exec: Reduce CONFIG_USER_ONLY ifdeffenery
[qemu/ar7.git] / include / exec / exec-all.h
blobd008296c1b8f0abeb153b8eb42411300eb4bbbef
1 /*
2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
29 /* Page tracking code uses ram addresses in system mode, and virtual
30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
31 type. */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
38 /* is_jmp field values */
39 #define DISAS_NEXT 0 /* next instruction can be analyzed */
40 #define DISAS_JUMP 1 /* only pc was modified dynamically */
41 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
44 #include "qemu/log.h"
46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
48 target_ulong *data);
50 void cpu_gen_init(void);
51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
55 TranslationBlock *tb_gen_code(CPUState *cpu,
56 target_ulong pc, target_ulong cs_base,
57 uint32_t flags,
58 int cflags);
59 #if defined(CONFIG_USER_ONLY)
60 void cpu_list_lock(void);
61 void cpu_list_unlock(void);
62 #else
63 static inline void cpu_list_unlock(void)
66 static inline void cpu_list_lock(void)
69 #endif
71 void cpu_exec_init(CPUState *cpu, Error **errp);
72 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
73 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
75 #if !defined(CONFIG_USER_ONLY)
76 void cpu_reloading_memory_map(void);
77 /**
78 * cpu_address_space_init:
79 * @cpu: CPU to add this address space to
80 * @as: address space to add
81 * @asidx: integer index of this address space
83 * Add the specified address space to the CPU's cpu_ases list.
84 * The address space added with @asidx 0 is the one used for the
85 * convenience pointer cpu->as.
86 * The target-specific code which registers ASes is responsible
87 * for defining what semantics address space 0, 1, 2, etc have.
89 * Before the first call to this function, the caller must set
90 * cpu->num_ases to the total number of address spaces it needs
91 * to support.
93 * Note that with KVM only one address space is supported.
95 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
96 /* cputlb.c */
97 /**
98 * tlb_flush_page:
99 * @cpu: CPU whose TLB should be flushed
100 * @addr: virtual address of page to be flushed
102 * Flush one page from the TLB of the specified CPU, for all
103 * MMU indexes.
105 void tlb_flush_page(CPUState *cpu, target_ulong addr);
107 * tlb_flush:
108 * @cpu: CPU whose TLB should be flushed
109 * @flush_global: ignored
111 * Flush the entire TLB for the specified CPU.
112 * The flush_global flag is in theory an indicator of whether the whole
113 * TLB should be flushed, or only those entries not marked global.
114 * In practice QEMU does not implement any global/not global flag for
115 * TLB entries, and the argument is ignored.
117 void tlb_flush(CPUState *cpu, int flush_global);
119 * tlb_flush_page_by_mmuidx:
120 * @cpu: CPU whose TLB should be flushed
121 * @addr: virtual address of page to be flushed
122 * @...: list of MMU indexes to flush, terminated by a negative value
124 * Flush one page from the TLB of the specified CPU, for the specified
125 * MMU indexes.
127 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...);
129 * tlb_flush_by_mmuidx:
130 * @cpu: CPU whose TLB should be flushed
131 * @...: list of MMU indexes to flush, terminated by a negative value
133 * Flush all entries from the TLB of the specified CPU, for the specified
134 * MMU indexes.
136 void tlb_flush_by_mmuidx(CPUState *cpu, ...);
138 * tlb_set_page_with_attrs:
139 * @cpu: CPU to add this TLB entry for
140 * @vaddr: virtual address of page to add entry for
141 * @paddr: physical address of the page
142 * @attrs: memory transaction attributes
143 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
144 * @mmu_idx: MMU index to insert TLB entry for
145 * @size: size of the page in bytes
147 * Add an entry to this CPU's TLB (a mapping from virtual address
148 * @vaddr to physical address @paddr) with the specified memory
149 * transaction attributes. This is generally called by the target CPU
150 * specific code after it has been called through the tlb_fill()
151 * entry point and performed a successful page table walk to find
152 * the physical address and attributes for the virtual address
153 * which provoked the TLB miss.
155 * At most one entry for a given virtual address is permitted. Only a
156 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
157 * used by tlb_flush_page.
159 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
160 hwaddr paddr, MemTxAttrs attrs,
161 int prot, int mmu_idx, target_ulong size);
162 /* tlb_set_page:
164 * This function is equivalent to calling tlb_set_page_with_attrs()
165 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
166 * as a convenience for CPUs which don't use memory transaction attributes.
168 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
169 hwaddr paddr, int prot,
170 int mmu_idx, target_ulong size);
171 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
172 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
173 uintptr_t retaddr);
174 #else
175 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
179 static inline void tlb_flush(CPUState *cpu, int flush_global)
183 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
184 target_ulong addr, ...)
188 static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...)
191 #endif
193 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
195 /* Estimated block size for TB allocation. */
196 /* ??? The following is based on a 2015 survey of x86_64 host output.
197 Better would seem to be some sort of dynamically sized TB array,
198 adapting to the block sizes actually being produced. */
199 #if defined(CONFIG_SOFTMMU)
200 #define CODE_GEN_AVG_BLOCK_SIZE 400
201 #else
202 #define CODE_GEN_AVG_BLOCK_SIZE 150
203 #endif
205 #if defined(__arm__) || defined(_ARCH_PPC) \
206 || defined(__x86_64__) || defined(__i386__) \
207 || defined(__sparc__) || defined(__aarch64__) \
208 || defined(__s390x__) || defined(__mips__) \
209 || defined(CONFIG_TCG_INTERPRETER)
210 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
211 #define USE_DIRECT_JUMP
212 #endif
214 struct TranslationBlock {
215 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
216 target_ulong cs_base; /* CS base for this block */
217 uint32_t flags; /* flags defining in which context the code was generated */
218 uint16_t size; /* size of target code for this block (1 <=
219 size <= TARGET_PAGE_SIZE) */
220 uint16_t icount;
221 uint32_t cflags; /* compile flags */
222 #define CF_COUNT_MASK 0x7fff
223 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
224 #define CF_NOCACHE 0x10000 /* To be freed after execution */
225 #define CF_USE_ICOUNT 0x20000
226 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
228 void *tc_ptr; /* pointer to the translated code */
229 uint8_t *tc_search; /* pointer to search data */
230 /* original tb when cflags has CF_NOCACHE */
231 struct TranslationBlock *orig_tb;
232 /* first and second physical page containing code. The lower bit
233 of the pointer tells the index in page_next[] */
234 struct TranslationBlock *page_next[2];
235 tb_page_addr_t page_addr[2];
237 /* The following data are used to directly call another TB from
238 * the code of this one. This can be done either by emitting direct or
239 * indirect native jump instructions. These jumps are reset so that the TB
240 * just continue its execution. The TB can be linked to another one by
241 * setting one of the jump targets (or patching the jump instruction). Only
242 * two of such jumps are supported.
244 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
245 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
246 #ifdef USE_DIRECT_JUMP
247 uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
248 #else
249 uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
250 #endif
251 /* Each TB has an assosiated circular list of TBs jumping to this one.
252 * jmp_list_first points to the first TB jumping to this one.
253 * jmp_list_next is used to point to the next TB in a list.
254 * Since each TB can have two jumps, it can participate in two lists.
255 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
256 * TranslationBlock structure, but the two least significant bits of
257 * them are used to encode which data field of the pointed TB should
258 * be used to traverse the list further from that TB:
259 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
260 * In other words, 0/1 tells which jump is used in the pointed TB,
261 * and 2 means that this is a pointer back to the target TB of this list.
263 uintptr_t jmp_list_next[2];
264 uintptr_t jmp_list_first;
267 void tb_free(TranslationBlock *tb);
268 void tb_flush(CPUState *cpu);
269 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
271 #if defined(USE_DIRECT_JUMP)
273 #if defined(CONFIG_TCG_INTERPRETER)
274 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
276 /* patch the branch destination */
277 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
278 /* no need to flush icache explicitly */
280 #elif defined(_ARCH_PPC)
281 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
282 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
283 #elif defined(__i386__) || defined(__x86_64__)
284 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
286 /* patch the branch destination */
287 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
288 /* no need to flush icache explicitly */
290 #elif defined(__s390x__)
291 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
293 /* patch the branch destination */
294 intptr_t disp = addr - (jmp_addr - 2);
295 atomic_set((int32_t *)jmp_addr, disp / 2);
296 /* no need to flush icache explicitly */
298 #elif defined(__aarch64__)
299 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
300 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
301 #elif defined(__arm__)
302 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
303 #define tb_set_jmp_target1 arm_tb_set_jmp_target
304 #elif defined(__sparc__) || defined(__mips__)
305 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
306 #else
307 #error tb_set_jmp_target1 is missing
308 #endif
310 static inline void tb_set_jmp_target(TranslationBlock *tb,
311 int n, uintptr_t addr)
313 uint16_t offset = tb->jmp_insn_offset[n];
314 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
317 #else
319 /* set the jump target */
320 static inline void tb_set_jmp_target(TranslationBlock *tb,
321 int n, uintptr_t addr)
323 tb->jmp_target_addr[n] = addr;
326 #endif
328 static inline void tb_add_jump(TranslationBlock *tb, int n,
329 TranslationBlock *tb_next)
331 if (tb->jmp_list_next[n]) {
332 /* Another thread has already done this while we were
333 * outside of the lock; nothing to do in this case */
334 return;
336 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
337 "Linking TBs %p [" TARGET_FMT_lx
338 "] index %d -> %p [" TARGET_FMT_lx "]\n",
339 tb->tc_ptr, tb->pc, n,
340 tb_next->tc_ptr, tb_next->pc);
342 /* patch the native jump address */
343 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
345 /* add in TB jmp circular list */
346 tb->jmp_list_next[n] = tb_next->jmp_list_first;
347 tb_next->jmp_list_first = (uintptr_t)tb | n;
350 /* GETRA is the true target of the return instruction that we'll execute,
351 defined here for simplicity of defining the follow-up macros. */
352 #if defined(CONFIG_TCG_INTERPRETER)
353 extern uintptr_t tci_tb_ptr;
354 # define GETRA() tci_tb_ptr
355 #else
356 # define GETRA() \
357 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
358 #endif
360 /* The true return address will often point to a host insn that is part of
361 the next translated guest insn. Adjust the address backward to point to
362 the middle of the call insn. Subtracting one would do the job except for
363 several compressed mode architectures (arm, mips) which set the low bit
364 to indicate the compressed mode; subtracting two works around that. It
365 is also the case that there are no host isas that contain a call insn
366 smaller than 4 bytes, so we don't worry about special-casing this. */
367 #define GETPC_ADJ 2
369 #define GETPC() (GETRA() - GETPC_ADJ)
371 #if !defined(CONFIG_USER_ONLY)
373 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
374 hwaddr index, MemTxAttrs attrs);
376 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
377 int mmu_idx, uintptr_t retaddr);
379 #endif
381 #if defined(CONFIG_USER_ONLY)
382 void mmap_lock(void);
383 void mmap_unlock(void);
385 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
387 return addr;
389 #else
390 static inline void mmap_lock(void) {}
391 static inline void mmap_unlock(void) {}
393 /* cputlb.c */
394 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
396 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
397 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
399 /* exec.c */
400 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
402 MemoryRegionSection *
403 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
404 hwaddr *xlat, hwaddr *plen);
405 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
406 MemoryRegionSection *section,
407 target_ulong vaddr,
408 hwaddr paddr, hwaddr xlat,
409 int prot,
410 target_ulong *address);
411 bool memory_region_is_unassigned(MemoryRegion *mr);
413 #endif
415 /* vl.c */
416 extern int singlestep;
418 /* cpu-exec.c, accessed with atomic_mb_read/atomic_mb_set */
419 extern CPUState *tcg_current_cpu;
420 extern bool exit_request;
422 #endif