4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
29 #include "host-utils.h"
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #define DPRINTF(fmt, ...) \
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
50 #define BUS_MCEERR_AR 4
53 #define BUS_MCEERR_AO 5
56 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR
),
58 KVM_CAP_INFO(EXT_CPUID
),
59 KVM_CAP_INFO(MP_STATE
),
63 static bool has_msr_star
;
64 static bool has_msr_hsave_pa
;
65 static bool has_msr_tsc_deadline
;
66 static bool has_msr_async_pf_en
;
67 static bool has_msr_pv_eoi_en
;
68 static bool has_msr_misc_enable
;
69 static int lm_capable_kernel
;
71 bool kvm_allows_irq0_override(void)
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
78 struct kvm_cpuid2
*cpuid
;
81 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
82 cpuid
= (struct kvm_cpuid2
*)g_malloc0(size
);
84 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
85 if (r
== 0 && cpuid
->nent
>= max
) {
93 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
101 struct kvm_para_features
{
104 } para_features
[] = {
105 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
106 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
107 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
108 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
112 static int get_para_features(KVMState
*s
)
116 for (i
= 0; i
< ARRAY_SIZE(para_features
) - 1; i
++) {
117 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
118 features
|= (1 << para_features
[i
].feature
);
126 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
127 uint32_t index
, int reg
)
129 struct kvm_cpuid2
*cpuid
;
132 uint32_t cpuid_1_edx
;
133 int has_kvm_features
= 0;
136 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
140 for (i
= 0; i
< cpuid
->nent
; ++i
) {
141 if (cpuid
->entries
[i
].function
== function
&&
142 cpuid
->entries
[i
].index
== index
) {
143 if (cpuid
->entries
[i
].function
== KVM_CPUID_FEATURES
) {
144 has_kvm_features
= 1;
148 ret
= cpuid
->entries
[i
].eax
;
151 ret
= cpuid
->entries
[i
].ebx
;
154 ret
= cpuid
->entries
[i
].ecx
;
157 ret
= cpuid
->entries
[i
].edx
;
160 /* KVM before 2.6.30 misreports the following features */
161 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
164 /* On Intel, kvm returns cpuid according to the Intel spec,
165 * so add missing bits according to the AMD spec:
167 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
168 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
178 /* fallback for older kernels */
179 if (!has_kvm_features
&& (function
== KVM_CPUID_FEATURES
)) {
180 ret
= get_para_features(s
);
186 typedef struct HWPoisonPage
{
188 QLIST_ENTRY(HWPoisonPage
) list
;
191 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
192 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
194 static void kvm_unpoison_all(void *param
)
196 HWPoisonPage
*page
, *next_page
;
198 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
199 QLIST_REMOVE(page
, list
);
200 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
205 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
209 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
210 if (page
->ram_addr
== ram_addr
) {
214 page
= g_malloc(sizeof(HWPoisonPage
));
215 page
->ram_addr
= ram_addr
;
216 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
219 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
224 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
227 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
232 static void kvm_mce_inject(CPUX86State
*env
, hwaddr paddr
, int code
)
234 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
235 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
236 uint64_t mcg_status
= MCG_STATUS_MCIP
;
238 if (code
== BUS_MCEERR_AR
) {
239 status
|= MCI_STATUS_AR
| 0x134;
240 mcg_status
|= MCG_STATUS_EIPV
;
243 mcg_status
|= MCG_STATUS_RIPV
;
245 cpu_x86_inject_mce(NULL
, env
, 9, status
, mcg_status
, paddr
,
246 (MCM_ADDR_PHYS
<< 6) | 0xc,
247 cpu_x86_support_mca_broadcast(env
) ?
248 MCE_INJECT_BROADCAST
: 0);
251 static void hardware_memory_error(void)
253 fprintf(stderr
, "Hardware memory error!\n");
257 int kvm_arch_on_sigbus_vcpu(CPUX86State
*env
, int code
, void *addr
)
262 if ((env
->mcg_cap
& MCG_SER_P
) && addr
263 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
264 if (qemu_ram_addr_from_host(addr
, &ram_addr
) ||
265 !kvm_physical_memory_addr_from_host(env
->kvm_state
, addr
, &paddr
)) {
266 fprintf(stderr
, "Hardware memory error for memory used by "
267 "QEMU itself instead of guest system!\n");
268 /* Hope we are lucky for AO MCE */
269 if (code
== BUS_MCEERR_AO
) {
272 hardware_memory_error();
275 kvm_hwpoison_page_add(ram_addr
);
276 kvm_mce_inject(env
, paddr
, code
);
278 if (code
== BUS_MCEERR_AO
) {
280 } else if (code
== BUS_MCEERR_AR
) {
281 hardware_memory_error();
289 int kvm_arch_on_sigbus(int code
, void *addr
)
291 if ((first_cpu
->mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
295 /* Hope we are lucky for AO MCE */
296 if (qemu_ram_addr_from_host(addr
, &ram_addr
) ||
297 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
, addr
,
299 fprintf(stderr
, "Hardware memory error for memory used by "
300 "QEMU itself instead of guest system!: %p\n", addr
);
303 kvm_hwpoison_page_add(ram_addr
);
304 kvm_mce_inject(first_cpu
, paddr
, code
);
306 if (code
== BUS_MCEERR_AO
) {
308 } else if (code
== BUS_MCEERR_AR
) {
309 hardware_memory_error();
317 static int kvm_inject_mce_oldstyle(CPUX86State
*env
)
319 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
320 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
321 struct kvm_x86_mce mce
;
323 env
->exception_injected
= -1;
326 * There must be at least one bank in use if an MCE is pending.
327 * Find it and use its values for the event injection.
329 for (bank
= 0; bank
< bank_num
; bank
++) {
330 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
334 assert(bank
< bank_num
);
337 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
338 mce
.mcg_status
= env
->mcg_status
;
339 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
340 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
342 return kvm_vcpu_ioctl(env
, KVM_X86_SET_MCE
, &mce
);
347 static void cpu_update_state(void *opaque
, int running
, RunState state
)
349 CPUX86State
*env
= opaque
;
352 env
->tsc_valid
= false;
356 int kvm_arch_init_vcpu(CPUX86State
*env
)
359 struct kvm_cpuid2 cpuid
;
360 struct kvm_cpuid_entry2 entries
[100];
361 } QEMU_PACKED cpuid_data
;
362 KVMState
*s
= env
->kvm_state
;
363 uint32_t limit
, i
, j
, cpuid_i
;
365 struct kvm_cpuid_entry2
*c
;
366 uint32_t signature
[3];
369 env
->cpuid_features
&= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
371 i
= env
->cpuid_ext_features
& CPUID_EXT_HYPERVISOR
;
372 j
= env
->cpuid_ext_features
& CPUID_EXT_TSC_DEADLINE_TIMER
;
373 env
->cpuid_ext_features
&= kvm_arch_get_supported_cpuid(s
, 1, 0, R_ECX
);
374 env
->cpuid_ext_features
|= i
;
375 if (j
&& kvm_irqchip_in_kernel() &&
376 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
377 env
->cpuid_ext_features
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
380 env
->cpuid_ext2_features
&= kvm_arch_get_supported_cpuid(s
, 0x80000001,
382 env
->cpuid_ext3_features
&= kvm_arch_get_supported_cpuid(s
, 0x80000001,
384 env
->cpuid_svm_features
&= kvm_arch_get_supported_cpuid(s
, 0x8000000A,
389 /* Paravirtualization CPUIDs */
390 c
= &cpuid_data
.entries
[cpuid_i
++];
391 memset(c
, 0, sizeof(*c
));
392 c
->function
= KVM_CPUID_SIGNATURE
;
393 if (!hyperv_enabled()) {
394 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
397 memcpy(signature
, "Microsoft Hv", 12);
398 c
->eax
= HYPERV_CPUID_MIN
;
400 c
->ebx
= signature
[0];
401 c
->ecx
= signature
[1];
402 c
->edx
= signature
[2];
404 c
= &cpuid_data
.entries
[cpuid_i
++];
405 memset(c
, 0, sizeof(*c
));
406 c
->function
= KVM_CPUID_FEATURES
;
407 c
->eax
= env
->cpuid_kvm_features
&
408 kvm_arch_get_supported_cpuid(s
, KVM_CPUID_FEATURES
, 0, R_EAX
);
410 if (hyperv_enabled()) {
411 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
412 c
->eax
= signature
[0];
414 c
= &cpuid_data
.entries
[cpuid_i
++];
415 memset(c
, 0, sizeof(*c
));
416 c
->function
= HYPERV_CPUID_VERSION
;
420 c
= &cpuid_data
.entries
[cpuid_i
++];
421 memset(c
, 0, sizeof(*c
));
422 c
->function
= HYPERV_CPUID_FEATURES
;
423 if (hyperv_relaxed_timing_enabled()) {
424 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
426 if (hyperv_vapic_recommended()) {
427 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
428 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
431 c
= &cpuid_data
.entries
[cpuid_i
++];
432 memset(c
, 0, sizeof(*c
));
433 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
434 if (hyperv_relaxed_timing_enabled()) {
435 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
437 if (hyperv_vapic_recommended()) {
438 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
440 c
->ebx
= hyperv_get_spinlock_retries();
442 c
= &cpuid_data
.entries
[cpuid_i
++];
443 memset(c
, 0, sizeof(*c
));
444 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
448 c
= &cpuid_data
.entries
[cpuid_i
++];
449 memset(c
, 0, sizeof(*c
));
450 c
->function
= KVM_CPUID_SIGNATURE_NEXT
;
451 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
453 c
->ebx
= signature
[0];
454 c
->ecx
= signature
[1];
455 c
->edx
= signature
[2];
458 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
460 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
462 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
464 for (i
= 0; i
<= limit
; i
++) {
465 c
= &cpuid_data
.entries
[cpuid_i
++];
469 /* Keep reading function 2 till all the input is received */
473 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
474 KVM_CPUID_FLAG_STATE_READ_NEXT
;
475 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
476 times
= c
->eax
& 0xff;
478 for (j
= 1; j
< times
; ++j
) {
479 c
= &cpuid_data
.entries
[cpuid_i
++];
481 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
482 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
490 if (i
== 0xd && j
== 64) {
494 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
496 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
498 if (i
== 4 && c
->eax
== 0) {
501 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
504 if (i
== 0xd && c
->eax
== 0) {
507 c
= &cpuid_data
.entries
[cpuid_i
++];
513 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
517 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
519 for (i
= 0x80000000; i
<= limit
; i
++) {
520 c
= &cpuid_data
.entries
[cpuid_i
++];
524 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
527 /* Call Centaur's CPUID instructions they are supported. */
528 if (env
->cpuid_xlevel2
> 0) {
529 env
->cpuid_ext4_features
&=
530 kvm_arch_get_supported_cpuid(s
, 0xC0000001, 0, R_EDX
);
531 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
533 for (i
= 0xC0000000; i
<= limit
; i
++) {
534 c
= &cpuid_data
.entries
[cpuid_i
++];
538 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
542 cpuid_data
.cpuid
.nent
= cpuid_i
;
544 if (((env
->cpuid_version
>> 8)&0xF) >= 6
545 && (env
->cpuid_features
&(CPUID_MCE
|CPUID_MCA
)) == (CPUID_MCE
|CPUID_MCA
)
546 && kvm_check_extension(env
->kvm_state
, KVM_CAP_MCE
) > 0) {
551 ret
= kvm_get_mce_cap_supported(env
->kvm_state
, &mcg_cap
, &banks
);
553 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
557 if (banks
> MCE_BANKS_DEF
) {
558 banks
= MCE_BANKS_DEF
;
560 mcg_cap
&= MCE_CAP_DEF
;
562 ret
= kvm_vcpu_ioctl(env
, KVM_X86_SETUP_MCE
, &mcg_cap
);
564 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
568 env
->mcg_cap
= mcg_cap
;
571 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
573 cpuid_data
.cpuid
.padding
= 0;
574 r
= kvm_vcpu_ioctl(env
, KVM_SET_CPUID2
, &cpuid_data
);
579 r
= kvm_check_extension(env
->kvm_state
, KVM_CAP_TSC_CONTROL
);
580 if (r
&& env
->tsc_khz
) {
581 r
= kvm_vcpu_ioctl(env
, KVM_SET_TSC_KHZ
, env
->tsc_khz
);
583 fprintf(stderr
, "KVM_SET_TSC_KHZ failed\n");
588 if (kvm_has_xsave()) {
589 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
595 void kvm_arch_reset_vcpu(CPUX86State
*env
)
597 X86CPU
*cpu
= x86_env_get_cpu(env
);
599 env
->exception_injected
= -1;
600 env
->interrupt_injected
= -1;
602 if (kvm_irqchip_in_kernel()) {
603 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
604 KVM_MP_STATE_UNINITIALIZED
;
606 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
610 static int kvm_get_supported_msrs(KVMState
*s
)
612 static int kvm_supported_msrs
;
616 if (kvm_supported_msrs
== 0) {
617 struct kvm_msr_list msr_list
, *kvm_msr_list
;
619 kvm_supported_msrs
= -1;
621 /* Obtain MSR list from KVM. These are the MSRs that we must
624 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
625 if (ret
< 0 && ret
!= -E2BIG
) {
628 /* Old kernel modules had a bug and could write beyond the provided
629 memory. Allocate at least a safe amount of 1K. */
630 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
632 sizeof(msr_list
.indices
[0])));
634 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
635 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
639 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
640 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
644 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
645 has_msr_hsave_pa
= true;
648 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
649 has_msr_tsc_deadline
= true;
652 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
653 has_msr_misc_enable
= true;
659 g_free(kvm_msr_list
);
665 int kvm_arch_init(KVMState
*s
)
667 QemuOptsList
*list
= qemu_find_opts("machine");
668 uint64_t identity_base
= 0xfffbc000;
671 struct utsname utsname
;
673 ret
= kvm_get_supported_msrs(s
);
679 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
682 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
683 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
684 * Since these must be part of guest physical memory, we need to allocate
685 * them, both by setting their start addresses in the kernel and by
686 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
688 * Older KVM versions may not support setting the identity map base. In
689 * that case we need to stick with the default, i.e. a 256K maximum BIOS
692 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
693 /* Allows up to 16M BIOSes. */
694 identity_base
= 0xfeffc000;
696 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
702 /* Set TSS base one page after EPT identity map. */
703 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
708 /* Tell fw_cfg to notify the BIOS to reserve the range. */
709 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
711 fprintf(stderr
, "e820_add_entry() table is full\n");
714 qemu_register_reset(kvm_unpoison_all
, NULL
);
716 if (!QTAILQ_EMPTY(&list
->head
)) {
717 shadow_mem
= qemu_opt_get_size(QTAILQ_FIRST(&list
->head
),
718 "kvm_shadow_mem", -1);
719 if (shadow_mem
!= -1) {
721 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
730 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
732 lhs
->selector
= rhs
->selector
;
733 lhs
->base
= rhs
->base
;
734 lhs
->limit
= rhs
->limit
;
746 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
748 unsigned flags
= rhs
->flags
;
749 lhs
->selector
= rhs
->selector
;
750 lhs
->base
= rhs
->base
;
751 lhs
->limit
= rhs
->limit
;
752 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
753 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
754 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
755 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
756 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
757 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
758 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
759 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
764 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
766 lhs
->selector
= rhs
->selector
;
767 lhs
->base
= rhs
->base
;
768 lhs
->limit
= rhs
->limit
;
769 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
770 (rhs
->present
* DESC_P_MASK
) |
771 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
772 (rhs
->db
<< DESC_B_SHIFT
) |
773 (rhs
->s
* DESC_S_MASK
) |
774 (rhs
->l
<< DESC_L_SHIFT
) |
775 (rhs
->g
* DESC_G_MASK
) |
776 (rhs
->avl
* DESC_AVL_MASK
);
779 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
782 *kvm_reg
= *qemu_reg
;
784 *qemu_reg
= *kvm_reg
;
788 static int kvm_getput_regs(CPUX86State
*env
, int set
)
790 struct kvm_regs regs
;
794 ret
= kvm_vcpu_ioctl(env
, KVM_GET_REGS
, ®s
);
800 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
801 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
802 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
803 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
804 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
805 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
806 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
807 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
809 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
810 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
811 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
812 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
813 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
814 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
815 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
816 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
819 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
820 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
823 ret
= kvm_vcpu_ioctl(env
, KVM_SET_REGS
, ®s
);
829 static int kvm_put_fpu(CPUX86State
*env
)
834 memset(&fpu
, 0, sizeof fpu
);
835 fpu
.fsw
= env
->fpus
& ~(7 << 11);
836 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
838 fpu
.last_opcode
= env
->fpop
;
839 fpu
.last_ip
= env
->fpip
;
840 fpu
.last_dp
= env
->fpdp
;
841 for (i
= 0; i
< 8; ++i
) {
842 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
844 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
845 memcpy(fpu
.xmm
, env
->xmm_regs
, sizeof env
->xmm_regs
);
846 fpu
.mxcsr
= env
->mxcsr
;
848 return kvm_vcpu_ioctl(env
, KVM_SET_FPU
, &fpu
);
851 #define XSAVE_FCW_FSW 0
852 #define XSAVE_FTW_FOP 1
853 #define XSAVE_CWD_RIP 2
854 #define XSAVE_CWD_RDP 4
855 #define XSAVE_MXCSR 6
856 #define XSAVE_ST_SPACE 8
857 #define XSAVE_XMM_SPACE 40
858 #define XSAVE_XSTATE_BV 128
859 #define XSAVE_YMMH_SPACE 144
861 static int kvm_put_xsave(CPUX86State
*env
)
863 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
864 uint16_t cwd
, swd
, twd
;
867 if (!kvm_has_xsave()) {
868 return kvm_put_fpu(env
);
871 memset(xsave
, 0, sizeof(struct kvm_xsave
));
873 swd
= env
->fpus
& ~(7 << 11);
874 swd
|= (env
->fpstt
& 7) << 11;
876 for (i
= 0; i
< 8; ++i
) {
877 twd
|= (!env
->fptags
[i
]) << i
;
879 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
880 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
881 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
882 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
883 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
885 memcpy(&xsave
->region
[XSAVE_XMM_SPACE
], env
->xmm_regs
,
886 sizeof env
->xmm_regs
);
887 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
888 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
889 memcpy(&xsave
->region
[XSAVE_YMMH_SPACE
], env
->ymmh_regs
,
890 sizeof env
->ymmh_regs
);
891 r
= kvm_vcpu_ioctl(env
, KVM_SET_XSAVE
, xsave
);
895 static int kvm_put_xcrs(CPUX86State
*env
)
897 struct kvm_xcrs xcrs
;
899 if (!kvm_has_xcrs()) {
905 xcrs
.xcrs
[0].xcr
= 0;
906 xcrs
.xcrs
[0].value
= env
->xcr0
;
907 return kvm_vcpu_ioctl(env
, KVM_SET_XCRS
, &xcrs
);
910 static int kvm_put_sregs(CPUX86State
*env
)
912 struct kvm_sregs sregs
;
914 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
915 if (env
->interrupt_injected
>= 0) {
916 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
917 (uint64_t)1 << (env
->interrupt_injected
% 64);
920 if ((env
->eflags
& VM_MASK
)) {
921 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
922 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
923 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
924 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
925 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
926 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
928 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
929 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
930 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
931 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
932 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
933 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
936 set_seg(&sregs
.tr
, &env
->tr
);
937 set_seg(&sregs
.ldt
, &env
->ldt
);
939 sregs
.idt
.limit
= env
->idt
.limit
;
940 sregs
.idt
.base
= env
->idt
.base
;
941 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
942 sregs
.gdt
.limit
= env
->gdt
.limit
;
943 sregs
.gdt
.base
= env
->gdt
.base
;
944 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
946 sregs
.cr0
= env
->cr
[0];
947 sregs
.cr2
= env
->cr
[2];
948 sregs
.cr3
= env
->cr
[3];
949 sregs
.cr4
= env
->cr
[4];
951 sregs
.cr8
= cpu_get_apic_tpr(env
->apic_state
);
952 sregs
.apic_base
= cpu_get_apic_base(env
->apic_state
);
954 sregs
.efer
= env
->efer
;
956 return kvm_vcpu_ioctl(env
, KVM_SET_SREGS
, &sregs
);
959 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
960 uint32_t index
, uint64_t value
)
962 entry
->index
= index
;
966 static int kvm_put_msrs(CPUX86State
*env
, int level
)
969 struct kvm_msrs info
;
970 struct kvm_msr_entry entries
[100];
972 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
975 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
976 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
977 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
978 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
980 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
982 if (has_msr_hsave_pa
) {
983 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
985 if (has_msr_tsc_deadline
) {
986 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
988 if (has_msr_misc_enable
) {
989 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
990 env
->msr_ia32_misc_enable
);
993 if (lm_capable_kernel
) {
994 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
995 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
996 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
997 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1000 if (level
== KVM_PUT_FULL_STATE
) {
1002 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1003 * writeback. Until this is fixed, we only write the offset to SMP
1004 * guests after migration, desynchronizing the VCPUs, but avoiding
1005 * huge jump-backs that would occur without any writeback at all.
1007 if (smp_cpus
== 1 || env
->tsc
!= 0) {
1008 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1012 * The following paravirtual MSRs have side effects on the guest or are
1013 * too heavy for normal writeback. Limit them to reset or full state
1016 if (level
>= KVM_PUT_RESET_STATE
) {
1017 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1018 env
->system_time_msr
);
1019 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1020 if (has_msr_async_pf_en
) {
1021 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1022 env
->async_pf_en_msr
);
1024 if (has_msr_pv_eoi_en
) {
1025 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1026 env
->pv_eoi_en_msr
);
1028 if (hyperv_hypercall_available()) {
1029 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
, 0);
1030 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
, 0);
1032 if (hyperv_vapic_recommended()) {
1033 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
1039 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1040 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1041 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1042 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1046 msr_data
.info
.nmsrs
= n
;
1048 return kvm_vcpu_ioctl(env
, KVM_SET_MSRS
, &msr_data
);
1053 static int kvm_get_fpu(CPUX86State
*env
)
1058 ret
= kvm_vcpu_ioctl(env
, KVM_GET_FPU
, &fpu
);
1063 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1064 env
->fpus
= fpu
.fsw
;
1065 env
->fpuc
= fpu
.fcw
;
1066 env
->fpop
= fpu
.last_opcode
;
1067 env
->fpip
= fpu
.last_ip
;
1068 env
->fpdp
= fpu
.last_dp
;
1069 for (i
= 0; i
< 8; ++i
) {
1070 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1072 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1073 memcpy(env
->xmm_regs
, fpu
.xmm
, sizeof env
->xmm_regs
);
1074 env
->mxcsr
= fpu
.mxcsr
;
1079 static int kvm_get_xsave(CPUX86State
*env
)
1081 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1083 uint16_t cwd
, swd
, twd
;
1085 if (!kvm_has_xsave()) {
1086 return kvm_get_fpu(env
);
1089 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XSAVE
, xsave
);
1094 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1095 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1096 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1097 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1098 env
->fpstt
= (swd
>> 11) & 7;
1101 for (i
= 0; i
< 8; ++i
) {
1102 env
->fptags
[i
] = !((twd
>> i
) & 1);
1104 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1105 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1106 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1107 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1108 sizeof env
->fpregs
);
1109 memcpy(env
->xmm_regs
, &xsave
->region
[XSAVE_XMM_SPACE
],
1110 sizeof env
->xmm_regs
);
1111 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1112 memcpy(env
->ymmh_regs
, &xsave
->region
[XSAVE_YMMH_SPACE
],
1113 sizeof env
->ymmh_regs
);
1117 static int kvm_get_xcrs(CPUX86State
*env
)
1120 struct kvm_xcrs xcrs
;
1122 if (!kvm_has_xcrs()) {
1126 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XCRS
, &xcrs
);
1131 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1132 /* Only support xcr0 now */
1133 if (xcrs
.xcrs
[0].xcr
== 0) {
1134 env
->xcr0
= xcrs
.xcrs
[0].value
;
1141 static int kvm_get_sregs(CPUX86State
*env
)
1143 struct kvm_sregs sregs
;
1147 ret
= kvm_vcpu_ioctl(env
, KVM_GET_SREGS
, &sregs
);
1152 /* There can only be one pending IRQ set in the bitmap at a time, so try
1153 to find it and save its number instead (-1 for none). */
1154 env
->interrupt_injected
= -1;
1155 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1156 if (sregs
.interrupt_bitmap
[i
]) {
1157 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1158 env
->interrupt_injected
= i
* 64 + bit
;
1163 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1164 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1165 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1166 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1167 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1168 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1170 get_seg(&env
->tr
, &sregs
.tr
);
1171 get_seg(&env
->ldt
, &sregs
.ldt
);
1173 env
->idt
.limit
= sregs
.idt
.limit
;
1174 env
->idt
.base
= sregs
.idt
.base
;
1175 env
->gdt
.limit
= sregs
.gdt
.limit
;
1176 env
->gdt
.base
= sregs
.gdt
.base
;
1178 env
->cr
[0] = sregs
.cr0
;
1179 env
->cr
[2] = sregs
.cr2
;
1180 env
->cr
[3] = sregs
.cr3
;
1181 env
->cr
[4] = sregs
.cr4
;
1183 env
->efer
= sregs
.efer
;
1185 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1187 #define HFLAG_COPY_MASK \
1188 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1189 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1190 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1191 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1193 hflags
= (env
->segs
[R_CS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1194 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1195 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1196 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1197 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1198 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1199 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1201 if (env
->efer
& MSR_EFER_LMA
) {
1202 hflags
|= HF_LMA_MASK
;
1205 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1206 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1208 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1209 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1210 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1211 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1212 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1213 !(hflags
& HF_CS32_MASK
)) {
1214 hflags
|= HF_ADDSEG_MASK
;
1216 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1217 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1220 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1225 static int kvm_get_msrs(CPUX86State
*env
)
1228 struct kvm_msrs info
;
1229 struct kvm_msr_entry entries
[100];
1231 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1235 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1236 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1237 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1238 msrs
[n
++].index
= MSR_PAT
;
1240 msrs
[n
++].index
= MSR_STAR
;
1242 if (has_msr_hsave_pa
) {
1243 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1245 if (has_msr_tsc_deadline
) {
1246 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1248 if (has_msr_misc_enable
) {
1249 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1252 if (!env
->tsc_valid
) {
1253 msrs
[n
++].index
= MSR_IA32_TSC
;
1254 env
->tsc_valid
= !runstate_is_running();
1257 #ifdef TARGET_X86_64
1258 if (lm_capable_kernel
) {
1259 msrs
[n
++].index
= MSR_CSTAR
;
1260 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1261 msrs
[n
++].index
= MSR_FMASK
;
1262 msrs
[n
++].index
= MSR_LSTAR
;
1265 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1266 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1267 if (has_msr_async_pf_en
) {
1268 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1270 if (has_msr_pv_eoi_en
) {
1271 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1275 msrs
[n
++].index
= MSR_MCG_STATUS
;
1276 msrs
[n
++].index
= MSR_MCG_CTL
;
1277 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1278 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1282 msr_data
.info
.nmsrs
= n
;
1283 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, &msr_data
);
1288 for (i
= 0; i
< ret
; i
++) {
1289 switch (msrs
[i
].index
) {
1290 case MSR_IA32_SYSENTER_CS
:
1291 env
->sysenter_cs
= msrs
[i
].data
;
1293 case MSR_IA32_SYSENTER_ESP
:
1294 env
->sysenter_esp
= msrs
[i
].data
;
1296 case MSR_IA32_SYSENTER_EIP
:
1297 env
->sysenter_eip
= msrs
[i
].data
;
1300 env
->pat
= msrs
[i
].data
;
1303 env
->star
= msrs
[i
].data
;
1305 #ifdef TARGET_X86_64
1307 env
->cstar
= msrs
[i
].data
;
1309 case MSR_KERNELGSBASE
:
1310 env
->kernelgsbase
= msrs
[i
].data
;
1313 env
->fmask
= msrs
[i
].data
;
1316 env
->lstar
= msrs
[i
].data
;
1320 env
->tsc
= msrs
[i
].data
;
1322 case MSR_IA32_TSCDEADLINE
:
1323 env
->tsc_deadline
= msrs
[i
].data
;
1325 case MSR_VM_HSAVE_PA
:
1326 env
->vm_hsave
= msrs
[i
].data
;
1328 case MSR_KVM_SYSTEM_TIME
:
1329 env
->system_time_msr
= msrs
[i
].data
;
1331 case MSR_KVM_WALL_CLOCK
:
1332 env
->wall_clock_msr
= msrs
[i
].data
;
1334 case MSR_MCG_STATUS
:
1335 env
->mcg_status
= msrs
[i
].data
;
1338 env
->mcg_ctl
= msrs
[i
].data
;
1340 case MSR_IA32_MISC_ENABLE
:
1341 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
1344 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
1345 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
1346 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
1349 case MSR_KVM_ASYNC_PF_EN
:
1350 env
->async_pf_en_msr
= msrs
[i
].data
;
1352 case MSR_KVM_PV_EOI_EN
:
1353 env
->pv_eoi_en_msr
= msrs
[i
].data
;
1361 static int kvm_put_mp_state(CPUX86State
*env
)
1363 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
1365 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
1368 static int kvm_get_mp_state(CPUX86State
*env
)
1370 struct kvm_mp_state mp_state
;
1373 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
1377 env
->mp_state
= mp_state
.mp_state
;
1378 if (kvm_irqchip_in_kernel()) {
1379 env
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
1384 static int kvm_get_apic(CPUX86State
*env
)
1386 DeviceState
*apic
= env
->apic_state
;
1387 struct kvm_lapic_state kapic
;
1390 if (apic
&& kvm_irqchip_in_kernel()) {
1391 ret
= kvm_vcpu_ioctl(env
, KVM_GET_LAPIC
, &kapic
);
1396 kvm_get_apic_state(apic
, &kapic
);
1401 static int kvm_put_apic(CPUX86State
*env
)
1403 DeviceState
*apic
= env
->apic_state
;
1404 struct kvm_lapic_state kapic
;
1406 if (apic
&& kvm_irqchip_in_kernel()) {
1407 kvm_put_apic_state(apic
, &kapic
);
1409 return kvm_vcpu_ioctl(env
, KVM_SET_LAPIC
, &kapic
);
1414 static int kvm_put_vcpu_events(CPUX86State
*env
, int level
)
1416 struct kvm_vcpu_events events
;
1418 if (!kvm_has_vcpu_events()) {
1422 events
.exception
.injected
= (env
->exception_injected
>= 0);
1423 events
.exception
.nr
= env
->exception_injected
;
1424 events
.exception
.has_error_code
= env
->has_error_code
;
1425 events
.exception
.error_code
= env
->error_code
;
1426 events
.exception
.pad
= 0;
1428 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
1429 events
.interrupt
.nr
= env
->interrupt_injected
;
1430 events
.interrupt
.soft
= env
->soft_interrupt
;
1432 events
.nmi
.injected
= env
->nmi_injected
;
1433 events
.nmi
.pending
= env
->nmi_pending
;
1434 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
1437 events
.sipi_vector
= env
->sipi_vector
;
1440 if (level
>= KVM_PUT_RESET_STATE
) {
1442 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
1445 return kvm_vcpu_ioctl(env
, KVM_SET_VCPU_EVENTS
, &events
);
1448 static int kvm_get_vcpu_events(CPUX86State
*env
)
1450 struct kvm_vcpu_events events
;
1453 if (!kvm_has_vcpu_events()) {
1457 ret
= kvm_vcpu_ioctl(env
, KVM_GET_VCPU_EVENTS
, &events
);
1461 env
->exception_injected
=
1462 events
.exception
.injected
? events
.exception
.nr
: -1;
1463 env
->has_error_code
= events
.exception
.has_error_code
;
1464 env
->error_code
= events
.exception
.error_code
;
1466 env
->interrupt_injected
=
1467 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
1468 env
->soft_interrupt
= events
.interrupt
.soft
;
1470 env
->nmi_injected
= events
.nmi
.injected
;
1471 env
->nmi_pending
= events
.nmi
.pending
;
1472 if (events
.nmi
.masked
) {
1473 env
->hflags2
|= HF2_NMI_MASK
;
1475 env
->hflags2
&= ~HF2_NMI_MASK
;
1478 env
->sipi_vector
= events
.sipi_vector
;
1483 static int kvm_guest_debug_workarounds(CPUX86State
*env
)
1486 unsigned long reinject_trap
= 0;
1488 if (!kvm_has_vcpu_events()) {
1489 if (env
->exception_injected
== 1) {
1490 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
1491 } else if (env
->exception_injected
== 3) {
1492 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
1494 env
->exception_injected
= -1;
1498 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1499 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1500 * by updating the debug state once again if single-stepping is on.
1501 * Another reason to call kvm_update_guest_debug here is a pending debug
1502 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1503 * reinject them via SET_GUEST_DEBUG.
1505 if (reinject_trap
||
1506 (!kvm_has_robust_singlestep() && env
->singlestep_enabled
)) {
1507 ret
= kvm_update_guest_debug(env
, reinject_trap
);
1512 static int kvm_put_debugregs(CPUX86State
*env
)
1514 struct kvm_debugregs dbgregs
;
1517 if (!kvm_has_debugregs()) {
1521 for (i
= 0; i
< 4; i
++) {
1522 dbgregs
.db
[i
] = env
->dr
[i
];
1524 dbgregs
.dr6
= env
->dr
[6];
1525 dbgregs
.dr7
= env
->dr
[7];
1528 return kvm_vcpu_ioctl(env
, KVM_SET_DEBUGREGS
, &dbgregs
);
1531 static int kvm_get_debugregs(CPUX86State
*env
)
1533 struct kvm_debugregs dbgregs
;
1536 if (!kvm_has_debugregs()) {
1540 ret
= kvm_vcpu_ioctl(env
, KVM_GET_DEBUGREGS
, &dbgregs
);
1544 for (i
= 0; i
< 4; i
++) {
1545 env
->dr
[i
] = dbgregs
.db
[i
];
1547 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
1548 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
1553 int kvm_arch_put_registers(CPUX86State
*env
, int level
)
1557 assert(cpu_is_stopped(env
) || qemu_cpu_is_self(env
));
1559 ret
= kvm_getput_regs(env
, 1);
1563 ret
= kvm_put_xsave(env
);
1567 ret
= kvm_put_xcrs(env
);
1571 ret
= kvm_put_sregs(env
);
1575 /* must be before kvm_put_msrs */
1576 ret
= kvm_inject_mce_oldstyle(env
);
1580 ret
= kvm_put_msrs(env
, level
);
1584 if (level
>= KVM_PUT_RESET_STATE
) {
1585 ret
= kvm_put_mp_state(env
);
1589 ret
= kvm_put_apic(env
);
1594 ret
= kvm_put_vcpu_events(env
, level
);
1598 ret
= kvm_put_debugregs(env
);
1603 ret
= kvm_guest_debug_workarounds(env
);
1610 int kvm_arch_get_registers(CPUX86State
*env
)
1614 assert(cpu_is_stopped(env
) || qemu_cpu_is_self(env
));
1616 ret
= kvm_getput_regs(env
, 0);
1620 ret
= kvm_get_xsave(env
);
1624 ret
= kvm_get_xcrs(env
);
1628 ret
= kvm_get_sregs(env
);
1632 ret
= kvm_get_msrs(env
);
1636 ret
= kvm_get_mp_state(env
);
1640 ret
= kvm_get_apic(env
);
1644 ret
= kvm_get_vcpu_events(env
);
1648 ret
= kvm_get_debugregs(env
);
1655 void kvm_arch_pre_run(CPUX86State
*env
, struct kvm_run
*run
)
1660 if (env
->interrupt_request
& CPU_INTERRUPT_NMI
) {
1661 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
1662 DPRINTF("injected NMI\n");
1663 ret
= kvm_vcpu_ioctl(env
, KVM_NMI
);
1665 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
1670 if (!kvm_irqchip_in_kernel()) {
1671 /* Force the VCPU out of its inner loop to process any INIT requests
1672 * or pending TPR access reports. */
1673 if (env
->interrupt_request
&
1674 (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
1675 env
->exit_request
= 1;
1678 /* Try to inject an interrupt if the guest can accept it */
1679 if (run
->ready_for_interrupt_injection
&&
1680 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1681 (env
->eflags
& IF_MASK
)) {
1684 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
1685 irq
= cpu_get_pic_interrupt(env
);
1687 struct kvm_interrupt intr
;
1690 DPRINTF("injected interrupt %d\n", irq
);
1691 ret
= kvm_vcpu_ioctl(env
, KVM_INTERRUPT
, &intr
);
1694 "KVM: injection failed, interrupt lost (%s)\n",
1700 /* If we have an interrupt but the guest is not ready to receive an
1701 * interrupt, request an interrupt window exit. This will
1702 * cause a return to userspace as soon as the guest is ready to
1703 * receive interrupts. */
1704 if ((env
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
1705 run
->request_interrupt_window
= 1;
1707 run
->request_interrupt_window
= 0;
1710 DPRINTF("setting tpr\n");
1711 run
->cr8
= cpu_get_apic_tpr(env
->apic_state
);
1715 void kvm_arch_post_run(CPUX86State
*env
, struct kvm_run
*run
)
1718 env
->eflags
|= IF_MASK
;
1720 env
->eflags
&= ~IF_MASK
;
1722 cpu_set_apic_tpr(env
->apic_state
, run
->cr8
);
1723 cpu_set_apic_base(env
->apic_state
, run
->apic_base
);
1726 int kvm_arch_process_async_events(CPUX86State
*env
)
1728 X86CPU
*cpu
= x86_env_get_cpu(env
);
1730 if (env
->interrupt_request
& CPU_INTERRUPT_MCE
) {
1731 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1732 assert(env
->mcg_cap
);
1734 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
1736 kvm_cpu_synchronize_state(env
);
1738 if (env
->exception_injected
== EXCP08_DBLE
) {
1739 /* this means triple fault */
1740 qemu_system_reset_request();
1741 env
->exit_request
= 1;
1744 env
->exception_injected
= EXCP12_MCHK
;
1745 env
->has_error_code
= 0;
1748 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
1749 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
1753 if (kvm_irqchip_in_kernel()) {
1757 if (env
->interrupt_request
& CPU_INTERRUPT_POLL
) {
1758 env
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
1759 apic_poll_irq(env
->apic_state
);
1761 if (((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1762 (env
->eflags
& IF_MASK
)) ||
1763 (env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1766 if (env
->interrupt_request
& CPU_INTERRUPT_INIT
) {
1767 kvm_cpu_synchronize_state(env
);
1770 if (env
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
1771 kvm_cpu_synchronize_state(env
);
1774 if (env
->interrupt_request
& CPU_INTERRUPT_TPR
) {
1775 env
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
1776 kvm_cpu_synchronize_state(env
);
1777 apic_handle_tpr_access_report(env
->apic_state
, env
->eip
,
1778 env
->tpr_access_type
);
1784 static int kvm_handle_halt(CPUX86State
*env
)
1786 if (!((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1787 (env
->eflags
& IF_MASK
)) &&
1788 !(env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1796 static int kvm_handle_tpr_access(CPUX86State
*env
)
1798 struct kvm_run
*run
= env
->kvm_run
;
1800 apic_handle_tpr_access_report(env
->apic_state
, run
->tpr_access
.rip
,
1801 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
1806 int kvm_arch_insert_sw_breakpoint(CPUX86State
*env
, struct kvm_sw_breakpoint
*bp
)
1808 static const uint8_t int3
= 0xcc;
1810 if (cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
1811 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
1817 int kvm_arch_remove_sw_breakpoint(CPUX86State
*env
, struct kvm_sw_breakpoint
*bp
)
1821 if (cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
1822 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
1834 static int nb_hw_breakpoint
;
1836 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
1840 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1841 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
1842 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
1849 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1850 target_ulong len
, int type
)
1853 case GDB_BREAKPOINT_HW
:
1856 case GDB_WATCHPOINT_WRITE
:
1857 case GDB_WATCHPOINT_ACCESS
:
1864 if (addr
& (len
- 1)) {
1876 if (nb_hw_breakpoint
== 4) {
1879 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
1882 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
1883 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
1884 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
1890 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1891 target_ulong len
, int type
)
1895 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
1900 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
1905 void kvm_arch_remove_all_hw_breakpoints(void)
1907 nb_hw_breakpoint
= 0;
1910 static CPUWatchpoint hw_watchpoint
;
1912 static int kvm_handle_debug(struct kvm_debug_exit_arch
*arch_info
)
1917 if (arch_info
->exception
== 1) {
1918 if (arch_info
->dr6
& (1 << 14)) {
1919 if (cpu_single_env
->singlestep_enabled
) {
1923 for (n
= 0; n
< 4; n
++) {
1924 if (arch_info
->dr6
& (1 << n
)) {
1925 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
1931 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1932 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1933 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1937 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1938 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1939 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
1945 } else if (kvm_find_sw_breakpoint(cpu_single_env
, arch_info
->pc
)) {
1949 cpu_synchronize_state(cpu_single_env
);
1950 assert(cpu_single_env
->exception_injected
== -1);
1953 cpu_single_env
->exception_injected
= arch_info
->exception
;
1954 cpu_single_env
->has_error_code
= 0;
1960 void kvm_arch_update_guest_debug(CPUX86State
*env
, struct kvm_guest_debug
*dbg
)
1962 const uint8_t type_code
[] = {
1963 [GDB_BREAKPOINT_HW
] = 0x0,
1964 [GDB_WATCHPOINT_WRITE
] = 0x1,
1965 [GDB_WATCHPOINT_ACCESS
] = 0x3
1967 const uint8_t len_code
[] = {
1968 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1972 if (kvm_sw_breakpoints_active(env
)) {
1973 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1975 if (nb_hw_breakpoint
> 0) {
1976 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1977 dbg
->arch
.debugreg
[7] = 0x0600;
1978 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1979 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
1980 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
1981 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
1982 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
1987 static bool host_supports_vmx(void)
1989 uint32_t ecx
, unused
;
1991 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
1992 return ecx
& CPUID_EXT_VMX
;
1995 #define VMX_INVALID_GUEST_STATE 0x80000021
1997 int kvm_arch_handle_exit(CPUX86State
*env
, struct kvm_run
*run
)
2002 switch (run
->exit_reason
) {
2004 DPRINTF("handle_hlt\n");
2005 ret
= kvm_handle_halt(env
);
2007 case KVM_EXIT_SET_TPR
:
2010 case KVM_EXIT_TPR_ACCESS
:
2011 ret
= kvm_handle_tpr_access(env
);
2013 case KVM_EXIT_FAIL_ENTRY
:
2014 code
= run
->fail_entry
.hardware_entry_failure_reason
;
2015 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
2017 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
2019 "\nIf you're running a guest on an Intel machine without "
2020 "unrestricted mode\n"
2021 "support, the failure can be most likely due to the guest "
2022 "entering an invalid\n"
2023 "state for Intel VT. For example, the guest maybe running "
2024 "in big real mode\n"
2025 "which is not supported on less recent Intel processors."
2030 case KVM_EXIT_EXCEPTION
:
2031 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
2032 run
->ex
.exception
, run
->ex
.error_code
);
2035 case KVM_EXIT_DEBUG
:
2036 DPRINTF("kvm_exit_debug\n");
2037 ret
= kvm_handle_debug(&run
->debug
.arch
);
2040 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
2048 bool kvm_arch_stop_on_emulation_error(CPUX86State
*env
)
2050 kvm_cpu_synchronize_state(env
);
2051 return !(env
->cr
[0] & CR0_PE_MASK
) ||
2052 ((env
->segs
[R_CS
].selector
& 3) != 3);
2055 void kvm_arch_init_irq_routing(KVMState
*s
)
2057 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2058 /* If kernel can't do irq routing, interrupt source
2059 * override 0->2 cannot be set up as required by HPET.
2060 * So we have to disable it.
2064 /* We know at this point that we're using the in-kernel
2065 * irqchip, so we can use irqfds, and on x86 we know
2066 * we can use msi via irqfd and GSI routing.
2068 kvm_irqfds_allowed
= true;
2069 kvm_msi_via_irqfd_allowed
= true;
2070 kvm_gsi_routing_allowed
= true;
2073 /* Classic KVM device assignment interface. Will remain x86 only. */
2074 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
2075 uint32_t flags
, uint32_t *dev_id
)
2077 struct kvm_assigned_pci_dev dev_data
= {
2078 .segnr
= dev_addr
->domain
,
2079 .busnr
= dev_addr
->bus
,
2080 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
2085 dev_data
.assigned_dev_id
=
2086 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
2088 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
2093 *dev_id
= dev_data
.assigned_dev_id
;
2098 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
2100 struct kvm_assigned_pci_dev dev_data
= {
2101 .assigned_dev_id
= dev_id
,
2104 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
2107 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
2108 uint32_t irq_type
, uint32_t guest_irq
)
2110 struct kvm_assigned_irq assigned_irq
= {
2111 .assigned_dev_id
= dev_id
,
2112 .guest_irq
= guest_irq
,
2116 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
2117 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
2119 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
2123 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
2126 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
2127 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
2129 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
2132 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
2134 struct kvm_assigned_pci_dev dev_data
= {
2135 .assigned_dev_id
= dev_id
,
2136 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
2139 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
2142 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
2145 struct kvm_assigned_irq assigned_irq
= {
2146 .assigned_dev_id
= dev_id
,
2150 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
2153 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
2155 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
2156 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
2159 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
2161 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
2162 KVM_DEV_IRQ_GUEST_MSI
, virq
);
2165 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
2167 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
2168 KVM_DEV_IRQ_HOST_MSI
);
2171 bool kvm_device_msix_supported(KVMState
*s
)
2173 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2174 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2175 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
2178 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
2179 uint32_t nr_vectors
)
2181 struct kvm_assigned_msix_nr msix_nr
= {
2182 .assigned_dev_id
= dev_id
,
2183 .entry_nr
= nr_vectors
,
2186 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
2189 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
2192 struct kvm_assigned_msix_entry msix_entry
= {
2193 .assigned_dev_id
= dev_id
,
2198 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
2201 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
2203 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
2204 KVM_DEV_IRQ_GUEST_MSIX
, 0);
2207 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
2209 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
2210 KVM_DEV_IRQ_HOST_MSIX
);