target/loongarch/gdbstub: Add vector registers support
[qemu/ar7.git] / plugins / api.c
blob2ff13d09de6bfa49a4d0d4b467ebfd72309dca64
1 /*
2 * QEMU Plugin API
4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
9 * qemu_plugin_tb
10 * qemu_plugin_insn
11 * qemu_plugin_register
13 * Which can then be passed back into the API to do additional things.
14 * As such all the public functions in here are exported in
15 * qemu-plugin.h.
17 * The general life-cycle of a plugin is:
19 * - plugin is loaded, public qemu_plugin_install called
20 * - the install func registers callbacks for events
21 * - usually an atexit_cb is registered to dump info at the end
22 * - when a registered event occurs the plugin is called
23 * - some events pass additional info
24 * - during translation the plugin can decide to instrument any
25 * instruction
26 * - when QEMU exits all the registered atexit callbacks are called
28 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29 * Copyright (C) 2019, Linaro
31 * License: GNU GPL, version 2 or later.
32 * See the COPYING file in the top-level directory.
34 * SPDX-License-Identifier: GPL-2.0-or-later
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
41 #include "qemu/log.h"
42 #include "qemu/timer.h"
43 #include "tcg/tcg.h"
44 #include "exec/exec-all.h"
45 #include "exec/gdbstub.h"
46 #include "exec/translator.h"
47 #include "disas/disas.h"
48 #include "plugin.h"
49 #ifndef CONFIG_USER_ONLY
50 #include "qapi/error.h"
51 #include "migration/blocker.h"
52 #include "exec/ram_addr.h"
53 #include "qemu/plugin-memory.h"
54 #include "hw/boards.h"
55 #else
56 #include "qemu.h"
57 #ifdef CONFIG_LINUX
58 #include "loader.h"
59 #endif
60 #endif
62 /* Uninstall and Reset handlers */
64 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
66 plugin_reset_uninstall(id, cb, false);
69 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
71 plugin_reset_uninstall(id, cb, true);
75 * Plugin Register Functions
77 * This allows the plugin to register callbacks for various events
78 * during the translation.
81 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
82 qemu_plugin_vcpu_simple_cb_t cb)
84 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
87 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
88 qemu_plugin_vcpu_simple_cb_t cb)
90 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
93 static bool tb_is_mem_only(void)
95 return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
98 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
99 qemu_plugin_vcpu_udata_cb_t cb,
100 enum qemu_plugin_cb_flags flags,
101 void *udata)
103 if (!tb_is_mem_only()) {
104 plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
108 void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb,
109 qemu_plugin_vcpu_udata_cb_t cb,
110 enum qemu_plugin_cb_flags flags,
111 enum qemu_plugin_cond cond,
112 qemu_plugin_u64 entry,
113 uint64_t imm,
114 void *udata)
116 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
117 return;
119 if (cond == QEMU_PLUGIN_COND_ALWAYS) {
120 qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata);
121 return;
123 plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags,
124 cond, entry, imm, udata);
127 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
128 struct qemu_plugin_tb *tb,
129 enum qemu_plugin_op op,
130 qemu_plugin_u64 entry,
131 uint64_t imm)
133 if (!tb_is_mem_only()) {
134 plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
138 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
139 qemu_plugin_vcpu_udata_cb_t cb,
140 enum qemu_plugin_cb_flags flags,
141 void *udata)
143 if (!tb_is_mem_only()) {
144 plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
148 void qemu_plugin_register_vcpu_insn_exec_cond_cb(
149 struct qemu_plugin_insn *insn,
150 qemu_plugin_vcpu_udata_cb_t cb,
151 enum qemu_plugin_cb_flags flags,
152 enum qemu_plugin_cond cond,
153 qemu_plugin_u64 entry,
154 uint64_t imm,
155 void *udata)
157 if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
158 return;
160 if (cond == QEMU_PLUGIN_COND_ALWAYS) {
161 qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata);
162 return;
164 plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags,
165 cond, entry, imm, udata);
168 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
169 struct qemu_plugin_insn *insn,
170 enum qemu_plugin_op op,
171 qemu_plugin_u64 entry,
172 uint64_t imm)
174 if (!tb_is_mem_only()) {
175 plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
181 * We always plant memory instrumentation because they don't finalise until
182 * after the operation has complete.
184 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
185 qemu_plugin_vcpu_mem_cb_t cb,
186 enum qemu_plugin_cb_flags flags,
187 enum qemu_plugin_mem_rw rw,
188 void *udata)
190 plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
193 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
194 struct qemu_plugin_insn *insn,
195 enum qemu_plugin_mem_rw rw,
196 enum qemu_plugin_op op,
197 qemu_plugin_u64 entry,
198 uint64_t imm)
200 plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
203 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
204 qemu_plugin_vcpu_tb_trans_cb_t cb)
206 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
209 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
210 qemu_plugin_vcpu_syscall_cb_t cb)
212 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
215 void
216 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
217 qemu_plugin_vcpu_syscall_ret_cb_t cb)
219 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
223 * Plugin Queries
225 * These are queries that the plugin can make to gauge information
226 * from our opaque data types. We do not want to leak internal details
227 * here just information useful to the plugin.
231 * Translation block information:
233 * A plugin can query the virtual address of the start of the block
234 * and the number of instructions in it. It can also get access to
235 * each translated instruction.
238 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
240 return tb->n;
243 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
245 const DisasContextBase *db = tcg_ctx->plugin_db;
246 return db->pc_first;
249 struct qemu_plugin_insn *
250 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
252 struct qemu_plugin_insn *insn;
253 if (unlikely(idx >= tb->n)) {
254 return NULL;
256 insn = g_ptr_array_index(tb->insns, idx);
257 return insn;
261 * Instruction information
263 * These queries allow the plugin to retrieve information about each
264 * instruction being translated.
267 size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
268 void *dest, size_t len)
270 const DisasContextBase *db = tcg_ctx->plugin_db;
272 len = MIN(len, insn->len);
273 return translator_st(db, dest, insn->vaddr, len) ? len : 0;
276 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
278 return insn->len;
281 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
283 return insn->vaddr;
286 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
288 const DisasContextBase *db = tcg_ctx->plugin_db;
289 vaddr page0_last = db->pc_first | ~TARGET_PAGE_MASK;
291 if (db->fake_insn) {
292 return NULL;
296 * ??? The return value is not intended for use of host memory,
297 * but as a proxy for address space and physical address.
298 * Thus we are only interested in the first byte and do not
299 * care about spanning pages.
301 if (insn->vaddr <= page0_last) {
302 if (db->host_addr[0] == NULL) {
303 return NULL;
305 return db->host_addr[0] + insn->vaddr - db->pc_first;
306 } else {
307 if (db->host_addr[1] == NULL) {
308 return NULL;
310 return db->host_addr[1] + insn->vaddr - (page0_last + 1);
314 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
316 return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db,
317 insn->vaddr, insn->len);
320 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
322 const char *sym = lookup_symbol(insn->vaddr);
323 return sym[0] != 0 ? sym : NULL;
327 * The memory queries allow the plugin to query information about a
328 * memory access.
331 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
333 MemOp op = get_memop(info);
334 return op & MO_SIZE;
337 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
339 MemOp op = get_memop(info);
340 return op & MO_SIGN;
343 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
345 MemOp op = get_memop(info);
346 return (op & MO_BSWAP) == MO_BE;
349 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
351 return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
355 * Virtual Memory queries
358 #ifdef CONFIG_SOFTMMU
359 static __thread struct qemu_plugin_hwaddr hwaddr_info;
360 #endif
362 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
363 uint64_t vaddr)
365 #ifdef CONFIG_SOFTMMU
366 CPUState *cpu = current_cpu;
367 unsigned int mmu_idx = get_mmuidx(info);
368 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
369 hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
371 assert(mmu_idx < NB_MMU_MODES);
373 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
374 hwaddr_info.is_store, &hwaddr_info)) {
375 error_report("invalid use of qemu_plugin_get_hwaddr");
376 return NULL;
379 return &hwaddr_info;
380 #else
381 return NULL;
382 #endif
385 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
387 #ifdef CONFIG_SOFTMMU
388 return haddr->is_io;
389 #else
390 return false;
391 #endif
394 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
396 #ifdef CONFIG_SOFTMMU
397 if (haddr) {
398 return haddr->phys_addr;
400 #endif
401 return 0;
404 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
406 #ifdef CONFIG_SOFTMMU
407 if (h && h->is_io) {
408 MemoryRegion *mr = h->mr;
409 if (!mr->name) {
410 unsigned maddr = (uintptr_t)mr;
411 g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
412 return g_intern_string(temp);
413 } else {
414 return g_intern_string(mr->name);
416 } else {
417 return g_intern_static_string("RAM");
419 #else
420 return g_intern_static_string("Invalid");
421 #endif
424 int qemu_plugin_num_vcpus(void)
426 return plugin_num_vcpus();
430 * Plugin output
432 void qemu_plugin_outs(const char *string)
434 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
437 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
439 return name && value && qapi_bool_parse(name, value, ret, NULL);
443 * Binary path, start and end locations
445 const char *qemu_plugin_path_to_binary(void)
447 char *path = NULL;
448 #ifdef CONFIG_USER_ONLY
449 TaskState *ts = get_task_state(current_cpu);
450 path = g_strdup(ts->bprm->filename);
451 #endif
452 return path;
455 uint64_t qemu_plugin_start_code(void)
457 uint64_t start = 0;
458 #ifdef CONFIG_USER_ONLY
459 TaskState *ts = get_task_state(current_cpu);
460 start = ts->info->start_code;
461 #endif
462 return start;
465 uint64_t qemu_plugin_end_code(void)
467 uint64_t end = 0;
468 #ifdef CONFIG_USER_ONLY
469 TaskState *ts = get_task_state(current_cpu);
470 end = ts->info->end_code;
471 #endif
472 return end;
475 uint64_t qemu_plugin_entry_code(void)
477 uint64_t entry = 0;
478 #ifdef CONFIG_USER_ONLY
479 TaskState *ts = get_task_state(current_cpu);
480 entry = ts->info->entry;
481 #endif
482 return entry;
486 * Create register handles.
488 * We need to create a handle for each register so the plugin
489 * infrastructure can call gdbstub to read a register. They are
490 * currently just a pointer encapsulation of the gdb_reg but in
491 * future may hold internal plugin state so its important plugin
492 * authors are not tempted to treat them as numbers.
494 * We also construct a result array with those handles and some
495 * ancillary data the plugin might find useful.
498 static GArray *create_register_handles(GArray *gdbstub_regs)
500 GArray *find_data = g_array_new(true, true,
501 sizeof(qemu_plugin_reg_descriptor));
503 for (int i = 0; i < gdbstub_regs->len; i++) {
504 GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
505 qemu_plugin_reg_descriptor desc;
507 /* skip "un-named" regs */
508 if (!grd->name) {
509 continue;
512 /* Create a record for the plugin */
513 desc.handle = GINT_TO_POINTER(grd->gdb_reg + 1);
514 desc.name = g_intern_string(grd->name);
515 desc.feature = g_intern_string(grd->feature_name);
516 g_array_append_val(find_data, desc);
519 return find_data;
522 GArray *qemu_plugin_get_registers(void)
524 g_assert(current_cpu);
526 g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
527 return create_register_handles(regs);
530 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
532 g_assert(current_cpu);
534 return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg) - 1);
537 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
539 return plugin_scoreboard_new(element_size);
542 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
544 plugin_scoreboard_free(score);
547 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
548 unsigned int vcpu_index)
550 g_assert(vcpu_index < qemu_plugin_num_vcpus());
551 /* we can't use g_array_index since entry size is not statically known */
552 char *base_ptr = score->data->data;
553 return base_ptr + vcpu_index * g_array_get_element_size(score->data);
556 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
557 unsigned int vcpu_index)
559 char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
560 return (uint64_t *)(ptr + entry.offset);
563 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
564 uint64_t added)
566 *plugin_u64_address(entry, vcpu_index) += added;
569 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
570 unsigned int vcpu_index)
572 return *plugin_u64_address(entry, vcpu_index);
575 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
576 uint64_t val)
578 *plugin_u64_address(entry, vcpu_index) = val;
581 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
583 uint64_t total = 0;
584 for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
585 total += qemu_plugin_u64_get(entry, i);
587 return total;
591 * Time control
593 static bool has_control;
594 #ifdef CONFIG_SOFTMMU
595 static Error *migration_blocker;
596 #endif
598 const void *qemu_plugin_request_time_control(void)
600 if (!has_control) {
601 has_control = true;
602 #ifdef CONFIG_SOFTMMU
603 error_setg(&migration_blocker,
604 "TCG plugin time control does not support migration");
605 migrate_add_blocker(&migration_blocker, NULL);
606 #endif
607 return &has_control;
609 return NULL;
612 #ifdef CONFIG_SOFTMMU
613 static void advance_virtual_time__async(CPUState *cpu, run_on_cpu_data data)
615 int64_t new_time = data.host_ulong;
616 qemu_clock_advance_virtual_time(new_time);
618 #endif
620 void qemu_plugin_update_ns(const void *handle, int64_t new_time)
622 #ifdef CONFIG_SOFTMMU
623 if (handle == &has_control) {
624 /* Need to execute out of cpu_exec, so bql can be locked. */
625 async_run_on_cpu(current_cpu,
626 advance_virtual_time__async,
627 RUN_ON_CPU_HOST_ULONG(new_time));
629 #endif