virtio: introduce device specific migration calls
[qemu/ar7.git] / hw / mips / mips_malta.c
blob2868ee5b03071b7bd86c497e834d3bd4552767ce
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/block/fdc.h"
29 #include "net/net.h"
30 #include "hw/boards.h"
31 #include "hw/i2c/smbus.h"
32 #include "block/block.h"
33 #include "hw/block/flash.h"
34 #include "hw/mips/mips.h"
35 #include "hw/mips/cpudevs.h"
36 #include "hw/pci/pci.h"
37 #include "sysemu/char.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/arch_init.h"
40 #include "qemu/log.h"
41 #include "hw/mips/bios.h"
42 #include "hw/ide.h"
43 #include "hw/loader.h"
44 #include "elf.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/timer/i8254.h"
47 #include "sysemu/blockdev.h"
48 #include "exec/address-spaces.h"
49 #include "hw/sysbus.h" /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "qemu/error-report.h"
53 #include "hw/empty_slot.h"
54 #include "sysemu/kvm.h"
56 //#define DEBUG_BOARD_INIT
58 #define ENVP_ADDR 0x80002000l
59 #define ENVP_NB_ENTRIES 16
60 #define ENVP_ENTRY_SIZE 256
62 /* Hardware addresses */
63 #define FLASH_ADDRESS 0x1e000000ULL
64 #define FPGA_ADDRESS 0x1f000000ULL
65 #define RESET_ADDRESS 0x1fc00000ULL
67 #define FLASH_SIZE 0x400000
69 #define MAX_IDE_BUS 2
71 typedef struct {
72 MemoryRegion iomem;
73 MemoryRegion iomem_lo; /* 0 - 0x900 */
74 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
75 uint32_t leds;
76 uint32_t brk;
77 uint32_t gpout;
78 uint32_t i2cin;
79 uint32_t i2coe;
80 uint32_t i2cout;
81 uint32_t i2csel;
82 CharDriverState *display;
83 char display_text[9];
84 SerialState *uart;
85 } MaltaFPGAState;
87 #define TYPE_MIPS_MALTA "mips-malta"
88 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
90 typedef struct {
91 SysBusDevice parent_obj;
93 qemu_irq *i8259;
94 } MaltaState;
96 static ISADevice *pit;
98 static struct _loaderparams {
99 int ram_size;
100 const char *kernel_filename;
101 const char *kernel_cmdline;
102 const char *initrd_filename;
103 } loaderparams;
105 /* Malta FPGA */
106 static void malta_fpga_update_display(void *opaque)
108 char leds_text[9];
109 int i;
110 MaltaFPGAState *s = opaque;
112 for (i = 7 ; i >= 0 ; i--) {
113 if (s->leds & (1 << i))
114 leds_text[i] = '#';
115 else
116 leds_text[i] = ' ';
118 leds_text[8] = '\0';
120 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
121 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
125 * EEPROM 24C01 / 24C02 emulation.
127 * Emulation for serial EEPROMs:
128 * 24C01 - 1024 bit (128 x 8)
129 * 24C02 - 2048 bit (256 x 8)
131 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
134 //~ #define DEBUG
136 #if defined(DEBUG)
137 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
138 #else
139 # define logout(fmt, ...) ((void)0)
140 #endif
142 struct _eeprom24c0x_t {
143 uint8_t tick;
144 uint8_t address;
145 uint8_t command;
146 uint8_t ack;
147 uint8_t scl;
148 uint8_t sda;
149 uint8_t data;
150 //~ uint16_t size;
151 uint8_t contents[256];
154 typedef struct _eeprom24c0x_t eeprom24c0x_t;
156 static eeprom24c0x_t spd_eeprom = {
157 .contents = {
158 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
159 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
160 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
161 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
162 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
163 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
164 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
165 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
166 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
167 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
168 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
169 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
170 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
171 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
172 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
173 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
177 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
179 enum { SDR = 0x4, DDR2 = 0x8 } type;
180 uint8_t *spd = spd_eeprom.contents;
181 uint8_t nbanks = 0;
182 uint16_t density = 0;
183 int i;
185 /* work in terms of MB */
186 ram_size >>= 20;
188 while ((ram_size >= 4) && (nbanks <= 2)) {
189 int sz_log2 = MIN(31 - clz32(ram_size), 14);
190 nbanks++;
191 density |= 1 << (sz_log2 - 2);
192 ram_size -= 1 << sz_log2;
195 /* split to 2 banks if possible */
196 if ((nbanks == 1) && (density > 1)) {
197 nbanks++;
198 density >>= 1;
201 if (density & 0xff00) {
202 density = (density & 0xe0) | ((density >> 8) & 0x1f);
203 type = DDR2;
204 } else if (!(density & 0x1f)) {
205 type = DDR2;
206 } else {
207 type = SDR;
210 if (ram_size) {
211 fprintf(stderr, "Warning: SPD cannot represent final %dMB"
212 " of SDRAM\n", (int)ram_size);
215 /* fill in SPD memory information */
216 spd[2] = type;
217 spd[5] = nbanks;
218 spd[31] = density;
220 /* checksum */
221 spd[63] = 0;
222 for (i = 0; i < 63; i++) {
223 spd[63] += spd[i];
226 /* copy for SMBUS */
227 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
230 static void generate_eeprom_serial(uint8_t *eeprom)
232 int i, pos = 0;
233 uint8_t mac[6] = { 0x00 };
234 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
236 /* version */
237 eeprom[pos++] = 0x01;
239 /* count */
240 eeprom[pos++] = 0x02;
242 /* MAC address */
243 eeprom[pos++] = 0x01; /* MAC */
244 eeprom[pos++] = 0x06; /* length */
245 memcpy(&eeprom[pos], mac, sizeof(mac));
246 pos += sizeof(mac);
248 /* serial number */
249 eeprom[pos++] = 0x02; /* serial */
250 eeprom[pos++] = 0x05; /* length */
251 memcpy(&eeprom[pos], sn, sizeof(sn));
252 pos += sizeof(sn);
254 /* checksum */
255 eeprom[pos] = 0;
256 for (i = 0; i < pos; i++) {
257 eeprom[pos] += eeprom[i];
261 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
263 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
264 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
265 return eeprom->sda;
268 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
270 if (eeprom->scl && scl && (eeprom->sda != sda)) {
271 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
272 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
273 sda ? "stop" : "start");
274 if (!sda) {
275 eeprom->tick = 1;
276 eeprom->command = 0;
278 } else if (eeprom->tick == 0 && !eeprom->ack) {
279 /* Waiting for start. */
280 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
281 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
282 } else if (!eeprom->scl && scl) {
283 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
284 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
285 if (eeprom->ack) {
286 logout("\ti2c ack bit = 0\n");
287 sda = 0;
288 eeprom->ack = 0;
289 } else if (eeprom->sda == sda) {
290 uint8_t bit = (sda != 0);
291 logout("\ti2c bit = %d\n", bit);
292 if (eeprom->tick < 9) {
293 eeprom->command <<= 1;
294 eeprom->command += bit;
295 eeprom->tick++;
296 if (eeprom->tick == 9) {
297 logout("\tcommand 0x%04x, %s\n", eeprom->command,
298 bit ? "read" : "write");
299 eeprom->ack = 1;
301 } else if (eeprom->tick < 17) {
302 if (eeprom->command & 1) {
303 sda = ((eeprom->data & 0x80) != 0);
305 eeprom->address <<= 1;
306 eeprom->address += bit;
307 eeprom->tick++;
308 eeprom->data <<= 1;
309 if (eeprom->tick == 17) {
310 eeprom->data = eeprom->contents[eeprom->address];
311 logout("\taddress 0x%04x, data 0x%02x\n",
312 eeprom->address, eeprom->data);
313 eeprom->ack = 1;
314 eeprom->tick = 0;
316 } else if (eeprom->tick >= 17) {
317 sda = 0;
319 } else {
320 logout("\tsda changed with raising scl\n");
322 } else {
323 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
324 scl, eeprom->sda, sda);
326 eeprom->scl = scl;
327 eeprom->sda = sda;
330 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
331 unsigned size)
333 MaltaFPGAState *s = opaque;
334 uint32_t val = 0;
335 uint32_t saddr;
337 saddr = (addr & 0xfffff);
339 switch (saddr) {
341 /* SWITCH Register */
342 case 0x00200:
343 val = 0x00000000; /* All switches closed */
344 break;
346 /* STATUS Register */
347 case 0x00208:
348 #ifdef TARGET_WORDS_BIGENDIAN
349 val = 0x00000012;
350 #else
351 val = 0x00000010;
352 #endif
353 break;
355 /* JMPRS Register */
356 case 0x00210:
357 val = 0x00;
358 break;
360 /* LEDBAR Register */
361 case 0x00408:
362 val = s->leds;
363 break;
365 /* BRKRES Register */
366 case 0x00508:
367 val = s->brk;
368 break;
370 /* UART Registers are handled directly by the serial device */
372 /* GPOUT Register */
373 case 0x00a00:
374 val = s->gpout;
375 break;
377 /* XXX: implement a real I2C controller */
379 /* GPINP Register */
380 case 0x00a08:
381 /* IN = OUT until a real I2C control is implemented */
382 if (s->i2csel)
383 val = s->i2cout;
384 else
385 val = 0x00;
386 break;
388 /* I2CINP Register */
389 case 0x00b00:
390 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
391 break;
393 /* I2COE Register */
394 case 0x00b08:
395 val = s->i2coe;
396 break;
398 /* I2COUT Register */
399 case 0x00b10:
400 val = s->i2cout;
401 break;
403 /* I2CSEL Register */
404 case 0x00b18:
405 val = s->i2csel;
406 break;
408 default:
409 #if 0
410 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
411 addr);
412 #endif
413 break;
415 return val;
418 static void malta_fpga_write(void *opaque, hwaddr addr,
419 uint64_t val, unsigned size)
421 MaltaFPGAState *s = opaque;
422 uint32_t saddr;
424 saddr = (addr & 0xfffff);
426 switch (saddr) {
428 /* SWITCH Register */
429 case 0x00200:
430 break;
432 /* JMPRS Register */
433 case 0x00210:
434 break;
436 /* LEDBAR Register */
437 case 0x00408:
438 s->leds = val & 0xff;
439 malta_fpga_update_display(s);
440 break;
442 /* ASCIIWORD Register */
443 case 0x00410:
444 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
445 malta_fpga_update_display(s);
446 break;
448 /* ASCIIPOS0 to ASCIIPOS7 Registers */
449 case 0x00418:
450 case 0x00420:
451 case 0x00428:
452 case 0x00430:
453 case 0x00438:
454 case 0x00440:
455 case 0x00448:
456 case 0x00450:
457 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
458 malta_fpga_update_display(s);
459 break;
461 /* SOFTRES Register */
462 case 0x00500:
463 if (val == 0x42)
464 qemu_system_reset_request ();
465 break;
467 /* BRKRES Register */
468 case 0x00508:
469 s->brk = val & 0xff;
470 break;
472 /* UART Registers are handled directly by the serial device */
474 /* GPOUT Register */
475 case 0x00a00:
476 s->gpout = val & 0xff;
477 break;
479 /* I2COE Register */
480 case 0x00b08:
481 s->i2coe = val & 0x03;
482 break;
484 /* I2COUT Register */
485 case 0x00b10:
486 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
487 s->i2cout = val;
488 break;
490 /* I2CSEL Register */
491 case 0x00b18:
492 s->i2csel = val & 0x01;
493 break;
495 default:
496 #if 0
497 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
498 addr);
499 #endif
500 break;
504 static const MemoryRegionOps malta_fpga_ops = {
505 .read = malta_fpga_read,
506 .write = malta_fpga_write,
507 .endianness = DEVICE_NATIVE_ENDIAN,
510 static void malta_fpga_reset(void *opaque)
512 MaltaFPGAState *s = opaque;
514 s->leds = 0x00;
515 s->brk = 0x0a;
516 s->gpout = 0x00;
517 s->i2cin = 0x3;
518 s->i2coe = 0x0;
519 s->i2cout = 0x3;
520 s->i2csel = 0x1;
522 s->display_text[8] = '\0';
523 snprintf(s->display_text, 9, " ");
526 static void malta_fpga_led_init(CharDriverState *chr)
528 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
529 qemu_chr_fe_printf(chr, "+--------+\r\n");
530 qemu_chr_fe_printf(chr, "+ +\r\n");
531 qemu_chr_fe_printf(chr, "+--------+\r\n");
532 qemu_chr_fe_printf(chr, "\n");
533 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
534 qemu_chr_fe_printf(chr, "+--------+\r\n");
535 qemu_chr_fe_printf(chr, "+ +\r\n");
536 qemu_chr_fe_printf(chr, "+--------+\r\n");
539 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
540 hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
542 MaltaFPGAState *s;
544 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
546 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
547 "malta-fpga", 0x100000);
548 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
549 &s->iomem, 0, 0x900);
550 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
551 &s->iomem, 0xa00, 0x10000-0xa00);
553 memory_region_add_subregion(address_space, base, &s->iomem_lo);
554 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
556 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
558 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
559 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
561 malta_fpga_reset(s);
562 qemu_register_reset(malta_fpga_reset, s);
564 return s;
567 /* Network support */
568 static void network_init(PCIBus *pci_bus)
570 int i;
572 for(i = 0; i < nb_nics; i++) {
573 NICInfo *nd = &nd_table[i];
574 const char *default_devaddr = NULL;
576 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
577 /* The malta board has a PCNet card using PCI SLOT 11 */
578 default_devaddr = "0b";
580 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
584 /* ROM and pseudo bootloader
586 The following code implements a very very simple bootloader. It first
587 loads the registers a0 to a3 to the values expected by the OS, and
588 then jump at the kernel address.
590 The bootloader should pass the locations of the kernel arguments and
591 environment variables tables. Those tables contain the 32-bit address
592 of NULL terminated strings. The environment variables table should be
593 terminated by a NULL address.
595 For a simpler implementation, the number of kernel arguments is fixed
596 to two (the name of the kernel and the command line), and the two
597 tables are actually the same one.
599 The registers a0 to a3 should contain the following values:
600 a0 - number of kernel arguments
601 a1 - 32-bit address of the kernel arguments table
602 a2 - 32-bit address of the environment variables table
603 a3 - RAM size in bytes
606 static void write_bootloader (CPUMIPSState *env, uint8_t *base,
607 int64_t run_addr, int64_t kernel_entry)
609 uint32_t *p;
611 /* Small bootloader */
612 p = (uint32_t *)base;
614 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
615 ((run_addr + 0x580) & 0x0fffffff) >> 2);
616 stl_p(p++, 0x00000000); /* nop */
618 /* YAMON service vector */
619 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
620 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
621 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
622 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
623 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
624 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
625 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
626 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
627 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
628 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
629 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
630 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
631 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
634 /* Second part of the bootloader */
635 p = (uint32_t *) (base + 0x580);
636 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
637 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
638 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
639 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
640 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
641 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
642 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
643 stl_p(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
644 stl_p(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
646 /* Load BAR registers as done by YAMON */
647 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
649 #ifdef TARGET_WORDS_BIGENDIAN
650 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
651 #else
652 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
653 #endif
654 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
656 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
658 #ifdef TARGET_WORDS_BIGENDIAN
659 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
660 #else
661 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
662 #endif
663 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
664 #ifdef TARGET_WORDS_BIGENDIAN
665 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
666 #else
667 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
668 #endif
669 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
671 #ifdef TARGET_WORDS_BIGENDIAN
672 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
673 #else
674 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
675 #endif
676 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
677 #ifdef TARGET_WORDS_BIGENDIAN
678 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
679 #else
680 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
681 #endif
682 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
684 #ifdef TARGET_WORDS_BIGENDIAN
685 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
686 #else
687 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
688 #endif
689 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
690 #ifdef TARGET_WORDS_BIGENDIAN
691 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
692 #else
693 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
694 #endif
695 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
697 /* Jump to kernel code */
698 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
699 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
700 stl_p(p++, 0x03e00008); /* jr ra */
701 stl_p(p++, 0x00000000); /* nop */
703 /* YAMON subroutines */
704 p = (uint32_t *) (base + 0x800);
705 stl_p(p++, 0x03e00008); /* jr ra */
706 stl_p(p++, 0x24020000); /* li v0,0 */
707 /* 808 YAMON print */
708 stl_p(p++, 0x03e06821); /* move t5,ra */
709 stl_p(p++, 0x00805821); /* move t3,a0 */
710 stl_p(p++, 0x00a05021); /* move t2,a1 */
711 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
712 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
713 stl_p(p++, 0x10800005); /* beqz a0,834 */
714 stl_p(p++, 0x00000000); /* nop */
715 stl_p(p++, 0x0ff0021c); /* jal 870 */
716 stl_p(p++, 0x00000000); /* nop */
717 stl_p(p++, 0x08000205); /* j 814 */
718 stl_p(p++, 0x00000000); /* nop */
719 stl_p(p++, 0x01a00008); /* jr t5 */
720 stl_p(p++, 0x01602021); /* move a0,t3 */
721 /* 0x83c YAMON print_count */
722 stl_p(p++, 0x03e06821); /* move t5,ra */
723 stl_p(p++, 0x00805821); /* move t3,a0 */
724 stl_p(p++, 0x00a05021); /* move t2,a1 */
725 stl_p(p++, 0x00c06021); /* move t4,a2 */
726 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
727 stl_p(p++, 0x0ff0021c); /* jal 870 */
728 stl_p(p++, 0x00000000); /* nop */
729 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
730 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
731 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
732 stl_p(p++, 0x00000000); /* nop */
733 stl_p(p++, 0x01a00008); /* jr t5 */
734 stl_p(p++, 0x01602021); /* move a0,t3 */
735 /* 0x870 */
736 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
737 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
738 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
739 stl_p(p++, 0x00000000); /* nop */
740 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
741 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
742 stl_p(p++, 0x00000000); /* nop */
743 stl_p(p++, 0x03e00008); /* jr ra */
744 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
748 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
749 const char *string, ...)
751 va_list ap;
752 int32_t table_addr;
754 if (index >= ENVP_NB_ENTRIES)
755 return;
757 if (string == NULL) {
758 prom_buf[index] = 0;
759 return;
762 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
763 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
765 va_start(ap, string);
766 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
767 va_end(ap);
770 /* Kernel */
771 static int64_t load_kernel (void)
773 int64_t kernel_entry, kernel_high;
774 long initrd_size;
775 ram_addr_t initrd_offset;
776 int big_endian;
777 uint32_t *prom_buf;
778 long prom_size;
779 int prom_index = 0;
780 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
782 #ifdef TARGET_WORDS_BIGENDIAN
783 big_endian = 1;
784 #else
785 big_endian = 0;
786 #endif
788 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
789 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
790 big_endian, ELF_MACHINE, 1) < 0) {
791 fprintf(stderr, "qemu: could not load kernel '%s'\n",
792 loaderparams.kernel_filename);
793 exit(1);
795 if (kvm_enabled()) {
796 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
797 } else {
798 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
801 /* load initrd */
802 initrd_size = 0;
803 initrd_offset = 0;
804 if (loaderparams.initrd_filename) {
805 initrd_size = get_image_size (loaderparams.initrd_filename);
806 if (initrd_size > 0) {
807 initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
808 if (initrd_offset + initrd_size > ram_size) {
809 fprintf(stderr,
810 "qemu: memory too small for initial ram disk '%s'\n",
811 loaderparams.initrd_filename);
812 exit(1);
814 initrd_size = load_image_targphys(loaderparams.initrd_filename,
815 initrd_offset,
816 ram_size - initrd_offset);
818 if (initrd_size == (target_ulong) -1) {
819 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
820 loaderparams.initrd_filename);
821 exit(1);
825 /* Setup prom parameters. */
826 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
827 prom_buf = g_malloc(prom_size);
829 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
830 if (initrd_size > 0) {
831 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
832 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
833 loaderparams.kernel_cmdline);
834 } else {
835 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
838 prom_set(prom_buf, prom_index++, "memsize");
839 prom_set(prom_buf, prom_index++, "%i",
840 MIN(loaderparams.ram_size, 256 << 20));
842 prom_set(prom_buf, prom_index++, "modetty0");
843 prom_set(prom_buf, prom_index++, "38400n8r");
844 prom_set(prom_buf, prom_index++, NULL);
846 rom_add_blob_fixed("prom", prom_buf, prom_size,
847 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
849 return kernel_entry;
852 static void malta_mips_config(MIPSCPU *cpu)
854 CPUMIPSState *env = &cpu->env;
855 CPUState *cs = CPU(cpu);
857 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
858 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
861 static void main_cpu_reset(void *opaque)
863 MIPSCPU *cpu = opaque;
864 CPUMIPSState *env = &cpu->env;
866 cpu_reset(CPU(cpu));
868 /* The bootloader does not need to be rewritten as it is located in a
869 read only location. The kernel location and the arguments table
870 location does not change. */
871 if (loaderparams.kernel_filename) {
872 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
875 malta_mips_config(cpu);
877 if (kvm_enabled()) {
878 /* Start running from the bootloader we wrote to end of RAM */
879 env->active_tc.PC = 0x40000000 + loaderparams.ram_size;
883 static void cpu_request_exit(void *opaque, int irq, int level)
885 CPUState *cpu = current_cpu;
887 if (cpu && level) {
888 cpu_exit(cpu);
892 static
893 void mips_malta_init(MachineState *machine)
895 ram_addr_t ram_size = machine->ram_size;
896 ram_addr_t ram_low_size;
897 const char *cpu_model = machine->cpu_model;
898 const char *kernel_filename = machine->kernel_filename;
899 const char *kernel_cmdline = machine->kernel_cmdline;
900 const char *initrd_filename = machine->initrd_filename;
901 char *filename;
902 pflash_t *fl;
903 MemoryRegion *system_memory = get_system_memory();
904 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
905 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
906 MemoryRegion *ram_low_postio;
907 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
908 target_long bios_size = FLASH_SIZE;
909 const size_t smbus_eeprom_size = 8 * 256;
910 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
911 int64_t kernel_entry, bootloader_run_addr;
912 PCIBus *pci_bus;
913 ISABus *isa_bus;
914 MIPSCPU *cpu;
915 CPUMIPSState *env;
916 qemu_irq *isa_irq;
917 qemu_irq *cpu_exit_irq;
918 int piix4_devfn;
919 I2CBus *smbus;
920 int i;
921 DriveInfo *dinfo;
922 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
923 DriveInfo *fd[MAX_FD];
924 int fl_idx = 0;
925 int fl_sectors = bios_size >> 16;
926 int be;
928 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
929 MaltaState *s = MIPS_MALTA(dev);
931 /* The whole address space decoded by the GT-64120A doesn't generate
932 exception when accessing invalid memory. Create an empty slot to
933 emulate this feature. */
934 empty_slot_init(0, 0x20000000);
936 qdev_init_nofail(dev);
938 /* Make sure the first 3 serial ports are associated with a device. */
939 for(i = 0; i < 3; i++) {
940 if (!serial_hds[i]) {
941 char label[32];
942 snprintf(label, sizeof(label), "serial%d", i);
943 serial_hds[i] = qemu_chr_new(label, "null", NULL);
947 /* init CPUs */
948 if (cpu_model == NULL) {
949 #ifdef TARGET_MIPS64
950 cpu_model = "20Kc";
951 #else
952 cpu_model = "24Kf";
953 #endif
956 for (i = 0; i < smp_cpus; i++) {
957 cpu = cpu_mips_init(cpu_model);
958 if (cpu == NULL) {
959 fprintf(stderr, "Unable to find CPU definition\n");
960 exit(1);
962 env = &cpu->env;
964 /* Init internal devices */
965 cpu_mips_irq_init_cpu(env);
966 cpu_mips_clock_init(env);
967 qemu_register_reset(main_cpu_reset, cpu);
969 cpu = MIPS_CPU(first_cpu);
970 env = &cpu->env;
972 /* allocate RAM */
973 if (ram_size > (2048u << 20)) {
974 fprintf(stderr,
975 "qemu: Too much memory for this machine: %d MB, maximum 2048 MB\n",
976 ((unsigned int)ram_size / (1 << 20)));
977 exit(1);
980 /* register RAM at high address where it is undisturbed by IO */
981 memory_region_init_ram(ram_high, NULL, "mips_malta.ram", ram_size);
982 vmstate_register_ram_global(ram_high);
983 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
985 /* alias for pre IO hole access */
986 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
987 ram_high, 0, MIN(ram_size, (256 << 20)));
988 memory_region_add_subregion(system_memory, 0, ram_low_preio);
990 /* alias for post IO hole access, if there is enough RAM */
991 if (ram_size > (512 << 20)) {
992 ram_low_postio = g_new(MemoryRegion, 1);
993 memory_region_init_alias(ram_low_postio, NULL,
994 "mips_malta_low_postio.ram",
995 ram_high, 512 << 20,
996 ram_size - (512 << 20));
997 memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
1000 /* generate SPD EEPROM data */
1001 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1002 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1004 #ifdef TARGET_WORDS_BIGENDIAN
1005 be = 1;
1006 #else
1007 be = 0;
1008 #endif
1009 /* FPGA */
1010 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1011 malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[4], serial_hds[2]);
1013 /* Load firmware in flash / BIOS. */
1014 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1015 #ifdef DEBUG_BOARD_INIT
1016 if (dinfo) {
1017 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1018 "addr %08llx '%s' %x\n",
1019 fl_idx, bios_size, FLASH_ADDRESS,
1020 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
1022 #endif
1023 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1024 BIOS_SIZE, dinfo ? dinfo->bdrv : NULL,
1025 65536, fl_sectors,
1026 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1027 bios = pflash_cfi01_get_memory(fl);
1028 fl_idx++;
1029 if (kernel_filename) {
1030 ram_low_size = MIN(ram_size, 256 << 20);
1031 /* For KVM T&E we reserve 1MB of RAM for running bootloader */
1032 if (kvm_enabled()) {
1033 ram_low_size -= 0x100000;
1034 bootloader_run_addr = 0x40000000 + ram_low_size;
1035 } else {
1036 bootloader_run_addr = 0xbfc00000;
1039 /* Write a small bootloader to the flash location. */
1040 loaderparams.ram_size = ram_low_size;
1041 loaderparams.kernel_filename = kernel_filename;
1042 loaderparams.kernel_cmdline = kernel_cmdline;
1043 loaderparams.initrd_filename = initrd_filename;
1044 kernel_entry = load_kernel();
1046 write_bootloader(env, memory_region_get_ram_ptr(bios),
1047 bootloader_run_addr, kernel_entry);
1048 if (kvm_enabled()) {
1049 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1050 write_bootloader(env, memory_region_get_ram_ptr(ram_low_preio) +
1051 ram_low_size,
1052 bootloader_run_addr, kernel_entry);
1054 } else {
1055 /* The flash region isn't executable from a KVM T&E guest */
1056 if (kvm_enabled()) {
1057 error_report("KVM enabled but no -kernel argument was specified. "
1058 "Booting from flash is not supported with KVM T&E.");
1059 exit(1);
1061 /* Load firmware from flash. */
1062 if (!dinfo) {
1063 /* Load a BIOS image. */
1064 if (bios_name == NULL) {
1065 bios_name = BIOS_FILENAME;
1067 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1068 if (filename) {
1069 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1070 BIOS_SIZE);
1071 g_free(filename);
1072 } else {
1073 bios_size = -1;
1075 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1076 !kernel_filename && !qtest_enabled()) {
1077 error_report("Could not load MIPS bios '%s', and no "
1078 "-kernel argument was specified", bios_name);
1079 exit(1);
1082 /* In little endian mode the 32bit words in the bios are swapped,
1083 a neat trick which allows bi-endian firmware. */
1084 #ifndef TARGET_WORDS_BIGENDIAN
1086 uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
1087 if (!addr) {
1088 addr = memory_region_get_ram_ptr(bios);
1090 end = (void *)addr + MIN(bios_size, 0x3e0000);
1091 while (addr < end) {
1092 bswap32s(addr);
1093 addr++;
1096 #endif
1100 * Map the BIOS at a 2nd physical location, as on the real board.
1101 * Copy it so that we can patch in the MIPS revision, which cannot be
1102 * handled by an overlapping region as the resulting ROM code subpage
1103 * regions are not executable.
1105 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE);
1106 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1107 FLASH_ADDRESS, BIOS_SIZE)) {
1108 memcpy(memory_region_get_ram_ptr(bios_copy),
1109 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1111 memory_region_set_readonly(bios_copy, true);
1112 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1114 /* Board ID = 0x420 (Malta Board with CoreLV) */
1115 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1117 /* Init internal devices */
1118 cpu_mips_irq_init_cpu(env);
1119 cpu_mips_clock_init(env);
1122 * We have a circular dependency problem: pci_bus depends on isa_irq,
1123 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1124 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1125 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1126 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1128 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1130 /* Northbridge */
1131 pci_bus = gt64120_register(isa_irq);
1133 /* Southbridge */
1134 ide_drive_get(hd, MAX_IDE_BUS);
1136 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1138 /* Interrupt controller */
1139 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1140 s->i8259 = i8259_init(isa_bus, env->irq[2]);
1142 isa_bus_irqs(isa_bus, s->i8259);
1143 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1144 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1145 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1146 isa_get_irq(NULL, 9), NULL, 0, NULL, NULL);
1147 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1148 g_free(smbus_eeprom_buf);
1149 pit = pit_init(isa_bus, 0x40, 0, NULL);
1150 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1151 DMA_init(0, cpu_exit_irq);
1153 /* Super I/O */
1154 isa_create_simple(isa_bus, "i8042");
1156 rtc_init(isa_bus, 2000, NULL);
1157 serial_isa_init(isa_bus, 0, serial_hds[0]);
1158 serial_isa_init(isa_bus, 1, serial_hds[1]);
1159 if (parallel_hds[0])
1160 parallel_init(isa_bus, 0, parallel_hds[0]);
1161 for(i = 0; i < MAX_FD; i++) {
1162 fd[i] = drive_get(IF_FLOPPY, 0, i);
1164 fdctrl_init_isa(isa_bus, fd);
1166 /* Network card */
1167 network_init(pci_bus);
1169 /* Optional PCI video card */
1170 pci_vga_init(pci_bus);
1173 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1175 return 0;
1178 static void mips_malta_class_init(ObjectClass *klass, void *data)
1180 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1182 k->init = mips_malta_sysbus_device_init;
1185 static const TypeInfo mips_malta_device = {
1186 .name = TYPE_MIPS_MALTA,
1187 .parent = TYPE_SYS_BUS_DEVICE,
1188 .instance_size = sizeof(MaltaState),
1189 .class_init = mips_malta_class_init,
1192 static QEMUMachine mips_malta_machine = {
1193 .name = "malta",
1194 .desc = "MIPS Malta Core LV",
1195 .init = mips_malta_init,
1196 .max_cpus = 16,
1197 .is_default = 1,
1200 static void mips_malta_register_types(void)
1202 type_register_static(&mips_malta_device);
1205 static void mips_malta_machine_init(void)
1207 qemu_register_machine(&mips_malta_machine);
1210 type_init(mips_malta_register_types)
1211 machine_init(mips_malta_machine_init);