docs/system: Convert qemu-cpu-models.texi to rST
[qemu/ar7.git] / target / arm / kvm32.c
blobf703c4fcad86d85a0a03f27ca319909d33e8bfeb
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "internals.h"
23 #include "qemu/log.h"
25 static inline void set_feature(uint64_t *features, int feature)
27 *features |= 1ULL << feature;
30 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
32 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
34 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
35 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
38 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
40 /* Identify the feature bits corresponding to the host CPU, and
41 * fill out the ARMHostCPUClass fields accordingly. To do this
42 * we have to create a scratch VM, create a single CPU inside it,
43 * and then query that CPU for the relevant ID registers.
45 int err = 0, fdarray[3];
46 uint32_t midr, id_pfr0;
47 uint64_t features = 0;
49 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
50 * we know these will only support creating one kind of guest CPU,
51 * which is its preferred CPU type.
53 static const uint32_t cpus_to_try[] = {
54 QEMU_KVM_ARM_TARGET_CORTEX_A15,
55 QEMU_KVM_ARM_TARGET_NONE
58 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
59 * to use the preferred target
61 struct kvm_vcpu_init init = { .target = -1, };
63 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
64 return false;
67 ahcf->target = init.target;
69 /* This is not strictly blessed by the device tree binding docs yet,
70 * but in practice the kernel does not care about this string so
71 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
73 ahcf->dtb_compatible = "arm,arm-v7";
75 err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
76 err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));
78 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
79 ARM_CP15_REG32(0, 0, 2, 0));
80 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
81 ARM_CP15_REG32(0, 0, 2, 1));
82 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
83 ARM_CP15_REG32(0, 0, 2, 2));
84 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
85 ARM_CP15_REG32(0, 0, 2, 3));
86 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
87 ARM_CP15_REG32(0, 0, 2, 4));
88 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
89 ARM_CP15_REG32(0, 0, 2, 5));
90 if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
91 ARM_CP15_REG32(0, 0, 2, 7))) {
93 * Older kernels don't support reading ID_ISAR6. This register was
94 * only introduced in ARMv8, so we can assume that it is zero on a
95 * CPU that a kernel this old is running on.
97 ahcf->isar.id_isar6 = 0;
100 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
101 ARM_CP15_REG32(0, 0, 1, 2));
103 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
104 KVM_REG_ARM | KVM_REG_SIZE_U32 |
105 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
106 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
107 KVM_REG_ARM | KVM_REG_SIZE_U32 |
108 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
110 * FIXME: There is not yet a way to read MVFR2.
111 * Fortunately there is not yet anything in there that affects migration.
114 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
115 ARM_CP15_REG32(0, 0, 1, 4));
116 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
117 ARM_CP15_REG32(0, 0, 1, 5));
118 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
119 ARM_CP15_REG32(0, 0, 1, 6));
120 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
121 ARM_CP15_REG32(0, 0, 1, 7));
122 if (read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
123 ARM_CP15_REG32(0, 0, 2, 6))) {
125 * Older kernels don't support reading ID_MMFR4 (a new in v8
126 * register); assume it's zero.
128 ahcf->isar.id_mmfr4 = 0;
132 * There is no way to read DBGDIDR, because currently 32-bit KVM
133 * doesn't implement debug at all. Leave it at zero.
136 kvm_arm_destroy_scratch_host_vcpu(fdarray);
138 if (err < 0) {
139 return false;
142 /* Now we've retrieved all the register information we can
143 * set the feature bits based on the ID register fields.
144 * We can assume any KVM supporting CPU is at least a v7
145 * with VFPv3, virtualization extensions, and the generic
146 * timers; this in turn implies most of the other feature
147 * bits, but a few must be tested.
149 set_feature(&features, ARM_FEATURE_V7VE);
150 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
152 if (extract32(id_pfr0, 12, 4) == 1) {
153 set_feature(&features, ARM_FEATURE_THUMB2EE);
155 if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
156 set_feature(&features, ARM_FEATURE_NEON);
159 ahcf->features = features;
161 return true;
164 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
166 /* Return true if the regidx is a register we should synchronize
167 * via the cpreg_tuples array (ie is not a core reg we sync by
168 * hand in kvm_arch_get/put_registers())
170 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
171 case KVM_REG_ARM_CORE:
172 case KVM_REG_ARM_VFP:
173 return false;
174 default:
175 return true;
179 typedef struct CPRegStateLevel {
180 uint64_t regidx;
181 int level;
182 } CPRegStateLevel;
184 /* All coprocessor registers not listed in the following table are assumed to
185 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
186 * often, you must add it to this table with a state of either
187 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
189 static const CPRegStateLevel non_runtime_cpregs[] = {
190 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
193 int kvm_arm_cpreg_level(uint64_t regidx)
195 int i;
197 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
198 const CPRegStateLevel *l = &non_runtime_cpregs[i];
199 if (l->regidx == regidx) {
200 return l->level;
204 return KVM_PUT_RUNTIME_STATE;
207 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
209 int kvm_arch_init_vcpu(CPUState *cs)
211 int ret;
212 uint64_t v;
213 uint32_t mpidr;
214 struct kvm_one_reg r;
215 ARMCPU *cpu = ARM_CPU(cs);
217 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
218 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
219 return -EINVAL;
222 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
224 /* Determine init features for this CPU */
225 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
226 if (cpu->start_powered_off) {
227 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
229 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
230 cpu->psci_version = 2;
231 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
234 /* Do KVM_ARM_VCPU_INIT ioctl */
235 ret = kvm_arm_vcpu_init(cs);
236 if (ret) {
237 return ret;
240 /* Query the kernel to make sure it supports 32 VFP
241 * registers: QEMU's "cortex-a15" CPU is always a
242 * VFP-D32 core. The simplest way to do this is just
243 * to attempt to read register d31.
245 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
246 r.addr = (uintptr_t)(&v);
247 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
248 if (ret == -ENOENT) {
249 return -EINVAL;
253 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
254 * Currently KVM has its own idea about MPIDR assignment, so we
255 * override our defaults with what we get from KVM.
257 ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
258 if (ret) {
259 return ret;
261 cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
263 /* Check whether userspace can specify guest syndrome value */
264 kvm_arm_init_serror_injection(cs);
266 return kvm_arm_init_cpreg_list(cpu);
269 int kvm_arch_destroy_vcpu(CPUState *cs)
271 return 0;
274 typedef struct Reg {
275 uint64_t id;
276 int offset;
277 } Reg;
279 #define COREREG(KERNELNAME, QEMUFIELD) \
281 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
282 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
283 offsetof(CPUARMState, QEMUFIELD) \
286 #define VFPSYSREG(R) \
288 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
289 KVM_REG_ARM_VFP_##R, \
290 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
293 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
294 #define COREREG64(KERNELNAME, QEMUFIELD) \
296 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
297 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
298 offsetoflow32(CPUARMState, QEMUFIELD) \
301 static const Reg regs[] = {
302 /* R0_usr .. R14_usr */
303 COREREG(usr_regs.uregs[0], regs[0]),
304 COREREG(usr_regs.uregs[1], regs[1]),
305 COREREG(usr_regs.uregs[2], regs[2]),
306 COREREG(usr_regs.uregs[3], regs[3]),
307 COREREG(usr_regs.uregs[4], regs[4]),
308 COREREG(usr_regs.uregs[5], regs[5]),
309 COREREG(usr_regs.uregs[6], regs[6]),
310 COREREG(usr_regs.uregs[7], regs[7]),
311 COREREG(usr_regs.uregs[8], usr_regs[0]),
312 COREREG(usr_regs.uregs[9], usr_regs[1]),
313 COREREG(usr_regs.uregs[10], usr_regs[2]),
314 COREREG(usr_regs.uregs[11], usr_regs[3]),
315 COREREG(usr_regs.uregs[12], usr_regs[4]),
316 COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
317 COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
318 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
319 COREREG(svc_regs[0], banked_r13[BANK_SVC]),
320 COREREG(svc_regs[1], banked_r14[BANK_SVC]),
321 COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
322 COREREG(abt_regs[0], banked_r13[BANK_ABT]),
323 COREREG(abt_regs[1], banked_r14[BANK_ABT]),
324 COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
325 COREREG(und_regs[0], banked_r13[BANK_UND]),
326 COREREG(und_regs[1], banked_r14[BANK_UND]),
327 COREREG64(und_regs[2], banked_spsr[BANK_UND]),
328 COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
329 COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
330 COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
331 /* R8_fiq .. R14_fiq and SPSR_fiq */
332 COREREG(fiq_regs[0], fiq_regs[0]),
333 COREREG(fiq_regs[1], fiq_regs[1]),
334 COREREG(fiq_regs[2], fiq_regs[2]),
335 COREREG(fiq_regs[3], fiq_regs[3]),
336 COREREG(fiq_regs[4], fiq_regs[4]),
337 COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
338 COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
339 COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
340 /* R15 */
341 COREREG(usr_regs.uregs[15], regs[15]),
342 /* VFP system registers */
343 VFPSYSREG(FPSID),
344 VFPSYSREG(MVFR1),
345 VFPSYSREG(MVFR0),
346 VFPSYSREG(FPEXC),
347 VFPSYSREG(FPINST),
348 VFPSYSREG(FPINST2),
351 int kvm_arch_put_registers(CPUState *cs, int level)
353 ARMCPU *cpu = ARM_CPU(cs);
354 CPUARMState *env = &cpu->env;
355 struct kvm_one_reg r;
356 int mode, bn;
357 int ret, i;
358 uint32_t cpsr, fpscr;
360 /* Make sure the banked regs are properly set */
361 mode = env->uncached_cpsr & CPSR_M;
362 bn = bank_number(mode);
363 if (mode == ARM_CPU_MODE_FIQ) {
364 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
365 } else {
366 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
368 env->banked_r13[bn] = env->regs[13];
369 env->banked_spsr[bn] = env->spsr;
370 env->banked_r14[r14_bank_number(mode)] = env->regs[14];
372 /* Now we can safely copy stuff down to the kernel */
373 for (i = 0; i < ARRAY_SIZE(regs); i++) {
374 r.id = regs[i].id;
375 r.addr = (uintptr_t)(env) + regs[i].offset;
376 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
377 if (ret) {
378 return ret;
382 /* Special cases which aren't a single CPUARMState field */
383 cpsr = cpsr_read(env);
384 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
385 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
386 r.addr = (uintptr_t)(&cpsr);
387 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
388 if (ret) {
389 return ret;
392 /* VFP registers */
393 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
394 for (i = 0; i < 32; i++) {
395 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
396 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
397 if (ret) {
398 return ret;
400 r.id++;
403 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
404 KVM_REG_ARM_VFP_FPSCR;
405 fpscr = vfp_get_fpscr(env);
406 r.addr = (uintptr_t)&fpscr;
407 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
408 if (ret) {
409 return ret;
412 ret = kvm_put_vcpu_events(cpu);
413 if (ret) {
414 return ret;
417 write_cpustate_to_list(cpu, true);
419 if (!write_list_to_kvmstate(cpu, level)) {
420 return EINVAL;
423 kvm_arm_sync_mpstate_to_kvm(cpu);
425 return ret;
428 int kvm_arch_get_registers(CPUState *cs)
430 ARMCPU *cpu = ARM_CPU(cs);
431 CPUARMState *env = &cpu->env;
432 struct kvm_one_reg r;
433 int mode, bn;
434 int ret, i;
435 uint32_t cpsr, fpscr;
437 for (i = 0; i < ARRAY_SIZE(regs); i++) {
438 r.id = regs[i].id;
439 r.addr = (uintptr_t)(env) + regs[i].offset;
440 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
441 if (ret) {
442 return ret;
446 /* Special cases which aren't a single CPUARMState field */
447 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
448 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
449 r.addr = (uintptr_t)(&cpsr);
450 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
451 if (ret) {
452 return ret;
454 cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
456 /* Make sure the current mode regs are properly set */
457 mode = env->uncached_cpsr & CPSR_M;
458 bn = bank_number(mode);
459 if (mode == ARM_CPU_MODE_FIQ) {
460 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
461 } else {
462 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
464 env->regs[13] = env->banked_r13[bn];
465 env->spsr = env->banked_spsr[bn];
466 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
468 /* VFP registers */
469 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
470 for (i = 0; i < 32; i++) {
471 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
472 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
473 if (ret) {
474 return ret;
476 r.id++;
479 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
480 KVM_REG_ARM_VFP_FPSCR;
481 r.addr = (uintptr_t)&fpscr;
482 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
483 if (ret) {
484 return ret;
486 vfp_set_fpscr(env, fpscr);
488 ret = kvm_get_vcpu_events(cpu);
489 if (ret) {
490 return ret;
493 if (!write_kvmstate_to_list(cpu)) {
494 return EINVAL;
496 /* Note that it's OK to have registers which aren't in CPUState,
497 * so we can ignore a failure return here.
499 write_list_to_cpustate(cpu);
501 kvm_arm_sync_mpstate_to_qemu(cpu);
503 return 0;
506 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
508 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
509 return -EINVAL;
512 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
514 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
515 return -EINVAL;
518 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
520 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
521 return false;
524 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
525 target_ulong len, int type)
527 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
528 return -EINVAL;
531 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
532 target_ulong len, int type)
534 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
535 return -EINVAL;
538 void kvm_arch_remove_all_hw_breakpoints(void)
540 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
543 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
545 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
548 bool kvm_arm_hw_debug_active(CPUState *cs)
550 return false;
553 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
555 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
558 void kvm_arm_pmu_init(CPUState *cs)
560 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);