gen_helper_frint32_s;
7652 break;
7653 case 0x12: /* FRINT64Z */
7654 rmode = FPROUNDING_ZERO;
7655 gen_fpst = gen_helper_frint64_s;
7656 break;
7657 case 0x13: /* FRINT64X */
7658 gen_fpst = gen_helper_frint64_s;
7659 break;
7660 default:
7661 g_assert_not_reached();
7664 fpst = fpstatus_ptr(FPST_FPCR);
7665 if (rmode >= 0) {
7666 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7667 gen_fpst(tcg_res, tcg_op, fpst);
7668 gen_restore_rmode(tcg_rmode, fpst);
7669 } else {
7670 gen_fpst(tcg_res, tcg_op, fpst);
7673 done:
7674 write_fp_sreg(s, rd, tcg_res);
7677 /* Floating-point data-processing (1 source) - double precision */
7678 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7680 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7681 TCGv_i64 tcg_op, tcg_res;
7682 TCGv_ptr fpst;
7683 int rmode = -1;
7685 switch (opcode) {
7686 case 0x0: /* FMOV */
7687 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7688 return;
7691 tcg_op = read_fp_dreg(s, rn);
7692 tcg_res = tcg_temp_new_i64();
7694 switch (opcode) {
7695 case 0x1: /* FABS */
7696 gen_vfp_absd(tcg_res, tcg_op);
7697 goto done;
7698 case 0x2: /* FNEG */
7699 gen_vfp_negd(tcg_res, tcg_op);
7700 goto done;
7701 case 0x3: /* FSQRT */
7702 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7703 goto done;
7704 case 0x8: /* FRINTN */
7705 case 0x9: /* FRINTP */
7706 case 0xa: /* FRINTM */
7707 case 0xb: /* FRINTZ */
7708 case 0xc: /* FRINTA */
7709 rmode = opcode & 7;
7710 gen_fpst = gen_helper_rintd;
7711 break;
7712 case 0xe: /* FRINTX */
7713 gen_fpst = gen_helper_rintd_exact;
7714 break;
7715 case 0xf: /* FRINTI */
7716 gen_fpst = gen_helper_rintd;
7717 break;
7718 case 0x10: /* FRINT32Z */
7719 rmode = FPROUNDING_ZERO;
7720 gen_fpst = gen_helper_frint32_d;
7721 break;
7722 case 0x11: /* FRINT32X */
7723 gen_fpst = gen_helper_frint32_d;
7724 break;
7725 case 0x12: /* FRINT64Z */
7726 rmode = FPROUNDING_ZERO;
7727 gen_fpst = gen_helper_frint64_d;
7728 break;
7729 case 0x13: /* FRINT64X */
7730 gen_fpst = gen_helper_frint64_d;
7731 break;
7732 default:
7733 g_assert_not_reached();
7736 fpst = fpstatus_ptr(FPST_FPCR);
7737 if (rmode >= 0) {
7738 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7739 gen_fpst(tcg_res, tcg_op, fpst);
7740 gen_restore_rmode(tcg_rmode, fpst);
7741 } else {
7742 gen_fpst(tcg_res, tcg_op, fpst);
7745 done:
7746 write_fp_dreg(s, rd, tcg_res);
7749 static void handle_fp_fcvt(DisasContext *s, int opcode,
7750 int rd, int rn, int dtype, int ntype)
7752 switch (ntype) {
7753 case 0x0:
7755 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7756 if (dtype == 1) {
7757 /* Single to double */
7758 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7759 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7760 write_fp_dreg(s, rd, tcg_rd);
7761 } else {
7762 /* Single to half */
7763 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7764 TCGv_i32 ahp = get_ahp_flag();
7765 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7767 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7768 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7769 write_fp_sreg(s, rd, tcg_rd);
7771 break;
7773 case 0x1:
7775 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7776 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7777 if (dtype == 0) {
7778 /* Double to single */
7779 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7780 } else {
7781 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7782 TCGv_i32 ahp = get_ahp_flag();
7783 /* Double to half */
7784 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7785 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7787 write_fp_sreg(s, rd, tcg_rd);
7788 break;
7790 case 0x3:
7792 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7793 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7794 TCGv_i32 tcg_ahp = get_ahp_flag();
7795 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7796 if (dtype == 0) {
7797 /* Half to single */
7798 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7799 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7800 write_fp_sreg(s, rd, tcg_rd);
7801 } else {
7802 /* Half to double */
7803 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7804 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7805 write_fp_dreg(s, rd, tcg_rd);
7807 break;
7809 default:
7810 g_assert_not_reached();
7814 /* Floating point data-processing (1 source)
7815 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
7816 * +---+---+---+-----------+------+---+--------+-----------+------+------+
7817 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
7818 * +---+---+---+-----------+------+---+--------+-----------+------+------+
7820 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7822 int mos = extract32(insn, 29, 3);
7823 int type = extract32(insn, 22, 2);
7824 int opcode = extract32(insn, 15, 6);
7825 int rn = extract32(insn, 5, 5);
7826 int rd = extract32(insn, 0, 5);
7828 if (mos) {
7829 goto do_unallocated;
7832 switch (opcode) {
7833 case 0x4: case 0x5: case 0x7:
7835 /* FCVT between half, single and double precision */
7836 int dtype = extract32(opcode, 0, 2);
7837 if (type == 2 || dtype == type) {
7838 goto do_unallocated;
7840 if (!fp_access_check(s)) {
7841 return;
7844 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7845 break;
7848 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7849 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7850 goto do_unallocated;
7852 /* fall through */
7853 case 0x0 ... 0x3:
7854 case 0x8 ... 0xc:
7855 case 0xe ... 0xf:
7856 /* 32-to-32 and 64-to-64 ops */
7857 switch (type) {
7858 case 0:
7859 if (!fp_access_check(s)) {
7860 return;
7862 handle_fp_1src_single(s, opcode, rd, rn);
7863 break;
7864 case 1:
7865 if (!fp_access_check(s)) {
7866 return;
7868 handle_fp_1src_double(s, opcode, rd, rn);
7869 break;
7870 case 3:
7871 if (!dc_isar_feature(aa64_fp16, s)) {
7872 goto do_unallocated;
7875 if (!fp_access_check(s)) {
7876 return;
7878 handle_fp_1src_half(s, opcode, rd, rn);
7879 break;
7880 default:
7881 goto do_unallocated;
7883 break;
7885 case 0x6:
7886 switch (type) {
7887 case 1: /* BFCVT */
7888 if (!dc_isar_feature(aa64_bf16, s)) {
7889 goto do_unallocated;
7891 if (!fp_access_check(s)) {
7892 return;
7894 handle_fp_1src_single(s, opcode, rd, rn);
7895 break;
7896 default:
7897 goto do_unallocated;
7899 break;
7901 default:
7902 do_unallocated:
7903 unallocated_encoding(s);
7904 break;
7908 /* Floating point immediate
7909 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
7910 * +---+---+---+-----------+------+---+------------+-------+------+------+
7911 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
7912 * +---+---+---+-----------+------+---+------------+-------+------+------+
7914 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7916 int rd = extract32(insn, 0, 5);
7917 int imm5 = extract32(insn, 5, 5);
7918 int imm8 = extract32(insn, 13, 8);
7919 int type = extract32(insn, 22, 2);
7920 int mos = extract32(insn, 29, 3);
7921 uint64_t imm;
7922 MemOp sz;
7924 if (mos || imm5) {
7925 unallocated_encoding(s);
7926 return;
7929 switch (type) {
7930 case 0:
7931 sz = MO_32;
7932 break;
7933 case 1:
7934 sz = MO_64;
7935 break;
7936 case 3:
7937 sz = MO_16;
7938 if (dc_isar_feature(aa64_fp16, s)) {
7939 break;
7941 /* fallthru */
7942 default:
7943 unallocated_encoding(s);
7944 return;
7947 if (!fp_access_check(s)) {
7948 return;
7951 imm = vfp_expand_imm(sz, imm8);
7952 write_fp_dreg(s, rd, tcg_constant_i64(imm));
7955 /* Handle floating point <=> fixed point conversions. Note that we can
7956 * also deal with fp <=> integer conversions as a special case (scale == 64)
7957 * OPTME: consider handling that special case specially or at least skipping
7958 * the call to scalbn in the helpers for zero shifts.
7960 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7961 bool itof, int rmode, int scale, int sf, int type)
7963 bool is_signed = !(opcode & 1);
7964 TCGv_ptr tcg_fpstatus;
7965 TCGv_i32 tcg_shift, tcg_single;
7966 TCGv_i64 tcg_double;
7968 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7970 tcg_shift = tcg_constant_i32(64 - scale);
7972 if (itof) {
7973 TCGv_i64 tcg_int = cpu_reg(s, rn);
7974 if (!sf) {
7975 TCGv_i64 tcg_extend = tcg_temp_new_i64();
7977 if (is_signed) {
7978 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7979 } else {
7980 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7983 tcg_int = tcg_extend;
7986 switch (type) {
7987 case 1: /* float64 */
7988 tcg_double = tcg_temp_new_i64();
7989 if (is_signed) {
7990 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7991 tcg_shift, tcg_fpstatus);
7992 } else {
7993 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7994 tcg_shift, tcg_fpstatus);
7996 write_fp_dreg(s, rd, tcg_double);
7997 break;
7999 case 0: /* float32 */
8000 tcg_single = tcg_temp_new_i32();
8001 if (is_signed) {
8002 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8003 tcg_shift, tcg_fpstatus);
8004 } else {
8005 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8006 tcg_shift, tcg_fpstatus);
8008 write_fp_sreg(s, rd, tcg_single);
8009 break;
8011 case 3: /* float16 */
8012 tcg_single = tcg_temp_new_i32();
8013 if (is_signed) {
8014 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8015 tcg_shift, tcg_fpstatus);
8016 } else {
8017 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8018 tcg_shift, tcg_fpstatus);
8020 write_fp_sreg(s, rd, tcg_single);
8021 break;
8023 default:
8024 g_assert_not_reached();
8026 } else {
8027 TCGv_i64 tcg_int = cpu_reg(s, rd);
8028 TCGv_i32 tcg_rmode;
8030 if (extract32(opcode, 2, 1)) {
8031 /* There are too many rounding modes to all fit into rmode,
8032 * so FCVTA[US] is a special case.
8034 rmode = FPROUNDING_TIEAWAY;
8037 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8039 switch (type) {
8040 case 1: /* float64 */
8041 tcg_double = read_fp_dreg(s, rn);
8042 if (is_signed) {
8043 if (!sf) {
8044 gen_helper_vfp_tosld(tcg_int, tcg_double,
8045 tcg_shift, tcg_fpstatus);
8046 } else {
8047 gen_helper_vfp_tosqd(tcg_int, tcg_double,
8048 tcg_shift, tcg_fpstatus);
8050 } else {
8051 if (!sf) {
8052 gen_helper_vfp_tould(tcg_int, tcg_double,
8053 tcg_shift, tcg_fpstatus);
8054 } else {
8055 gen_helper_vfp_touqd(tcg_int, tcg_double,
8056 tcg_shift, tcg_fpstatus);
8059 if (!sf) {
8060 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8062 break;
8064 case 0: /* float32 */
8065 tcg_single = read_fp_sreg(s, rn);
8066 if (sf) {
8067 if (is_signed) {
8068 gen_helper_vfp_tosqs(tcg_int, tcg_single,
8069 tcg_shift, tcg_fpstatus);
8070 } else {
8071 gen_helper_vfp_touqs(tcg_int, tcg_single,
8072 tcg_shift, tcg_fpstatus);
8074 } else {
8075 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8076 if (is_signed) {
8077 gen_helper_vfp_tosls(tcg_dest, tcg_single,
8078 tcg_shift, tcg_fpstatus);
8079 } else {
8080 gen_helper_vfp_touls(tcg_dest, tcg_single,
8081 tcg_shift, tcg_fpstatus);
8083 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8085 break;
8087 case 3: /* float16 */
8088 tcg_single = read_fp_sreg(s, rn);
8089 if (sf) {
8090 if (is_signed) {
8091 gen_helper_vfp_tosqh(tcg_int, tcg_single,
8092 tcg_shift, tcg_fpstatus);
8093 } else {
8094 gen_helper_vfp_touqh(tcg_int, tcg_single,
8095 tcg_shift, tcg_fpstatus);
8097 } else {
8098 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8099 if (is_signed) {
8100 gen_helper_vfp_toslh(tcg_dest, tcg_single,
8101 tcg_shift, tcg_fpstatus);
8102 } else {
8103 gen_helper_vfp_toulh(tcg_dest, tcg_single,
8104 tcg_shift, tcg_fpstatus);
8106 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8108 break;
8110 default:
8111 g_assert_not_reached();
8114 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8118 /* Floating point <-> fixed point conversions
8119 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8120 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8121 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
8122 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8124 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8126 int rd = extract32(insn, 0, 5);
8127 int rn = extract32(insn, 5, 5);
8128 int scale = extract32(insn, 10, 6);
8129 int opcode = extract32(insn, 16, 3);
8130 int rmode = extract32(insn, 19, 2);
8131 int type = extract32(insn, 22, 2);
8132 bool sbit = extract32(insn, 29, 1);
8133 bool sf = extract32(insn, 31, 1);
8134 bool itof;
8136 if (sbit || (!sf && scale < 32)) {
8137 unallocated_encoding(s);
8138 return;
8141 switch (type) {
8142 case 0: /* float32 */
8143 case 1: /* float64 */
8144 break;
8145 case 3: /* float16 */
8146 if (dc_isar_feature(aa64_fp16, s)) {
8147 break;
8149 /* fallthru */
8150 default:
8151 unallocated_encoding(s);
8152 return;
8155 switch ((rmode << 3) | opcode) {
8156 case 0x2: /* SCVTF */
8157 case 0x3: /* UCVTF */
8158 itof = true;
8159 break;
8160 case 0x18: /* FCVTZS */
8161 case 0x19: /* FCVTZU */
8162 itof = false;
8163 break;
8164 default:
8165 unallocated_encoding(s);
8166 return;
8169 if (!fp_access_check(s)) {
8170 return;
8173 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8176 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8178 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8179 * without conversion.
8182 if (itof) {
8183 TCGv_i64 tcg_rn = cpu_reg(s, rn);
8184 TCGv_i64 tmp;
8186 switch (type) {
8187 case 0:
8188 /* 32 bit */
8189 tmp = tcg_temp_new_i64();
8190 tcg_gen_ext32u_i64(tmp, tcg_rn);
8191 write_fp_dreg(s, rd, tmp);
8192 break;
8193 case 1:
8194 /* 64 bit */
8195 write_fp_dreg(s, rd, tcg_rn);
8196 break;
8197 case 2:
8198 /* 64 bit to top half. */
8199 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8200 clear_vec_high(s, true, rd);
8201 break;
8202 case 3:
8203 /* 16 bit */
8204 tmp = tcg_temp_new_i64();
8205 tcg_gen_ext16u_i64(tmp, tcg_rn);
8206 write_fp_dreg(s, rd, tmp);
8207 break;
8208 default:
8209 g_assert_not_reached();
8211 } else {
8212 TCGv_i64 tcg_rd = cpu_reg(s, rd);
8214 switch (type) {
8215 case 0:
8216 /* 32 bit */
8217 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8218 break;
8219 case 1:
8220 /* 64 bit */
8221 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8222 break;
8223 case 2:
8224 /* 64 bits from top half */
8225 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8226 break;
8227 case 3:
8228 /* 16 bit */
8229 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8230 break;
8231 default:
8232 g_assert_not_reached();
8237 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8239 TCGv_i64 t = read_fp_dreg(s, rn);
8240 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8242 gen_helper_fjcvtzs(t, t, fpstatus);
8244 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8245 tcg_gen_extrh_i64_i32(cpu_ZF, t);
8246 tcg_gen_movi_i32(cpu_CF, 0);
8247 tcg_gen_movi_i32(cpu_NF, 0);
8248 tcg_gen_movi_i32(cpu_VF, 0);
8251 /* Floating point <-> integer conversions
8252 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8253 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8254 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8255 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8257 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8259 int rd = extract32(insn, 0, 5);
8260 int rn = extract32(insn, 5, 5);
8261 int opcode = extract32(insn, 16, 3);
8262 int rmode = extract32(insn, 19, 2);
8263 int type = extract32(insn, 22, 2);
8264 bool sbit = extract32(insn, 29, 1);
8265 bool sf = extract32(insn, 31, 1);
8266 bool itof = false;
8268 if (sbit) {
8269 goto do_unallocated;
8272 switch (opcode) {
8273 case 2: /* SCVTF */
8274 case 3: /* UCVTF */
8275 itof = true;
8276 /* fallthru */
8277 case 4: /* FCVTAS */
8278 case 5: /* FCVTAU */
8279 if (rmode != 0) {
8280 goto do_unallocated;
8282 /* fallthru */
8283 case 0: /* FCVT[NPMZ]S */
8284 case 1: /* FCVT[NPMZ]U */
8285 switch (type) {
8286 case 0: /* float32 */
8287 case 1: /* float64 */
8288 break;
8289 case 3: /* float16 */
8290 if (!dc_isar_feature(aa64_fp16, s)) {
8291 goto do_unallocated;
8293 break;
8294 default:
8295 goto do_unallocated;
8297 if (!fp_access_check(s)) {
8298 return;
8300 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8301 break;
8303 default:
8304 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8305 case 0b01100110: /* FMOV half <-> 32-bit int */
8306 case 0b01100111:
8307 case 0b11100110: /* FMOV half <-> 64-bit int */
8308 case 0b11100111:
8309 if (!dc_isar_feature(aa64_fp16, s)) {
8310 goto do_unallocated;
8312 /* fallthru */
8313 case 0b00000110: /* FMOV 32-bit */
8314 case 0b00000111:
8315 case 0b10100110: /* FMOV 64-bit */
8316 case 0b10100111:
8317 case 0b11001110: /* FMOV top half of 128-bit */
8318 case 0b11001111:
8319 if (!fp_access_check(s)) {
8320 return;
8322 itof = opcode & 1;
8323 handle_fmov(s, rd, rn, type, itof);
8324 break;
8326 case 0b00111110: /* FJCVTZS */
8327 if (!dc_isar_feature(aa64_jscvt, s)) {
8328 goto do_unallocated;
8329 } else if (fp_access_check(s)) {
8330 handle_fjcvtzs(s, rd, rn);
8332 break;
8334 default:
8335 do_unallocated:
8336 unallocated_encoding(s);
8337 return;
8339 break;
8343 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8344 * 31 30 29 28 25 24 0
8345 * +---+---+---+---------+-----------------------------+
8346 * | | 0 | | 1 1 1 1 | |
8347 * +---+---+---+---------+-----------------------------+
8349 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8351 if (extract32(insn, 24, 1)) {
8352 unallocated_encoding(s); /* in decodetree */
8353 } else if (extract32(insn, 21, 1) == 0) {
8354 /* Floating point to fixed point conversions */
8355 disas_fp_fixed_conv(s, insn);
8356 } else {
8357 switch (extract32(insn, 10, 2)) {
8358 case 1:
8359 /* Floating point conditional compare */
8360 disas_fp_ccomp(s, insn);
8361 break;
8362 case 2:
8363 /* Floating point data-processing (2 source) */
8364 unallocated_encoding(s); /* in decodetree */
8365 break;
8366 case 3:
8367 /* Floating point conditional select */
8368 unallocated_encoding(s); /* in decodetree */
8369 break;
8370 case 0:
8371 switch (ctz32(extract32(insn, 12, 4))) {
8372 case 0: /* [15:12] == xxx1 */
8373 /* Floating point immediate */
8374 disas_fp_imm(s, insn);
8375 break;
8376 case 1: /* [15:12] == xx10 */
8377 /* Floating point compare */
8378 disas_fp_compare(s, insn);
8379 break;
8380 case 2: /* [15:12] == x100 */
8381 /* Floating point data-processing (1 source) */
8382 disas_fp_1src(s, insn);
8383 break;
8384 case 3: /* [15:12] == 1000 */
8385 unallocated_encoding(s);
8386 break;
8387 default: /* [15:12] == 0000 */
8388 /* Floating point <-> integer conversions */
8389 disas_fp_int_conv(s, insn);
8390 break;
8392 break;
8397 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8398 int pos)
8400 /* Extract 64 bits from the middle of two concatenated 64 bit
8401 * vector register slices left:right. The extracted bits start
8402 * at 'pos' bits into the right (least significant) side.
8403 * We return the result in tcg_right, and guarantee not to
8404 * trash tcg_left.
8406 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8407 assert(pos > 0 && pos < 64);
8409 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8410 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8411 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8414 /* EXT
8415 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8416 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8417 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
8418 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8420 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8422 int is_q = extract32(insn, 30, 1);
8423 int op2 = extract32(insn, 22, 2);
8424 int imm4 = extract32(insn, 11, 4);
8425 int rm = extract32(insn, 16, 5);
8426 int rn = extract32(insn, 5, 5);
8427 int rd = extract32(insn, 0, 5);
8428 int pos = imm4 << 3;
8429 TCGv_i64 tcg_resl, tcg_resh;
8431 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8432 unallocated_encoding(s);
8433 return;
8436 if (!fp_access_check(s)) {
8437 return;
8440 tcg_resh = tcg_temp_new_i64();
8441 tcg_resl = tcg_temp_new_i64();
8443 /* Vd gets bits starting at pos bits into Vm:Vn. This is
8444 * either extracting 128 bits from a 128:128 concatenation, or
8445 * extracting 64 bits from a 64:64 concatenation.
8447 if (!is_q) {
8448 read_vec_element(s, tcg_resl, rn, 0, MO_64);
8449 if (pos != 0) {
8450 read_vec_element(s, tcg_resh, rm, 0, MO_64);
8451 do_ext64(s, tcg_resh, tcg_resl, pos);
8453 } else {
8454 TCGv_i64 tcg_hh;
8455 typedef struct {
8456 int reg;
8457 int elt;
8458 } EltPosns;
8459 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8460 EltPosns *elt = eltposns;
8462 if (pos >= 64) {
8463 elt++;
8464 pos -= 64;
8467 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8468 elt++;
8469 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8470 elt++;
8471 if (pos != 0) {
8472 do_ext64(s, tcg_resh, tcg_resl, pos);
8473 tcg_hh = tcg_temp_new_i64();
8474 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8475 do_ext64(s, tcg_hh, tcg_resh, pos);
8479 write_vec_element(s, tcg_resl, rd, 0, MO_64);
8480 if (is_q) {
8481 write_vec_element(s, tcg_resh, rd, 1, MO_64);
8483 clear_vec_high(s, is_q, rd);
8486 /* TBL/TBX
8487 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
8488 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8489 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
8490 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8492 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8494 int op2 = extract32(insn, 22, 2);
8495 int is_q = extract32(insn, 30, 1);
8496 int rm = extract32(insn, 16, 5);
8497 int rn = extract32(insn, 5, 5);
8498 int rd = extract32(insn, 0, 5);
8499 int is_tbx = extract32(insn, 12, 1);
8500 int len = (extract32(insn, 13, 2) + 1) * 16;
8502 if (op2 != 0) {
8503 unallocated_encoding(s);
8504 return;
8507 if (!fp_access_check(s)) {
8508 return;
8511 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8512 vec_full_reg_offset(s, rm), tcg_env,
8513 is_q ? 16 : 8, vec_full_reg_size(s),
8514 (len << 6) | (is_tbx << 5) | rn,
8515 gen_helper_simd_tblx);
8518 /* ZIP/UZP/TRN
8519 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
8520 * +---+---+-------------+------+---+------+---+------------------+------+
8521 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
8522 * +---+---+-------------+------+---+------+---+------------------+------+
8524 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8526 int rd = extract32(insn, 0, 5);
8527 int rn = extract32(insn, 5, 5);
8528 int rm = extract32(insn, 16, 5);
8529 int size = extract32(insn, 22, 2);
8530 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8531 * bit 2 indicates 1 vs 2 variant of the insn.
8533 int opcode = extract32(insn, 12, 2);
8534 bool part = extract32(insn, 14, 1);
8535 bool is_q = extract32(insn, 30, 1);
8536 int esize = 8 << size;
8537 int i;
8538 int datasize = is_q ? 128 : 64;
8539 int elements = datasize / esize;
8540 TCGv_i64 tcg_res[2], tcg_ele;
8542 if (opcode == 0 || (size == 3 && !is_q)) {
8543 unallocated_encoding(s);
8544 return;
8547 if (!fp_access_check(s)) {
8548 return;
8551 tcg_res[0] = tcg_temp_new_i64();
8552 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8553 tcg_ele = tcg_temp_new_i64();
8555 for (i = 0; i < elements; i++) {
8556 int o, w;
8558 switch (opcode) {
8559 case 1: /* UZP1/2 */
8561 int midpoint = elements / 2;
8562 if (i < midpoint) {
8563 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8564 } else {
8565 read_vec_element(s, tcg_ele, rm,
8566 2 * (i - midpoint) + part, size);
8568 break;
8570 case 2: /* TRN1/2 */
8571 if (i & 1) {
8572 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8573 } else {
8574 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8576 break;
8577 case 3: /* ZIP1/2 */
8579 int base = part * elements / 2;
8580 if (i & 1) {
8581 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8582 } else {
8583 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8585 break;
8587 default:
8588 g_assert_not_reached();
8591 w = (i * esize) / 64;
8592 o = (i * esize) % 64;
8593 if (o == 0) {
8594 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8595 } else {
8596 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8597 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8601 for (i = 0; i <= is_q; ++i) {
8602 write_vec_element(s, tcg_res[i], rd, i, MO_64);
8604 clear_vec_high(s, is_q, rd);
8608 * do_reduction_op helper
8610 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8611 * important for correct NaN propagation that we do these
8612 * operations in exactly the order specified by the pseudocode.
8614 * This is a recursive function, TCG temps should be freed by the
8615 * calling function once it is done with the values.
8617 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8618 int esize, int size, int vmap, TCGv_ptr fpst)
8620 if (esize == size) {
8621 int element;
8622 MemOp msize = esize == 16 ? MO_16 : MO_32;
8623 TCGv_i32 tcg_elem;
8625 /* We should have one register left here */
8626 assert(ctpop8(vmap) == 1);
8627 element = ctz32(vmap);
8628 assert(element < 8);
8630 tcg_elem = tcg_temp_new_i32();
8631 read_vec_element_i32(s, tcg_elem, rn, element, msize);
8632 return tcg_elem;
8633 } else {
8634 int bits = size / 2;
8635 int shift = ctpop8(vmap) / 2;
8636 int vmap_lo = (vmap >> shift) & vmap;
8637 int vmap_hi = (vmap & ~vmap_lo);
8638 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8640 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8641 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8642 tcg_res = tcg_temp_new_i32();
8644 switch (fpopcode) {
8645 case 0x0c: /* fmaxnmv half-precision */
8646 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8647 break;
8648 case 0x0f: /* fmaxv half-precision */
8649 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8650 break;
8651 case 0x1c: /* fminnmv half-precision */
8652 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8653 break;
8654 case 0x1f: /* fminv half-precision */
8655 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8656 break;
8657 case 0x2c: /* fmaxnmv */
8658 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8659 break;
8660 case 0x2f: /* fmaxv */
8661 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8662 break;
8663 case 0x3c: /* fminnmv */
8664 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8665 break;
8666 case 0x3f: /* fminv */
8667 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8668 break;
8669 default:
8670 g_assert_not_reached();
8672 return tcg_res;
8676 /* AdvSIMD across lanes
8677 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8678 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8679 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8680 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8682 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8684 int rd = extract32(insn, 0, 5);
8685 int rn = extract32(insn, 5, 5);
8686 int size = extract32(insn, 22, 2);
8687 int opcode = extract32(insn, 12, 5);
8688 bool is_q = extract32(insn, 30, 1);
8689 bool is_u = extract32(insn, 29, 1);
8690 bool is_fp = false;
8691 bool is_min = false;
8692 int esize;
8693 int elements;
8694 int i;
8695 TCGv_i64 tcg_res, tcg_elt;
8697 switch (opcode) {
8698 case 0x1b: /* ADDV */
8699 if (is_u) {
8700 unallocated_encoding(s);
8701 return;
8703 /* fall through */
8704 case 0x3: /* SADDLV, UADDLV */
8705 case 0xa: /* SMAXV, UMAXV */
8706 case 0x1a: /* SMINV, UMINV */
8707 if (size == 3 || (size == 2 && !is_q)) {
8708 unallocated_encoding(s);
8709 return;
8711 break;
8712 case 0xc: /* FMAXNMV, FMINNMV */
8713 case 0xf: /* FMAXV, FMINV */
8714 /* Bit 1 of size field encodes min vs max and the actual size
8715 * depends on the encoding of the U bit. If not set (and FP16
8716 * enabled) then we do half-precision float instead of single
8717 * precision.
8719 is_min = extract32(size, 1, 1);
8720 is_fp = true;
8721 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8722 size = 1;
8723 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8724 unallocated_encoding(s);
8725 return;
8726 } else {
8727 size = 2;
8729 break;
8730 default:
8731 unallocated_encoding(s);
8732 return;
8735 if (!fp_access_check(s)) {
8736 return;
8739 esize = 8 << size;
8740 elements = (is_q ? 128 : 64) / esize;
8742 tcg_res = tcg_temp_new_i64();
8743 tcg_elt = tcg_temp_new_i64();
8745 /* These instructions operate across all lanes of a vector
8746 * to produce a single result. We can guarantee that a 64
8747 * bit intermediate is sufficient:
8748 * + for [US]ADDLV the maximum element size is 32 bits, and
8749 * the result type is 64 bits
8750 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8751 * same as the element size, which is 32 bits at most
8752 * For the integer operations we can choose to work at 64
8753 * or 32 bits and truncate at the end; for simplicity
8754 * we use 64 bits always. The floating point
8755 * ops do require 32 bit intermediates, though.
8757 if (!is_fp) {
8758 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8760 for (i = 1; i < elements; i++) {
8761 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8763 switch (opcode) {
8764 case 0x03: /* SADDLV / UADDLV */
8765 case 0x1b: /* ADDV */
8766 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8767 break;
8768 case 0x0a: /* SMAXV / UMAXV */
8769 if (is_u) {
8770 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8771 } else {
8772 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8774 break;
8775 case 0x1a: /* SMINV / UMINV */
8776 if (is_u) {
8777 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8778 } else {
8779 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8781 break;
8782 default:
8783 g_assert_not_reached();
8787 } else {
8788 /* Floating point vector reduction ops which work across 32
8789 * bit (single) or 16 bit (half-precision) intermediates.
8790 * Note that correct NaN propagation requires that we do these
8791 * operations in exactly the order specified by the pseudocode.
8793 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8794 int fpopcode = opcode | is_min << 4 | is_u << 5;
8795 int vmap = (1 << elements) - 1;
8796 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8797 (is_q ? 128 : 64), vmap, fpst);
8798 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8801 /* Now truncate the result to the width required for the final output */
8802 if (opcode == 0x03) {
8803 /* SADDLV, UADDLV: result is 2*esize */
8804 size++;
8807 switch (size) {
8808 case 0:
8809 tcg_gen_ext8u_i64(tcg_res, tcg_res);
8810 break;
8811 case 1:
8812 tcg_gen_ext16u_i64(tcg_res, tcg_res);
8813 break;
8814 case 2:
8815 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8816 break;
8817 case 3:
8818 break;
8819 default:
8820 g_assert_not_reached();
8823 write_fp_dreg(s, rd, tcg_res);
8826 /* AdvSIMD modified immediate
8827 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8828 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8829 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8830 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8832 * There are a number of operations that can be carried out here:
8833 * MOVI - move (shifted) imm into register
8834 * MVNI - move inverted (shifted) imm into register
8835 * ORR - bitwise OR of (shifted) imm with register
8836 * BIC - bitwise clear of (shifted) imm with register
8837 * With ARMv8.2 we also have:
8838 * FMOV half-precision
8840 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8842 int rd = extract32(insn, 0, 5);
8843 int cmode = extract32(insn, 12, 4);
8844 int o2 = extract32(insn, 11, 1);
8845 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8846 bool is_neg = extract32(insn, 29, 1);
8847 bool is_q = extract32(insn, 30, 1);
8848 uint64_t imm = 0;
8850 if (o2) {
8851 if (cmode != 0xf || is_neg) {
8852 unallocated_encoding(s);
8853 return;
8855 /* FMOV (vector, immediate) - half-precision */
8856 if (!dc_isar_feature(aa64_fp16, s)) {
8857 unallocated_encoding(s);
8858 return;
8860 imm = vfp_expand_imm(MO_16, abcdefgh);
8861 /* now duplicate across the lanes */
8862 imm = dup_const(MO_16, imm);
8863 } else {
8864 if (cmode == 0xf && is_neg && !is_q) {
8865 unallocated_encoding(s);
8866 return;
8868 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8871 if (!fp_access_check(s)) {
8872 return;
8875 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8876 /* MOVI or MVNI, with MVNI negation handled above. */
8877 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8878 vec_full_reg_size(s), imm);
8879 } else {
8880 /* ORR or BIC, with BIC negation to AND handled above. */
8881 if (is_neg) {
8882 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8883 } else {
8884 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8890 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8892 * This code is handles the common shifting code and is used by both
8893 * the vector and scalar code.
8895 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8896 TCGv_i64 tcg_rnd, bool accumulate,
8897 bool is_u, int size, int shift)
8899 bool extended_result = false;
8900 bool round = tcg_rnd != NULL;
8901 int ext_lshift = 0;
8902 TCGv_i64 tcg_src_hi;
8904 if (round && size == 3) {
8905 extended_result = true;
8906 ext_lshift = 64 - shift;
8907 tcg_src_hi = tcg_temp_new_i64();
8908 } else if (shift == 64) {
8909 if (!accumulate && is_u) {
8910 /* result is zero */
8911 tcg_gen_movi_i64(tcg_res, 0);
8912 return;
8916 /* Deal with the rounding step */
8917 if (round) {
8918 if (extended_result) {
8919 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8920 if (!is_u) {
8921 /* take care of sign extending tcg_res */
8922 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8923 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8924 tcg_src, tcg_src_hi,
8925 tcg_rnd, tcg_zero);
8926 } else {
8927 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8928 tcg_src, tcg_zero,
8929 tcg_rnd, tcg_zero);
8931 } else {
8932 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8936 /* Now do the shift right */
8937 if (round && extended_result) {
8938 /* extended case, >64 bit precision required */
8939 if (ext_lshift == 0) {
8940 /* special case, only high bits matter */
8941 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8942 } else {
8943 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8944 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8945 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8947 } else {
8948 if (is_u) {
8949 if (shift == 64) {
8950 /* essentially shifting in 64 zeros */
8951 tcg_gen_movi_i64(tcg_src, 0);
8952 } else {
8953 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8955 } else {
8956 if (shift == 64) {
8957 /* effectively extending the sign-bit */
8958 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8959 } else {
8960 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8965 if (accumulate) {
8966 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8967 } else {
8968 tcg_gen_mov_i64(tcg_res, tcg_src);
8972 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8973 static void handle_scalar_simd_shri(DisasContext *s,
8974 bool is_u, int immh, int immb,
8975 int opcode, int rn, int rd)
8977 const int size = 3;
8978 int immhb = immh << 3 | immb;
8979 int shift = 2 * (8 << size) - immhb;
8980 bool accumulate = false;
8981 bool round = false;
8982 bool insert = false;
8983 TCGv_i64 tcg_rn;
8984 TCGv_i64 tcg_rd;
8985 TCGv_i64 tcg_round;
8987 if (!extract32(immh, 3, 1)) {
8988 unallocated_encoding(s);
8989 return;
8992 if (!fp_access_check(s)) {
8993 return;
8996 switch (opcode) {
8997 case 0x02: /* SSRA / USRA (accumulate) */
8998 accumulate = true;
8999 break;
9000 case 0x04: /* SRSHR / URSHR (rounding) */
9001 round = true;
9002 break;
9003 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9004 accumulate = round = true;
9005 break;
9006 case 0x08: /* SRI */
9007 insert = true;
9008 break;
9011 if (round) {
9012 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9013 } else {
9014 tcg_round = NULL;
9017 tcg_rn = read_fp_dreg(s, rn);
9018 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9020 if (insert) {
9021 /* shift count same as element size is valid but does nothing;
9022 * special case to avoid potential shift by 64.
9024 int esize = 8 << size;
9025 if (shift != esize) {
9026 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9027 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9029 } else {
9030 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9031 accumulate, is_u, size, shift);
9034 write_fp_dreg(s, rd, tcg_rd);
9037 /* SHL/SLI - Scalar shift left */
9038 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9039 int immh, int immb, int opcode,
9040 int rn, int rd)
9042 int size = 32 - clz32(immh) - 1;
9043 int immhb = immh << 3 | immb;
9044 int shift = immhb - (8 << size);
9045 TCGv_i64 tcg_rn;
9046 TCGv_i64 tcg_rd;
9048 if (!extract32(immh, 3, 1)) {
9049 unallocated_encoding(s);
9050 return;
9053 if (!fp_access_check(s)) {
9054 return;
9057 tcg_rn = read_fp_dreg(s, rn);
9058 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9060 if (insert) {
9061 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9062 } else {
9063 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9066 write_fp_dreg(s, rd, tcg_rd);
9069 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9070 * (signed/unsigned) narrowing */
9071 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9072 bool is_u_shift, bool is_u_narrow,
9073 int immh, int immb, int opcode,
9074 int rn, int rd)
9076 int immhb = immh << 3 | immb;
9077 int size = 32 - clz32(immh) - 1;
9078 int esize = 8 << size;
9079 int shift = (2 * esize) - immhb;
9080 int elements = is_scalar ? 1 : (64 / esize);
9081 bool round = extract32(opcode, 0, 1);
9082 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9083 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9084 TCGv_i32 tcg_rd_narrowed;
9085 TCGv_i64 tcg_final;
9087 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9088 { gen_helper_neon_narrow_sat_s8,
9089 gen_helper_neon_unarrow_sat8 },
9090 { gen_helper_neon_narrow_sat_s16,
9091 gen_helper_neon_unarrow_sat16 },
9092 { gen_helper_neon_narrow_sat_s32,
9093 gen_helper_neon_unarrow_sat32 },
9094 { NULL, NULL },
9096 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9097 gen_helper_neon_narrow_sat_u8,
9098 gen_helper_neon_narrow_sat_u16,
9099 gen_helper_neon_narrow_sat_u32,
9100 NULL
9102 NeonGenNarrowEnvFn *narrowfn;
9104 int i;
9106 assert(size < 4);
9108 if (extract32(immh, 3, 1)) {
9109 unallocated_encoding(s);
9110 return;
9113 if (!fp_access_check(s)) {
9114 return;
9117 if (is_u_shift) {
9118 narrowfn = unsigned_narrow_fns[size];
9119 } else {
9120 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9123 tcg_rn = tcg_temp_new_i64();
9124 tcg_rd = tcg_temp_new_i64();
9125 tcg_rd_narrowed = tcg_temp_new_i32();
9126 tcg_final = tcg_temp_new_i64();
9128 if (round) {
9129 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9130 } else {
9131 tcg_round = NULL;
9134 for (i = 0; i < elements; i++) {
9135 read_vec_element(s, tcg_rn, rn, i, ldop);
9136 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9137 false, is_u_shift, size+1, shift);
9138 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9139 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9140 if (i == 0) {
9141 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9142 } else {
9143 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9147 if (!is_q) {
9148 write_vec_element(s, tcg_final, rd, 0, MO_64);
9149 } else {
9150 write_vec_element(s, tcg_final, rd, 1, MO_64);
9152 clear_vec_high(s, is_q, rd);
9155 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9156 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9157 bool src_unsigned, bool dst_unsigned,
9158 int immh, int immb, int rn, int rd)
9160 int immhb = immh << 3 | immb;
9161 int size = 32 - clz32(immh) - 1;
9162 int shift = immhb - (8 << size);
9163 int pass;
9165 assert(immh != 0);
9166 assert(!(scalar && is_q));
9168 if (!scalar) {
9169 if (!is_q && extract32(immh, 3, 1)) {
9170 unallocated_encoding(s);
9171 return;
9174 /* Since we use the variable-shift helpers we must
9175 * replicate the shift count into each element of
9176 * the tcg_shift value.
9178 switch (size) {
9179 case 0:
9180 shift |= shift << 8;
9181 /* fall through */
9182 case 1:
9183 shift |= shift << 16;
9184 break;
9185 case 2:
9186 case 3:
9187 break;
9188 default:
9189 g_assert_not_reached();
9193 if (!fp_access_check(s)) {
9194 return;
9197 if (size == 3) {
9198 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9199 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9200 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9201 { NULL, gen_helper_neon_qshl_u64 },
9203 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9204 int maxpass = is_q ? 2 : 1;
9206 for (pass = 0; pass < maxpass; pass++) {
9207 TCGv_i64 tcg_op = tcg_temp_new_i64();
9209 read_vec_element(s, tcg_op, rn, pass, MO_64);
9210 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9211 write_vec_element(s, tcg_op, rd, pass, MO_64);
9213 clear_vec_high(s, is_q, rd);
9214 } else {
9215 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9216 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9218 { gen_helper_neon_qshl_s8,
9219 gen_helper_neon_qshl_s16,
9220 gen_helper_neon_qshl_s32 },
9221 { gen_helper_neon_qshlu_s8,
9222 gen_helper_neon_qshlu_s16,
9223 gen_helper_neon_qshlu_s32 }
9224 }, {
9225 { NULL, NULL, NULL },
9226 { gen_helper_neon_qshl_u8,
9227 gen_helper_neon_qshl_u16,
9228 gen_helper_neon_qshl_u32 }
9231 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9232 MemOp memop = scalar ? size : MO_32;
9233 int maxpass = scalar ? 1 : is_q ? 4 : 2;
9235 for (pass = 0; pass < maxpass; pass++) {
9236 TCGv_i32 tcg_op = tcg_temp_new_i32();
9238 read_vec_element_i32(s, tcg_op, rn, pass, memop);
9239 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9240 if (scalar) {
9241 switch (size) {
9242 case 0:
9243 tcg_gen_ext8u_i32(tcg_op, tcg_op);
9244 break;
9245 case 1:
9246 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9247 break;
9248 case 2:
9249 break;
9250 default:
9251 g_assert_not_reached();
9253 write_fp_sreg(s, rd, tcg_op);
9254 } else {
9255 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9259 if (!scalar) {
9260 clear_vec_high(s, is_q, rd);
9265 /* Common vector code for handling integer to FP conversion */
9266 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9267 int elements, int is_signed,
9268 int fracbits, int size)
9270 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9271 TCGv_i32 tcg_shift = NULL;
9273 MemOp mop = size | (is_signed ? MO_SIGN : 0);
9274 int pass;
9276 if (fracbits || size == MO_64) {
9277 tcg_shift = tcg_constant_i32(fracbits);
9280 if (size == MO_64) {
9281 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9282 TCGv_i64 tcg_double = tcg_temp_new_i64();
9284 for (pass = 0; pass < elements; pass++) {
9285 read_vec_element(s, tcg_int64, rn, pass, mop);
9287 if (is_signed) {
9288 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9289 tcg_shift, tcg_fpst);
9290 } else {
9291 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9292 tcg_shift, tcg_fpst);
9294 if (elements == 1) {
9295 write_fp_dreg(s, rd, tcg_double);
9296 } else {
9297 write_vec_element(s, tcg_double, rd, pass, MO_64);
9300 } else {
9301 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9302 TCGv_i32 tcg_float = tcg_temp_new_i32();
9304 for (pass = 0; pass < elements; pass++) {
9305 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9307 switch (size) {
9308 case MO_32:
9309 if (fracbits) {
9310 if (is_signed) {
9311 gen_helper_vfp_sltos(tcg_float, tcg_int32,
9312 tcg_shift, tcg_fpst);
9313 } else {
9314 gen_helper_vfp_ultos(tcg_float, tcg_int32,
9315 tcg_shift, tcg_fpst);
9317 } else {
9318 if (is_signed) {
9319 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9320 } else {
9321 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9324 break;
9325 case MO_16:
9326 if (fracbits) {
9327 if (is_signed) {
9328 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9329 tcg_shift, tcg_fpst);
9330 } else {
9331 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9332 tcg_shift, tcg_fpst);
9334 } else {
9335 if (is_signed) {
9336 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9337 } else {
9338 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9341 break;
9342 default:
9343 g_assert_not_reached();
9346 if (elements == 1) {
9347 write_fp_sreg(s, rd, tcg_float);
9348 } else {
9349 write_vec_element_i32(s, tcg_float, rd, pass, size);
9354 clear_vec_high(s, elements << size == 16, rd);
9357 /* UCVTF/SCVTF - Integer to FP conversion */
9358 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9359 bool is_q, bool is_u,
9360 int immh, int immb, int opcode,
9361 int rn, int rd)
9363 int size, elements, fracbits;
9364 int immhb = immh << 3 | immb;
9366 if (immh & 8) {
9367 size = MO_64;
9368 if (!is_scalar && !is_q) {
9369 unallocated_encoding(s);
9370 return;
9372 } else if (immh & 4) {
9373 size = MO_32;
9374 } else if (immh & 2) {
9375 size = MO_16;
9376 if (!dc_isar_feature(aa64_fp16, s)) {
9377 unallocated_encoding(s);
9378 return;
9380 } else {
9381 /* immh == 0 would be a failure of the decode logic */
9382 g_assert(immh == 1);
9383 unallocated_encoding(s);
9384 return;
9387 if (is_scalar) {
9388 elements = 1;
9389 } else {
9390 elements = (8 << is_q) >> size;
9392 fracbits = (16 << size) - immhb;
9394 if (!fp_access_check(s)) {
9395 return;
9398 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9401 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9402 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9403 bool is_q, bool is_u,
9404 int immh, int immb, int rn, int rd)
9406 int immhb = immh << 3 | immb;
9407 int pass, size, fracbits;
9408 TCGv_ptr tcg_fpstatus;
9409 TCGv_i32 tcg_rmode, tcg_shift;
9411 if (immh & 0x8) {
9412 size = MO_64;
9413 if (!is_scalar && !is_q) {
9414 unallocated_encoding(s);
9415 return;
9417 } else if (immh & 0x4) {
9418 size = MO_32;
9419 } else if (immh & 0x2) {
9420 size = MO_16;
9421 if (!dc_isar_feature(aa64_fp16, s)) {
9422 unallocated_encoding(s);
9423 return;
9425 } else {
9426 /* Should have split out AdvSIMD modified immediate earlier. */
9427 assert(immh == 1);
9428 unallocated_encoding(s);
9429 return;
9432 if (!fp_access_check(s)) {
9433 return;
9436 assert(!(is_scalar && is_q));
9438 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9439 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9440 fracbits = (16 << size) - immhb;
9441 tcg_shift = tcg_constant_i32(fracbits);
9443 if (size == MO_64) {
9444 int maxpass = is_scalar ? 1 : 2;
9446 for (pass = 0; pass < maxpass; pass++) {
9447 TCGv_i64 tcg_op = tcg_temp_new_i64();
9449 read_vec_element(s, tcg_op, rn, pass, MO_64);
9450 if (is_u) {
9451 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9452 } else {
9453 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9455 write_vec_element(s, tcg_op, rd, pass, MO_64);
9457 clear_vec_high(s, is_q, rd);
9458 } else {
9459 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9460 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9462 switch (size) {
9463 case MO_16:
9464 if (is_u) {
9465 fn = gen_helper_vfp_touhh;
9466 } else {
9467 fn = gen_helper_vfp_toshh;
9469 break;
9470 case MO_32:
9471 if (is_u) {
9472 fn = gen_helper_vfp_touls;
9473 } else {
9474 fn = gen_helper_vfp_tosls;
9476 break;
9477 default:
9478 g_assert_not_reached();
9481 for (pass = 0; pass < maxpass; pass++) {
9482 TCGv_i32 tcg_op = tcg_temp_new_i32();
9484 read_vec_element_i32(s, tcg_op, rn, pass, size);
9485 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9486 if (is_scalar) {
9487 if (size == MO_16 && !is_u) {
9488 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9490 write_fp_sreg(s, rd, tcg_op);
9491 } else {
9492 write_vec_element_i32(s, tcg_op, rd, pass, size);
9495 if (!is_scalar) {
9496 clear_vec_high(s, is_q, rd);
9500 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9503 /* AdvSIMD scalar shift by immediate
9504 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9505 * +-----+---+-------------+------+------+--------+---+------+------+
9506 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9507 * +-----+---+-------------+------+------+--------+---+------+------+
9509 * This is the scalar version so it works on a fixed sized registers
9511 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9513 int rd = extract32(insn, 0, 5);
9514 int rn = extract32(insn, 5, 5);
9515 int opcode = extract32(insn, 11, 5);
9516 int immb = extract32(insn, 16, 3);
9517 int immh = extract32(insn, 19, 4);
9518 bool is_u = extract32(insn, 29, 1);
9520 if (immh == 0) {
9521 unallocated_encoding(s);
9522 return;
9525 switch (opcode) {
9526 case 0x08: /* SRI */
9527 if (!is_u) {
9528 unallocated_encoding(s);
9529 return;
9531 /* fall through */
9532 case 0x00: /* SSHR / USHR */
9533 case 0x02: /* SSRA / USRA */
9534 case 0x04: /* SRSHR / URSHR */
9535 case 0x06: /* SRSRA / URSRA */
9536 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9537 break;
9538 case 0x0a: /* SHL / SLI */
9539 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9540 break;
9541 case 0x1c: /* SCVTF, UCVTF */
9542 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9543 opcode, rn, rd);
9544 break;
9545 case 0x10: /* SQSHRUN, SQSHRUN2 */
9546 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9547 if (!is_u) {
9548 unallocated_encoding(s);
9549 return;
9551 handle_vec_simd_sqshrn(s, true, false, false, true,
9552 immh, immb, opcode, rn, rd);
9553 break;
9554 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9555 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9556 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9557 immh, immb, opcode, rn, rd);
9558 break;
9559 case 0xc: /* SQSHLU */
9560 if (!is_u) {
9561 unallocated_encoding(s);
9562 return;
9564 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9565 break;
9566 case 0xe: /* SQSHL, UQSHL */
9567 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9568 break;
9569 case 0x1f: /* FCVTZS, FCVTZU */
9570 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9571 break;
9572 default:
9573 unallocated_encoding(s);
9574 break;
9578 /* AdvSIMD scalar three different
9579 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9580 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9581 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9582 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9584 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9586 bool is_u = extract32(insn, 29, 1);
9587 int size = extract32(insn, 22, 2);
9588 int opcode = extract32(insn, 12, 4);
9589 int rm = extract32(insn, 16, 5);
9590 int rn = extract32(insn, 5, 5);
9591 int rd = extract32(insn, 0, 5);
9593 if (is_u) {
9594 unallocated_encoding(s);
9595 return;
9598 switch (opcode) {
9599 case 0x9: /* SQDMLAL, SQDMLAL2 */
9600 case 0xb: /* SQDMLSL, SQDMLSL2 */
9601 case 0xd: /* SQDMULL, SQDMULL2 */
9602 if (size == 0 || size == 3) {
9603 unallocated_encoding(s);
9604 return;
9606 break;
9607 default:
9608 unallocated_encoding(s);
9609 return;
9612 if (!fp_access_check(s)) {
9613 return;
9616 if (size == 2) {
9617 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9618 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9619 TCGv_i64 tcg_res = tcg_temp_new_i64();
9621 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9622 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9624 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9625 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9627 switch (opcode) {
9628 case 0xd: /* SQDMULL, SQDMULL2 */
9629 break;
9630 case 0xb: /* SQDMLSL, SQDMLSL2 */
9631 tcg_gen_neg_i64(tcg_res, tcg_res);
9632 /* fall through */
9633 case 0x9: /* SQDMLAL, SQDMLAL2 */
9634 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9635 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9636 tcg_res, tcg_op1);
9637 break;
9638 default:
9639 g_assert_not_reached();
9642 write_fp_dreg(s, rd, tcg_res);
9643 } else {
9644 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9645 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9646 TCGv_i64 tcg_res = tcg_temp_new_i64();
9648 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9649 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9651 switch (opcode) {
9652 case 0xd: /* SQDMULL, SQDMULL2 */
9653 break;
9654 case 0xb: /* SQDMLSL, SQDMLSL2 */
9655 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9656 /* fall through */
9657 case 0x9: /* SQDMLAL, SQDMLAL2 */
9659 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9660 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9661 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9662 tcg_res, tcg_op3);
9663 break;
9665 default:
9666 g_assert_not_reached();
9669 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9670 write_fp_dreg(s, rd, tcg_res);
9674 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9675 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9676 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9678 /* Handle 64->64 opcodes which are shared between the scalar and
9679 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9680 * is valid in either group and also the double-precision fp ops.
9681 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9682 * requires them.
9684 TCGCond cond;
9686 switch (opcode) {
9687 case 0x4: /* CLS, CLZ */
9688 if (u) {
9689 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9690 } else {
9691 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9693 break;
9694 case 0x5: /* NOT */
9695 /* This opcode is shared with CNT and RBIT but we have earlier
9696 * enforced that size == 3 if and only if this is the NOT insn.
9698 tcg_gen_not_i64(tcg_rd, tcg_rn);
9699 break;
9700 case 0x7: /* SQABS, SQNEG */
9701 if (u) {
9702 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9703 } else {
9704 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9706 break;
9707 case 0xa: /* CMLT */
9708 cond = TCG_COND_LT;
9709 do_cmop:
9710 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9711 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9712 break;
9713 case 0x8: /* CMGT, CMGE */
9714 cond = u ? TCG_COND_GE : TCG_COND_GT;
9715 goto do_cmop;
9716 case 0x9: /* CMEQ, CMLE */
9717 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9718 goto do_cmop;
9719 case 0xb: /* ABS, NEG */
9720 if (u) {
9721 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9722 } else {
9723 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9725 break;
9726 case 0x2f: /* FABS */
9727 gen_vfp_absd(tcg_rd, tcg_rn);
9728 break;
9729 case 0x6f: /* FNEG */
9730 gen_vfp_negd(tcg_rd, tcg_rn);
9731 break;
9732 case 0x7f: /* FSQRT */
9733 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9734 break;
9735 case 0x1a: /* FCVTNS */
9736 case 0x1b: /* FCVTMS */
9737 case 0x1c: /* FCVTAS */
9738 case 0x3a: /* FCVTPS */
9739 case 0x3b: /* FCVTZS */
9740 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9741 break;
9742 case 0x5a: /* FCVTNU */
9743 case 0x5b: /* FCVTMU */
9744 case 0x5c: /* FCVTAU */
9745 case 0x7a: /* FCVTPU */
9746 case 0x7b: /* FCVTZU */
9747 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9748 break;
9749 case 0x18: /* FRINTN */
9750 case 0x19: /* FRINTM */
9751 case 0x38: /* FRINTP */
9752 case 0x39: /* FRINTZ */
9753 case 0x58: /* FRINTA */
9754 case 0x79: /* FRINTI */
9755 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9756 break;
9757 case 0x59: /* FRINTX */
9758 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9759 break;
9760 case 0x1e: /* FRINT32Z */
9761 case 0x5e: /* FRINT32X */
9762 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9763 break;
9764 case 0x1f: /* FRINT64Z */
9765 case 0x5f: /* FRINT64X */
9766 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9767 break;
9768 default:
9769 g_assert_not_reached();
9773 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9774 bool is_scalar, bool is_u, bool is_q,
9775 int size, int rn, int rd)
9777 bool is_double = (size == MO_64);
9778 TCGv_ptr fpst;
9780 if (!fp_access_check(s)) {
9781 return;
9784 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9786 if (is_double) {
9787 TCGv_i64 tcg_op = tcg_temp_new_i64();
9788 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9789 TCGv_i64 tcg_res = tcg_temp_new_i64();
9790 NeonGenTwoDoubleOpFn *genfn;
9791 bool swap = false;
9792 int pass;
9794 switch (opcode) {
9795 case 0x2e: /* FCMLT (zero) */
9796 swap = true;
9797 /* fallthrough */
9798 case 0x2c: /* FCMGT (zero) */
9799 genfn = gen_helper_neon_cgt_f64;
9800 break;
9801 case 0x2d: /* FCMEQ (zero) */
9802 genfn = gen_helper_neon_ceq_f64;
9803 break;
9804 case 0x6d: /* FCMLE (zero) */
9805 swap = true;
9806 /* fall through */
9807 case 0x6c: /* FCMGE (zero) */
9808 genfn = gen_helper_neon_cge_f64;
9809 break;
9810 default:
9811 g_assert_not_reached();
9814 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9815 read_vec_element(s, tcg_op, rn, pass, MO_64);
9816 if (swap) {
9817 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9818 } else {
9819 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9821 write_vec_element(s, tcg_res, rd, pass, MO_64);
9824 clear_vec_high(s, !is_scalar, rd);
9825 } else {
9826 TCGv_i32 tcg_op = tcg_temp_new_i32();
9827 TCGv_i32 tcg_zero = tcg_constant_i32(0);
9828 TCGv_i32 tcg_res = tcg_temp_new_i32();
9829 NeonGenTwoSingleOpFn *genfn;
9830 bool swap = false;
9831 int pass, maxpasses;
9833 if (size == MO_16) {
9834 switch (opcode) {
9835 case 0x2e: /* FCMLT (zero) */
9836 swap = true;
9837 /* fall through */
9838 case 0x2c: /* FCMGT (zero) */
9839 genfn = gen_helper_advsimd_cgt_f16;
9840 break;
9841 case 0x2d: /* FCMEQ (zero) */
9842 genfn = gen_helper_advsimd_ceq_f16;
9843 break;
9844 case 0x6d: /* FCMLE (zero) */
9845 swap = true;
9846 /* fall through */
9847 case 0x6c: /* FCMGE (zero) */
9848 genfn = gen_helper_advsimd_cge_f16;
9849 break;
9850 default:
9851 g_assert_not_reached();
9853 } else {
9854 switch (opcode) {
9855 case 0x2e: /* FCMLT (zero) */
9856 swap = true;
9857 /* fall through */
9858 case 0x2c: /* FCMGT (zero) */
9859 genfn = gen_helper_neon_cgt_f32;
9860 break;
9861 case 0x2d: /* FCMEQ (zero) */
9862 genfn = gen_helper_neon_ceq_f32;
9863 break;
9864 case 0x6d: /* FCMLE (zero) */
9865 swap = true;
9866 /* fall through */
9867 case 0x6c: /* FCMGE (zero) */
9868 genfn = gen_helper_neon_cge_f32;
9869 break;
9870 default:
9871 g_assert_not_reached();
9875 if (is_scalar) {
9876 maxpasses = 1;
9877 } else {
9878 int vector_size = 8 << is_q;
9879 maxpasses = vector_size >> size;
9882 for (pass = 0; pass < maxpasses; pass++) {
9883 read_vec_element_i32(s, tcg_op, rn, pass, size);
9884 if (swap) {
9885 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9886 } else {
9887 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9889 if (is_scalar) {
9890 write_fp_sreg(s, rd, tcg_res);
9891 } else {
9892 write_vec_element_i32(s, tcg_res, rd, pass, size);
9896 if (!is_scalar) {
9897 clear_vec_high(s, is_q, rd);
9902 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9903 bool is_scalar, bool is_u, bool is_q,
9904 int size, int rn, int rd)
9906 bool is_double = (size == 3);
9907 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9909 if (is_double) {
9910 TCGv_i64 tcg_op = tcg_temp_new_i64();
9911 TCGv_i64 tcg_res = tcg_temp_new_i64();
9912 int pass;
9914 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9915 read_vec_element(s, tcg_op, rn, pass, MO_64);
9916 switch (opcode) {
9917 case 0x3d: /* FRECPE */
9918 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9919 break;
9920 case 0x3f: /* FRECPX */
9921 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9922 break;
9923 case 0x7d: /* FRSQRTE */
9924 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9925 break;
9926 default:
9927 g_assert_not_reached();
9929 write_vec_element(s, tcg_res, rd, pass, MO_64);
9931 clear_vec_high(s, !is_scalar, rd);
9932 } else {
9933 TCGv_i32 tcg_op = tcg_temp_new_i32();
9934 TCGv_i32 tcg_res = tcg_temp_new_i32();
9935 int pass, maxpasses;
9937 if (is_scalar) {
9938 maxpasses = 1;
9939 } else {
9940 maxpasses = is_q ? 4 : 2;
9943 for (pass = 0; pass < maxpasses; pass++) {
9944 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9946 switch (opcode) {
9947 case 0x3c: /* URECPE */
9948 gen_helper_recpe_u32(tcg_res, tcg_op);
9949 break;
9950 case 0x3d: /* FRECPE */
9951 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9952 break;
9953 case 0x3f: /* FRECPX */
9954 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9955 break;
9956 case 0x7d: /* FRSQRTE */
9957 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9958 break;
9959 default:
9960 g_assert_not_reached();
9963 if (is_scalar) {
9964 write_fp_sreg(s, rd, tcg_res);
9965 } else {
9966 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9969 if (!is_scalar) {
9970 clear_vec_high(s, is_q, rd);
9975 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9976 int opcode, bool u, bool is_q,
9977 int size, int rn, int rd)
9979 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9980 * in the source becomes a size element in the destination).
9982 int pass;
9983 TCGv_i32 tcg_res[2];
9984 int destelt = is_q ? 2 : 0;
9985 int passes = scalar ? 1 : 2;
9987 if (scalar) {
9988 tcg_res[1] = tcg_constant_i32(0);
9991 for (pass = 0; pass < passes; pass++) {
9992 TCGv_i64 tcg_op = tcg_temp_new_i64();
9993 NeonGenNarrowFn *genfn = NULL;
9994 NeonGenNarrowEnvFn *genenvfn = NULL;
9996 if (scalar) {
9997 read_vec_element(s, tcg_op, rn, pass, size + 1);
9998 } else {
9999 read_vec_element(s, tcg_op, rn, pass, MO_64);
10001 tcg_res[pass] = tcg_temp_new_i32();
10003 switch (opcode) {
10004 case 0x12: /* XTN, SQXTUN */
10006 static NeonGenNarrowFn * const xtnfns[3] = {
10007 gen_helper_neon_narrow_u8,
10008 gen_helper_neon_narrow_u16,
10009 tcg_gen_extrl_i64_i32,
10011 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10012 gen_helper_neon_unarrow_sat8,
10013 gen_helper_neon_unarrow_sat16,
10014 gen_helper_neon_unarrow_sat32,
10016 if (u) {
10017 genenvfn = sqxtunfns[size];
10018 } else {
10019 genfn = xtnfns[size];
10021 break;
10023 case 0x14: /* SQXTN, UQXTN */
10025 static NeonGenNarrowEnvFn * const fns[3][2] = {
10026 { gen_helper_neon_narrow_sat_s8,
10027 gen_helper_neon_narrow_sat_u8 },
10028 { gen_helper_neon_narrow_sat_s16,
10029 gen_helper_neon_narrow_sat_u16 },
10030 { gen_helper_neon_narrow_sat_s32,
10031 gen_helper_neon_narrow_sat_u32 },
10033 genenvfn = fns[size][u];
10034 break;
10036 case 0x16: /* FCVTN, FCVTN2 */
10037 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10038 if (size == 2) {
10039 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10040 } else {
10041 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10042 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10043 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10044 TCGv_i32 ahp = get_ahp_flag();
10046 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10047 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10048 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10049 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10051 break;
10052 case 0x36: /* BFCVTN, BFCVTN2 */
10054 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10055 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10057 break;
10058 case 0x56: /* FCVTXN, FCVTXN2 */
10059 /* 64 bit to 32 bit float conversion
10060 * with von Neumann rounding (round to odd)
10062 assert(size == 2);
10063 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10064 break;
10065 default:
10066 g_assert_not_reached();
10069 if (genfn) {
10070 genfn(tcg_res[pass], tcg_op);
10071 } else if (genenvfn) {
10072 genenvfn(tcg_res[pass], tcg_env, tcg_op);
10076 for (pass = 0; pass < 2; pass++) {
10077 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10079 clear_vec_high(s, is_q, rd);
10082 /* AdvSIMD scalar two reg misc
10083 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10084 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10085 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10086 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10088 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10090 int rd = extract32(insn, 0, 5);
10091 int rn = extract32(insn, 5, 5);
10092 int opcode = extract32(insn, 12, 5);
10093 int size = extract32(insn, 22, 2);
10094 bool u = extract32(insn, 29, 1);
10095 bool is_fcvt = false;
10096 int rmode;
10097 TCGv_i32 tcg_rmode;
10098 TCGv_ptr tcg_fpstatus;
10100 switch (opcode) {
10101 case 0x7: /* SQABS / SQNEG */
10102 break;
10103 case 0xa: /* CMLT */
10104 if (u) {
10105 unallocated_encoding(s);
10106 return;
10108 /* fall through */
10109 case 0x8: /* CMGT, CMGE */
10110 case 0x9: /* CMEQ, CMLE */
10111 case 0xb: /* ABS, NEG */
10112 if (size != 3) {
10113 unallocated_encoding(s);
10114 return;
10116 break;
10117 case 0x12: /* SQXTUN */
10118 if (!u) {
10119 unallocated_encoding(s);
10120 return;
10122 /* fall through */
10123 case 0x14: /* SQXTN, UQXTN */
10124 if (size == 3) {
10125 unallocated_encoding(s);
10126 return;
10128 if (!fp_access_check(s)) {
10129 return;
10131 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10132 return;
10133 case 0xc ... 0xf:
10134 case 0x16 ... 0x1d:
10135 case 0x1f:
10136 /* Floating point: U, size[1] and opcode indicate operation;
10137 * size[0] indicates single or double precision.
10139 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10140 size = extract32(size, 0, 1) ? 3 : 2;
10141 switch (opcode) {
10142 case 0x2c: /* FCMGT (zero) */
10143 case 0x2d: /* FCMEQ (zero) */
10144 case 0x2e: /* FCMLT (zero) */
10145 case 0x6c: /* FCMGE (zero) */
10146 case 0x6d: /* FCMLE (zero) */
10147 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10148 return;
10149 case 0x1d: /* SCVTF */
10150 case 0x5d: /* UCVTF */
10152 bool is_signed = (opcode == 0x1d);
10153 if (!fp_access_check(s)) {
10154 return;
10156 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10157 return;
10159 case 0x3d: /* FRECPE */
10160 case 0x3f: /* FRECPX */
10161 case 0x7d: /* FRSQRTE */
10162 if (!fp_access_check(s)) {
10163 return;
10165 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10166 return;
10167 case 0x1a: /* FCVTNS */
10168 case 0x1b: /* FCVTMS */
10169 case 0x3a: /* FCVTPS */
10170 case 0x3b: /* FCVTZS */
10171 case 0x5a: /* FCVTNU */
10172 case 0x5b: /* FCVTMU */
10173 case 0x7a: /* FCVTPU */
10174 case 0x7b: /* FCVTZU */
10175 is_fcvt = true;
10176 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10177 break;
10178 case 0x1c: /* FCVTAS */
10179 case 0x5c: /* FCVTAU */
10180 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10181 is_fcvt = true;
10182 rmode = FPROUNDING_TIEAWAY;
10183 break;
10184 case 0x56: /* FCVTXN, FCVTXN2 */
10185 if (size == 2) {
10186 unallocated_encoding(s);
10187 return;
10189 if (!fp_access_check(s)) {
10190 return;
10192 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10193 return;
10194 default:
10195 unallocated_encoding(s);
10196 return;
10198 break;
10199 default:
10200 case 0x3: /* USQADD / SUQADD */
10201 unallocated_encoding(s);
10202 return;
10205 if (!fp_access_check(s)) {
10206 return;
10209 if (is_fcvt) {
10210 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10211 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10212 } else {
10213 tcg_fpstatus = NULL;
10214 tcg_rmode = NULL;
10217 if (size == 3) {
10218 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10219 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10221 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10222 write_fp_dreg(s, rd, tcg_rd);
10223 } else {
10224 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10225 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10227 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10229 switch (opcode) {
10230 case 0x7: /* SQABS, SQNEG */
10232 NeonGenOneOpEnvFn *genfn;
10233 static NeonGenOneOpEnvFn * const fns[3][2] = {
10234 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10235 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10236 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10238 genfn = fns[size][u];
10239 genfn(tcg_rd, tcg_env, tcg_rn);
10240 break;
10242 case 0x1a: /* FCVTNS */
10243 case 0x1b: /* FCVTMS */
10244 case 0x1c: /* FCVTAS */
10245 case 0x3a: /* FCVTPS */
10246 case 0x3b: /* FCVTZS */
10247 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10248 tcg_fpstatus);
10249 break;
10250 case 0x5a: /* FCVTNU */
10251 case 0x5b: /* FCVTMU */
10252 case 0x5c: /* FCVTAU */
10253 case 0x7a: /* FCVTPU */
10254 case 0x7b: /* FCVTZU */
10255 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10256 tcg_fpstatus);
10257 break;
10258 default:
10259 g_assert_not_reached();
10262 write_fp_sreg(s, rd, tcg_rd);
10265 if (is_fcvt) {
10266 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10270 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10271 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10272 int immh, int immb, int opcode, int rn, int rd)
10274 int size = 32 - clz32(immh) - 1;
10275 int immhb = immh << 3 | immb;
10276 int shift = 2 * (8 << size) - immhb;
10277 GVecGen2iFn *gvec_fn;
10279 if (extract32(immh, 3, 1) && !is_q) {
10280 unallocated_encoding(s);
10281 return;
10283 tcg_debug_assert(size <= 3);
10285 if (!fp_access_check(s)) {
10286 return;
10289 switch (opcode) {
10290 case 0x02: /* SSRA / USRA (accumulate) */
10291 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10292 break;
10294 case 0x08: /* SRI */
10295 gvec_fn = gen_gvec_sri;
10296 break;
10298 case 0x00: /* SSHR / USHR */
10299 if (is_u) {
10300 if (shift == 8 << size) {
10301 /* Shift count the same size as element size produces zero. */
10302 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10303 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10304 return;
10306 gvec_fn = tcg_gen_gvec_shri;
10307 } else {
10308 /* Shift count the same size as element size produces all sign. */
10309 if (shift == 8 << size) {
10310 shift -= 1;
10312 gvec_fn = tcg_gen_gvec_sari;
10314 break;
10316 case 0x04: /* SRSHR / URSHR (rounding) */
10317 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10318 break;
10320 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10321 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10322 break;
10324 default:
10325 g_assert_not_reached();
10328 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10331 /* SHL/SLI - Vector shift left */
10332 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10333 int immh, int immb, int opcode, int rn, int rd)
10335 int size = 32 - clz32(immh) - 1;
10336 int immhb = immh << 3 | immb;
10337 int shift = immhb - (8 << size);
10339 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10340 assert(size >= 0 && size <= 3);
10342 if (extract32(immh, 3, 1) && !is_q) {
10343 unallocated_encoding(s);
10344 return;
10347 if (!fp_access_check(s)) {
10348 return;
10351 if (insert) {
10352 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10353 } else {
10354 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10358 /* USHLL/SHLL - Vector shift left with widening */
10359 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10360 int immh, int immb, int opcode, int rn, int rd)
10362 int size = 32 - clz32(immh) - 1;
10363 int immhb = immh << 3 | immb;
10364 int shift = immhb - (8 << size);
10365 int dsize = 64;
10366 int esize = 8 << size;
10367 int elements = dsize/esize;
10368 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10369 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10370 int i;
10372 if (size >= 3) {
10373 unallocated_encoding(s);
10374 return;
10377 if (!fp_access_check(s)) {
10378 return;
10381 /* For the LL variants the store is larger than the load,
10382 * so if rd == rn we would overwrite parts of our input.
10383 * So load everything right now and use shifts in the main loop.
10385 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10387 for (i = 0; i < elements; i++) {
10388 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10389 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10390 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10391 write_vec_element(s, tcg_rd, rd, i, size + 1);
10395 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10396 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10397 int immh, int immb, int opcode, int rn, int rd)
10399 int immhb = immh << 3 | immb;
10400 int size = 32 - clz32(immh) - 1;
10401 int dsize = 64;
10402 int esize = 8 << size;
10403 int elements = dsize/esize;
10404 int shift = (2 * esize) - immhb;
10405 bool round = extract32(opcode, 0, 1);
10406 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10407 TCGv_i64 tcg_round;
10408 int i;
10410 if (extract32(immh, 3, 1)) {
10411 unallocated_encoding(s);
10412 return;
10415 if (!fp_access_check(s)) {
10416 return;
10419 tcg_rn = tcg_temp_new_i64();
10420 tcg_rd = tcg_temp_new_i64();
10421 tcg_final = tcg_temp_new_i64();
10422 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10424 if (round) {
10425 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10426 } else {
10427 tcg_round = NULL;
10430 for (i = 0; i < elements; i++) {
10431 read_vec_element(s, tcg_rn, rn, i, size+1);
10432 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10433 false, true, size+1, shift);
10435 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10438 if (!is_q) {
10439 write_vec_element(s, tcg_final, rd, 0, MO_64);
10440 } else {
10441 write_vec_element(s, tcg_final, rd, 1, MO_64);
10444 clear_vec_high(s, is_q, rd);
10448 /* AdvSIMD shift by immediate
10449 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10450 * +---+---+---+-------------+------+------+--------+---+------+------+
10451 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10452 * +---+---+---+-------------+------+------+--------+---+------+------+
10454 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10456 int rd = extract32(insn, 0, 5);
10457 int rn = extract32(insn, 5, 5);
10458 int opcode = extract32(insn, 11, 5);
10459 int immb = extract32(insn, 16, 3);
10460 int immh = extract32(insn, 19, 4);
10461 bool is_u = extract32(insn, 29, 1);
10462 bool is_q = extract32(insn, 30, 1);
10464 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10465 assert(immh != 0);
10467 switch (opcode) {
10468 case 0x08: /* SRI */
10469 if (!is_u) {
10470 unallocated_encoding(s);
10471 return;
10473 /* fall through */
10474 case 0x00: /* SSHR / USHR */
10475 case 0x02: /* SSRA / USRA (accumulate) */
10476 case 0x04: /* SRSHR / URSHR (rounding) */
10477 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10478 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10479 break;
10480 case 0x0a: /* SHL / SLI */
10481 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10482 break;
10483 case 0x10: /* SHRN */
10484 case 0x11: /* RSHRN / SQRSHRUN */
10485 if (is_u) {
10486 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10487 opcode, rn, rd);
10488 } else {
10489 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10491 break;
10492 case 0x12: /* SQSHRN / UQSHRN */
10493 case 0x13: /* SQRSHRN / UQRSHRN */
10494 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10495 opcode, rn, rd);
10496 break;
10497 case 0x14: /* SSHLL / USHLL */
10498 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10499 break;
10500 case 0x1c: /* SCVTF / UCVTF */
10501 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10502 opcode, rn, rd);
10503 break;
10504 case 0xc: /* SQSHLU */
10505 if (!is_u) {
10506 unallocated_encoding(s);
10507 return;
10509 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10510 break;
10511 case 0xe: /* SQSHL, UQSHL */
10512 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10513 break;
10514 case 0x1f: /* FCVTZS/ FCVTZU */
10515 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10516 return;
10517 default:
10518 unallocated_encoding(s);
10519 return;
10523 /* Generate code to do a "long" addition or subtraction, ie one done in
10524 * TCGv_i64 on vector lanes twice the width specified by size.
10526 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10527 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10529 static NeonGenTwo64OpFn * const fns[3][2] = {
10530 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10531 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10532 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10534 NeonGenTwo64OpFn *genfn;
10535 assert(size < 3);
10537 genfn = fns[size][is_sub];
10538 genfn(tcg_res, tcg_op1, tcg_op2);
10541 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10542 int opcode, int rd, int rn, int rm)
10544 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10545 TCGv_i64 tcg_res[2];
10546 int pass, accop;
10548 tcg_res[0] = tcg_temp_new_i64();
10549 tcg_res[1] = tcg_temp_new_i64();
10551 /* Does this op do an adding accumulate, a subtracting accumulate,
10552 * or no accumulate at all?
10554 switch (opcode) {
10555 case 5:
10556 case 8:
10557 case 9:
10558 accop = 1;
10559 break;
10560 case 10:
10561 case 11:
10562 accop = -1;
10563 break;
10564 default:
10565 accop = 0;
10566 break;
10569 if (accop != 0) {
10570 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10571 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10574 /* size == 2 means two 32x32->64 operations; this is worth special
10575 * casing because we can generally handle it inline.
10577 if (size == 2) {
10578 for (pass = 0; pass < 2; pass++) {
10579 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10580 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10581 TCGv_i64 tcg_passres;
10582 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10584 int elt = pass + is_q * 2;
10586 read_vec_element(s, tcg_op1, rn, elt, memop);
10587 read_vec_element(s, tcg_op2, rm, elt, memop);
10589 if (accop == 0) {
10590 tcg_passres = tcg_res[pass];
10591 } else {
10592 tcg_passres = tcg_temp_new_i64();
10595 switch (opcode) {
10596 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10597 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10598 break;
10599 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10600 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10601 break;
10602 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10603 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10605 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10606 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10608 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10609 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10610 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10611 tcg_passres,
10612 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10613 break;
10615 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10616 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10617 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10618 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10619 break;
10620 case 9: /* SQDMLAL, SQDMLAL2 */
10621 case 11: /* SQDMLSL, SQDMLSL2 */
10622 case 13: /* SQDMULL, SQDMULL2 */
10623 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10624 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10625 tcg_passres, tcg_passres);
10626 break;
10627 default:
10628 g_assert_not_reached();
10631 if (opcode == 9 || opcode == 11) {
10632 /* saturating accumulate ops */
10633 if (accop < 0) {
10634 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10636 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10637 tcg_res[pass], tcg_passres);
10638 } else if (accop > 0) {
10639 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10640 } else if (accop < 0) {
10641 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10644 } else {
10645 /* size 0 or 1, generally helper functions */
10646 for (pass = 0; pass < 2; pass++) {
10647 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10648 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10649 TCGv_i64 tcg_passres;
10650 int elt = pass + is_q * 2;
10652 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10653 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10655 if (accop == 0) {
10656 tcg_passres = tcg_res[pass];
10657 } else {
10658 tcg_passres = tcg_temp_new_i64();
10661 switch (opcode) {
10662 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10663 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10665 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10666 static NeonGenWidenFn * const widenfns[2][2] = {
10667 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10668 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10670 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10672 widenfn(tcg_op2_64, tcg_op2);
10673 widenfn(tcg_passres, tcg_op1);
10674 gen_neon_addl(size, (opcode == 2), tcg_passres,
10675 tcg_passres, tcg_op2_64);
10676 break;
10678 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10679 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10680 if (size == 0) {
10681 if (is_u) {
10682 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10683 } else {
10684 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10686 } else {
10687 if (is_u) {
10688 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10689 } else {
10690 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10693 break;
10694 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10695 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10696 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10697 if (size == 0) {
10698 if (is_u) {
10699 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10700 } else {
10701 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10703 } else {
10704 if (is_u) {
10705 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10706 } else {
10707 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10710 break;
10711 case 9: /* SQDMLAL, SQDMLAL2 */
10712 case 11: /* SQDMLSL, SQDMLSL2 */
10713 case 13: /* SQDMULL, SQDMULL2 */
10714 assert(size == 1);
10715 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10716 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10717 tcg_passres, tcg_passres);
10718 break;
10719 default:
10720 g_assert_not_reached();
10723 if (accop != 0) {
10724 if (opcode == 9 || opcode == 11) {
10725 /* saturating accumulate ops */
10726 if (accop < 0) {
10727 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10729 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10730 tcg_res[pass],
10731 tcg_passres);
10732 } else {
10733 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10734 tcg_res[pass], tcg_passres);
10740 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10741 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10744 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10745 int opcode, int rd, int rn, int rm)
10747 TCGv_i64 tcg_res[2];
10748 int part = is_q ? 2 : 0;
10749 int pass;
10751 for (pass = 0; pass < 2; pass++) {
10752 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10753 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10754 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10755 static NeonGenWidenFn * const widenfns[3][2] = {
10756 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10757 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10758 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10760 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10762 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10763 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10764 widenfn(tcg_op2_wide, tcg_op2);
10765 tcg_res[pass] = tcg_temp_new_i64();
10766 gen_neon_addl(size, (opcode == 3),
10767 tcg_res[pass], tcg_op1, tcg_op2_wide);
10770 for (pass = 0; pass < 2; pass++) {
10771 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10775 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10777 tcg_gen_addi_i64(in, in, 1U << 31);
10778 tcg_gen_extrh_i64_i32(res, in);
10781 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10782 int opcode, int rd, int rn, int rm)
10784 TCGv_i32 tcg_res[2];
10785 int part = is_q ? 2 : 0;
10786 int pass;
10788 for (pass = 0; pass < 2; pass++) {
10789 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10790 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10791 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10792 static NeonGenNarrowFn * const narrowfns[3][2] = {
10793 { gen_helper_neon_narrow_high_u8,
10794 gen_helper_neon_narrow_round_high_u8 },
10795 { gen_helper_neon_narrow_high_u16,
10796 gen_helper_neon_narrow_round_high_u16 },
10797 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10799 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10801 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10802 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10804 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10806 tcg_res[pass] = tcg_temp_new_i32();
10807 gennarrow(tcg_res[pass], tcg_wideres);
10810 for (pass = 0; pass < 2; pass++) {
10811 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10813 clear_vec_high(s, is_q, rd);
10816 /* AdvSIMD three different
10817 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10818 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10819 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10820 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10822 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10824 /* Instructions in this group fall into three basic classes
10825 * (in each case with the operation working on each element in
10826 * the input vectors):
10827 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10828 * 128 bit input)
10829 * (2) wide 64 x 128 -> 128
10830 * (3) narrowing 128 x 128 -> 64
10831 * Here we do initial decode, catch unallocated cases and
10832 * dispatch to separate functions for each class.
10834 int is_q = extract32(insn, 30, 1);
10835 int is_u = extract32(insn, 29, 1);
10836 int size = extract32(insn, 22, 2);
10837 int opcode = extract32(insn, 12, 4);
10838 int rm = extract32(insn, 16, 5);
10839 int rn = extract32(insn, 5, 5);
10840 int rd = extract32(insn, 0, 5);
10842 switch (opcode) {
10843 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10844 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10845 /* 64 x 128 -> 128 */
10846 if (size == 3) {
10847 unallocated_encoding(s);
10848 return;
10850 if (!fp_access_check(s)) {
10851 return;
10853 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10854 break;
10855 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10856 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10857 /* 128 x 128 -> 64 */
10858 if (size == 3) {
10859 unallocated_encoding(s);
10860 return;
10862 if (!fp_access_check(s)) {
10863 return;
10865 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10866 break;
10867 case 14: /* PMULL, PMULL2 */
10868 if (is_u) {
10869 unallocated_encoding(s);
10870 return;
10872 switch (size) {
10873 case 0: /* PMULL.P8 */
10874 if (!fp_access_check(s)) {
10875 return;
10877 /* The Q field specifies lo/hi half input for this insn. */
10878 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10879 gen_helper_neon_pmull_h);
10880 break;
10882 case 3: /* PMULL.P64 */
10883 if (!dc_isar_feature(aa64_pmull, s)) {
10884 unallocated_encoding(s);
10885 return;
10887 if (!fp_access_check(s)) {
10888 return;
10890 /* The Q field specifies lo/hi half input for this insn. */
10891 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10892 gen_helper_gvec_pmull_q);
10893 break;
10895 default:
10896 unallocated_encoding(s);
10897 break;
10899 return;
10900 case 9: /* SQDMLAL, SQDMLAL2 */
10901 case 11: /* SQDMLSL, SQDMLSL2 */
10902 case 13: /* SQDMULL, SQDMULL2 */
10903 if (is_u || size == 0) {
10904 unallocated_encoding(s);
10905 return;
10907 /* fall through */
10908 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10909 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10910 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10911 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10912 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10913 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10914 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10915 /* 64 x 64 -> 128 */
10916 if (size == 3) {
10917 unallocated_encoding(s);
10918 return;
10920 if (!fp_access_check(s)) {
10921 return;
10924 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10925 break;
10926 default:
10927 /* opcode 15 not allocated */
10928 unallocated_encoding(s);
10929 break;
10933 /* AdvSIMD three same extra
10934 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
10935 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10936 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
10937 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10939 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10941 int rd = extract32(insn, 0, 5);
10942 int rn = extract32(insn, 5, 5);
10943 int opcode = extract32(insn, 11, 4);
10944 int rm = extract32(insn, 16, 5);
10945 int size = extract32(insn, 22, 2);
10946 bool u = extract32(insn, 29, 1);
10947 bool is_q = extract32(insn, 30, 1);
10948 bool feature;
10949 int rot;
10951 switch (u * 16 + opcode) {
10952 case 0x04: /* SMMLA */
10953 case 0x14: /* UMMLA */
10954 case 0x05: /* USMMLA */
10955 if (!is_q || size != MO_32) {
10956 unallocated_encoding(s);
10957 return;
10959 feature = dc_isar_feature(aa64_i8mm, s);
10960 break;
10961 case 0x18: /* FCMLA, #0 */
10962 case 0x19: /* FCMLA, #90 */
10963 case 0x1a: /* FCMLA, #180 */
10964 case 0x1b: /* FCMLA, #270 */
10965 case 0x1c: /* FCADD, #90 */
10966 case 0x1e: /* FCADD, #270 */
10967 if (size == 0
10968 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10969 || (size == 3 && !is_q)) {
10970 unallocated_encoding(s);
10971 return;
10973 feature = dc_isar_feature(aa64_fcma, s);
10974 break;
10975 case 0x1d: /* BFMMLA */
10976 if (size != MO_16 || !is_q) {
10977 unallocated_encoding(s);
10978 return;
10980 feature = dc_isar_feature(aa64_bf16, s);
10981 break;
10982 default:
10983 case 0x02: /* SDOT (vector) */
10984 case 0x03: /* USDOT */
10985 case 0x10: /* SQRDMLAH (vector) */
10986 case 0x11: /* SQRDMLSH (vector) */
10987 case 0x12: /* UDOT (vector) */
10988 case 0x1f: /* BFDOT / BFMLAL */
10989 unallocated_encoding(s);
10990 return;
10992 if (!feature) {
10993 unallocated_encoding(s);
10994 return;
10996 if (!fp_access_check(s)) {
10997 return;
11000 switch (opcode) {
11001 case 0x04: /* SMMLA, UMMLA */
11002 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11003 u ? gen_helper_gvec_ummla_b
11004 : gen_helper_gvec_smmla_b);
11005 return;
11006 case 0x05: /* USMMLA */
11007 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11008 return;
11010 case 0x8: /* FCMLA, #0 */
11011 case 0x9: /* FCMLA, #90 */
11012 case 0xa: /* FCMLA, #180 */
11013 case 0xb: /* FCMLA, #270 */
11014 rot = extract32(opcode, 0, 2);
11015 switch (size) {
11016 case 1:
11017 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11018 gen_helper_gvec_fcmlah);
11019 break;
11020 case 2:
11021 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11022 gen_helper_gvec_fcmlas);
11023 break;
11024 case 3:
11025 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11026 gen_helper_gvec_fcmlad);
11027 break;
11028 default:
11029 g_assert_not_reached();
11031 return;
11033 case 0xc: /* FCADD, #90 */
11034 case 0xe: /* FCADD, #270 */
11035 rot = extract32(opcode, 1, 1);
11036 switch (size) {
11037 case 1:
11038 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11039 gen_helper_gvec_fcaddh);
11040 break;
11041 case 2:
11042 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11043 gen_helper_gvec_fcadds);
11044 break;
11045 case 3:
11046 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11047 gen_helper_gvec_fcaddd);
11048 break;
11049 default:
11050 g_assert_not_reached();
11052 return;
11054 case 0xd: /* BFMMLA */
11055 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11056 return;
11057 default:
11058 g_assert_not_reached();
11062 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11063 int size, int rn, int rd)
11065 /* Handle 2-reg-misc ops which are widening (so each size element
11066 * in the source becomes a 2*size element in the destination.
11067 * The only instruction like this is FCVTL.
11069 int pass;
11071 if (size == 3) {
11072 /* 32 -> 64 bit fp conversion */
11073 TCGv_i64 tcg_res[2];
11074 int srcelt = is_q ? 2 : 0;
11076 for (pass = 0; pass < 2; pass++) {
11077 TCGv_i32 tcg_op = tcg_temp_new_i32();
11078 tcg_res[pass] = tcg_temp_new_i64();
11080 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11081 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11083 for (pass = 0; pass < 2; pass++) {
11084 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11086 } else {
11087 /* 16 -> 32 bit fp conversion */
11088 int srcelt = is_q ? 4 : 0;
11089 TCGv_i32 tcg_res[4];
11090 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11091 TCGv_i32 ahp = get_ahp_flag();
11093 for (pass = 0; pass < 4; pass++) {
11094 tcg_res[pass] = tcg_temp_new_i32();
11096 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11097 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11098 fpst, ahp);
11100 for (pass = 0; pass < 4; pass++) {
11101 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11106 static void handle_rev(DisasContext *s, int opcode, bool u,
11107 bool is_q, int size, int rn, int rd)
11109 int op = (opcode << 1) | u;
11110 int opsz = op + size;
11111 int grp_size = 3 - opsz;
11112 int dsize = is_q ? 128 : 64;
11113 int i;
11115 if (opsz >= 3) {
11116 unallocated_encoding(s);
11117 return;
11120 if (!fp_access_check(s)) {
11121 return;
11124 if (size == 0) {
11125 /* Special case bytes, use bswap op on each group of elements */
11126 int groups = dsize / (8 << grp_size);
11128 for (i = 0; i < groups; i++) {
11129 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11131 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11132 switch (grp_size) {
11133 case MO_16:
11134 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11135 break;
11136 case MO_32:
11137 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11138 break;
11139 case MO_64:
11140 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11141 break;
11142 default:
11143 g_assert_not_reached();
11145 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11147 clear_vec_high(s, is_q, rd);
11148 } else {
11149 int revmask = (1 << grp_size) - 1;
11150 int esize = 8 << size;
11151 int elements = dsize / esize;
11152 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11153 TCGv_i64 tcg_rd[2];
11155 for (i = 0; i < 2; i++) {
11156 tcg_rd[i] = tcg_temp_new_i64();
11157 tcg_gen_movi_i64(tcg_rd[i], 0);
11160 for (i = 0; i < elements; i++) {
11161 int e_rev = (i & 0xf) ^ revmask;
11162 int w = (e_rev * esize) / 64;
11163 int o = (e_rev * esize) % 64;
11165 read_vec_element(s, tcg_rn, rn, i, size);
11166 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11169 for (i = 0; i < 2; i++) {
11170 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11172 clear_vec_high(s, true, rd);
11176 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11177 bool is_q, int size, int rn, int rd)
11179 /* Implement the pairwise operations from 2-misc:
11180 * SADDLP, UADDLP, SADALP, UADALP.
11181 * These all add pairs of elements in the input to produce a
11182 * double-width result element in the output (possibly accumulating).
11184 bool accum = (opcode == 0x6);
11185 int maxpass = is_q ? 2 : 1;
11186 int pass;
11187 TCGv_i64 tcg_res[2];
11189 if (size == 2) {
11190 /* 32 + 32 -> 64 op */
11191 MemOp memop = size + (u ? 0 : MO_SIGN);
11193 for (pass = 0; pass < maxpass; pass++) {
11194 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11195 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11197 tcg_res[pass] = tcg_temp_new_i64();
11199 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11200 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11201 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11202 if (accum) {
11203 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11204 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11207 } else {
11208 for (pass = 0; pass < maxpass; pass++) {
11209 TCGv_i64 tcg_op = tcg_temp_new_i64();
11210 NeonGenOne64OpFn *genfn;
11211 static NeonGenOne64OpFn * const fns[2][2] = {
11212 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11213 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11216 genfn = fns[size][u];
11218 tcg_res[pass] = tcg_temp_new_i64();
11220 read_vec_element(s, tcg_op, rn, pass, MO_64);
11221 genfn(tcg_res[pass], tcg_op);
11223 if (accum) {
11224 read_vec_element(s, tcg_op, rd, pass, MO_64);
11225 if (size == 0) {
11226 gen_helper_neon_addl_u16(tcg_res[pass],
11227 tcg_res[pass], tcg_op);
11228 } else {
11229 gen_helper_neon_addl_u32(tcg_res[pass],
11230 tcg_res[pass], tcg_op);
11235 if (!is_q) {
11236 tcg_res[1] = tcg_constant_i64(0);
11238 for (pass = 0; pass < 2; pass++) {
11239 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11243 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11245 /* Implement SHLL and SHLL2 */
11246 int pass;
11247 int part = is_q ? 2 : 0;
11248 TCGv_i64 tcg_res[2];
11250 for (pass = 0; pass < 2; pass++) {
11251 static NeonGenWidenFn * const widenfns[3] = {
11252 gen_helper_neon_widen_u8,
11253 gen_helper_neon_widen_u16,
11254 tcg_gen_extu_i32_i64,
11256 NeonGenWidenFn *widenfn = widenfns[size];
11257 TCGv_i32 tcg_op = tcg_temp_new_i32();
11259 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11260 tcg_res[pass] = tcg_temp_new_i64();
11261 widenfn(tcg_res[pass], tcg_op);
11262 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11265 for (pass = 0; pass < 2; pass++) {
11266 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11270 /* AdvSIMD two reg misc
11271 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11272 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11273 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11274 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11276 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11278 int size = extract32(insn, 22, 2);
11279 int opcode = extract32(insn, 12, 5);
11280 bool u = extract32(insn, 29, 1);
11281 bool is_q = extract32(insn, 30, 1);
11282 int rn = extract32(insn, 5, 5);
11283 int rd = extract32(insn, 0, 5);
11284 bool need_fpstatus = false;
11285 int rmode = -1;
11286 TCGv_i32 tcg_rmode;
11287 TCGv_ptr tcg_fpstatus;
11289 switch (opcode) {
11290 case 0x0: /* REV64, REV32 */
11291 case 0x1: /* REV16 */
11292 handle_rev(s, opcode, u, is_q, size, rn, rd);
11293 return;
11294 case 0x5: /* CNT, NOT, RBIT */
11295 if (u && size == 0) {
11296 /* NOT */
11297 break;
11298 } else if (u && size == 1) {
11299 /* RBIT */
11300 break;
11301 } else if (!u && size == 0) {
11302 /* CNT */
11303 break;
11305 unallocated_encoding(s);
11306 return;
11307 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11308 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11309 if (size == 3) {
11310 unallocated_encoding(s);
11311 return;
11313 if (!fp_access_check(s)) {
11314 return;
11317 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11318 return;
11319 case 0x4: /* CLS, CLZ */
11320 if (size == 3) {
11321 unallocated_encoding(s);
11322 return;
11324 break;
11325 case 0x2: /* SADDLP, UADDLP */
11326 case 0x6: /* SADALP, UADALP */
11327 if (size == 3) {
11328 unallocated_encoding(s);
11329 return;
11331 if (!fp_access_check(s)) {
11332 return;
11334 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11335 return;
11336 case 0x13: /* SHLL, SHLL2 */
11337 if (u == 0 || size == 3) {
11338 unallocated_encoding(s);
11339 return;
11341 if (!fp_access_check(s)) {
11342 return;
11344 handle_shll(s, is_q, size, rn, rd);
11345 return;
11346 case 0xa: /* CMLT */
11347 if (u == 1) {
11348 unallocated_encoding(s);
11349 return;
11351 /* fall through */
11352 case 0x8: /* CMGT, CMGE */
11353 case 0x9: /* CMEQ, CMLE */
11354 case 0xb: /* ABS, NEG */
11355 if (size == 3 && !is_q) {
11356 unallocated_encoding(s);
11357 return;
11359 break;
11360 case 0x7: /* SQABS, SQNEG */
11361 if (size == 3 && !is_q) {
11362 unallocated_encoding(s);
11363 return;
11365 break;
11366 case 0xc ... 0xf:
11367 case 0x16 ... 0x1f:
11369 /* Floating point: U, size[1] and opcode indicate operation;
11370 * size[0] indicates single or double precision.
11372 int is_double = extract32(size, 0, 1);
11373 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11374 size = is_double ? 3 : 2;
11375 switch (opcode) {
11376 case 0x2f: /* FABS */
11377 case 0x6f: /* FNEG */
11378 if (size == 3 && !is_q) {
11379 unallocated_encoding(s);
11380 return;
11382 break;
11383 case 0x1d: /* SCVTF */
11384 case 0x5d: /* UCVTF */
11386 bool is_signed = (opcode == 0x1d) ? true : false;
11387 int elements = is_double ? 2 : is_q ? 4 : 2;
11388 if (is_double && !is_q) {
11389 unallocated_encoding(s);
11390 return;
11392 if (!fp_access_check(s)) {
11393 return;
11395 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11396 return;
11398 case 0x2c: /* FCMGT (zero) */
11399 case 0x2d: /* FCMEQ (zero) */
11400 case 0x2e: /* FCMLT (zero) */
11401 case 0x6c: /* FCMGE (zero) */
11402 case 0x6d: /* FCMLE (zero) */
11403 if (size == 3 && !is_q) {
11404 unallocated_encoding(s);
11405 return;
11407 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11408 return;
11409 case 0x7f: /* FSQRT */
11410 if (size == 3 && !is_q) {
11411 unallocated_encoding(s);
11412 return;
11414 break;
11415 case 0x1a: /* FCVTNS */
11416 case 0x1b: /* FCVTMS */
11417 case 0x3a: /* FCVTPS */
11418 case 0x3b: /* FCVTZS */
11419 case 0x5a: /* FCVTNU */
11420 case 0x5b: /* FCVTMU */
11421 case 0x7a: /* FCVTPU */
11422 case 0x7b: /* FCVTZU */
11423 need_fpstatus = true;
11424 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11425 if (size == 3 && !is_q) {
11426 unallocated_encoding(s);
11427 return;
11429 break;
11430 case 0x5c: /* FCVTAU */
11431 case 0x1c: /* FCVTAS */
11432 need_fpstatus = true;
11433 rmode = FPROUNDING_TIEAWAY;
11434 if (size == 3 && !is_q) {
11435 unallocated_encoding(s);
11436 return;
11438 break;
11439 case 0x3c: /* URECPE */
11440 if (size == 3) {
11441 unallocated_encoding(s);
11442 return;
11444 /* fall through */
11445 case 0x3d: /* FRECPE */
11446 case 0x7d: /* FRSQRTE */
11447 if (size == 3 && !is_q) {
11448 unallocated_encoding(s);
11449 return;
11451 if (!fp_access_check(s)) {
11452 return;
11454 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11455 return;
11456 case 0x56: /* FCVTXN, FCVTXN2 */
11457 if (size == 2) {
11458 unallocated_encoding(s);
11459 return;
11461 /* fall through */
11462 case 0x16: /* FCVTN, FCVTN2 */
11463 /* handle_2misc_narrow does a 2*size -> size operation, but these
11464 * instructions encode the source size rather than dest size.
11466 if (!fp_access_check(s)) {
11467 return;
11469 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11470 return;
11471 case 0x36: /* BFCVTN, BFCVTN2 */
11472 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11473 unallocated_encoding(s);
11474 return;
11476 if (!fp_access_check(s)) {
11477 return;
11479 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11480 return;
11481 case 0x17: /* FCVTL, FCVTL2 */
11482 if (!fp_access_check(s)) {
11483 return;
11485 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11486 return;
11487 case 0x18: /* FRINTN */
11488 case 0x19: /* FRINTM */
11489 case 0x38: /* FRINTP */
11490 case 0x39: /* FRINTZ */
11491 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11492 /* fall through */
11493 case 0x59: /* FRINTX */
11494 case 0x79: /* FRINTI */
11495 need_fpstatus = true;
11496 if (size == 3 && !is_q) {
11497 unallocated_encoding(s);
11498 return;
11500 break;
11501 case 0x58: /* FRINTA */
11502 rmode = FPROUNDING_TIEAWAY;
11503 need_fpstatus = true;
11504 if (size == 3 && !is_q) {
11505 unallocated_encoding(s);
11506 return;
11508 break;
11509 case 0x7c: /* URSQRTE */
11510 if (size == 3) {
11511 unallocated_encoding(s);
11512 return;
11514 break;
11515 case 0x1e: /* FRINT32Z */
11516 case 0x1f: /* FRINT64Z */
11517 rmode = FPROUNDING_ZERO;
11518 /* fall through */
11519 case 0x5e: /* FRINT32X */
11520 case 0x5f: /* FRINT64X */
11521 need_fpstatus = true;
11522 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11523 unallocated_encoding(s);
11524 return;
11526 break;
11527 default:
11528 unallocated_encoding(s);
11529 return;
11531 break;
11533 default:
11534 case 0x3: /* SUQADD, USQADD */
11535 unallocated_encoding(s);
11536 return;
11539 if (!fp_access_check(s)) {
11540 return;
11543 if (need_fpstatus || rmode >= 0) {
11544 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11545 } else {
11546 tcg_fpstatus = NULL;
11548 if (rmode >= 0) {
11549 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11550 } else {
11551 tcg_rmode = NULL;
11554 switch (opcode) {
11555 case 0x5:
11556 if (u && size == 0) { /* NOT */
11557 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11558 return;
11560 break;
11561 case 0x8: /* CMGT, CMGE */
11562 if (u) {
11563 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11564 } else {
11565 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11567 return;
11568 case 0x9: /* CMEQ, CMLE */
11569 if (u) {
11570 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11571 } else {
11572 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11574 return;
11575 case 0xa: /* CMLT */
11576 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11577 return;
11578 case 0xb:
11579 if (u) { /* ABS, NEG */
11580 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11581 } else {
11582 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11584 return;
11587 if (size == 3) {
11588 /* All 64-bit element operations can be shared with scalar 2misc */
11589 int pass;
11591 /* Coverity claims (size == 3 && !is_q) has been eliminated
11592 * from all paths leading to here.
11594 tcg_debug_assert(is_q);
11595 for (pass = 0; pass < 2; pass++) {
11596 TCGv_i64 tcg_op = tcg_temp_new_i64();
11597 TCGv_i64 tcg_res = tcg_temp_new_i64();
11599 read_vec_element(s, tcg_op, rn, pass, MO_64);
11601 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11602 tcg_rmode, tcg_fpstatus);
11604 write_vec_element(s, tcg_res, rd, pass, MO_64);
11606 } else {
11607 int pass;
11609 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11610 TCGv_i32 tcg_op = tcg_temp_new_i32();
11611 TCGv_i32 tcg_res = tcg_temp_new_i32();
11613 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11615 if (size == 2) {
11616 /* Special cases for 32 bit elements */
11617 switch (opcode) {
11618 case 0x4: /* CLS */
11619 if (u) {
11620 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11621 } else {
11622 tcg_gen_clrsb_i32(tcg_res, tcg_op);
11624 break;
11625 case 0x7: /* SQABS, SQNEG */
11626 if (u) {
11627 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11628 } else {
11629 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11631 break;
11632 case 0x2f: /* FABS */
11633 gen_vfp_abss(tcg_res, tcg_op);
11634 break;
11635 case 0x6f: /* FNEG */
11636 gen_vfp_negs(tcg_res, tcg_op);
11637 break;
11638 case 0x7f: /* FSQRT */
11639 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11640 break;
11641 case 0x1a: /* FCVTNS */
11642 case 0x1b: /* FCVTMS */
11643 case 0x1c: /* FCVTAS */
11644 case 0x3a: /* FCVTPS */
11645 case 0x3b: /* FCVTZS */
11646 gen_helper_vfp_tosls(tcg_res, tcg_op,
11647 tcg_constant_i32(0), tcg_fpstatus);
11648 break;
11649 case 0x5a: /* FCVTNU */
11650 case 0x5b: /* FCVTMU */
11651 case 0x5c: /* FCVTAU */
11652 case 0x7a: /* FCVTPU */
11653 case 0x7b: /* FCVTZU */
11654 gen_helper_vfp_touls(tcg_res, tcg_op,
11655 tcg_constant_i32(0), tcg_fpstatus);
11656 break;
11657 case 0x18: /* FRINTN */
11658 case 0x19: /* FRINTM */
11659 case 0x38: /* FRINTP */
11660 case 0x39: /* FRINTZ */
11661 case 0x58: /* FRINTA */
11662 case 0x79: /* FRINTI */
11663 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11664 break;
11665 case 0x59: /* FRINTX */
11666 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11667 break;
11668 case 0x7c: /* URSQRTE */
11669 gen_helper_rsqrte_u32(tcg_res, tcg_op);
11670 break;
11671 case 0x1e: /* FRINT32Z */
11672 case 0x5e: /* FRINT32X */
11673 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11674 break;
11675 case 0x1f: /* FRINT64Z */
11676 case 0x5f: /* FRINT64X */
11677 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11678 break;
11679 default:
11680 g_assert_not_reached();
11682 } else {
11683 /* Use helpers for 8 and 16 bit elements */
11684 switch (opcode) {
11685 case 0x5: /* CNT, RBIT */
11686 /* For these two insns size is part of the opcode specifier
11687 * (handled earlier); they always operate on byte elements.
11689 if (u) {
11690 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11691 } else {
11692 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11694 break;
11695 case 0x7: /* SQABS, SQNEG */
11697 NeonGenOneOpEnvFn *genfn;
11698 static NeonGenOneOpEnvFn * const fns[2][2] = {
11699 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11700 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11702 genfn = fns[size][u];
11703 genfn(tcg_res, tcg_env, tcg_op);
11704 break;
11706 case 0x4: /* CLS, CLZ */
11707 if (u) {
11708 if (size == 0) {
11709 gen_helper_neon_clz_u8(tcg_res, tcg_op);
11710 } else {
11711 gen_helper_neon_clz_u16(tcg_res, tcg_op);
11713 } else {
11714 if (size == 0) {
11715 gen_helper_neon_cls_s8(tcg_res, tcg_op);
11716 } else {
11717 gen_helper_neon_cls_s16(tcg_res, tcg_op);
11720 break;
11721 default:
11722 g_assert_not_reached();
11726 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11729 clear_vec_high(s, is_q, rd);
11731 if (tcg_rmode) {
11732 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11736 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11738 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11739 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11740 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11741 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11742 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11743 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11745 * This actually covers two groups where scalar access is governed by
11746 * bit 28. A bunch of the instructions (float to integral) only exist
11747 * in the vector form and are un-allocated for the scalar decode. Also
11748 * in the scalar decode Q is always 1.
11750 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11752 int fpop, opcode, a, u;
11753 int rn, rd;
11754 bool is_q;
11755 bool is_scalar;
11756 bool only_in_vector = false;
11758 int pass;
11759 TCGv_i32 tcg_rmode = NULL;
11760 TCGv_ptr tcg_fpstatus = NULL;
11761 bool need_fpst = true;
11762 int rmode = -1;
11764 if (!dc_isar_feature(aa64_fp16, s)) {
11765 unallocated_encoding(s);
11766 return;
11769 rd = extract32(insn, 0, 5);
11770 rn = extract32(insn, 5, 5);
11772 a = extract32(insn, 23, 1);
11773 u = extract32(insn, 29, 1);
11774 is_scalar = extract32(insn, 28, 1);
11775 is_q = extract32(insn, 30, 1);
11777 opcode = extract32(insn, 12, 5);
11778 fpop = deposit32(opcode, 5, 1, a);
11779 fpop = deposit32(fpop, 6, 1, u);
11781 switch (fpop) {
11782 case 0x1d: /* SCVTF */
11783 case 0x5d: /* UCVTF */
11785 int elements;
11787 if (is_scalar) {
11788 elements = 1;
11789 } else {
11790 elements = (is_q ? 8 : 4);
11793 if (!fp_access_check(s)) {
11794 return;
11796 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11797 return;
11799 break;
11800 case 0x2c: /* FCMGT (zero) */
11801 case 0x2d: /* FCMEQ (zero) */
11802 case 0x2e: /* FCMLT (zero) */
11803 case 0x6c: /* FCMGE (zero) */
11804 case 0x6d: /* FCMLE (zero) */
11805 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11806 return;
11807 case 0x3d: /* FRECPE */
11808 case 0x3f: /* FRECPX */
11809 break;
11810 case 0x18: /* FRINTN */
11811 only_in_vector = true;
11812 rmode = FPROUNDING_TIEEVEN;
11813 break;
11814 case 0x19: /* FRINTM */
11815 only_in_vector = true;
11816 rmode = FPROUNDING_NEGINF;
11817 break;
11818 case 0x38: /* FRINTP */
11819 only_in_vector = true;
11820 rmode = FPROUNDING_POSINF;
11821 break;
11822 case 0x39: /* FRINTZ */
11823 only_in_vector = true;
11824 rmode = FPROUNDING_ZERO;
11825 break;
11826 case 0x58: /* FRINTA */
11827 only_in_vector = true;
11828 rmode = FPROUNDING_TIEAWAY;
11829 break;
11830 case 0x59: /* FRINTX */
11831 case 0x79: /* FRINTI */
11832 only_in_vector = true;
11833 /* current rounding mode */
11834 break;
11835 case 0x1a: /* FCVTNS */
11836 rmode = FPROUNDING_TIEEVEN;
11837 break;
11838 case 0x1b: /* FCVTMS */
11839 rmode = FPROUNDING_NEGINF;
11840 break;
11841 case 0x1c: /* FCVTAS */
11842 rmode = FPROUNDING_TIEAWAY;
11843 break;
11844 case 0x3a: /* FCVTPS */
11845 rmode = FPROUNDING_POSINF;
11846 break;
11847 case 0x3b: /* FCVTZS */
11848 rmode = FPROUNDING_ZERO;
11849 break;
11850 case 0x5a: /* FCVTNU */
11851 rmode = FPROUNDING_TIEEVEN;
11852 break;
11853 case 0x5b: /* FCVTMU */
11854 rmode = FPROUNDING_NEGINF;
11855 break;
11856 case 0x5c: /* FCVTAU */
11857 rmode = FPROUNDING_TIEAWAY;
11858 break;
11859 case 0x7a: /* FCVTPU */
11860 rmode = FPROUNDING_POSINF;
11861 break;
11862 case 0x7b: /* FCVTZU */
11863 rmode = FPROUNDING_ZERO;
11864 break;
11865 case 0x2f: /* FABS */
11866 case 0x6f: /* FNEG */
11867 need_fpst = false;
11868 break;
11869 case 0x7d: /* FRSQRTE */
11870 case 0x7f: /* FSQRT (vector) */
11871 break;
11872 default:
11873 unallocated_encoding(s);
11874 return;
11878 /* Check additional constraints for the scalar encoding */
11879 if (is_scalar) {
11880 if (!is_q) {
11881 unallocated_encoding(s);
11882 return;
11884 /* FRINTxx is only in the vector form */
11885 if (only_in_vector) {
11886 unallocated_encoding(s);
11887 return;
11891 if (!fp_access_check(s)) {
11892 return;
11895 if (rmode >= 0 || need_fpst) {
11896 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11899 if (rmode >= 0) {
11900 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11903 if (is_scalar) {
11904 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11905 TCGv_i32 tcg_res = tcg_temp_new_i32();
11907 switch (fpop) {
11908 case 0x1a: /* FCVTNS */
11909 case 0x1b: /* FCVTMS */
11910 case 0x1c: /* FCVTAS */
11911 case 0x3a: /* FCVTPS */
11912 case 0x3b: /* FCVTZS */
11913 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11914 break;
11915 case 0x3d: /* FRECPE */
11916 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11917 break;
11918 case 0x3f: /* FRECPX */
11919 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11920 break;
11921 case 0x5a: /* FCVTNU */
11922 case 0x5b: /* FCVTMU */
11923 case 0x5c: /* FCVTAU */
11924 case 0x7a: /* FCVTPU */
11925 case 0x7b: /* FCVTZU */
11926 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11927 break;
11928 case 0x6f: /* FNEG */
11929 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11930 break;
11931 case 0x7d: /* FRSQRTE */
11932 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11933 break;
11934 default:
11935 g_assert_not_reached();
11938 /* limit any sign extension going on */
11939 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11940 write_fp_sreg(s, rd, tcg_res);
11941 } else {
11942 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11943 TCGv_i32 tcg_op = tcg_temp_new_i32();
11944 TCGv_i32 tcg_res = tcg_temp_new_i32();
11946 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11948 switch (fpop) {
11949 case 0x1a: /* FCVTNS */
11950 case 0x1b: /* FCVTMS */
11951 case 0x1c: /* FCVTAS */
11952 case 0x3a: /* FCVTPS */
11953 case 0x3b: /* FCVTZS */
11954 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11955 break;
11956 case 0x3d: /* FRECPE */
11957 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11958 break;
11959 case 0x5a: /* FCVTNU */
11960 case 0x5b: /* FCVTMU */
11961 case 0x5c: /* FCVTAU */
11962 case 0x7a: /* FCVTPU */
11963 case 0x7b: /* FCVTZU */
11964 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11965 break;
11966 case 0x18: /* FRINTN */
11967 case 0x19: /* FRINTM */
11968 case 0x38: /* FRINTP */
11969 case 0x39: /* FRINTZ */
11970 case 0x58: /* FRINTA */
11971 case 0x79: /* FRINTI */
11972 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11973 break;
11974 case 0x59: /* FRINTX */
11975 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11976 break;
11977 case 0x2f: /* FABS */
11978 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11979 break;
11980 case 0x6f: /* FNEG */
11981 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11982 break;
11983 case 0x7d: /* FRSQRTE */
11984 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11985 break;
11986 case 0x7f: /* FSQRT */
11987 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11988 break;
11989 default:
11990 g_assert_not_reached();
11993 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11996 clear_vec_high(s, is_q, rd);
11999 if (tcg_rmode) {
12000 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12004 /* AdvSIMD scalar x indexed element
12005 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12006 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12007 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12008 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12009 * AdvSIMD vector x indexed element
12010 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12011 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12012 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12013 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12015 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12017 /* This encoding has two kinds of instruction:
12018 * normal, where we perform elt x idxelt => elt for each
12019 * element in the vector
12020 * long, where we perform elt x idxelt and generate a result of
12021 * double the width of the input element
12022 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12024 bool is_scalar = extract32(insn, 28, 1);
12025 bool is_q = extract32(insn, 30, 1);
12026 bool u = extract32(insn, 29, 1);
12027 int size = extract32(insn, 22, 2);
12028 int l = extract32(insn, 21, 1);
12029 int m = extract32(insn, 20, 1);
12030 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12031 int rm = extract32(insn, 16, 4);
12032 int opcode = extract32(insn, 12, 4);
12033 int h = extract32(insn, 11, 1);
12034 int rn = extract32(insn, 5, 5);
12035 int rd = extract32(insn, 0, 5);
12036 bool is_long = false;
12037 int is_fp = 0;
12038 bool is_fp16 = false;
12039 int index;
12040 TCGv_ptr fpst;
12042 switch (16 * u + opcode) {
12043 case 0x02: /* SMLAL, SMLAL2 */
12044 case 0x12: /* UMLAL, UMLAL2 */
12045 case 0x06: /* SMLSL, SMLSL2 */
12046 case 0x16: /* UMLSL, UMLSL2 */
12047 case 0x0a: /* SMULL, SMULL2 */
12048 case 0x1a: /* UMULL, UMULL2 */
12049 if (is_scalar) {
12050 unallocated_encoding(s);
12051 return;
12053 is_long = true;
12054 break;
12055 case 0x03: /* SQDMLAL, SQDMLAL2 */
12056 case 0x07: /* SQDMLSL, SQDMLSL2 */
12057 case 0x0b: /* SQDMULL, SQDMULL2 */
12058 is_long = true;
12059 break;
12060 case 0x11: /* FCMLA #0 */
12061 case 0x13: /* FCMLA #90 */
12062 case 0x15: /* FCMLA #180 */
12063 case 0x17: /* FCMLA #270 */
12064 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12065 unallocated_encoding(s);
12066 return;
12068 is_fp = 2;
12069 break;
12070 default:
12071 case 0x00: /* FMLAL */
12072 case 0x01: /* FMLA */
12073 case 0x04: /* FMLSL */
12074 case 0x05: /* FMLS */
12075 case 0x08: /* MUL */
12076 case 0x09: /* FMUL */
12077 case 0x0c: /* SQDMULH */
12078 case 0x0d: /* SQRDMULH */
12079 case 0x0e: /* SDOT */
12080 case 0x0f: /* SUDOT / BFDOT / USDOT / BFMLAL */
12081 case 0x10: /* MLA */
12082 case 0x14: /* MLS */
12083 case 0x18: /* FMLAL2 */
12084 case 0x19: /* FMULX */
12085 case 0x1c: /* FMLSL2 */
12086 case 0x1d: /* SQRDMLAH */
12087 case 0x1e: /* UDOT */
12088 case 0x1f: /* SQRDMLSH */
12089 unallocated_encoding(s);
12090 return;
12093 switch (is_fp) {
12094 case 1: /* normal fp */
12095 unallocated_encoding(s); /* in decodetree */
12096 return;
12098 case 2: /* complex fp */
12099 /* Each indexable element is a complex pair. */
12100 size += 1;
12101 switch (size) {
12102 case MO_32:
12103 if (h && !is_q) {
12104 unallocated_encoding(s);
12105 return;
12107 is_fp16 = true;
12108 break;
12109 case MO_64:
12110 break;
12111 default:
12112 unallocated_encoding(s);
12113 return;
12115 break;
12117 default: /* integer */
12118 switch (size) {
12119 case MO_8:
12120 case MO_64:
12121 unallocated_encoding(s);
12122 return;
12124 break;
12126 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12127 unallocated_encoding(s);
12128 return;
12131 /* Given MemOp size, adjust register and indexing. */
12132 switch (size) {
12133 case MO_16:
12134 index = h << 2 | l << 1 | m;
12135 break;
12136 case MO_32:
12137 index = h << 1 | l;
12138 rm |= m << 4;
12139 break;
12140 case MO_64:
12141 if (l || !is_q) {
12142 unallocated_encoding(s);
12143 return;
12145 index = h;
12146 rm |= m << 4;
12147 break;
12148 default:
12149 g_assert_not_reached();
12152 if (!fp_access_check(s)) {
12153 return;
12156 if (is_fp) {
12157 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12158 } else {
12159 fpst = NULL;
12162 switch (16 * u + opcode) {
12163 case 0x11: /* FCMLA #0 */
12164 case 0x13: /* FCMLA #90 */
12165 case 0x15: /* FCMLA #180 */
12166 case 0x17: /* FCMLA #270 */
12168 int rot = extract32(insn, 13, 2);
12169 int data = (index << 2) | rot;
12170 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12171 vec_full_reg_offset(s, rn),
12172 vec_full_reg_offset(s, rm),
12173 vec_full_reg_offset(s, rd), fpst,
12174 is_q ? 16 : 8, vec_full_reg_size(s), data,
12175 size == MO_64
12176 ? gen_helper_gvec_fcmlas_idx
12177 : gen_helper_gvec_fcmlah_idx);
12179 return;
12182 if (size == 3) {
12183 g_assert_not_reached();
12184 } else if (!is_long) {
12185 /* 32 bit floating point, or 16 or 32 bit integer.
12186 * For the 16 bit scalar case we use the usual Neon helpers and
12187 * rely on the fact that 0 op 0 == 0 with no side effects.
12189 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12190 int pass, maxpasses;
12192 if (is_scalar) {
12193 maxpasses = 1;
12194 } else {
12195 maxpasses = is_q ? 4 : 2;
12198 read_vec_element_i32(s, tcg_idx, rm, index, size);
12200 if (size == 1 && !is_scalar) {
12201 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12202 * the index into both halves of the 32 bit tcg_idx and then use
12203 * the usual Neon helpers.
12205 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12208 for (pass = 0; pass < maxpasses; pass++) {
12209 TCGv_i32 tcg_op = tcg_temp_new_i32();
12210 TCGv_i32 tcg_res = tcg_temp_new_i32();
12212 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12214 switch (16 * u + opcode) {
12215 case 0x10: /* MLA */
12216 case 0x14: /* MLS */
12218 static NeonGenTwoOpFn * const fns[2][2] = {
12219 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12220 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12222 NeonGenTwoOpFn *genfn;
12223 bool is_sub = opcode == 0x4;
12225 if (size == 1) {
12226 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12227 } else {
12228 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12230 if (opcode == 0x8) {
12231 break;
12233 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12234 genfn = fns[size - 1][is_sub];
12235 genfn(tcg_res, tcg_op, tcg_res);
12236 break;
12238 case 0x0c: /* SQDMULH */
12239 if (size == 1) {
12240 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12241 tcg_op, tcg_idx);
12242 } else {
12243 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12244 tcg_op, tcg_idx);
12246 break;
12247 case 0x0d: /* SQRDMULH */
12248 if (size == 1) {
12249 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12250 tcg_op, tcg_idx);
12251 } else {
12252 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12253 tcg_op, tcg_idx);
12255 break;
12256 default:
12257 case 0x01: /* FMLA */
12258 case 0x05: /* FMLS */
12259 case 0x09: /* FMUL */
12260 case 0x19: /* FMULX */
12261 case 0x1d: /* SQRDMLAH */
12262 case 0x1f: /* SQRDMLSH */
12263 g_assert_not_reached();
12266 if (is_scalar) {
12267 write_fp_sreg(s, rd, tcg_res);
12268 } else {
12269 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12273 clear_vec_high(s, is_q, rd);
12274 } else {
12275 /* long ops: 16x16->32 or 32x32->64 */
12276 TCGv_i64 tcg_res[2];
12277 int pass;
12278 bool satop = extract32(opcode, 0, 1);
12279 MemOp memop = MO_32;
12281 if (satop || !u) {
12282 memop |= MO_SIGN;
12285 if (size == 2) {
12286 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12288 read_vec_element(s, tcg_idx, rm, index, memop);
12290 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12291 TCGv_i64 tcg_op = tcg_temp_new_i64();
12292 TCGv_i64 tcg_passres;
12293 int passelt;
12295 if (is_scalar) {
12296 passelt = 0;
12297 } else {
12298 passelt = pass + (is_q * 2);
12301 read_vec_element(s, tcg_op, rn, passelt, memop);
12303 tcg_res[pass] = tcg_temp_new_i64();
12305 if (opcode == 0xa || opcode == 0xb) {
12306 /* Non-accumulating ops */
12307 tcg_passres = tcg_res[pass];
12308 } else {
12309 tcg_passres = tcg_temp_new_i64();
12312 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12314 if (satop) {
12315 /* saturating, doubling */
12316 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12317 tcg_passres, tcg_passres);
12320 if (opcode == 0xa || opcode == 0xb) {
12321 continue;
12324 /* Accumulating op: handle accumulate step */
12325 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12327 switch (opcode) {
12328 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12329 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12330 break;
12331 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12332 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12333 break;
12334 case 0x7: /* SQDMLSL, SQDMLSL2 */
12335 tcg_gen_neg_i64(tcg_passres, tcg_passres);
12336 /* fall through */
12337 case 0x3: /* SQDMLAL, SQDMLAL2 */
12338 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12339 tcg_res[pass],
12340 tcg_passres);
12341 break;
12342 default:
12343 g_assert_not_reached();
12347 clear_vec_high(s, !is_scalar, rd);
12348 } else {
12349 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12351 assert(size == 1);
12352 read_vec_element_i32(s, tcg_idx, rm, index, size);
12354 if (!is_scalar) {
12355 /* The simplest way to handle the 16x16 indexed ops is to
12356 * duplicate the index into both halves of the 32 bit tcg_idx
12357 * and then use the usual Neon helpers.
12359 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12362 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12363 TCGv_i32 tcg_op = tcg_temp_new_i32();
12364 TCGv_i64 tcg_passres;
12366 if (is_scalar) {
12367 read_vec_element_i32(s, tcg_op, rn, pass, size);
12368 } else {
12369 read_vec_element_i32(s, tcg_op, rn,
12370 pass + (is_q * 2), MO_32);
12373 tcg_res[pass] = tcg_temp_new_i64();
12375 if (opcode == 0xa || opcode == 0xb) {
12376 /* Non-accumulating ops */
12377 tcg_passres = tcg_res[pass];
12378 } else {
12379 tcg_passres = tcg_temp_new_i64();
12382 if (memop & MO_SIGN) {
12383 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12384 } else {
12385 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12387 if (satop) {
12388 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12389 tcg_passres, tcg_passres);
12392 if (opcode == 0xa || opcode == 0xb) {
12393 continue;
12396 /* Accumulating op: handle accumulate step */
12397 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12399 switch (opcode) {
12400 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12401 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12402 tcg_passres);
12403 break;
12404 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12405 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12406 tcg_passres);
12407 break;
12408 case 0x7: /* SQDMLSL, SQDMLSL2 */
12409 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12410 /* fall through */
12411 case 0x3: /* SQDMLAL, SQDMLAL2 */
12412 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12413 tcg_res[pass],
12414 tcg_passres);
12415 break;
12416 default:
12417 g_assert_not_reached();
12421 if (is_scalar) {
12422 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12426 if (is_scalar) {
12427 tcg_res[1] = tcg_constant_i64(0);
12430 for (pass = 0; pass < 2; pass++) {
12431 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12436 /* C3.6 Data processing - SIMD, inc Crypto
12438 * As the decode gets a little complex we are using a table based
12439 * approach for this part of the decode.
12441 static const AArch64DecodeTable data_proc_simd[] = {
12442 /* pattern , mask , fn */
12443 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12444 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12445 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12446 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12447 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12448 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12449 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12450 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12451 { 0x0e000000, 0xbf208c00, disas_simd_tb },
12452 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12453 { 0x2e000000, 0xbf208400, disas_simd_ext },
12454 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12455 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12456 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12457 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12458 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12459 { 0x00000000, 0x00000000, NULL }
12462 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12464 /* Note that this is called with all non-FP cases from
12465 * table C3-6 so it must UNDEF for entries not specifically
12466 * allocated to instructions in that table.
12468 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12469 if (fn) {
12470 fn(s, insn);
12471 } else {
12472 unallocated_encoding(s);
12476 /* C3.6 Data processing - SIMD and floating point */
12477 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12479 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12480 disas_data_proc_fp(s, insn);
12481 } else {
12482 /* SIMD, including crypto */
12483 disas_data_proc_simd(s, insn);
12487 static bool trans_OK(DisasContext *s, arg_OK *a)
12489 return true;
12492 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12494 s->is_nonstreaming = true;
12495 return true;
12499 * is_guarded_page:
12500 * @env: The cpu environment
12501 * @s: The DisasContext
12503 * Return true if the page is guarded.
12505 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12507 uint64_t addr = s->base.pc_first;
12508 #ifdef CONFIG_USER_ONLY
12509 return page_get_flags(addr) & PAGE_BTI;
12510 #else
12511 CPUTLBEntryFull *full;
12512 void *host;
12513 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12514 int flags;
12517 * We test this immediately after reading an insn, which means
12518 * that the TLB entry must be present and valid, and thus this
12519 * access will never raise an exception.
12521 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12522 false, &host, &full, 0);
12523 assert(!(flags & TLB_INVALID_MASK));
12525 return full->extra.arm.guarded;
12526 #endif
12530 * btype_destination_ok:
12531 * @insn: The instruction at the branch destination
12532 * @bt: SCTLR_ELx.BT
12533 * @btype: PSTATE.BTYPE, and is non-zero
12535 * On a guarded page, there are a limited number of insns
12536 * that may be present at the branch target:
12537 * - branch target identifiers,
12538 * - paciasp, pacibsp,
12539 * - BRK insn
12540 * - HLT insn
12541 * Anything else causes a Branch Target Exception.
12543 * Return true if the branch is compatible, false to raise BTITRAP.
12545 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12547 if ((insn & 0xfffff01fu) == 0xd503201fu) {
12548 /* HINT space */
12549 switch (extract32(insn, 5, 7)) {
12550 case 0b011001: /* PACIASP */
12551 case 0b011011: /* PACIBSP */
12553 * If SCTLR_ELx.BT, then PACI*SP are not compatible
12554 * with btype == 3. Otherwise all btype are ok.
12556 return !bt || btype != 3;
12557 case 0b100000: /* BTI */
12558 /* Not compatible with any btype. */
12559 return false;
12560 case 0b100010: /* BTI c */
12561 /* Not compatible with btype == 3 */
12562 return btype != 3;
12563 case 0b100100: /* BTI j */
12564 /* Not compatible with btype == 2 */
12565 return btype != 2;
12566 case 0b100110: /* BTI jc */
12567 /* Compatible with any btype. */
12568 return true;
12570 } else {
12571 switch (insn & 0xffe0001fu) {
12572 case 0xd4200000u: /* BRK */
12573 case 0xd4400000u: /* HLT */
12574 /* Give priority to the breakpoint exception. */
12575 return true;
12578 return false;
12581 /* C3.1 A64 instruction index by encoding */
12582 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12584 switch (extract32(insn, 25, 4)) {
12585 case 0x5:
12586 case 0xd: /* Data processing - register */
12587 disas_data_proc_reg(s, insn);
12588 break;
12589 case 0x7:
12590 case 0xf: /* Data processing - SIMD and floating point */
12591 disas_data_proc_simd_fp(s, insn);
12592 break;
12593 default:
12594 unallocated_encoding(s);
12595 break;
12599 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12600 CPUState *cpu)
12602 DisasContext *dc = container_of(dcbase, DisasContext, base);
12603 CPUARMState *env = cpu_env(cpu);
12604 ARMCPU *arm_cpu = env_archcpu(env);
12605 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12606 int bound, core_mmu_idx;
12608 dc->isar = &arm_cpu->isar;
12609 dc->condjmp = 0;
12610 dc->pc_save = dc->base.pc_first;
12611 dc->aarch64 = true;
12612 dc->thumb = false;
12613 dc->sctlr_b = 0;
12614 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12615 dc->condexec_mask = 0;
12616 dc->condexec_cond = 0;
12617 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12618 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12619 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12620 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12621 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12622 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12623 #if !defined(CONFIG_USER_ONLY)
12624 dc->user = (dc->current_el == 0);
12625 #endif
12626 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12627 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12628 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12629 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12630 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12631 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12632 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12633 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12634 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12635 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12636 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12637 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12638 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12639 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12640 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12641 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12642 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12643 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12644 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12645 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12646 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12647 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12648 dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12649 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12650 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12651 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12652 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12653 dc->vec_len = 0;
12654 dc->vec_stride = 0;
12655 dc->cp_regs = arm_cpu->cp_regs;
12656 dc->features = env->features;
12657 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12658 dc->gm_blocksize = arm_cpu->gm_blocksize;
12660 #ifdef CONFIG_USER_ONLY
12661 /* In sve_probe_page, we assume TBI is enabled. */
12662 tcg_debug_assert(dc->tbid & 1);
12663 #endif
12665 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12667 /* Single step state. The code-generation logic here is:
12668 * SS_ACTIVE == 0:
12669 * generate code with no special handling for single-stepping (except
12670 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12671 * this happens anyway because those changes are all system register or
12672 * PSTATE writes).
12673 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12674 * emit code for one insn
12675 * emit code to clear PSTATE.SS
12676 * emit code to generate software step exception for completed step
12677 * end TB (as usual for having generated an exception)
12678 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12679 * emit code to generate a software step exception
12680 * end the TB
12682 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12683 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12684 dc->is_ldex = false;
12686 /* Bound the number of insns to execute to those left on the page. */
12687 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12689 /* If architectural single step active, limit to 1. */
12690 if (dc->ss_active) {
12691 bound = 1;
12693 dc->base.max_insns = MIN(dc->base.max_insns, bound);
12696 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12700 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12702 DisasContext *dc = container_of(dcbase, DisasContext, base);
12703 target_ulong pc_arg = dc->base.pc_next;
12705 if (tb_cflags(dcbase->tb) & CF_PCREL) {
12706 pc_arg &= ~TARGET_PAGE_MASK;
12708 tcg_gen_insn_start(pc_arg, 0, 0);
12709 dc->insn_start_updated = false;
12712 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12714 DisasContext *s = container_of(dcbase, DisasContext, base);
12715 CPUARMState *env = cpu_env(cpu);
12716 uint64_t pc = s->base.pc_next;
12717 uint32_t insn;
12719 /* Singlestep exceptions have the highest priority. */
12720 if (s->ss_active && !s->pstate_ss) {
12721 /* Singlestep state is Active-pending.
12722 * If we're in this state at the start of a TB then either
12723 * a) we just took an exception to an EL which is being debugged
12724 * and this is the first insn in the exception handler
12725 * b) debug exceptions were masked and we just unmasked them
12726 * without changing EL (eg by clearing PSTATE.D)
12727 * In either case we're going to take a swstep exception in the
12728 * "did not step an insn" case, and so the syndrome ISV and EX
12729 * bits should be zero.
12731 assert(s->base.num_insns == 1);
12732 gen_swstep_exception(s, 0, 0);
12733 s->base.is_jmp = DISAS_NORETURN;
12734 s->base.pc_next = pc + 4;
12735 return;
12738 if (pc & 3) {
12740 * PC alignment fault. This has priority over the instruction abort
12741 * that we would receive from a translation fault via arm_ldl_code.
12742 * This should only be possible after an indirect branch, at the
12743 * start of the TB.
12745 assert(s->base.num_insns == 1);
12746 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12747 s->base.is_jmp = DISAS_NORETURN;
12748 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12749 return;
12752 s->pc_curr = pc;
12753 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12754 s->insn = insn;
12755 s->base.pc_next = pc + 4;
12757 s->fp_access_checked = false;
12758 s->sve_access_checked = false;
12760 if (s->pstate_il) {
12762 * Illegal execution state. This has priority over BTI
12763 * exceptions, but comes after instruction abort exceptions.
12765 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12766 return;
12769 if (dc_isar_feature(aa64_bti, s)) {
12770 if (s->base.num_insns == 1) {
12772 * At the first insn of the TB, compute s->guarded_page.
12773 * We delayed computing this until successfully reading
12774 * the first insn of the TB, above. This (mostly) ensures
12775 * that the softmmu tlb entry has been populated, and the
12776 * page table GP bit is available.
12778 * Note that we need to compute this even if btype == 0,
12779 * because this value is used for BR instructions later
12780 * where ENV is not available.
12782 s->guarded_page = is_guarded_page(env, s);
12784 /* First insn can have btype set to non-zero. */
12785 tcg_debug_assert(s->btype >= 0);
12788 * Note that the Branch Target Exception has fairly high
12789 * priority -- below debugging exceptions but above most
12790 * everything else. This allows us to handle this now
12791 * instead of waiting until the insn is otherwise decoded.
12793 if (s->btype != 0
12794 && s->guarded_page
12795 && !btype_destination_ok(insn, s->bt, s->btype)) {
12796 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12797 return;
12799 } else {
12800 /* Not the first insn: btype must be 0. */
12801 tcg_debug_assert(s->btype == 0);
12805 s->is_nonstreaming = false;
12806 if (s->sme_trap_nonstreaming) {
12807 disas_sme_fa64(s, insn);
12810 if (!disas_a64(s, insn) &&
12811 !disas_sme(s, insn) &&
12812 !disas_sve(s, insn)) {
12813 disas_a64_legacy(s, insn);
12817 * After execution of most insns, btype is reset to 0.
12818 * Note that we set btype == -1 when the insn sets btype.
12820 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12821 reset_btype(s);
12825 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12827 DisasContext *dc = container_of(dcbase, DisasContext, base);
12829 if (unlikely(dc->ss_active)) {
12830 /* Note that this means single stepping WFI doesn't halt the CPU.
12831 * For conditional branch insns this is harmless unreachable code as
12832 * gen_goto_tb() has already handled emitting the debug exception
12833 * (and thus a tb-jump is not possible when singlestepping).
12835 switch (dc->base.is_jmp) {
12836 default:
12837 gen_a64_update_pc(dc, 4);
12838 /* fall through */
12839 case DISAS_EXIT:
12840 case DISAS_JUMP:
12841 gen_step_complete_exception(dc);
12842 break;
12843 case DISAS_NORETURN:
12844 break;
12846 } else {
12847 switch (dc->base.is_jmp) {
12848 case DISAS_NEXT:
12849 case DISAS_TOO_MANY:
12850 gen_goto_tb(dc, 1, 4);
12851 break;
12852 default:
12853 case DISAS_UPDATE_EXIT:
12854 gen_a64_update_pc(dc, 4);
12855 /* fall through */
12856 case DISAS_EXIT:
12857 tcg_gen_exit_tb(NULL, 0);
12858 break;
12859 case DISAS_UPDATE_NOCHAIN:
12860 gen_a64_update_pc(dc, 4);
12861 /* fall through */
12862 case DISAS_JUMP:
12863 tcg_gen_lookup_and_goto_ptr();
12864 break;
12865 case DISAS_NORETURN:
12866 case DISAS_SWI:
12867 break;
12868 case DISAS_WFE:
12869 gen_a64_update_pc(dc, 4);
12870 gen_helper_wfe(tcg_env);
12871 break;
12872 case DISAS_YIELD:
12873 gen_a64_update_pc(dc, 4);
12874 gen_helper_yield(tcg_env);
12875 break;
12876 case DISAS_WFI:
12878 * This is a special case because we don't want to just halt
12879 * the CPU if trying to debug across a WFI.
12881 gen_a64_update_pc(dc, 4);
12882 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12884 * The helper doesn't necessarily throw an exception, but we
12885 * must go back to the main loop to check for interrupts anyway.
12887 tcg_gen_exit_tb(NULL, 0);
12888 break;
12893 const TranslatorOps aarch64_translator_ops = {
12894 .init_disas_context = aarch64_tr_init_disas_context,
12895 .tb_start = aarch64_tr_tb_start,
12896 .insn_start = aarch64_tr_insn_start,
12897 .translate_insn = aarch64_tr_translate_insn,
12898 .tb_stop = aarch64_tr_tb_stop,