8 #include "qemu-common.h"
9 #include "host-utils.h"
10 #if !defined(CONFIG_USER_ONLY)
11 #include "hw/loader.h"
15 static uint32_t cortexa15_cp15_c0_c1
[8] = {
16 0x00001131, 0x00011011, 0x02010555, 0x00000000,
17 0x10201105, 0x20000000, 0x01240000, 0x02102211
20 static uint32_t cortexa15_cp15_c0_c2
[8] = {
21 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
24 static uint32_t cortexa9_cp15_c0_c1
[8] =
25 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
27 static uint32_t cortexa9_cp15_c0_c2
[8] =
28 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
30 static uint32_t cortexa8_cp15_c0_c1
[8] =
31 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
33 static uint32_t cortexa8_cp15_c0_c2
[8] =
34 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
36 static uint32_t mpcore_cp15_c0_c1
[8] =
37 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
39 static uint32_t mpcore_cp15_c0_c2
[8] =
40 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
42 static uint32_t arm1136_cp15_c0_c1
[8] =
43 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
45 static uint32_t arm1136_cp15_c0_c2
[8] =
46 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
48 static uint32_t arm1176_cp15_c0_c1
[8] =
49 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
51 static uint32_t arm1176_cp15_c0_c2
[8] =
52 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
54 static uint32_t cpu_arm_find_by_name(const char *name
);
56 static inline void set_feature(CPUARMState
*env
, int feature
)
58 env
->features
|= 1u << feature
;
61 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
63 env
->cp15
.c0_cpuid
= id
;
65 case ARM_CPUID_ARM926
:
66 set_feature(env
, ARM_FEATURE_V5
);
67 set_feature(env
, ARM_FEATURE_VFP
);
68 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
69 env
->cp15
.c0_cachetype
= 0x1dd20d2;
70 env
->cp15
.c1_sys
= 0x00090078;
72 case ARM_CPUID_ARM946
:
73 set_feature(env
, ARM_FEATURE_V5
);
74 set_feature(env
, ARM_FEATURE_MPU
);
75 env
->cp15
.c0_cachetype
= 0x0f004006;
76 env
->cp15
.c1_sys
= 0x00000078;
78 case ARM_CPUID_ARM1026
:
79 set_feature(env
, ARM_FEATURE_V5
);
80 set_feature(env
, ARM_FEATURE_VFP
);
81 set_feature(env
, ARM_FEATURE_AUXCR
);
82 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
83 env
->cp15
.c0_cachetype
= 0x1dd20d2;
84 env
->cp15
.c1_sys
= 0x00090078;
86 case ARM_CPUID_ARM1136
:
87 /* This is the 1136 r1, which is a v6K core */
88 set_feature(env
, ARM_FEATURE_V6K
);
90 case ARM_CPUID_ARM1136_R2
:
91 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
92 * older core than plain "arm1136". In particular this does not
93 * have the v6K features.
95 set_feature(env
, ARM_FEATURE_V6
);
96 set_feature(env
, ARM_FEATURE_VFP
);
97 /* These ID register values are correct for 1136 but may be wrong
98 * for 1136_r2 (in particular r0p2 does not actually implement most
99 * of the ID registers).
101 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
102 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
103 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
104 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
105 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
106 env
->cp15
.c0_cachetype
= 0x1dd20d2;
107 env
->cp15
.c1_sys
= 0x00050078;
109 case ARM_CPUID_ARM1176
:
110 set_feature(env
, ARM_FEATURE_V6K
);
111 set_feature(env
, ARM_FEATURE_VFP
);
112 set_feature(env
, ARM_FEATURE_VAPA
);
113 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b5;
114 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
115 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
116 memcpy(env
->cp15
.c0_c1
, arm1176_cp15_c0_c1
, 8 * sizeof(uint32_t));
117 memcpy(env
->cp15
.c0_c2
, arm1176_cp15_c0_c2
, 8 * sizeof(uint32_t));
118 env
->cp15
.c0_cachetype
= 0x1dd20d2;
119 env
->cp15
.c1_sys
= 0x00050078;
121 case ARM_CPUID_ARM11MPCORE
:
122 set_feature(env
, ARM_FEATURE_V6K
);
123 set_feature(env
, ARM_FEATURE_VFP
);
124 set_feature(env
, ARM_FEATURE_VAPA
);
125 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
126 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
127 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
128 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
129 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
130 env
->cp15
.c0_cachetype
= 0x1dd20d2;
132 case ARM_CPUID_CORTEXA8
:
133 set_feature(env
, ARM_FEATURE_V7
);
134 set_feature(env
, ARM_FEATURE_VFP3
);
135 set_feature(env
, ARM_FEATURE_NEON
);
136 set_feature(env
, ARM_FEATURE_THUMB2EE
);
137 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
138 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
139 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
140 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
141 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
142 env
->cp15
.c0_cachetype
= 0x82048004;
143 env
->cp15
.c0_clid
= (1 << 27) | (2 << 24) | 3;
144 env
->cp15
.c0_ccsid
[0] = 0xe007e01a; /* 16k L1 dcache. */
145 env
->cp15
.c0_ccsid
[1] = 0x2007e01a; /* 16k L1 icache. */
146 env
->cp15
.c0_ccsid
[2] = 0xf0000000; /* No L2 icache. */
147 env
->cp15
.c1_sys
= 0x00c50078;
149 case ARM_CPUID_CORTEXA9
:
150 set_feature(env
, ARM_FEATURE_V7
);
151 set_feature(env
, ARM_FEATURE_VFP3
);
152 set_feature(env
, ARM_FEATURE_VFP_FP16
);
153 set_feature(env
, ARM_FEATURE_NEON
);
154 set_feature(env
, ARM_FEATURE_THUMB2EE
);
155 /* Note that A9 supports the MP extensions even for
156 * A9UP and single-core A9MP (which are both different
157 * and valid configurations; we don't model A9UP).
159 set_feature(env
, ARM_FEATURE_V7MP
);
160 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41034000; /* Guess */
161 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
162 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x01111111;
163 memcpy(env
->cp15
.c0_c1
, cortexa9_cp15_c0_c1
, 8 * sizeof(uint32_t));
164 memcpy(env
->cp15
.c0_c2
, cortexa9_cp15_c0_c2
, 8 * sizeof(uint32_t));
165 env
->cp15
.c0_cachetype
= 0x80038003;
166 env
->cp15
.c0_clid
= (1 << 27) | (1 << 24) | 3;
167 env
->cp15
.c0_ccsid
[0] = 0xe00fe015; /* 16k L1 dcache. */
168 env
->cp15
.c0_ccsid
[1] = 0x200fe015; /* 16k L1 icache. */
169 env
->cp15
.c1_sys
= 0x00c50078;
171 case ARM_CPUID_CORTEXA15
:
172 set_feature(env
, ARM_FEATURE_V7
);
173 set_feature(env
, ARM_FEATURE_VFP4
);
174 set_feature(env
, ARM_FEATURE_VFP_FP16
);
175 set_feature(env
, ARM_FEATURE_NEON
);
176 set_feature(env
, ARM_FEATURE_THUMB2EE
);
177 set_feature(env
, ARM_FEATURE_ARM_DIV
);
178 set_feature(env
, ARM_FEATURE_V7MP
);
179 set_feature(env
, ARM_FEATURE_GENERIC_TIMER
);
180 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410430f0;
181 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x10110222;
182 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x11111111;
183 memcpy(env
->cp15
.c0_c1
, cortexa15_cp15_c0_c1
, 8 * sizeof(uint32_t));
184 memcpy(env
->cp15
.c0_c2
, cortexa15_cp15_c0_c2
, 8 * sizeof(uint32_t));
185 env
->cp15
.c0_cachetype
= 0x8444c004;
186 env
->cp15
.c0_clid
= 0x0a200023;
187 env
->cp15
.c0_ccsid
[0] = 0x701fe00a; /* 32K L1 dcache */
188 env
->cp15
.c0_ccsid
[1] = 0x201fe00a; /* 32K L1 icache */
189 env
->cp15
.c0_ccsid
[2] = 0x711fe07a; /* 4096K L2 unified cache */
190 env
->cp15
.c1_sys
= 0x00c50078;
192 case ARM_CPUID_CORTEXM3
:
193 set_feature(env
, ARM_FEATURE_V7
);
194 set_feature(env
, ARM_FEATURE_M
);
196 case ARM_CPUID_ANY
: /* For userspace emulation. */
197 set_feature(env
, ARM_FEATURE_V7
);
198 set_feature(env
, ARM_FEATURE_VFP4
);
199 set_feature(env
, ARM_FEATURE_VFP_FP16
);
200 set_feature(env
, ARM_FEATURE_NEON
);
201 set_feature(env
, ARM_FEATURE_THUMB2EE
);
202 set_feature(env
, ARM_FEATURE_ARM_DIV
);
203 set_feature(env
, ARM_FEATURE_V7MP
);
205 case ARM_CPUID_TI915T
:
206 case ARM_CPUID_TI925T
:
207 set_feature(env
, ARM_FEATURE_V4T
);
208 set_feature(env
, ARM_FEATURE_OMAPCP
);
209 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
210 env
->cp15
.c0_cachetype
= 0x5109149;
211 env
->cp15
.c1_sys
= 0x00000070;
212 env
->cp15
.c15_i_max
= 0x000;
213 env
->cp15
.c15_i_min
= 0xff0;
215 case ARM_CPUID_PXA250
:
216 case ARM_CPUID_PXA255
:
217 case ARM_CPUID_PXA260
:
218 case ARM_CPUID_PXA261
:
219 case ARM_CPUID_PXA262
:
220 set_feature(env
, ARM_FEATURE_V5
);
221 set_feature(env
, ARM_FEATURE_XSCALE
);
222 /* JTAG_ID is ((id << 28) | 0x09265013) */
223 env
->cp15
.c0_cachetype
= 0xd172172;
224 env
->cp15
.c1_sys
= 0x00000078;
226 case ARM_CPUID_PXA270_A0
:
227 case ARM_CPUID_PXA270_A1
:
228 case ARM_CPUID_PXA270_B0
:
229 case ARM_CPUID_PXA270_B1
:
230 case ARM_CPUID_PXA270_C0
:
231 case ARM_CPUID_PXA270_C5
:
232 set_feature(env
, ARM_FEATURE_V5
);
233 set_feature(env
, ARM_FEATURE_XSCALE
);
234 /* JTAG_ID is ((id << 28) | 0x09265013) */
235 set_feature(env
, ARM_FEATURE_IWMMXT
);
236 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
237 env
->cp15
.c0_cachetype
= 0xd172172;
238 env
->cp15
.c1_sys
= 0x00000078;
240 case ARM_CPUID_SA1100
:
241 case ARM_CPUID_SA1110
:
242 set_feature(env
, ARM_FEATURE_STRONGARM
);
243 env
->cp15
.c1_sys
= 0x00000070;
246 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
250 /* Some features automatically imply others: */
251 if (arm_feature(env
, ARM_FEATURE_V7
)) {
252 set_feature(env
, ARM_FEATURE_VAPA
);
253 set_feature(env
, ARM_FEATURE_THUMB2
);
254 if (!arm_feature(env
, ARM_FEATURE_M
)) {
255 set_feature(env
, ARM_FEATURE_V6K
);
257 set_feature(env
, ARM_FEATURE_V6
);
260 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
261 set_feature(env
, ARM_FEATURE_V6
);
263 if (arm_feature(env
, ARM_FEATURE_V6
)) {
264 set_feature(env
, ARM_FEATURE_V5
);
265 if (!arm_feature(env
, ARM_FEATURE_M
)) {
266 set_feature(env
, ARM_FEATURE_AUXCR
);
269 if (arm_feature(env
, ARM_FEATURE_V5
)) {
270 set_feature(env
, ARM_FEATURE_V4T
);
272 if (arm_feature(env
, ARM_FEATURE_M
)) {
273 set_feature(env
, ARM_FEATURE_THUMB_DIV
);
275 if (arm_feature(env
, ARM_FEATURE_ARM_DIV
)) {
276 set_feature(env
, ARM_FEATURE_THUMB_DIV
);
278 if (arm_feature(env
, ARM_FEATURE_VFP4
)) {
279 set_feature(env
, ARM_FEATURE_VFP3
);
281 if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
282 set_feature(env
, ARM_FEATURE_VFP
);
286 void cpu_reset(CPUARMState
*env
)
291 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
292 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
293 log_cpu_state(env
, 0);
296 id
= env
->cp15
.c0_cpuid
;
297 tmp
= env
->cp15
.c15_config_base_address
;
298 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
300 cpu_reset_model_id(env
, id
);
301 env
->cp15
.c15_config_base_address
= tmp
;
302 #if defined (CONFIG_USER_ONLY)
303 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
304 /* For user mode we must enable access to coprocessors */
305 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
306 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
307 env
->cp15
.c15_cpar
= 3;
308 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
309 env
->cp15
.c15_cpar
= 1;
312 /* SVC mode with interrupts disabled. */
313 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
314 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
315 clear at reset. Initial SP and PC are loaded from ROM. */
319 env
->uncached_cpsr
&= ~CPSR_I
;
322 /* We should really use ldl_phys here, in case the guest
323 modified flash and reset itself. However images
324 loaded via -kernel have not been copied yet, so load the
325 values directly from there. */
326 env
->regs
[13] = ldl_p(rom
);
329 env
->regs
[15] = pc
& ~1;
332 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
333 env
->cp15
.c2_base_mask
= 0xffffc000u
;
334 /* v7 performance monitor control register: same implementor
335 * field as main ID register, and we implement no event counters.
337 env
->cp15
.c9_pmcr
= (id
& 0xff000000);
339 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
340 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
341 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
342 set_float_detect_tininess(float_tininess_before_rounding
,
343 &env
->vfp
.fp_status
);
344 set_float_detect_tininess(float_tininess_before_rounding
,
345 &env
->vfp
.standard_fp_status
);
349 static int vfp_gdb_get_reg(CPUState
*env
, uint8_t *buf
, int reg
)
353 /* VFP data registers are always little-endian. */
354 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
356 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
359 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
360 /* Aliases for Q regs. */
363 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
364 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
368 switch (reg
- nregs
) {
369 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
370 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
371 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
376 static int vfp_gdb_set_reg(CPUState
*env
, uint8_t *buf
, int reg
)
380 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
382 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
385 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
388 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
389 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
393 switch (reg
- nregs
) {
394 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
395 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
396 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
401 CPUARMState
*cpu_arm_init(const char *cpu_model
)
405 static int inited
= 0;
407 id
= cpu_arm_find_by_name(cpu_model
);
410 env
= g_malloc0(sizeof(CPUARMState
));
412 if (tcg_enabled() && !inited
) {
414 arm_translate_init();
417 env
->cpu_model_str
= cpu_model
;
418 env
->cp15
.c0_cpuid
= id
;
420 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
421 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
422 51, "arm-neon.xml", 0);
423 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
424 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
425 35, "arm-vfp3.xml", 0);
426 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
427 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
428 19, "arm-vfp.xml", 0);
439 static const struct arm_cpu_t arm_cpu_names
[] = {
440 { ARM_CPUID_ARM926
, "arm926"},
441 { ARM_CPUID_ARM946
, "arm946"},
442 { ARM_CPUID_ARM1026
, "arm1026"},
443 { ARM_CPUID_ARM1136
, "arm1136"},
444 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
445 { ARM_CPUID_ARM1176
, "arm1176"},
446 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
447 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
448 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
449 { ARM_CPUID_CORTEXA9
, "cortex-a9"},
450 { ARM_CPUID_CORTEXA15
, "cortex-a15" },
451 { ARM_CPUID_TI925T
, "ti925t" },
452 { ARM_CPUID_PXA250
, "pxa250" },
453 { ARM_CPUID_SA1100
, "sa1100" },
454 { ARM_CPUID_SA1110
, "sa1110" },
455 { ARM_CPUID_PXA255
, "pxa255" },
456 { ARM_CPUID_PXA260
, "pxa260" },
457 { ARM_CPUID_PXA261
, "pxa261" },
458 { ARM_CPUID_PXA262
, "pxa262" },
459 { ARM_CPUID_PXA270
, "pxa270" },
460 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
461 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
462 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
463 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
464 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
465 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
466 { ARM_CPUID_ANY
, "any"},
470 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
474 (*cpu_fprintf
)(f
, "Available CPUs:\n");
475 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
476 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
480 /* return 0 if not found */
481 static uint32_t cpu_arm_find_by_name(const char *name
)
487 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
488 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
489 id
= arm_cpu_names
[i
].id
;
496 void cpu_arm_close(CPUARMState
*env
)
501 static int bad_mode_switch(CPUState
*env
, int mode
)
503 /* Return true if it is not valid for us to switch to
504 * this CPU mode (ie all the UNPREDICTABLE cases in
505 * the ARM ARM CPSRWriteByInstr pseudocode).
508 case ARM_CPU_MODE_USR
:
509 case ARM_CPU_MODE_SYS
:
510 case ARM_CPU_MODE_SVC
:
511 case ARM_CPU_MODE_ABT
:
512 case ARM_CPU_MODE_UND
:
513 case ARM_CPU_MODE_IRQ
:
514 case ARM_CPU_MODE_FIQ
:
521 uint32_t cpsr_read(CPUARMState
*env
)
525 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
526 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
527 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
528 | ((env
->condexec_bits
& 0xfc) << 8)
532 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
534 if (mask
& CPSR_NZCV
) {
535 env
->ZF
= (~val
) & CPSR_Z
;
537 env
->CF
= (val
>> 29) & 1;
538 env
->VF
= (val
<< 3) & 0x80000000;
541 env
->QF
= ((val
& CPSR_Q
) != 0);
543 env
->thumb
= ((val
& CPSR_T
) != 0);
544 if (mask
& CPSR_IT_0_1
) {
545 env
->condexec_bits
&= ~3;
546 env
->condexec_bits
|= (val
>> 25) & 3;
548 if (mask
& CPSR_IT_2_7
) {
549 env
->condexec_bits
&= 3;
550 env
->condexec_bits
|= (val
>> 8) & 0xfc;
552 if (mask
& CPSR_GE
) {
553 env
->GE
= (val
>> 16) & 0xf;
556 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
557 if (bad_mode_switch(env
, val
& CPSR_M
)) {
558 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
559 * We choose to ignore the attempt and leave the CPSR M field
564 switch_mode(env
, val
& CPSR_M
);
567 mask
&= ~CACHED_CPSR_BITS
;
568 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
571 /* Sign/zero extend */
572 uint32_t HELPER(sxtb16
)(uint32_t x
)
575 res
= (uint16_t)(int8_t)x
;
576 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
580 uint32_t HELPER(uxtb16
)(uint32_t x
)
583 res
= (uint16_t)(uint8_t)x
;
584 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
588 uint32_t HELPER(clz
)(uint32_t x
)
593 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
597 if (num
== INT_MIN
&& den
== -1)
602 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
609 uint32_t HELPER(rbit
)(uint32_t x
)
611 x
= ((x
& 0xff000000) >> 24)
612 | ((x
& 0x00ff0000) >> 8)
613 | ((x
& 0x0000ff00) << 8)
614 | ((x
& 0x000000ff) << 24);
615 x
= ((x
& 0xf0f0f0f0) >> 4)
616 | ((x
& 0x0f0f0f0f) << 4);
617 x
= ((x
& 0x88888888) >> 3)
618 | ((x
& 0x44444444) >> 1)
619 | ((x
& 0x22222222) << 1)
620 | ((x
& 0x11111111) << 3);
624 uint32_t HELPER(abs
)(uint32_t x
)
626 return ((int32_t)x
< 0) ? -x
: x
;
629 #if defined(CONFIG_USER_ONLY)
631 void do_interrupt (CPUState
*env
)
633 env
->exception_index
= -1;
636 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
640 env
->exception_index
= EXCP_PREFETCH_ABORT
;
641 env
->cp15
.c6_insn
= address
;
643 env
->exception_index
= EXCP_DATA_ABORT
;
644 env
->cp15
.c6_data
= address
;
649 /* These should probably raise undefined insn exceptions. */
650 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
652 int op1
= (insn
>> 8) & 0xf;
653 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
657 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
659 int op1
= (insn
>> 8) & 0xf;
660 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
664 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
666 cpu_abort(env
, "cp15 insn %08x\n", insn
);
669 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
671 cpu_abort(env
, "cp15 insn %08x\n", insn
);
674 /* These should probably raise undefined insn exceptions. */
675 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
677 cpu_abort(env
, "v7m_mrs %d\n", reg
);
680 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
682 cpu_abort(env
, "v7m_mrs %d\n", reg
);
686 void switch_mode(CPUState
*env
, int mode
)
688 if (mode
!= ARM_CPU_MODE_USR
)
689 cpu_abort(env
, "Tried to switch out of user mode\n");
692 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
694 cpu_abort(env
, "banked r13 write\n");
697 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
699 cpu_abort(env
, "banked r13 read\n");
705 /* Map CPU modes onto saved register banks. */
706 static inline int bank_number(CPUState
*env
, int mode
)
709 case ARM_CPU_MODE_USR
:
710 case ARM_CPU_MODE_SYS
:
712 case ARM_CPU_MODE_SVC
:
714 case ARM_CPU_MODE_ABT
:
716 case ARM_CPU_MODE_UND
:
718 case ARM_CPU_MODE_IRQ
:
720 case ARM_CPU_MODE_FIQ
:
723 cpu_abort(env
, "Bad mode %x\n", mode
);
727 void switch_mode(CPUState
*env
, int mode
)
732 old_mode
= env
->uncached_cpsr
& CPSR_M
;
733 if (mode
== old_mode
)
736 if (old_mode
== ARM_CPU_MODE_FIQ
) {
737 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
738 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
739 } else if (mode
== ARM_CPU_MODE_FIQ
) {
740 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
741 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
744 i
= bank_number(env
, old_mode
);
745 env
->banked_r13
[i
] = env
->regs
[13];
746 env
->banked_r14
[i
] = env
->regs
[14];
747 env
->banked_spsr
[i
] = env
->spsr
;
749 i
= bank_number(env
, mode
);
750 env
->regs
[13] = env
->banked_r13
[i
];
751 env
->regs
[14] = env
->banked_r14
[i
];
752 env
->spsr
= env
->banked_spsr
[i
];
755 static void v7m_push(CPUARMState
*env
, uint32_t val
)
758 stl_phys(env
->regs
[13], val
);
761 static uint32_t v7m_pop(CPUARMState
*env
)
764 val
= ldl_phys(env
->regs
[13]);
769 /* Switch to V7M main or process stack pointer. */
770 static void switch_v7m_sp(CPUARMState
*env
, int process
)
773 if (env
->v7m
.current_sp
!= process
) {
774 tmp
= env
->v7m
.other_sp
;
775 env
->v7m
.other_sp
= env
->regs
[13];
777 env
->v7m
.current_sp
= process
;
781 static void do_v7m_exception_exit(CPUARMState
*env
)
786 type
= env
->regs
[15];
787 if (env
->v7m
.exception
!= 0)
788 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
790 /* Switch to the target stack. */
791 switch_v7m_sp(env
, (type
& 4) != 0);
793 env
->regs
[0] = v7m_pop(env
);
794 env
->regs
[1] = v7m_pop(env
);
795 env
->regs
[2] = v7m_pop(env
);
796 env
->regs
[3] = v7m_pop(env
);
797 env
->regs
[12] = v7m_pop(env
);
798 env
->regs
[14] = v7m_pop(env
);
799 env
->regs
[15] = v7m_pop(env
);
801 xpsr_write(env
, xpsr
, 0xfffffdff);
802 /* Undo stack alignment. */
805 /* ??? The exception return type specifies Thread/Handler mode. However
806 this is also implied by the xPSR value. Not sure what to do
807 if there is a mismatch. */
808 /* ??? Likewise for mismatches between the CONTROL register and the stack
812 static void do_interrupt_v7m(CPUARMState
*env
)
814 uint32_t xpsr
= xpsr_read(env
);
819 if (env
->v7m
.current_sp
)
821 if (env
->v7m
.exception
== 0)
824 /* For exceptions we just mark as pending on the NVIC, and let that
826 /* TODO: Need to escalate if the current priority is higher than the
827 one we're raising. */
828 switch (env
->exception_index
) {
830 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
834 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
836 case EXCP_PREFETCH_ABORT
:
837 case EXCP_DATA_ABORT
:
838 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
841 if (semihosting_enabled
) {
843 nr
= lduw_code(env
->regs
[15]) & 0xff;
846 env
->regs
[0] = do_arm_semihosting(env
);
850 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
853 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
855 case EXCP_EXCEPTION_EXIT
:
856 do_v7m_exception_exit(env
);
859 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
860 return; /* Never happens. Keep compiler happy. */
863 /* Align stack pointer. */
864 /* ??? Should only do this if Configuration Control Register
865 STACKALIGN bit is set. */
866 if (env
->regs
[13] & 4) {
870 /* Switch to the handler mode. */
872 v7m_push(env
, env
->regs
[15]);
873 v7m_push(env
, env
->regs
[14]);
874 v7m_push(env
, env
->regs
[12]);
875 v7m_push(env
, env
->regs
[3]);
876 v7m_push(env
, env
->regs
[2]);
877 v7m_push(env
, env
->regs
[1]);
878 v7m_push(env
, env
->regs
[0]);
879 switch_v7m_sp(env
, 0);
880 env
->uncached_cpsr
&= ~CPSR_IT
;
882 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
883 env
->regs
[15] = addr
& 0xfffffffe;
884 env
->thumb
= addr
& 1;
887 /* Handle a CPU exception. */
888 void do_interrupt(CPUARMState
*env
)
896 do_interrupt_v7m(env
);
899 /* TODO: Vectored interrupt controller. */
900 switch (env
->exception_index
) {
902 new_mode
= ARM_CPU_MODE_UND
;
911 if (semihosting_enabled
) {
912 /* Check for semihosting interrupt. */
914 mask
= lduw_code(env
->regs
[15] - 2) & 0xff;
916 mask
= ldl_code(env
->regs
[15] - 4) & 0xffffff;
918 /* Only intercept calls from privileged modes, to provide some
919 semblance of security. */
920 if (((mask
== 0x123456 && !env
->thumb
)
921 || (mask
== 0xab && env
->thumb
))
922 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
923 env
->regs
[0] = do_arm_semihosting(env
);
927 new_mode
= ARM_CPU_MODE_SVC
;
930 /* The PC already points to the next instruction. */
934 /* See if this is a semihosting syscall. */
935 if (env
->thumb
&& semihosting_enabled
) {
936 mask
= lduw_code(env
->regs
[15]) & 0xff;
938 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
940 env
->regs
[0] = do_arm_semihosting(env
);
944 env
->cp15
.c5_insn
= 2;
945 /* Fall through to prefetch abort. */
946 case EXCP_PREFETCH_ABORT
:
947 new_mode
= ARM_CPU_MODE_ABT
;
949 mask
= CPSR_A
| CPSR_I
;
952 case EXCP_DATA_ABORT
:
953 new_mode
= ARM_CPU_MODE_ABT
;
955 mask
= CPSR_A
| CPSR_I
;
959 new_mode
= ARM_CPU_MODE_IRQ
;
961 /* Disable IRQ and imprecise data aborts. */
962 mask
= CPSR_A
| CPSR_I
;
966 new_mode
= ARM_CPU_MODE_FIQ
;
968 /* Disable FIQ, IRQ and imprecise data aborts. */
969 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
973 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
974 return; /* Never happens. Keep compiler happy. */
977 if (env
->cp15
.c1_sys
& (1 << 13)) {
980 switch_mode (env
, new_mode
);
981 env
->spsr
= cpsr_read(env
);
983 env
->condexec_bits
= 0;
984 /* Switch to the new mode, and to the correct instruction set. */
985 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
986 env
->uncached_cpsr
|= mask
;
987 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
988 * and we should just guard the thumb mode on V4 */
989 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
990 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
992 env
->regs
[14] = env
->regs
[15] + offset
;
993 env
->regs
[15] = addr
;
994 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
997 /* Check section/page access permissions.
998 Returns the page protection flags, or zero if the access is not
1000 static inline int check_ap(CPUState
*env
, int ap
, int domain_prot
,
1001 int access_type
, int is_user
)
1005 if (domain_prot
== 3) {
1006 return PAGE_READ
| PAGE_WRITE
;
1009 if (access_type
== 1)
1012 prot_ro
= PAGE_READ
;
1016 if (access_type
== 1)
1018 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
1020 return is_user
? 0 : PAGE_READ
;
1027 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
1032 return PAGE_READ
| PAGE_WRITE
;
1034 return PAGE_READ
| PAGE_WRITE
;
1035 case 4: /* Reserved. */
1038 return is_user
? 0 : prot_ro
;
1042 if (!arm_feature (env
, ARM_FEATURE_V6K
))
1050 static uint32_t get_level1_table_address(CPUState
*env
, uint32_t address
)
1054 if (address
& env
->cp15
.c2_mask
)
1055 table
= env
->cp15
.c2_base1
& 0xffffc000;
1057 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
1059 table
|= (address
>> 18) & 0x3ffc;
1063 static int get_phys_addr_v5(CPUState
*env
, uint32_t address
, int access_type
,
1064 int is_user
, uint32_t *phys_ptr
, int *prot
,
1065 target_ulong
*page_size
)
1076 /* Pagetable walk. */
1077 /* Lookup l1 descriptor. */
1078 table
= get_level1_table_address(env
, address
);
1079 desc
= ldl_phys(table
);
1081 domain
= (desc
>> 5) & 0x0f;
1082 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
1084 /* Section translation fault. */
1088 if (domain_prot
== 0 || domain_prot
== 2) {
1090 code
= 9; /* Section domain fault. */
1092 code
= 11; /* Page domain fault. */
1097 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1098 ap
= (desc
>> 10) & 3;
1100 *page_size
= 1024 * 1024;
1102 /* Lookup l2 entry. */
1104 /* Coarse pagetable. */
1105 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1107 /* Fine pagetable. */
1108 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
1110 desc
= ldl_phys(table
);
1112 case 0: /* Page translation fault. */
1115 case 1: /* 64k page. */
1116 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1117 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1118 *page_size
= 0x10000;
1120 case 2: /* 4k page. */
1121 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1122 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1123 *page_size
= 0x1000;
1125 case 3: /* 1k page. */
1127 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1128 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1130 /* Page translation fault. */
1135 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
1137 ap
= (desc
>> 4) & 3;
1141 /* Never happens, but compiler isn't smart enough to tell. */
1146 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
1148 /* Access permission fault. */
1152 *phys_ptr
= phys_addr
;
1155 return code
| (domain
<< 4);
1158 static int get_phys_addr_v6(CPUState
*env
, uint32_t address
, int access_type
,
1159 int is_user
, uint32_t *phys_ptr
, int *prot
,
1160 target_ulong
*page_size
)
1172 /* Pagetable walk. */
1173 /* Lookup l1 descriptor. */
1174 table
= get_level1_table_address(env
, address
);
1175 desc
= ldl_phys(table
);
1178 /* Section translation fault. */
1182 } else if (type
== 2 && (desc
& (1 << 18))) {
1186 /* Section or page. */
1187 domain
= (desc
>> 5) & 0x0f;
1189 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
1190 if (domain_prot
== 0 || domain_prot
== 2) {
1192 code
= 9; /* Section domain fault. */
1194 code
= 11; /* Page domain fault. */
1198 if (desc
& (1 << 18)) {
1200 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
1201 *page_size
= 0x1000000;
1204 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1205 *page_size
= 0x100000;
1207 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1208 xn
= desc
& (1 << 4);
1211 /* Lookup l2 entry. */
1212 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1213 desc
= ldl_phys(table
);
1214 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1216 case 0: /* Page translation fault. */
1219 case 1: /* 64k page. */
1220 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1221 xn
= desc
& (1 << 15);
1222 *page_size
= 0x10000;
1224 case 2: case 3: /* 4k page. */
1225 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1227 *page_size
= 0x1000;
1230 /* Never happens, but compiler isn't smart enough to tell. */
1235 if (domain_prot
== 3) {
1236 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1238 if (xn
&& access_type
== 2)
1241 /* The simplified model uses AP[0] as an access control bit. */
1242 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1243 /* Access flag fault. */
1244 code
= (code
== 15) ? 6 : 3;
1247 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
1249 /* Access permission fault. */
1256 *phys_ptr
= phys_addr
;
1259 return code
| (domain
<< 4);
1262 static int get_phys_addr_mpu(CPUState
*env
, uint32_t address
, int access_type
,
1263 int is_user
, uint32_t *phys_ptr
, int *prot
)
1269 *phys_ptr
= address
;
1270 for (n
= 7; n
>= 0; n
--) {
1271 base
= env
->cp15
.c6_region
[n
];
1272 if ((base
& 1) == 0)
1274 mask
= 1 << ((base
>> 1) & 0x1f);
1275 /* Keep this shift separate from the above to avoid an
1276 (undefined) << 32. */
1277 mask
= (mask
<< 1) - 1;
1278 if (((base
^ address
) & ~mask
) == 0)
1284 if (access_type
== 2) {
1285 mask
= env
->cp15
.c5_insn
;
1287 mask
= env
->cp15
.c5_data
;
1289 mask
= (mask
>> (n
* 4)) & 0xf;
1296 *prot
= PAGE_READ
| PAGE_WRITE
;
1301 *prot
|= PAGE_WRITE
;
1304 *prot
= PAGE_READ
| PAGE_WRITE
;
1315 /* Bad permission. */
1322 static inline int get_phys_addr(CPUState
*env
, uint32_t address
,
1323 int access_type
, int is_user
,
1324 uint32_t *phys_ptr
, int *prot
,
1325 target_ulong
*page_size
)
1327 /* Fast Context Switch Extension. */
1328 if (address
< 0x02000000)
1329 address
+= env
->cp15
.c13_fcse
;
1331 if ((env
->cp15
.c1_sys
& 1) == 0) {
1332 /* MMU/MPU disabled. */
1333 *phys_ptr
= address
;
1334 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1335 *page_size
= TARGET_PAGE_SIZE
;
1337 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1338 *page_size
= TARGET_PAGE_SIZE
;
1339 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1341 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1342 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1345 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1350 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
,
1351 int access_type
, int mmu_idx
)
1354 target_ulong page_size
;
1358 is_user
= mmu_idx
== MMU_USER_IDX
;
1359 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
1362 /* Map a single [sub]page. */
1363 phys_addr
&= ~(uint32_t)0x3ff;
1364 address
&= ~(uint32_t)0x3ff;
1365 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
1369 if (access_type
== 2) {
1370 env
->cp15
.c5_insn
= ret
;
1371 env
->cp15
.c6_insn
= address
;
1372 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1374 env
->cp15
.c5_data
= ret
;
1375 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1376 env
->cp15
.c5_data
|= (1 << 11);
1377 env
->cp15
.c6_data
= address
;
1378 env
->exception_index
= EXCP_DATA_ABORT
;
1383 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
1386 target_ulong page_size
;
1390 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
1398 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1400 int cp_num
= (insn
>> 8) & 0xf;
1401 int cp_info
= (insn
>> 5) & 7;
1402 int src
= (insn
>> 16) & 0xf;
1403 int operand
= insn
& 0xf;
1405 if (env
->cp
[cp_num
].cp_write
)
1406 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1407 cp_info
, src
, operand
, val
);
1410 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
1412 int cp_num
= (insn
>> 8) & 0xf;
1413 int cp_info
= (insn
>> 5) & 7;
1414 int dest
= (insn
>> 16) & 0xf;
1415 int operand
= insn
& 0xf;
1417 if (env
->cp
[cp_num
].cp_read
)
1418 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1419 cp_info
, dest
, operand
);
1423 /* Return basic MPU access permission bits. */
1424 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1431 for (i
= 0; i
< 16; i
+= 2) {
1432 ret
|= (val
>> i
) & mask
;
1438 /* Pad basic MPU access permission bits to extended format. */
1439 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1446 for (i
= 0; i
< 16; i
+= 2) {
1447 ret
|= (val
& mask
) << i
;
1453 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1459 op1
= (insn
>> 21) & 7;
1460 op2
= (insn
>> 5) & 7;
1462 switch ((insn
>> 16) & 0xf) {
1465 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1467 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1469 if (arm_feature(env
, ARM_FEATURE_V7
)
1470 && op1
== 2 && crm
== 0 && op2
== 0) {
1471 env
->cp15
.c0_cssel
= val
& 0xf;
1475 case 1: /* System configuration. */
1476 if (arm_feature(env
, ARM_FEATURE_V7
)
1477 && op1
== 0 && crm
== 1 && op2
== 0) {
1478 env
->cp15
.c1_scr
= val
;
1481 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1485 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1486 env
->cp15
.c1_sys
= val
;
1487 /* ??? Lots of these bits are not implemented. */
1488 /* This may enable/disable the MMU, so do a TLB flush. */
1491 case 1: /* Auxiliary control register. */
1492 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1493 env
->cp15
.c1_xscaleauxcr
= val
;
1496 /* Not implemented. */
1499 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1501 if (env
->cp15
.c1_coproc
!= val
) {
1502 env
->cp15
.c1_coproc
= val
;
1503 /* ??? Is this safe when called from within a TB? */
1511 case 2: /* MMU Page table control / MPU cache control. */
1512 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1515 env
->cp15
.c2_data
= val
;
1518 env
->cp15
.c2_insn
= val
;
1526 env
->cp15
.c2_base0
= val
;
1529 env
->cp15
.c2_base1
= val
;
1533 env
->cp15
.c2_control
= val
;
1534 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1535 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1542 case 3: /* MMU Domain access control / MPU write buffer control. */
1544 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1546 case 4: /* Reserved. */
1548 case 5: /* MMU Fault status / MPU access permission. */
1549 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1553 if (arm_feature(env
, ARM_FEATURE_MPU
))
1554 val
= extended_mpu_ap_bits(val
);
1555 env
->cp15
.c5_data
= val
;
1558 if (arm_feature(env
, ARM_FEATURE_MPU
))
1559 val
= extended_mpu_ap_bits(val
);
1560 env
->cp15
.c5_insn
= val
;
1563 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1565 env
->cp15
.c5_data
= val
;
1568 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1570 env
->cp15
.c5_insn
= val
;
1576 case 6: /* MMU Fault address / MPU base/size. */
1577 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1580 env
->cp15
.c6_region
[crm
] = val
;
1582 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1586 env
->cp15
.c6_data
= val
;
1588 case 1: /* ??? This is WFAR on armv6 */
1590 env
->cp15
.c6_insn
= val
;
1597 case 7: /* Cache control. */
1598 env
->cp15
.c15_i_max
= 0x000;
1599 env
->cp15
.c15_i_min
= 0xff0;
1603 /* No cache, so nothing to do except VA->PA translations. */
1604 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1607 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1608 env
->cp15
.c7_par
= val
& 0xfffff6ff;
1610 env
->cp15
.c7_par
= val
& 0xfffff1ff;
1615 target_ulong page_size
;
1617 int ret
, is_user
= op2
& 2;
1618 int access_type
= op2
& 1;
1621 /* Other states are only available with TrustZone */
1624 ret
= get_phys_addr(env
, val
, access_type
, is_user
,
1625 &phys_addr
, &prot
, &page_size
);
1627 /* We do not set any attribute bits in the PAR */
1628 if (page_size
== (1 << 24)
1629 && arm_feature(env
, ARM_FEATURE_V7
)) {
1630 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1632 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1635 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1636 ((ret
& (12 << 1)) >> 6) |
1637 ((ret
& 0xf) << 1) | 1;
1644 case 8: /* MMU TLB control. */
1646 case 0: /* Invalidate all (TLBIALL) */
1649 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1650 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1652 case 2: /* Invalidate by ASID (TLBIASID) */
1653 tlb_flush(env
, val
== 0);
1655 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1656 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1663 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1665 if (arm_feature(env
, ARM_FEATURE_STRONGARM
))
1666 break; /* Ignore ReadBuffer access */
1668 case 0: /* Cache lockdown. */
1670 case 0: /* L1 cache. */
1673 env
->cp15
.c9_data
= val
;
1676 env
->cp15
.c9_insn
= val
;
1682 case 1: /* L2 cache. */
1683 /* Ignore writes to L2 lockdown/auxiliary registers. */
1689 case 1: /* TCM memory region registers. */
1690 /* Not implemented. */
1692 case 12: /* Performance monitor control */
1693 /* Performance monitors are implementation defined in v7,
1694 * but with an ARM recommended set of registers, which we
1695 * follow (although we don't actually implement any counters)
1697 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1701 case 0: /* performance monitor control register */
1702 /* only the DP, X, D and E bits are writable */
1703 env
->cp15
.c9_pmcr
&= ~0x39;
1704 env
->cp15
.c9_pmcr
|= (val
& 0x39);
1706 case 1: /* Count enable set register */
1708 env
->cp15
.c9_pmcnten
|= val
;
1710 case 2: /* Count enable clear */
1712 env
->cp15
.c9_pmcnten
&= ~val
;
1714 case 3: /* Overflow flag status */
1715 env
->cp15
.c9_pmovsr
&= ~val
;
1717 case 4: /* Software increment */
1718 /* RAZ/WI since we don't implement the software-count event */
1720 case 5: /* Event counter selection register */
1721 /* Since we don't implement any events, writing to this register
1722 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1729 case 13: /* Performance counters */
1730 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1734 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1736 case 1: /* Event type select */
1737 env
->cp15
.c9_pmxevtyper
= val
& 0xff;
1739 case 2: /* Event count register */
1740 /* Unimplemented (we have no events), RAZ/WI */
1746 case 14: /* Performance monitor control */
1747 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1751 case 0: /* user enable */
1752 env
->cp15
.c9_pmuserenr
= val
& 1;
1753 /* changes access rights for cp registers, so flush tbs */
1756 case 1: /* interrupt enable set */
1757 /* We have no event counters so only the C bit can be changed */
1759 env
->cp15
.c9_pminten
|= val
;
1761 case 2: /* interrupt enable clear */
1763 env
->cp15
.c9_pminten
&= ~val
;
1771 case 10: /* MMU TLB lockdown. */
1772 /* ??? TLB lockdown not implemented. */
1774 case 12: /* Reserved. */
1776 case 13: /* Process ID. */
1779 /* Unlike real hardware the qemu TLB uses virtual addresses,
1780 not modified virtual addresses, so this causes a TLB flush.
1782 if (env
->cp15
.c13_fcse
!= val
)
1784 env
->cp15
.c13_fcse
= val
;
1787 /* This changes the ASID, so do a TLB flush. */
1788 if (env
->cp15
.c13_context
!= val
1789 && !arm_feature(env
, ARM_FEATURE_MPU
))
1791 env
->cp15
.c13_context
= val
;
1797 case 14: /* Generic timer */
1798 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1799 /* Dummy implementation: RAZ/WI for all */
1803 case 15: /* Implementation specific. */
1804 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1805 if (op2
== 0 && crm
== 1) {
1806 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1807 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1809 env
->cp15
.c15_cpar
= val
& 0x3fff;
1815 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1819 case 1: /* Set TI925T configuration. */
1820 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1821 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1822 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1824 case 2: /* Set I_max. */
1825 env
->cp15
.c15_i_max
= val
;
1827 case 3: /* Set I_min. */
1828 env
->cp15
.c15_i_min
= val
;
1830 case 4: /* Set thread-ID. */
1831 env
->cp15
.c15_threadid
= val
& 0xffff;
1833 case 8: /* Wait-for-interrupt (deprecated). */
1834 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1840 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA9
) {
1843 if ((op1
== 0) && (op2
== 0)) {
1844 env
->cp15
.c15_power_control
= val
;
1845 } else if ((op1
== 0) && (op2
== 1)) {
1846 env
->cp15
.c15_diagnostic
= val
;
1847 } else if ((op1
== 0) && (op2
== 2)) {
1848 env
->cp15
.c15_power_diagnostic
= val
;
1858 /* ??? For debugging only. Should raise illegal instruction exception. */
1859 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1860 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1863 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
1869 op1
= (insn
>> 21) & 7;
1870 op2
= (insn
>> 5) & 7;
1872 switch ((insn
>> 16) & 0xf) {
1873 case 0: /* ID codes. */
1879 case 0: /* Device ID. */
1880 return env
->cp15
.c0_cpuid
;
1881 case 1: /* Cache Type. */
1882 return env
->cp15
.c0_cachetype
;
1883 case 2: /* TCM status. */
1885 case 3: /* TLB type register. */
1886 return 0; /* No lockable TLB entries. */
1888 /* The MPIDR was standardised in v7; prior to
1889 * this it was implemented only in the 11MPCore.
1890 * For all other pre-v7 cores it does not exist.
1892 if (arm_feature(env
, ARM_FEATURE_V7
) ||
1893 ARM_CPUID(env
) == ARM_CPUID_ARM11MPCORE
) {
1894 int mpidr
= env
->cpu_index
;
1895 /* We don't support setting cluster ID ([8..11])
1896 * so these bits always RAZ.
1898 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1900 /* Cores which are uniprocessor (non-coherent)
1901 * but still implement the MP extensions set
1902 * bit 30. (For instance, A9UP.) However we do
1903 * not currently model any of those cores.
1908 /* otherwise fall through to the unimplemented-reg case */
1913 if (!arm_feature(env
, ARM_FEATURE_V6
))
1915 return env
->cp15
.c0_c1
[op2
];
1917 if (!arm_feature(env
, ARM_FEATURE_V6
))
1919 return env
->cp15
.c0_c2
[op2
];
1920 case 3: case 4: case 5: case 6: case 7:
1926 /* These registers aren't documented on arm11 cores. However
1927 Linux looks at them anyway. */
1928 if (!arm_feature(env
, ARM_FEATURE_V6
))
1932 if (!arm_feature(env
, ARM_FEATURE_V7
))
1937 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1939 return env
->cp15
.c0_clid
;
1945 if (op2
!= 0 || crm
!= 0)
1947 return env
->cp15
.c0_cssel
;
1951 case 1: /* System configuration. */
1952 if (arm_feature(env
, ARM_FEATURE_V7
)
1953 && op1
== 0 && crm
== 1 && op2
== 0) {
1954 return env
->cp15
.c1_scr
;
1956 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1959 case 0: /* Control register. */
1960 return env
->cp15
.c1_sys
;
1961 case 1: /* Auxiliary control register. */
1962 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1963 return env
->cp15
.c1_xscaleauxcr
;
1964 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1966 switch (ARM_CPUID(env
)) {
1967 case ARM_CPUID_ARM1026
:
1969 case ARM_CPUID_ARM1136
:
1970 case ARM_CPUID_ARM1136_R2
:
1971 case ARM_CPUID_ARM1176
:
1973 case ARM_CPUID_ARM11MPCORE
:
1975 case ARM_CPUID_CORTEXA8
:
1977 case ARM_CPUID_CORTEXA9
:
1978 case ARM_CPUID_CORTEXA15
:
1983 case 2: /* Coprocessor access register. */
1984 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1986 return env
->cp15
.c1_coproc
;
1990 case 2: /* MMU Page table control / MPU cache control. */
1991 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1994 return env
->cp15
.c2_data
;
1997 return env
->cp15
.c2_insn
;
2005 return env
->cp15
.c2_base0
;
2007 return env
->cp15
.c2_base1
;
2009 return env
->cp15
.c2_control
;
2014 case 3: /* MMU Domain access control / MPU write buffer control. */
2015 return env
->cp15
.c3
;
2016 case 4: /* Reserved. */
2018 case 5: /* MMU Fault status / MPU access permission. */
2019 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
2023 if (arm_feature(env
, ARM_FEATURE_MPU
))
2024 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
2025 return env
->cp15
.c5_data
;
2027 if (arm_feature(env
, ARM_FEATURE_MPU
))
2028 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
2029 return env
->cp15
.c5_insn
;
2031 if (!arm_feature(env
, ARM_FEATURE_MPU
))
2033 return env
->cp15
.c5_data
;
2035 if (!arm_feature(env
, ARM_FEATURE_MPU
))
2037 return env
->cp15
.c5_insn
;
2041 case 6: /* MMU Fault address. */
2042 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2045 return env
->cp15
.c6_region
[crm
];
2047 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
2051 return env
->cp15
.c6_data
;
2053 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2054 /* Watchpoint Fault Adrress. */
2055 return 0; /* Not implemented. */
2057 /* Instruction Fault Adrress. */
2058 /* Arm9 doesn't have an IFAR, but implementing it anyway
2059 shouldn't do any harm. */
2060 return env
->cp15
.c6_insn
;
2063 if (arm_feature(env
, ARM_FEATURE_V6
)) {
2064 /* Instruction Fault Adrress. */
2065 return env
->cp15
.c6_insn
;
2073 case 7: /* Cache control. */
2074 if (crm
== 4 && op1
== 0 && op2
== 0) {
2075 return env
->cp15
.c7_par
;
2077 /* FIXME: Should only clear Z flag if destination is r15. */
2080 case 8: /* MMU TLB control. */
2084 case 0: /* Cache lockdown */
2086 case 0: /* L1 cache. */
2087 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2092 return env
->cp15
.c9_data
;
2094 return env
->cp15
.c9_insn
;
2098 case 1: /* L2 cache */
2099 /* L2 Lockdown and Auxiliary control. */
2102 /* L2 cache lockdown (A8 only) */
2105 /* L2 cache auxiliary control (A8) or control (A15) */
2106 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA15
) {
2107 /* Linux wants the number of processors from here.
2108 * Might as well set the interrupt-controller bit too.
2110 return ((smp_cpus
- 1) << 24) | (1 << 23);
2114 /* L2 cache extended control (A15) */
2123 case 12: /* Performance monitor control */
2124 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2128 case 0: /* performance monitor control register */
2129 return env
->cp15
.c9_pmcr
;
2130 case 1: /* count enable set */
2131 case 2: /* count enable clear */
2132 return env
->cp15
.c9_pmcnten
;
2133 case 3: /* overflow flag status */
2134 return env
->cp15
.c9_pmovsr
;
2135 case 4: /* software increment */
2136 case 5: /* event counter selection register */
2137 return 0; /* Unimplemented, RAZ/WI */
2141 case 13: /* Performance counters */
2142 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2146 case 1: /* Event type select */
2147 return env
->cp15
.c9_pmxevtyper
;
2148 case 0: /* Cycle count register */
2149 case 2: /* Event count register */
2150 /* Unimplemented, so RAZ/WI */
2155 case 14: /* Performance monitor control */
2156 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2160 case 0: /* user enable */
2161 return env
->cp15
.c9_pmuserenr
;
2162 case 1: /* interrupt enable set */
2163 case 2: /* interrupt enable clear */
2164 return env
->cp15
.c9_pminten
;
2172 case 10: /* MMU TLB lockdown. */
2173 /* ??? TLB lockdown not implemented. */
2175 case 11: /* TCM DMA control. */
2176 case 12: /* Reserved. */
2178 case 13: /* Process ID. */
2181 return env
->cp15
.c13_fcse
;
2183 return env
->cp15
.c13_context
;
2187 case 14: /* Generic timer */
2188 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
2189 /* Dummy implementation: RAZ/WI for all */
2193 case 15: /* Implementation specific. */
2194 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2195 if (op2
== 0 && crm
== 1)
2196 return env
->cp15
.c15_cpar
;
2200 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2204 case 1: /* Read TI925T configuration. */
2205 return env
->cp15
.c15_ticonfig
;
2206 case 2: /* Read I_max. */
2207 return env
->cp15
.c15_i_max
;
2208 case 3: /* Read I_min. */
2209 return env
->cp15
.c15_i_min
;
2210 case 4: /* Read thread-ID. */
2211 return env
->cp15
.c15_threadid
;
2212 case 8: /* TI925T_status */
2215 /* TODO: Peripheral port remap register:
2216 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2217 * controller base address at $rn & ~0xfff and map size of
2218 * 0x200 << ($rn & 0xfff), when MMU is off. */
2221 if (ARM_CPUID(env
) == ARM_CPUID_CORTEXA9
) {
2224 if ((op1
== 4) && (op2
== 0)) {
2225 /* The config_base_address should hold the value of
2226 * the peripheral base. ARM should get this from a CPU
2227 * object property, but that support isn't available in
2228 * December 2011. Default to 0 for now and board models
2229 * that care can set it by a private hook */
2230 return env
->cp15
.c15_config_base_address
;
2231 } else if ((op1
== 0) && (op2
== 0)) {
2232 /* power_control should be set to maximum latency. Again,
2233 default to 0 and set by private hook */
2234 return env
->cp15
.c15_power_control
;
2235 } else if ((op1
== 0) && (op2
== 1)) {
2236 return env
->cp15
.c15_diagnostic
;
2237 } else if ((op1
== 0) && (op2
== 2)) {
2238 return env
->cp15
.c15_power_diagnostic
;
2241 case 1: /* NEON Busy */
2243 case 5: /* tlb lockdown */
2246 if ((op1
== 5) && (op2
== 2)) {
2258 /* ??? For debugging only. Should raise illegal instruction exception. */
2259 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2260 (insn
>> 16) & 0xf, crm
, op1
, op2
);
2264 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
2266 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2267 env
->regs
[13] = val
;
2269 env
->banked_r13
[bank_number(env
, mode
)] = val
;
2273 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
2275 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2276 return env
->regs
[13];
2278 return env
->banked_r13
[bank_number(env
, mode
)];
2282 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
2286 return xpsr_read(env
) & 0xf8000000;
2288 return xpsr_read(env
) & 0xf80001ff;
2290 return xpsr_read(env
) & 0xff00fc00;
2292 return xpsr_read(env
) & 0xff00fdff;
2294 return xpsr_read(env
) & 0x000001ff;
2296 return xpsr_read(env
) & 0x0700fc00;
2298 return xpsr_read(env
) & 0x0700edff;
2300 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
2302 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
2303 case 16: /* PRIMASK */
2304 return (env
->uncached_cpsr
& CPSR_I
) != 0;
2305 case 17: /* BASEPRI */
2306 case 18: /* BASEPRI_MAX */
2307 return env
->v7m
.basepri
;
2308 case 19: /* FAULTMASK */
2309 return (env
->uncached_cpsr
& CPSR_F
) != 0;
2310 case 20: /* CONTROL */
2311 return env
->v7m
.control
;
2313 /* ??? For debugging only. */
2314 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
2319 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
2323 xpsr_write(env
, val
, 0xf8000000);
2326 xpsr_write(env
, val
, 0xf8000000);
2329 xpsr_write(env
, val
, 0xfe00fc00);
2332 xpsr_write(env
, val
, 0xfe00fc00);
2335 /* IPSR bits are readonly. */
2338 xpsr_write(env
, val
, 0x0600fc00);
2341 xpsr_write(env
, val
, 0x0600fc00);
2344 if (env
->v7m
.current_sp
)
2345 env
->v7m
.other_sp
= val
;
2347 env
->regs
[13] = val
;
2350 if (env
->v7m
.current_sp
)
2351 env
->regs
[13] = val
;
2353 env
->v7m
.other_sp
= val
;
2355 case 16: /* PRIMASK */
2357 env
->uncached_cpsr
|= CPSR_I
;
2359 env
->uncached_cpsr
&= ~CPSR_I
;
2361 case 17: /* BASEPRI */
2362 env
->v7m
.basepri
= val
& 0xff;
2364 case 18: /* BASEPRI_MAX */
2366 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
2367 env
->v7m
.basepri
= val
;
2369 case 19: /* FAULTMASK */
2371 env
->uncached_cpsr
|= CPSR_F
;
2373 env
->uncached_cpsr
&= ~CPSR_F
;
2375 case 20: /* CONTROL */
2376 env
->v7m
.control
= val
& 3;
2377 switch_v7m_sp(env
, (val
& 2) != 0);
2380 /* ??? For debugging only. */
2381 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
2386 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
2387 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
2390 if (cpnum
< 0 || cpnum
> 14) {
2391 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2395 env
->cp
[cpnum
].cp_read
= cp_read
;
2396 env
->cp
[cpnum
].cp_write
= cp_write
;
2397 env
->cp
[cpnum
].opaque
= opaque
;
2402 /* Note that signed overflow is undefined in C. The following routines are
2403 careful to use unsigned types where modulo arithmetic is required.
2404 Failure to do so _will_ break on newer gcc. */
2406 /* Signed saturating arithmetic. */
2408 /* Perform 16-bit signed saturating addition. */
2409 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2414 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2423 /* Perform 8-bit signed saturating addition. */
2424 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2429 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2438 /* Perform 16-bit signed saturating subtraction. */
2439 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2444 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2453 /* Perform 8-bit signed saturating subtraction. */
2454 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2459 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2468 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2469 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2470 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2471 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2474 #include "op_addsub.h"
2476 /* Unsigned saturating arithmetic. */
2477 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2486 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2494 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2503 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2511 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2512 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2513 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2514 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2517 #include "op_addsub.h"
2519 /* Signed modulo arithmetic. */
2520 #define SARITH16(a, b, n, op) do { \
2522 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2523 RESULT(sum, n, 16); \
2525 ge |= 3 << (n * 2); \
2528 #define SARITH8(a, b, n, op) do { \
2530 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2531 RESULT(sum, n, 8); \
2537 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2538 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2539 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2540 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2544 #include "op_addsub.h"
2546 /* Unsigned modulo arithmetic. */
2547 #define ADD16(a, b, n) do { \
2549 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2550 RESULT(sum, n, 16); \
2551 if ((sum >> 16) == 1) \
2552 ge |= 3 << (n * 2); \
2555 #define ADD8(a, b, n) do { \
2557 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2558 RESULT(sum, n, 8); \
2559 if ((sum >> 8) == 1) \
2563 #define SUB16(a, b, n) do { \
2565 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2566 RESULT(sum, n, 16); \
2567 if ((sum >> 16) == 0) \
2568 ge |= 3 << (n * 2); \
2571 #define SUB8(a, b, n) do { \
2573 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2574 RESULT(sum, n, 8); \
2575 if ((sum >> 8) == 0) \
2582 #include "op_addsub.h"
2584 /* Halved signed arithmetic. */
2585 #define ADD16(a, b, n) \
2586 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2587 #define SUB16(a, b, n) \
2588 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2589 #define ADD8(a, b, n) \
2590 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2591 #define SUB8(a, b, n) \
2592 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2595 #include "op_addsub.h"
2597 /* Halved unsigned arithmetic. */
2598 #define ADD16(a, b, n) \
2599 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2600 #define SUB16(a, b, n) \
2601 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2602 #define ADD8(a, b, n) \
2603 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2604 #define SUB8(a, b, n) \
2605 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2608 #include "op_addsub.h"
2610 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2618 /* Unsigned sum of absolute byte differences. */
2619 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2622 sum
= do_usad(a
, b
);
2623 sum
+= do_usad(a
>> 8, b
>> 8);
2624 sum
+= do_usad(a
>> 16, b
>>16);
2625 sum
+= do_usad(a
>> 24, b
>> 24);
2629 /* For ARMv6 SEL instruction. */
2630 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2643 return (a
& mask
) | (b
& ~mask
);
2646 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2648 return (val
>> 32) | (val
!= 0);
2651 /* VFP support. We follow the convention used for VFP instrunctions:
2652 Single precition routines have a "s" suffix, double precision a
2655 /* Convert host exception flags to vfp form. */
2656 static inline int vfp_exceptbits_from_host(int host_bits
)
2658 int target_bits
= 0;
2660 if (host_bits
& float_flag_invalid
)
2662 if (host_bits
& float_flag_divbyzero
)
2664 if (host_bits
& float_flag_overflow
)
2666 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
2668 if (host_bits
& float_flag_inexact
)
2669 target_bits
|= 0x10;
2670 if (host_bits
& float_flag_input_denormal
)
2671 target_bits
|= 0x80;
2675 uint32_t HELPER(vfp_get_fpscr
)(CPUState
*env
)
2680 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2681 | (env
->vfp
.vec_len
<< 16)
2682 | (env
->vfp
.vec_stride
<< 20);
2683 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2684 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
2685 fpscr
|= vfp_exceptbits_from_host(i
);
2689 uint32_t vfp_get_fpscr(CPUState
*env
)
2691 return HELPER(vfp_get_fpscr
)(env
);
2694 /* Convert vfp exception flags to target form. */
2695 static inline int vfp_exceptbits_to_host(int target_bits
)
2699 if (target_bits
& 1)
2700 host_bits
|= float_flag_invalid
;
2701 if (target_bits
& 2)
2702 host_bits
|= float_flag_divbyzero
;
2703 if (target_bits
& 4)
2704 host_bits
|= float_flag_overflow
;
2705 if (target_bits
& 8)
2706 host_bits
|= float_flag_underflow
;
2707 if (target_bits
& 0x10)
2708 host_bits
|= float_flag_inexact
;
2709 if (target_bits
& 0x80)
2710 host_bits
|= float_flag_input_denormal
;
2714 void HELPER(vfp_set_fpscr
)(CPUState
*env
, uint32_t val
)
2719 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2720 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2721 env
->vfp
.vec_len
= (val
>> 16) & 7;
2722 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2725 if (changed
& (3 << 22)) {
2726 i
= (val
>> 22) & 3;
2729 i
= float_round_nearest_even
;
2735 i
= float_round_down
;
2738 i
= float_round_to_zero
;
2741 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2743 if (changed
& (1 << 24)) {
2744 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2745 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2747 if (changed
& (1 << 25))
2748 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2750 i
= vfp_exceptbits_to_host(val
);
2751 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2752 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
2755 void vfp_set_fpscr(CPUState
*env
, uint32_t val
)
2757 HELPER(vfp_set_fpscr
)(env
, val
);
2760 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2762 #define VFP_BINOP(name) \
2763 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2765 float_status *fpst = fpstp; \
2766 return float32_ ## name(a, b, fpst); \
2768 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2770 float_status *fpst = fpstp; \
2771 return float64_ ## name(a, b, fpst); \
2779 float32
VFP_HELPER(neg
, s
)(float32 a
)
2781 return float32_chs(a
);
2784 float64
VFP_HELPER(neg
, d
)(float64 a
)
2786 return float64_chs(a
);
2789 float32
VFP_HELPER(abs
, s
)(float32 a
)
2791 return float32_abs(a
);
2794 float64
VFP_HELPER(abs
, d
)(float64 a
)
2796 return float64_abs(a
);
2799 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUState
*env
)
2801 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2804 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUState
*env
)
2806 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2809 /* XXX: check quiet/signaling case */
2810 #define DO_VFP_cmp(p, type) \
2811 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2814 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2815 case 0: flags = 0x6; break; \
2816 case -1: flags = 0x8; break; \
2817 case 1: flags = 0x2; break; \
2818 default: case 2: flags = 0x3; break; \
2820 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2821 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2823 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2826 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2827 case 0: flags = 0x6; break; \
2828 case -1: flags = 0x8; break; \
2829 case 1: flags = 0x2; break; \
2830 default: case 2: flags = 0x3; break; \
2832 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2833 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2835 DO_VFP_cmp(s
, float32
)
2836 DO_VFP_cmp(d
, float64
)
2839 /* Integer to float and float to integer conversions */
2841 #define CONV_ITOF(name, fsz, sign) \
2842 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2844 float_status *fpst = fpstp; \
2845 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2848 #define CONV_FTOI(name, fsz, sign, round) \
2849 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2851 float_status *fpst = fpstp; \
2852 if (float##fsz##_is_any_nan(x)) { \
2853 float_raise(float_flag_invalid, fpst); \
2856 return float##fsz##_to_##sign##int32##round(x, fpst); \
2859 #define FLOAT_CONVS(name, p, fsz, sign) \
2860 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2861 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2862 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2864 FLOAT_CONVS(si
, s
, 32, )
2865 FLOAT_CONVS(si
, d
, 64, )
2866 FLOAT_CONVS(ui
, s
, 32, u
)
2867 FLOAT_CONVS(ui
, d
, 64, u
)
2873 /* floating point conversion */
2874 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUState
*env
)
2876 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
2877 /* ARM requires that S<->D conversion of any kind of NaN generates
2878 * a quiet NaN by forcing the most significant frac bit to 1.
2880 return float64_maybe_silence_nan(r
);
2883 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUState
*env
)
2885 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
2886 /* ARM requires that S<->D conversion of any kind of NaN generates
2887 * a quiet NaN by forcing the most significant frac bit to 1.
2889 return float32_maybe_silence_nan(r
);
2892 /* VFP3 fixed point conversion. */
2893 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2894 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2897 float_status *fpst = fpstp; \
2899 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2900 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2902 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2905 float_status *fpst = fpstp; \
2907 if (float##fsz##_is_any_nan(x)) { \
2908 float_raise(float_flag_invalid, fpst); \
2911 tmp = float##fsz##_scalbn(x, shift, fpst); \
2912 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2915 VFP_CONV_FIX(sh
, d
, 64, int16
, )
2916 VFP_CONV_FIX(sl
, d
, 64, int32
, )
2917 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
2918 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
2919 VFP_CONV_FIX(sh
, s
, 32, int16
, )
2920 VFP_CONV_FIX(sl
, s
, 32, int32
, )
2921 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
2922 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
2925 /* Half precision conversions. */
2926 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUState
*env
, float_status
*s
)
2928 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2929 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
2931 return float32_maybe_silence_nan(r
);
2936 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUState
*env
, float_status
*s
)
2938 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2939 float16 r
= float32_to_float16(a
, ieee
, s
);
2941 r
= float16_maybe_silence_nan(r
);
2943 return float16_val(r
);
2946 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUState
*env
)
2948 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
2951 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUState
*env
)
2953 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
2956 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUState
*env
)
2958 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
2961 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUState
*env
)
2963 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
2966 #define float32_two make_float32(0x40000000)
2967 #define float32_three make_float32(0x40400000)
2968 #define float32_one_point_five make_float32(0x3fc00000)
2970 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUState
*env
)
2972 float_status
*s
= &env
->vfp
.standard_fp_status
;
2973 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2974 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2975 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2976 float_raise(float_flag_input_denormal
, s
);
2980 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
2983 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUState
*env
)
2985 float_status
*s
= &env
->vfp
.standard_fp_status
;
2987 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2988 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2989 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2990 float_raise(float_flag_input_denormal
, s
);
2992 return float32_one_point_five
;
2994 product
= float32_mul(a
, b
, s
);
2995 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
3000 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3001 * int->float conversions at run-time. */
3002 #define float64_256 make_float64(0x4070000000000000LL)
3003 #define float64_512 make_float64(0x4080000000000000LL)
3005 /* The algorithm that must be used to calculate the estimate
3006 * is specified by the ARM ARM.
3008 static float64
recip_estimate(float64 a
, CPUState
*env
)
3010 /* These calculations mustn't set any fp exception flags,
3011 * so we use a local copy of the fp_status.
3013 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3014 float_status
*s
= &dummy_status
;
3015 /* q = (int)(a * 512.0) */
3016 float64 q
= float64_mul(float64_512
, a
, s
);
3017 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3019 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3020 q
= int64_to_float64(q_int
, s
);
3021 q
= float64_add(q
, float64_half
, s
);
3022 q
= float64_div(q
, float64_512
, s
);
3023 q
= float64_div(float64_one
, q
, s
);
3025 /* s = (int)(256.0 * r + 0.5) */
3026 q
= float64_mul(q
, float64_256
, s
);
3027 q
= float64_add(q
, float64_half
, s
);
3028 q_int
= float64_to_int64_round_to_zero(q
, s
);
3030 /* return (double)s / 256.0 */
3031 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3034 float32
HELPER(recpe_f32
)(float32 a
, CPUState
*env
)
3036 float_status
*s
= &env
->vfp
.standard_fp_status
;
3038 uint32_t val32
= float32_val(a
);
3041 int a_exp
= (val32
& 0x7f800000) >> 23;
3042 int sign
= val32
& 0x80000000;
3044 if (float32_is_any_nan(a
)) {
3045 if (float32_is_signaling_nan(a
)) {
3046 float_raise(float_flag_invalid
, s
);
3048 return float32_default_nan
;
3049 } else if (float32_is_infinity(a
)) {
3050 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3051 } else if (float32_is_zero_or_denormal(a
)) {
3052 if (!float32_is_zero(a
)) {
3053 float_raise(float_flag_input_denormal
, s
);
3055 float_raise(float_flag_divbyzero
, s
);
3056 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3057 } else if (a_exp
>= 253) {
3058 float_raise(float_flag_underflow
, s
);
3059 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3062 f64
= make_float64((0x3feULL
<< 52)
3063 | ((int64_t)(val32
& 0x7fffff) << 29));
3065 result_exp
= 253 - a_exp
;
3067 f64
= recip_estimate(f64
, env
);
3070 | ((result_exp
& 0xff) << 23)
3071 | ((float64_val(f64
) >> 29) & 0x7fffff);
3072 return make_float32(val32
);
3075 /* The algorithm that must be used to calculate the estimate
3076 * is specified by the ARM ARM.
3078 static float64
recip_sqrt_estimate(float64 a
, CPUState
*env
)
3080 /* These calculations mustn't set any fp exception flags,
3081 * so we use a local copy of the fp_status.
3083 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3084 float_status
*s
= &dummy_status
;
3088 if (float64_lt(a
, float64_half
, s
)) {
3089 /* range 0.25 <= a < 0.5 */
3091 /* a in units of 1/512 rounded down */
3092 /* q0 = (int)(a * 512.0); */
3093 q
= float64_mul(float64_512
, a
, s
);
3094 q_int
= float64_to_int64_round_to_zero(q
, s
);
3096 /* reciprocal root r */
3097 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3098 q
= int64_to_float64(q_int
, s
);
3099 q
= float64_add(q
, float64_half
, s
);
3100 q
= float64_div(q
, float64_512
, s
);
3101 q
= float64_sqrt(q
, s
);
3102 q
= float64_div(float64_one
, q
, s
);
3104 /* range 0.5 <= a < 1.0 */
3106 /* a in units of 1/256 rounded down */
3107 /* q1 = (int)(a * 256.0); */
3108 q
= float64_mul(float64_256
, a
, s
);
3109 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3111 /* reciprocal root r */
3112 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3113 q
= int64_to_float64(q_int
, s
);
3114 q
= float64_add(q
, float64_half
, s
);
3115 q
= float64_div(q
, float64_256
, s
);
3116 q
= float64_sqrt(q
, s
);
3117 q
= float64_div(float64_one
, q
, s
);
3119 /* r in units of 1/256 rounded to nearest */
3120 /* s = (int)(256.0 * r + 0.5); */
3122 q
= float64_mul(q
, float64_256
,s
);
3123 q
= float64_add(q
, float64_half
, s
);
3124 q_int
= float64_to_int64_round_to_zero(q
, s
);
3126 /* return (double)s / 256.0;*/
3127 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3130 float32
HELPER(rsqrte_f32
)(float32 a
, CPUState
*env
)
3132 float_status
*s
= &env
->vfp
.standard_fp_status
;
3138 val
= float32_val(a
);
3140 if (float32_is_any_nan(a
)) {
3141 if (float32_is_signaling_nan(a
)) {
3142 float_raise(float_flag_invalid
, s
);
3144 return float32_default_nan
;
3145 } else if (float32_is_zero_or_denormal(a
)) {
3146 if (!float32_is_zero(a
)) {
3147 float_raise(float_flag_input_denormal
, s
);
3149 float_raise(float_flag_divbyzero
, s
);
3150 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3151 } else if (float32_is_neg(a
)) {
3152 float_raise(float_flag_invalid
, s
);
3153 return float32_default_nan
;
3154 } else if (float32_is_infinity(a
)) {
3155 return float32_zero
;
3158 /* Normalize to a double-precision value between 0.25 and 1.0,
3159 * preserving the parity of the exponent. */
3160 if ((val
& 0x800000) == 0) {
3161 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3163 | ((uint64_t)(val
& 0x7fffff) << 29));
3165 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3167 | ((uint64_t)(val
& 0x7fffff) << 29));
3170 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
3172 f64
= recip_sqrt_estimate(f64
, env
);
3174 val64
= float64_val(f64
);
3176 val
= ((result_exp
& 0xff) << 23)
3177 | ((val64
>> 29) & 0x7fffff);
3178 return make_float32(val
);
3181 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUState
*env
)
3185 if ((a
& 0x80000000) == 0) {
3189 f64
= make_float64((0x3feULL
<< 52)
3190 | ((int64_t)(a
& 0x7fffffff) << 21));
3192 f64
= recip_estimate (f64
, env
);
3194 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3197 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUState
*env
)
3201 if ((a
& 0xc0000000) == 0) {
3205 if (a
& 0x80000000) {
3206 f64
= make_float64((0x3feULL
<< 52)
3207 | ((uint64_t)(a
& 0x7fffffff) << 21));
3208 } else { /* bits 31-30 == '01' */
3209 f64
= make_float64((0x3fdULL
<< 52)
3210 | ((uint64_t)(a
& 0x3fffffff) << 22));
3213 f64
= recip_sqrt_estimate(f64
, env
);
3215 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3218 /* VFPv4 fused multiply-accumulate */
3219 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
3221 float_status
*fpst
= fpstp
;
3222 return float32_muladd(a
, b
, c
, 0, fpst
);
3225 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
3227 float_status
*fpst
= fpstp
;
3228 return float64_muladd(a
, b
, c
, 0, fpst
);
3231 void HELPER(set_teecr
)(CPUState
*env
, uint32_t val
)
3234 if (env
->teecr
!= val
) {