vhost-blk: set features before setting inflight feature
[qemu/ar7.git] / include / exec / memory.h
blob0f3e6bcd5e74a9969913bccd1d93a073f190e55b
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 #ifdef CONFIG_FUZZ
46 void fuzz_dma_read_cb(size_t addr,
47 size_t len,
48 MemoryRegion *mr,
49 bool is_write);
50 #else
51 static inline void fuzz_dma_read_cb(size_t addr,
52 size_t len,
53 MemoryRegion *mr,
54 bool is_write)
56 /* Do Nothing */
58 #endif
60 extern bool global_dirty_log;
62 typedef struct MemoryRegionOps MemoryRegionOps;
64 struct ReservedRegion {
65 hwaddr low;
66 hwaddr high;
67 unsigned type;
70 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
72 /* See address_space_translate: bit 0 is read, bit 1 is write. */
73 typedef enum {
74 IOMMU_NONE = 0,
75 IOMMU_RO = 1,
76 IOMMU_WO = 2,
77 IOMMU_RW = 3,
78 } IOMMUAccessFlags;
80 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
82 struct IOMMUTLBEntry {
83 AddressSpace *target_as;
84 hwaddr iova;
85 hwaddr translated_addr;
86 hwaddr addr_mask; /* 0xfff = 4k translation */
87 IOMMUAccessFlags perm;
91 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
92 * register with one or multiple IOMMU Notifier capability bit(s).
94 typedef enum {
95 IOMMU_NOTIFIER_NONE = 0,
96 /* Notify cache invalidations */
97 IOMMU_NOTIFIER_UNMAP = 0x1,
98 /* Notify entry changes (newly created entries) */
99 IOMMU_NOTIFIER_MAP = 0x2,
100 } IOMMUNotifierFlag;
102 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
104 struct IOMMUNotifier;
105 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
106 IOMMUTLBEntry *data);
108 struct IOMMUNotifier {
109 IOMMUNotify notify;
110 IOMMUNotifierFlag notifier_flags;
111 /* Notify for address space range start <= addr <= end */
112 hwaddr start;
113 hwaddr end;
114 int iommu_idx;
115 QLIST_ENTRY(IOMMUNotifier) node;
117 typedef struct IOMMUNotifier IOMMUNotifier;
119 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
120 #define RAM_PREALLOC (1 << 0)
122 /* RAM is mmap-ed with MAP_SHARED */
123 #define RAM_SHARED (1 << 1)
125 /* Only a portion of RAM (used_length) is actually used, and migrated.
126 * This used_length size can change across reboots.
128 #define RAM_RESIZEABLE (1 << 2)
130 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
131 * zero the page and wake waiting processes.
132 * (Set during postcopy)
134 #define RAM_UF_ZEROPAGE (1 << 3)
136 /* RAM can be migrated */
137 #define RAM_MIGRATABLE (1 << 4)
139 /* RAM is a persistent kind memory */
140 #define RAM_PMEM (1 << 5)
142 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
143 IOMMUNotifierFlag flags,
144 hwaddr start, hwaddr end,
145 int iommu_idx)
147 n->notify = fn;
148 n->notifier_flags = flags;
149 n->start = start;
150 n->end = end;
151 n->iommu_idx = iommu_idx;
155 * Memory region callbacks
157 struct MemoryRegionOps {
158 /* Read from the memory region. @addr is relative to @mr; @size is
159 * in bytes. */
160 uint64_t (*read)(void *opaque,
161 hwaddr addr,
162 unsigned size);
163 /* Write to the memory region. @addr is relative to @mr; @size is
164 * in bytes. */
165 void (*write)(void *opaque,
166 hwaddr addr,
167 uint64_t data,
168 unsigned size);
170 MemTxResult (*read_with_attrs)(void *opaque,
171 hwaddr addr,
172 uint64_t *data,
173 unsigned size,
174 MemTxAttrs attrs);
175 MemTxResult (*write_with_attrs)(void *opaque,
176 hwaddr addr,
177 uint64_t data,
178 unsigned size,
179 MemTxAttrs attrs);
181 enum device_endian endianness;
182 /* Guest-visible constraints: */
183 struct {
184 /* If nonzero, specify bounds on access sizes beyond which a machine
185 * check is thrown.
187 unsigned min_access_size;
188 unsigned max_access_size;
189 /* If true, unaligned accesses are supported. Otherwise unaligned
190 * accesses throw machine checks.
192 bool unaligned;
194 * If present, and returns #false, the transaction is not accepted
195 * by the device (and results in machine dependent behaviour such
196 * as a machine check exception).
198 bool (*accepts)(void *opaque, hwaddr addr,
199 unsigned size, bool is_write,
200 MemTxAttrs attrs);
201 } valid;
202 /* Internal implementation constraints: */
203 struct {
204 /* If nonzero, specifies the minimum size implemented. Smaller sizes
205 * will be rounded upwards and a partial result will be returned.
207 unsigned min_access_size;
208 /* If nonzero, specifies the maximum size implemented. Larger sizes
209 * will be done as a series of accesses with smaller sizes.
211 unsigned max_access_size;
212 /* If true, unaligned accesses are supported. Otherwise all accesses
213 * are converted to (possibly multiple) naturally aligned accesses.
215 bool unaligned;
216 } impl;
219 typedef struct MemoryRegionClass {
220 /* private */
221 ObjectClass parent_class;
222 } MemoryRegionClass;
225 enum IOMMUMemoryRegionAttr {
226 IOMMU_ATTR_SPAPR_TCE_FD
230 * IOMMUMemoryRegionClass:
232 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
233 * and provide an implementation of at least the @translate method here
234 * to handle requests to the memory region. Other methods are optional.
236 * The IOMMU implementation must use the IOMMU notifier infrastructure
237 * to report whenever mappings are changed, by calling
238 * memory_region_notify_iommu() (or, if necessary, by calling
239 * memory_region_notify_one() for each registered notifier).
241 * Conceptually an IOMMU provides a mapping from input address
242 * to an output TLB entry. If the IOMMU is aware of memory transaction
243 * attributes and the output TLB entry depends on the transaction
244 * attributes, we represent this using IOMMU indexes. Each index
245 * selects a particular translation table that the IOMMU has:
247 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
249 * @translate takes an input address and an IOMMU index
251 * and the mapping returned can only depend on the input address and the
252 * IOMMU index.
254 * Most IOMMUs don't care about the transaction attributes and support
255 * only a single IOMMU index. A more complex IOMMU might have one index
256 * for secure transactions and one for non-secure transactions.
258 struct IOMMUMemoryRegionClass {
259 /* private: */
260 MemoryRegionClass parent_class;
262 /* public: */
264 * @translate:
266 * Return a TLB entry that contains a given address.
268 * The IOMMUAccessFlags indicated via @flag are optional and may
269 * be specified as IOMMU_NONE to indicate that the caller needs
270 * the full translation information for both reads and writes. If
271 * the access flags are specified then the IOMMU implementation
272 * may use this as an optimization, to stop doing a page table
273 * walk as soon as it knows that the requested permissions are not
274 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
275 * full page table walk and report the permissions in the returned
276 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
277 * return different mappings for reads and writes.)
279 * The returned information remains valid while the caller is
280 * holding the big QEMU lock or is inside an RCU critical section;
281 * if the caller wishes to cache the mapping beyond that it must
282 * register an IOMMU notifier so it can invalidate its cached
283 * information when the IOMMU mapping changes.
285 * @iommu: the IOMMUMemoryRegion
287 * @hwaddr: address to be translated within the memory region
289 * @flag: requested access permission
291 * @iommu_idx: IOMMU index for the translation
293 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
294 IOMMUAccessFlags flag, int iommu_idx);
296 * @get_min_page_size:
298 * Returns minimum supported page size in bytes.
300 * If this method is not provided then the minimum is assumed to
301 * be TARGET_PAGE_SIZE.
303 * @iommu: the IOMMUMemoryRegion
305 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
307 * @notify_flag_changed:
309 * Called when IOMMU Notifier flag changes (ie when the set of
310 * events which IOMMU users are requesting notification for changes).
311 * Optional method -- need not be provided if the IOMMU does not
312 * need to know exactly which events must be notified.
314 * @iommu: the IOMMUMemoryRegion
316 * @old_flags: events which previously needed to be notified
318 * @new_flags: events which now need to be notified
320 * Returns 0 on success, or a negative errno; in particular
321 * returns -EINVAL if the new flag bitmap is not supported by the
322 * IOMMU memory region. In case of failure, the error object
323 * must be created
325 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
326 IOMMUNotifierFlag old_flags,
327 IOMMUNotifierFlag new_flags,
328 Error **errp);
330 * @replay:
332 * Called to handle memory_region_iommu_replay().
334 * The default implementation of memory_region_iommu_replay() is to
335 * call the IOMMU translate method for every page in the address space
336 * with flag == IOMMU_NONE and then call the notifier if translate
337 * returns a valid mapping. If this method is implemented then it
338 * overrides the default behaviour, and must provide the full semantics
339 * of memory_region_iommu_replay(), by calling @notifier for every
340 * translation present in the IOMMU.
342 * Optional method -- an IOMMU only needs to provide this method
343 * if the default is inefficient or produces undesirable side effects.
345 * Note: this is not related to record-and-replay functionality.
347 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
350 * @get_attr:
352 * Get IOMMU misc attributes. This is an optional method that
353 * can be used to allow users of the IOMMU to get implementation-specific
354 * information. The IOMMU implements this method to handle calls
355 * by IOMMU users to memory_region_iommu_get_attr() by filling in
356 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
357 * the IOMMU supports. If the method is unimplemented then
358 * memory_region_iommu_get_attr() will always return -EINVAL.
360 * @iommu: the IOMMUMemoryRegion
362 * @attr: attribute being queried
364 * @data: memory to fill in with the attribute data
366 * Returns 0 on success, or a negative errno; in particular
367 * returns -EINVAL for unrecognized or unimplemented attribute types.
369 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
370 void *data);
373 * @attrs_to_index:
375 * Return the IOMMU index to use for a given set of transaction attributes.
377 * Optional method: if an IOMMU only supports a single IOMMU index then
378 * the default implementation of memory_region_iommu_attrs_to_index()
379 * will return 0.
381 * The indexes supported by an IOMMU must be contiguous, starting at 0.
383 * @iommu: the IOMMUMemoryRegion
384 * @attrs: memory transaction attributes
386 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
389 * @num_indexes:
391 * Return the number of IOMMU indexes this IOMMU supports.
393 * Optional method: if this method is not provided, then
394 * memory_region_iommu_num_indexes() will return 1, indicating that
395 * only a single IOMMU index is supported.
397 * @iommu: the IOMMUMemoryRegion
399 int (*num_indexes)(IOMMUMemoryRegion *iommu);
402 * @iommu_set_page_size_mask:
404 * Restrict the page size mask that can be supported with a given IOMMU
405 * memory region. Used for example to propagate host physical IOMMU page
406 * size mask limitations to the virtual IOMMU.
408 * Optional method: if this method is not provided, then the default global
409 * page mask is used.
411 * @iommu: the IOMMUMemoryRegion
413 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
414 * representing the smallest page size, must be set. Additional set bits
415 * represent supported block sizes. For example a host physical IOMMU that
416 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
417 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
418 * block sizes is specified with mask 0xfffffffffffff000.
420 * Returns 0 on success, or a negative error. In case of failure, the error
421 * object must be created.
423 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
424 uint64_t page_size_mask,
425 Error **errp);
428 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
429 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
431 /** MemoryRegion:
433 * A struct representing a memory region.
435 struct MemoryRegion {
436 Object parent_obj;
438 /* private: */
440 /* The following fields should fit in a cache line */
441 bool romd_mode;
442 bool ram;
443 bool subpage;
444 bool readonly; /* For RAM regions */
445 bool nonvolatile;
446 bool rom_device;
447 bool flush_coalesced_mmio;
448 uint8_t dirty_log_mask;
449 bool is_iommu;
450 RAMBlock *ram_block;
451 Object *owner;
453 const MemoryRegionOps *ops;
454 void *opaque;
455 MemoryRegion *container;
456 Int128 size;
457 hwaddr addr;
458 void (*destructor)(MemoryRegion *mr);
459 uint64_t align;
460 bool terminates;
461 bool ram_device;
462 bool enabled;
463 bool warning_printed; /* For reservations */
464 uint8_t vga_logging_count;
465 MemoryRegion *alias;
466 hwaddr alias_offset;
467 int32_t priority;
468 QTAILQ_HEAD(, MemoryRegion) subregions;
469 QTAILQ_ENTRY(MemoryRegion) subregions_link;
470 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
471 const char *name;
472 unsigned ioeventfd_nb;
473 MemoryRegionIoeventfd *ioeventfds;
476 struct IOMMUMemoryRegion {
477 MemoryRegion parent_obj;
479 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
480 IOMMUNotifierFlag iommu_notify_flags;
483 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
484 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
487 * struct MemoryListener: callbacks structure for updates to the physical memory map
489 * Allows a component to adjust to changes in the guest-visible memory map.
490 * Use with memory_listener_register() and memory_listener_unregister().
492 struct MemoryListener {
494 * @begin:
496 * Called at the beginning of an address space update transaction.
497 * Followed by calls to #MemoryListener.region_add(),
498 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
499 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
500 * increasing address order.
502 * @listener: The #MemoryListener.
504 void (*begin)(MemoryListener *listener);
507 * @commit:
509 * Called at the end of an address space update transaction,
510 * after the last call to #MemoryListener.region_add(),
511 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
512 * #MemoryListener.log_start() and #MemoryListener.log_stop().
514 * @listener: The #MemoryListener.
516 void (*commit)(MemoryListener *listener);
519 * @region_add:
521 * Called during an address space update transaction,
522 * for a section of the address space that is new in this address space
523 * space since the last transaction.
525 * @listener: The #MemoryListener.
526 * @section: The new #MemoryRegionSection.
528 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
531 * @region_del:
533 * Called during an address space update transaction,
534 * for a section of the address space that has disappeared in the address
535 * space since the last transaction.
537 * @listener: The #MemoryListener.
538 * @section: The old #MemoryRegionSection.
540 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
543 * @region_nop:
545 * Called during an address space update transaction,
546 * for a section of the address space that is in the same place in the address
547 * space as in the last transaction.
549 * @listener: The #MemoryListener.
550 * @section: The #MemoryRegionSection.
552 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
555 * @log_start:
557 * Called during an address space update transaction, after
558 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
559 * #MemoryListener.region_nop(), if dirty memory logging clients have
560 * become active since the last transaction.
562 * @listener: The #MemoryListener.
563 * @section: The #MemoryRegionSection.
564 * @old: A bitmap of dirty memory logging clients that were active in
565 * the previous transaction.
566 * @new: A bitmap of dirty memory logging clients that are active in
567 * the current transaction.
569 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
570 int old, int new);
573 * @log_stop:
575 * Called during an address space update transaction, after
576 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
577 * #MemoryListener.region_nop() and possibly after
578 * #MemoryListener.log_start(), if dirty memory logging clients have
579 * become inactive since the last transaction.
581 * @listener: The #MemoryListener.
582 * @section: The #MemoryRegionSection.
583 * @old: A bitmap of dirty memory logging clients that were active in
584 * the previous transaction.
585 * @new: A bitmap of dirty memory logging clients that are active in
586 * the current transaction.
588 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
589 int old, int new);
592 * @log_sync:
594 * Called by memory_region_snapshot_and_clear_dirty() and
595 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
596 * copy of the dirty memory bitmap for a #MemoryRegionSection.
598 * @listener: The #MemoryListener.
599 * @section: The #MemoryRegionSection.
601 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
604 * @log_clear:
606 * Called before reading the dirty memory bitmap for a
607 * #MemoryRegionSection.
609 * @listener: The #MemoryListener.
610 * @section: The #MemoryRegionSection.
612 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
615 * @log_global_start:
617 * Called by memory_global_dirty_log_start(), which
618 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
619 * the address space. #MemoryListener.log_global_start() is also
620 * called when a #MemoryListener is added, if global dirty logging is
621 * active at that time.
623 * @listener: The #MemoryListener.
625 void (*log_global_start)(MemoryListener *listener);
628 * @log_global_stop:
630 * Called by memory_global_dirty_log_stop(), which
631 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
632 * the address space.
634 * @listener: The #MemoryListener.
636 void (*log_global_stop)(MemoryListener *listener);
639 * @log_global_after_sync:
641 * Called after reading the dirty memory bitmap
642 * for any #MemoryRegionSection.
644 * @listener: The #MemoryListener.
646 void (*log_global_after_sync)(MemoryListener *listener);
649 * @eventfd_add:
651 * Called during an address space update transaction,
652 * for a section of the address space that has had a new ioeventfd
653 * registration since the last transaction.
655 * @listener: The #MemoryListener.
656 * @section: The new #MemoryRegionSection.
657 * @match_data: The @match_data parameter for the new ioeventfd.
658 * @data: The @data parameter for the new ioeventfd.
659 * @e: The #EventNotifier parameter for the new ioeventfd.
661 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
662 bool match_data, uint64_t data, EventNotifier *e);
665 * @eventfd_del:
667 * Called during an address space update transaction,
668 * for a section of the address space that has dropped an ioeventfd
669 * registration since the last transaction.
671 * @listener: The #MemoryListener.
672 * @section: The new #MemoryRegionSection.
673 * @match_data: The @match_data parameter for the dropped ioeventfd.
674 * @data: The @data parameter for the dropped ioeventfd.
675 * @e: The #EventNotifier parameter for the dropped ioeventfd.
677 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
678 bool match_data, uint64_t data, EventNotifier *e);
681 * @coalesced_io_add:
683 * Called during an address space update transaction,
684 * for a section of the address space that has had a new coalesced
685 * MMIO range registration since the last transaction.
687 * @listener: The #MemoryListener.
688 * @section: The new #MemoryRegionSection.
689 * @addr: The starting address for the coalesced MMIO range.
690 * @len: The length of the coalesced MMIO range.
692 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
693 hwaddr addr, hwaddr len);
696 * @coalesced_io_del:
698 * Called during an address space update transaction,
699 * for a section of the address space that has dropped a coalesced
700 * MMIO range since the last transaction.
702 * @listener: The #MemoryListener.
703 * @section: The new #MemoryRegionSection.
704 * @addr: The starting address for the coalesced MMIO range.
705 * @len: The length of the coalesced MMIO range.
707 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
708 hwaddr addr, hwaddr len);
710 * @priority:
712 * Govern the order in which memory listeners are invoked. Lower priorities
713 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
714 * or "stop" callbacks.
716 unsigned priority;
718 /* private: */
719 AddressSpace *address_space;
720 QTAILQ_ENTRY(MemoryListener) link;
721 QTAILQ_ENTRY(MemoryListener) link_as;
725 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
727 struct AddressSpace {
728 /* private: */
729 struct rcu_head rcu;
730 char *name;
731 MemoryRegion *root;
733 /* Accessed via RCU. */
734 struct FlatView *current_map;
736 int ioeventfd_nb;
737 struct MemoryRegionIoeventfd *ioeventfds;
738 QTAILQ_HEAD(, MemoryListener) listeners;
739 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
742 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
743 typedef struct FlatRange FlatRange;
745 /* Flattened global view of current active memory hierarchy. Kept in sorted
746 * order.
748 struct FlatView {
749 struct rcu_head rcu;
750 unsigned ref;
751 FlatRange *ranges;
752 unsigned nr;
753 unsigned nr_allocated;
754 struct AddressSpaceDispatch *dispatch;
755 MemoryRegion *root;
758 static inline FlatView *address_space_to_flatview(AddressSpace *as)
760 return qatomic_rcu_read(&as->current_map);
763 typedef int (*flatview_cb)(Int128 start,
764 Int128 len,
765 const MemoryRegion*, void*);
767 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque);
770 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
772 * @mr: the region, or %NULL if empty
773 * @fv: the flat view of the address space the region is mapped in
774 * @offset_within_region: the beginning of the section, relative to @mr's start
775 * @size: the size of the section; will not exceed @mr's boundaries
776 * @offset_within_address_space: the address of the first byte of the section
777 * relative to the region's address space
778 * @readonly: writes to this section are ignored
779 * @nonvolatile: this section is non-volatile
781 struct MemoryRegionSection {
782 Int128 size;
783 MemoryRegion *mr;
784 FlatView *fv;
785 hwaddr offset_within_region;
786 hwaddr offset_within_address_space;
787 bool readonly;
788 bool nonvolatile;
791 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
792 MemoryRegionSection *b)
794 return a->mr == b->mr &&
795 a->fv == b->fv &&
796 a->offset_within_region == b->offset_within_region &&
797 a->offset_within_address_space == b->offset_within_address_space &&
798 int128_eq(a->size, b->size) &&
799 a->readonly == b->readonly &&
800 a->nonvolatile == b->nonvolatile;
804 * memory_region_init: Initialize a memory region
806 * The region typically acts as a container for other memory regions. Use
807 * memory_region_add_subregion() to add subregions.
809 * @mr: the #MemoryRegion to be initialized
810 * @owner: the object that tracks the region's reference count
811 * @name: used for debugging; not visible to the user or ABI
812 * @size: size of the region; any subregions beyond this size will be clipped
814 void memory_region_init(MemoryRegion *mr,
815 struct Object *owner,
816 const char *name,
817 uint64_t size);
820 * memory_region_ref: Add 1 to a memory region's reference count
822 * Whenever memory regions are accessed outside the BQL, they need to be
823 * preserved against hot-unplug. MemoryRegions actually do not have their
824 * own reference count; they piggyback on a QOM object, their "owner".
825 * This function adds a reference to the owner.
827 * All MemoryRegions must have an owner if they can disappear, even if the
828 * device they belong to operates exclusively under the BQL. This is because
829 * the region could be returned at any time by memory_region_find, and this
830 * is usually under guest control.
832 * @mr: the #MemoryRegion
834 void memory_region_ref(MemoryRegion *mr);
837 * memory_region_unref: Remove 1 to a memory region's reference count
839 * Whenever memory regions are accessed outside the BQL, they need to be
840 * preserved against hot-unplug. MemoryRegions actually do not have their
841 * own reference count; they piggyback on a QOM object, their "owner".
842 * This function removes a reference to the owner and possibly destroys it.
844 * @mr: the #MemoryRegion
846 void memory_region_unref(MemoryRegion *mr);
849 * memory_region_init_io: Initialize an I/O memory region.
851 * Accesses into the region will cause the callbacks in @ops to be called.
852 * if @size is nonzero, subregions will be clipped to @size.
854 * @mr: the #MemoryRegion to be initialized.
855 * @owner: the object that tracks the region's reference count
856 * @ops: a structure containing read and write callbacks to be used when
857 * I/O is performed on the region.
858 * @opaque: passed to the read and write callbacks of the @ops structure.
859 * @name: used for debugging; not visible to the user or ABI
860 * @size: size of the region.
862 void memory_region_init_io(MemoryRegion *mr,
863 struct Object *owner,
864 const MemoryRegionOps *ops,
865 void *opaque,
866 const char *name,
867 uint64_t size);
870 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
871 * into the region will modify memory
872 * directly.
874 * @mr: the #MemoryRegion to be initialized.
875 * @owner: the object that tracks the region's reference count
876 * @name: Region name, becomes part of RAMBlock name used in migration stream
877 * must be unique within any device
878 * @size: size of the region.
879 * @errp: pointer to Error*, to store an error if it happens.
881 * Note that this function does not do anything to cause the data in the
882 * RAM memory region to be migrated; that is the responsibility of the caller.
884 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
885 struct Object *owner,
886 const char *name,
887 uint64_t size,
888 Error **errp);
891 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
892 * Accesses into the region will
893 * modify memory directly.
895 * @mr: the #MemoryRegion to be initialized.
896 * @owner: the object that tracks the region's reference count
897 * @name: Region name, becomes part of RAMBlock name used in migration stream
898 * must be unique within any device
899 * @size: size of the region.
900 * @share: allow remapping RAM to different addresses
901 * @errp: pointer to Error*, to store an error if it happens.
903 * Note that this function is similar to memory_region_init_ram_nomigrate.
904 * The only difference is part of the RAM region can be remapped.
906 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
907 struct Object *owner,
908 const char *name,
909 uint64_t size,
910 bool share,
911 Error **errp);
914 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
915 * RAM. Accesses into the region will
916 * modify memory directly. Only an initial
917 * portion of this RAM is actually used.
918 * The used size can change across reboots.
920 * @mr: the #MemoryRegion to be initialized.
921 * @owner: the object that tracks the region's reference count
922 * @name: Region name, becomes part of RAMBlock name used in migration stream
923 * must be unique within any device
924 * @size: used size of the region.
925 * @max_size: max size of the region.
926 * @resized: callback to notify owner about used size change.
927 * @errp: pointer to Error*, to store an error if it happens.
929 * Note that this function does not do anything to cause the data in the
930 * RAM memory region to be migrated; that is the responsibility of the caller.
932 void memory_region_init_resizeable_ram(MemoryRegion *mr,
933 struct Object *owner,
934 const char *name,
935 uint64_t size,
936 uint64_t max_size,
937 void (*resized)(const char*,
938 uint64_t length,
939 void *host),
940 Error **errp);
941 #ifdef CONFIG_POSIX
944 * memory_region_init_ram_from_file: Initialize RAM memory region with a
945 * mmap-ed backend.
947 * @mr: the #MemoryRegion to be initialized.
948 * @owner: the object that tracks the region's reference count
949 * @name: Region name, becomes part of RAMBlock name used in migration stream
950 * must be unique within any device
951 * @size: size of the region.
952 * @align: alignment of the region base address; if 0, the default alignment
953 * (getpagesize()) will be used.
954 * @ram_flags: Memory region features:
955 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
956 * - RAM_PMEM: the memory is persistent memory
957 * Other bits are ignored now.
958 * @path: the path in which to allocate the RAM.
959 * @errp: pointer to Error*, to store an error if it happens.
961 * Note that this function does not do anything to cause the data in the
962 * RAM memory region to be migrated; that is the responsibility of the caller.
964 void memory_region_init_ram_from_file(MemoryRegion *mr,
965 struct Object *owner,
966 const char *name,
967 uint64_t size,
968 uint64_t align,
969 uint32_t ram_flags,
970 const char *path,
971 Error **errp);
974 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
975 * mmap-ed backend.
977 * @mr: the #MemoryRegion to be initialized.
978 * @owner: the object that tracks the region's reference count
979 * @name: the name of the region.
980 * @size: size of the region.
981 * @share: %true if memory must be mmaped with the MAP_SHARED flag
982 * @fd: the fd to mmap.
983 * @errp: pointer to Error*, to store an error if it happens.
985 * Note that this function does not do anything to cause the data in the
986 * RAM memory region to be migrated; that is the responsibility of the caller.
988 void memory_region_init_ram_from_fd(MemoryRegion *mr,
989 struct Object *owner,
990 const char *name,
991 uint64_t size,
992 bool share,
993 int fd,
994 Error **errp);
995 #endif
998 * memory_region_init_ram_ptr: Initialize RAM memory region from a
999 * user-provided pointer. Accesses into the
1000 * region will modify memory directly.
1002 * @mr: the #MemoryRegion to be initialized.
1003 * @owner: the object that tracks the region's reference count
1004 * @name: Region name, becomes part of RAMBlock name used in migration stream
1005 * must be unique within any device
1006 * @size: size of the region.
1007 * @ptr: memory to be mapped; must contain at least @size bytes.
1009 * Note that this function does not do anything to cause the data in the
1010 * RAM memory region to be migrated; that is the responsibility of the caller.
1012 void memory_region_init_ram_ptr(MemoryRegion *mr,
1013 struct Object *owner,
1014 const char *name,
1015 uint64_t size,
1016 void *ptr);
1019 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1020 * a user-provided pointer.
1022 * A RAM device represents a mapping to a physical device, such as to a PCI
1023 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1024 * into the VM address space and access to the region will modify memory
1025 * directly. However, the memory region should not be included in a memory
1026 * dump (device may not be enabled/mapped at the time of the dump), and
1027 * operations incompatible with manipulating MMIO should be avoided. Replaces
1028 * skip_dump flag.
1030 * @mr: the #MemoryRegion to be initialized.
1031 * @owner: the object that tracks the region's reference count
1032 * @name: the name of the region.
1033 * @size: size of the region.
1034 * @ptr: memory to be mapped; must contain at least @size bytes.
1036 * Note that this function does not do anything to cause the data in the
1037 * RAM memory region to be migrated; that is the responsibility of the caller.
1038 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1040 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1041 struct Object *owner,
1042 const char *name,
1043 uint64_t size,
1044 void *ptr);
1047 * memory_region_init_alias: Initialize a memory region that aliases all or a
1048 * part of another memory region.
1050 * @mr: the #MemoryRegion to be initialized.
1051 * @owner: the object that tracks the region's reference count
1052 * @name: used for debugging; not visible to the user or ABI
1053 * @orig: the region to be referenced; @mr will be equivalent to
1054 * @orig between @offset and @offset + @size - 1.
1055 * @offset: start of the section in @orig to be referenced.
1056 * @size: size of the region.
1058 void memory_region_init_alias(MemoryRegion *mr,
1059 struct Object *owner,
1060 const char *name,
1061 MemoryRegion *orig,
1062 hwaddr offset,
1063 uint64_t size);
1066 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1068 * This has the same effect as calling memory_region_init_ram_nomigrate()
1069 * and then marking the resulting region read-only with
1070 * memory_region_set_readonly().
1072 * Note that this function does not do anything to cause the data in the
1073 * RAM side of the memory region to be migrated; that is the responsibility
1074 * of the caller.
1076 * @mr: the #MemoryRegion to be initialized.
1077 * @owner: the object that tracks the region's reference count
1078 * @name: Region name, becomes part of RAMBlock name used in migration stream
1079 * must be unique within any device
1080 * @size: size of the region.
1081 * @errp: pointer to Error*, to store an error if it happens.
1083 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1084 struct Object *owner,
1085 const char *name,
1086 uint64_t size,
1087 Error **errp);
1090 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1091 * Writes are handled via callbacks.
1093 * Note that this function does not do anything to cause the data in the
1094 * RAM side of the memory region to be migrated; that is the responsibility
1095 * of the caller.
1097 * @mr: the #MemoryRegion to be initialized.
1098 * @owner: the object that tracks the region's reference count
1099 * @ops: callbacks for write access handling (must not be NULL).
1100 * @opaque: passed to the read and write callbacks of the @ops structure.
1101 * @name: Region name, becomes part of RAMBlock name used in migration stream
1102 * must be unique within any device
1103 * @size: size of the region.
1104 * @errp: pointer to Error*, to store an error if it happens.
1106 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1107 struct Object *owner,
1108 const MemoryRegionOps *ops,
1109 void *opaque,
1110 const char *name,
1111 uint64_t size,
1112 Error **errp);
1115 * memory_region_init_iommu: Initialize a memory region of a custom type
1116 * that translates addresses
1118 * An IOMMU region translates addresses and forwards accesses to a target
1119 * memory region.
1121 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1122 * @_iommu_mr should be a pointer to enough memory for an instance of
1123 * that subclass, @instance_size is the size of that subclass, and
1124 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1125 * instance of the subclass, and its methods will then be called to handle
1126 * accesses to the memory region. See the documentation of
1127 * #IOMMUMemoryRegionClass for further details.
1129 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1130 * @instance_size: the IOMMUMemoryRegion subclass instance size
1131 * @mrtypename: the type name of the #IOMMUMemoryRegion
1132 * @owner: the object that tracks the region's reference count
1133 * @name: used for debugging; not visible to the user or ABI
1134 * @size: size of the region.
1136 void memory_region_init_iommu(void *_iommu_mr,
1137 size_t instance_size,
1138 const char *mrtypename,
1139 Object *owner,
1140 const char *name,
1141 uint64_t size);
1144 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1145 * region will modify memory directly.
1147 * @mr: the #MemoryRegion to be initialized
1148 * @owner: the object that tracks the region's reference count (must be
1149 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1150 * @name: name of the memory region
1151 * @size: size of the region in bytes
1152 * @errp: pointer to Error*, to store an error if it happens.
1154 * This function allocates RAM for a board model or device, and
1155 * arranges for it to be migrated (by calling vmstate_register_ram()
1156 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1157 * @owner is NULL).
1159 * TODO: Currently we restrict @owner to being either NULL (for
1160 * global RAM regions with no owner) or devices, so that we can
1161 * give the RAM block a unique name for migration purposes.
1162 * We should lift this restriction and allow arbitrary Objects.
1163 * If you pass a non-NULL non-device @owner then we will assert.
1165 void memory_region_init_ram(MemoryRegion *mr,
1166 struct Object *owner,
1167 const char *name,
1168 uint64_t size,
1169 Error **errp);
1172 * memory_region_init_rom: Initialize a ROM memory region.
1174 * This has the same effect as calling memory_region_init_ram()
1175 * and then marking the resulting region read-only with
1176 * memory_region_set_readonly(). This includes arranging for the
1177 * contents to be migrated.
1179 * TODO: Currently we restrict @owner to being either NULL (for
1180 * global RAM regions with no owner) or devices, so that we can
1181 * give the RAM block a unique name for migration purposes.
1182 * We should lift this restriction and allow arbitrary Objects.
1183 * If you pass a non-NULL non-device @owner then we will assert.
1185 * @mr: the #MemoryRegion to be initialized.
1186 * @owner: the object that tracks the region's reference count
1187 * @name: Region name, becomes part of RAMBlock name used in migration stream
1188 * must be unique within any device
1189 * @size: size of the region.
1190 * @errp: pointer to Error*, to store an error if it happens.
1192 void memory_region_init_rom(MemoryRegion *mr,
1193 struct Object *owner,
1194 const char *name,
1195 uint64_t size,
1196 Error **errp);
1199 * memory_region_init_rom_device: Initialize a ROM memory region.
1200 * Writes are handled via callbacks.
1202 * This function initializes a memory region backed by RAM for reads
1203 * and callbacks for writes, and arranges for the RAM backing to
1204 * be migrated (by calling vmstate_register_ram()
1205 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1206 * @owner is NULL).
1208 * TODO: Currently we restrict @owner to being either NULL (for
1209 * global RAM regions with no owner) or devices, so that we can
1210 * give the RAM block a unique name for migration purposes.
1211 * We should lift this restriction and allow arbitrary Objects.
1212 * If you pass a non-NULL non-device @owner then we will assert.
1214 * @mr: the #MemoryRegion to be initialized.
1215 * @owner: the object that tracks the region's reference count
1216 * @ops: callbacks for write access handling (must not be NULL).
1217 * @opaque: passed to the read and write callbacks of the @ops structure.
1218 * @name: Region name, becomes part of RAMBlock name used in migration stream
1219 * must be unique within any device
1220 * @size: size of the region.
1221 * @errp: pointer to Error*, to store an error if it happens.
1223 void memory_region_init_rom_device(MemoryRegion *mr,
1224 struct Object *owner,
1225 const MemoryRegionOps *ops,
1226 void *opaque,
1227 const char *name,
1228 uint64_t size,
1229 Error **errp);
1233 * memory_region_owner: get a memory region's owner.
1235 * @mr: the memory region being queried.
1237 struct Object *memory_region_owner(MemoryRegion *mr);
1240 * memory_region_size: get a memory region's size.
1242 * @mr: the memory region being queried.
1244 uint64_t memory_region_size(MemoryRegion *mr);
1247 * memory_region_is_ram: check whether a memory region is random access
1249 * Returns %true if a memory region is random access.
1251 * @mr: the memory region being queried
1253 static inline bool memory_region_is_ram(MemoryRegion *mr)
1255 return mr->ram;
1259 * memory_region_is_ram_device: check whether a memory region is a ram device
1261 * Returns %true if a memory region is a device backed ram region
1263 * @mr: the memory region being queried
1265 bool memory_region_is_ram_device(MemoryRegion *mr);
1268 * memory_region_is_romd: check whether a memory region is in ROMD mode
1270 * Returns %true if a memory region is a ROM device and currently set to allow
1271 * direct reads.
1273 * @mr: the memory region being queried
1275 static inline bool memory_region_is_romd(MemoryRegion *mr)
1277 return mr->rom_device && mr->romd_mode;
1281 * memory_region_get_iommu: check whether a memory region is an iommu
1283 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1284 * otherwise NULL.
1286 * @mr: the memory region being queried
1288 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1290 if (mr->alias) {
1291 return memory_region_get_iommu(mr->alias);
1293 if (mr->is_iommu) {
1294 return (IOMMUMemoryRegion *) mr;
1296 return NULL;
1300 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1301 * if an iommu or NULL if not
1303 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1304 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1306 * @iommu_mr: the memory region being queried
1308 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1309 IOMMUMemoryRegion *iommu_mr)
1311 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1314 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1317 * memory_region_iommu_get_min_page_size: get minimum supported page size
1318 * for an iommu
1320 * Returns minimum supported page size for an iommu.
1322 * @iommu_mr: the memory region being queried
1324 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1327 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1329 * The notification type will be decided by entry.perm bits:
1331 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1332 * - For MAP (newly added entry) notifies: set entry.perm to the
1333 * permission of the page (which is definitely !IOMMU_NONE).
1335 * Note: for any IOMMU implementation, an in-place mapping change
1336 * should be notified with an UNMAP followed by a MAP.
1338 * @iommu_mr: the memory region that was changed
1339 * @iommu_idx: the IOMMU index for the translation table which has changed
1340 * @entry: the new entry in the IOMMU translation table. The entry
1341 * replaces all old entries for the same virtual I/O address range.
1342 * Deleted entries have .@perm == 0.
1344 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1345 int iommu_idx,
1346 IOMMUTLBEntry entry);
1349 * memory_region_notify_one: notify a change in an IOMMU translation
1350 * entry to a single notifier
1352 * This works just like memory_region_notify_iommu(), but it only
1353 * notifies a specific notifier, not all of them.
1355 * @notifier: the notifier to be notified
1356 * @entry: the new entry in the IOMMU translation table. The entry
1357 * replaces all old entries for the same virtual I/O address range.
1358 * Deleted entries have .@perm == 0.
1360 void memory_region_notify_one(IOMMUNotifier *notifier,
1361 IOMMUTLBEntry *entry);
1364 * memory_region_register_iommu_notifier: register a notifier for changes to
1365 * IOMMU translation entries.
1367 * Returns 0 on success, or a negative errno otherwise. In particular,
1368 * -EINVAL indicates that at least one of the attributes of the notifier
1369 * is not supported (flag/range) by the IOMMU memory region. In case of error
1370 * the error object must be created.
1372 * @mr: the memory region to observe
1373 * @n: the IOMMUNotifier to be added; the notify callback receives a
1374 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1375 * ceases to be valid on exit from the notifier.
1376 * @errp: pointer to Error*, to store an error if it happens.
1378 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1379 IOMMUNotifier *n, Error **errp);
1382 * memory_region_iommu_replay: replay existing IOMMU translations to
1383 * a notifier with the minimum page granularity returned by
1384 * mr->iommu_ops->get_page_size().
1386 * Note: this is not related to record-and-replay functionality.
1388 * @iommu_mr: the memory region to observe
1389 * @n: the notifier to which to replay iommu mappings
1391 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1394 * memory_region_unregister_iommu_notifier: unregister a notifier for
1395 * changes to IOMMU translation entries.
1397 * @mr: the memory region which was observed and for which notity_stopped()
1398 * needs to be called
1399 * @n: the notifier to be removed.
1401 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1402 IOMMUNotifier *n);
1405 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1406 * defined on the IOMMU.
1408 * Returns 0 on success, or a negative errno otherwise. In particular,
1409 * -EINVAL indicates that the IOMMU does not support the requested
1410 * attribute.
1412 * @iommu_mr: the memory region
1413 * @attr: the requested attribute
1414 * @data: a pointer to the requested attribute data
1416 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1417 enum IOMMUMemoryRegionAttr attr,
1418 void *data);
1421 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1422 * use for translations with the given memory transaction attributes.
1424 * @iommu_mr: the memory region
1425 * @attrs: the memory transaction attributes
1427 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1428 MemTxAttrs attrs);
1431 * memory_region_iommu_num_indexes: return the total number of IOMMU
1432 * indexes that this IOMMU supports.
1434 * @iommu_mr: the memory region
1436 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1439 * memory_region_iommu_set_page_size_mask: set the supported page
1440 * sizes for a given IOMMU memory region
1442 * @iommu_mr: IOMMU memory region
1443 * @page_size_mask: supported page size mask
1444 * @errp: pointer to Error*, to store an error if it happens.
1446 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1447 uint64_t page_size_mask,
1448 Error **errp);
1451 * memory_region_name: get a memory region's name
1453 * Returns the string that was used to initialize the memory region.
1455 * @mr: the memory region being queried
1457 const char *memory_region_name(const MemoryRegion *mr);
1460 * memory_region_is_logging: return whether a memory region is logging writes
1462 * Returns %true if the memory region is logging writes for the given client
1464 * @mr: the memory region being queried
1465 * @client: the client being queried
1467 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1470 * memory_region_get_dirty_log_mask: return the clients for which a
1471 * memory region is logging writes.
1473 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1474 * are the bit indices.
1476 * @mr: the memory region being queried
1478 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1481 * memory_region_is_rom: check whether a memory region is ROM
1483 * Returns %true if a memory region is read-only memory.
1485 * @mr: the memory region being queried
1487 static inline bool memory_region_is_rom(MemoryRegion *mr)
1489 return mr->ram && mr->readonly;
1493 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1495 * Returns %true is a memory region is non-volatile memory.
1497 * @mr: the memory region being queried
1499 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1501 return mr->nonvolatile;
1505 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1507 * Returns a file descriptor backing a file-based RAM memory region,
1508 * or -1 if the region is not a file-based RAM memory region.
1510 * @mr: the RAM or alias memory region being queried.
1512 int memory_region_get_fd(MemoryRegion *mr);
1515 * memory_region_from_host: Convert a pointer into a RAM memory region
1516 * and an offset within it.
1518 * Given a host pointer inside a RAM memory region (created with
1519 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1520 * the MemoryRegion and the offset within it.
1522 * Use with care; by the time this function returns, the returned pointer is
1523 * not protected by RCU anymore. If the caller is not within an RCU critical
1524 * section and does not hold the iothread lock, it must have other means of
1525 * protecting the pointer, such as a reference to the region that includes
1526 * the incoming ram_addr_t.
1528 * @ptr: the host pointer to be converted
1529 * @offset: the offset within memory region
1531 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1534 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1536 * Returns a host pointer to a RAM memory region (created with
1537 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1539 * Use with care; by the time this function returns, the returned pointer is
1540 * not protected by RCU anymore. If the caller is not within an RCU critical
1541 * section and does not hold the iothread lock, it must have other means of
1542 * protecting the pointer, such as a reference to the region that includes
1543 * the incoming ram_addr_t.
1545 * @mr: the memory region being queried.
1547 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1549 /* memory_region_ram_resize: Resize a RAM region.
1551 * Only legal before guest might have detected the memory size: e.g. on
1552 * incoming migration, or right after reset.
1554 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1555 * @newsize: the new size the region
1556 * @errp: pointer to Error*, to store an error if it happens.
1558 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1559 Error **errp);
1562 * memory_region_msync: Synchronize selected address range of
1563 * a memory mapped region
1565 * @mr: the memory region to be msync
1566 * @addr: the initial address of the range to be sync
1567 * @size: the size of the range to be sync
1569 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1572 * memory_region_writeback: Trigger cache writeback for
1573 * selected address range
1575 * @mr: the memory region to be updated
1576 * @addr: the initial address of the range to be written back
1577 * @size: the size of the range to be written back
1579 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1582 * memory_region_set_log: Turn dirty logging on or off for a region.
1584 * Turns dirty logging on or off for a specified client (display, migration).
1585 * Only meaningful for RAM regions.
1587 * @mr: the memory region being updated.
1588 * @log: whether dirty logging is to be enabled or disabled.
1589 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1591 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1594 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1596 * Marks a range of bytes as dirty, after it has been dirtied outside
1597 * guest code.
1599 * @mr: the memory region being dirtied.
1600 * @addr: the address (relative to the start of the region) being dirtied.
1601 * @size: size of the range being dirtied.
1603 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1604 hwaddr size);
1607 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1609 * This function is called when the caller wants to clear the remote
1610 * dirty bitmap of a memory range within the memory region. This can
1611 * be used by e.g. KVM to manually clear dirty log when
1612 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1613 * kernel.
1615 * @mr: the memory region to clear the dirty log upon
1616 * @start: start address offset within the memory region
1617 * @len: length of the memory region to clear dirty bitmap
1619 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1620 hwaddr len);
1623 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1624 * bitmap and clear it.
1626 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1627 * returns the snapshot. The snapshot can then be used to query dirty
1628 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1629 * querying the same page multiple times, which is especially useful for
1630 * display updates where the scanlines often are not page aligned.
1632 * The dirty bitmap region which gets copyed into the snapshot (and
1633 * cleared afterwards) can be larger than requested. The boundaries
1634 * are rounded up/down so complete bitmap longs (covering 64 pages on
1635 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1636 * isn't a problem for display updates as the extra pages are outside
1637 * the visible area, and in case the visible area changes a full
1638 * display redraw is due anyway. Should other use cases for this
1639 * function emerge we might have to revisit this implementation
1640 * detail.
1642 * Use g_free to release DirtyBitmapSnapshot.
1644 * @mr: the memory region being queried.
1645 * @addr: the address (relative to the start of the region) being queried.
1646 * @size: the size of the range being queried.
1647 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1649 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1650 hwaddr addr,
1651 hwaddr size,
1652 unsigned client);
1655 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1656 * in the specified dirty bitmap snapshot.
1658 * @mr: the memory region being queried.
1659 * @snap: the dirty bitmap snapshot
1660 * @addr: the address (relative to the start of the region) being queried.
1661 * @size: the size of the range being queried.
1663 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1664 DirtyBitmapSnapshot *snap,
1665 hwaddr addr, hwaddr size);
1668 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1669 * client.
1671 * Marks a range of pages as no longer dirty.
1673 * @mr: the region being updated.
1674 * @addr: the start of the subrange being cleaned.
1675 * @size: the size of the subrange being cleaned.
1676 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1677 * %DIRTY_MEMORY_VGA.
1679 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1680 hwaddr size, unsigned client);
1683 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1684 * TBs (for self-modifying code).
1686 * The MemoryRegionOps->write() callback of a ROM device must use this function
1687 * to mark byte ranges that have been modified internally, such as by directly
1688 * accessing the memory returned by memory_region_get_ram_ptr().
1690 * This function marks the range dirty and invalidates TBs so that TCG can
1691 * detect self-modifying code.
1693 * @mr: the region being flushed.
1694 * @addr: the start, relative to the start of the region, of the range being
1695 * flushed.
1696 * @size: the size, in bytes, of the range being flushed.
1698 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1701 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1703 * Allows a memory region to be marked as read-only (turning it into a ROM).
1704 * only useful on RAM regions.
1706 * @mr: the region being updated.
1707 * @readonly: whether rhe region is to be ROM or RAM.
1709 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1712 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1714 * Allows a memory region to be marked as non-volatile.
1715 * only useful on RAM regions.
1717 * @mr: the region being updated.
1718 * @nonvolatile: whether rhe region is to be non-volatile.
1720 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1723 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1725 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1726 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1727 * device is mapped to guest memory and satisfies read access directly.
1728 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1729 * Writes are always handled by the #MemoryRegion.write function.
1731 * @mr: the memory region to be updated
1732 * @romd_mode: %true to put the region into ROMD mode
1734 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1737 * memory_region_set_coalescing: Enable memory coalescing for the region.
1739 * Enabled writes to a region to be queued for later processing. MMIO ->write
1740 * callbacks may be delayed until a non-coalesced MMIO is issued.
1741 * Only useful for IO regions. Roughly similar to write-combining hardware.
1743 * @mr: the memory region to be write coalesced
1745 void memory_region_set_coalescing(MemoryRegion *mr);
1748 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1749 * a region.
1751 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1752 * Multiple calls can be issued coalesced disjoint ranges.
1754 * @mr: the memory region to be updated.
1755 * @offset: the start of the range within the region to be coalesced.
1756 * @size: the size of the subrange to be coalesced.
1758 void memory_region_add_coalescing(MemoryRegion *mr,
1759 hwaddr offset,
1760 uint64_t size);
1763 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1765 * Disables any coalescing caused by memory_region_set_coalescing() or
1766 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1767 * hardware.
1769 * @mr: the memory region to be updated.
1771 void memory_region_clear_coalescing(MemoryRegion *mr);
1774 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1775 * accesses.
1777 * Ensure that pending coalesced MMIO request are flushed before the memory
1778 * region is accessed. This property is automatically enabled for all regions
1779 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1781 * @mr: the memory region to be updated.
1783 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1786 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1787 * accesses.
1789 * Clear the automatic coalesced MMIO flushing enabled via
1790 * memory_region_set_flush_coalesced. Note that this service has no effect on
1791 * memory regions that have MMIO coalescing enabled for themselves. For them,
1792 * automatic flushing will stop once coalescing is disabled.
1794 * @mr: the memory region to be updated.
1796 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1799 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1800 * is written to a location.
1802 * Marks a word in an IO region (initialized with memory_region_init_io())
1803 * as a trigger for an eventfd event. The I/O callback will not be called.
1804 * The caller must be prepared to handle failure (that is, take the required
1805 * action if the callback _is_ called).
1807 * @mr: the memory region being updated.
1808 * @addr: the address within @mr that is to be monitored
1809 * @size: the size of the access to trigger the eventfd
1810 * @match_data: whether to match against @data, instead of just @addr
1811 * @data: the data to match against the guest write
1812 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1814 void memory_region_add_eventfd(MemoryRegion *mr,
1815 hwaddr addr,
1816 unsigned size,
1817 bool match_data,
1818 uint64_t data,
1819 EventNotifier *e);
1822 * memory_region_del_eventfd: Cancel an eventfd.
1824 * Cancels an eventfd trigger requested by a previous
1825 * memory_region_add_eventfd() call.
1827 * @mr: the memory region being updated.
1828 * @addr: the address within @mr that is to be monitored
1829 * @size: the size of the access to trigger the eventfd
1830 * @match_data: whether to match against @data, instead of just @addr
1831 * @data: the data to match against the guest write
1832 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1834 void memory_region_del_eventfd(MemoryRegion *mr,
1835 hwaddr addr,
1836 unsigned size,
1837 bool match_data,
1838 uint64_t data,
1839 EventNotifier *e);
1842 * memory_region_add_subregion: Add a subregion to a container.
1844 * Adds a subregion at @offset. The subregion may not overlap with other
1845 * subregions (except for those explicitly marked as overlapping). A region
1846 * may only be added once as a subregion (unless removed with
1847 * memory_region_del_subregion()); use memory_region_init_alias() if you
1848 * want a region to be a subregion in multiple locations.
1850 * @mr: the region to contain the new subregion; must be a container
1851 * initialized with memory_region_init().
1852 * @offset: the offset relative to @mr where @subregion is added.
1853 * @subregion: the subregion to be added.
1855 void memory_region_add_subregion(MemoryRegion *mr,
1856 hwaddr offset,
1857 MemoryRegion *subregion);
1859 * memory_region_add_subregion_overlap: Add a subregion to a container
1860 * with overlap.
1862 * Adds a subregion at @offset. The subregion may overlap with other
1863 * subregions. Conflicts are resolved by having a higher @priority hide a
1864 * lower @priority. Subregions without priority are taken as @priority 0.
1865 * A region may only be added once as a subregion (unless removed with
1866 * memory_region_del_subregion()); use memory_region_init_alias() if you
1867 * want a region to be a subregion in multiple locations.
1869 * @mr: the region to contain the new subregion; must be a container
1870 * initialized with memory_region_init().
1871 * @offset: the offset relative to @mr where @subregion is added.
1872 * @subregion: the subregion to be added.
1873 * @priority: used for resolving overlaps; highest priority wins.
1875 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1876 hwaddr offset,
1877 MemoryRegion *subregion,
1878 int priority);
1881 * memory_region_get_ram_addr: Get the ram address associated with a memory
1882 * region
1884 * @mr: the region to be queried
1886 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1888 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1890 * memory_region_del_subregion: Remove a subregion.
1892 * Removes a subregion from its container.
1894 * @mr: the container to be updated.
1895 * @subregion: the region being removed; must be a current subregion of @mr.
1897 void memory_region_del_subregion(MemoryRegion *mr,
1898 MemoryRegion *subregion);
1901 * memory_region_set_enabled: dynamically enable or disable a region
1903 * Enables or disables a memory region. A disabled memory region
1904 * ignores all accesses to itself and its subregions. It does not
1905 * obscure sibling subregions with lower priority - it simply behaves as
1906 * if it was removed from the hierarchy.
1908 * Regions default to being enabled.
1910 * @mr: the region to be updated
1911 * @enabled: whether to enable or disable the region
1913 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1916 * memory_region_set_address: dynamically update the address of a region
1918 * Dynamically updates the address of a region, relative to its container.
1919 * May be used on regions are currently part of a memory hierarchy.
1921 * @mr: the region to be updated
1922 * @addr: new address, relative to container region
1924 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1927 * memory_region_set_size: dynamically update the size of a region.
1929 * Dynamically updates the size of a region.
1931 * @mr: the region to be updated
1932 * @size: used size of the region.
1934 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1937 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1939 * Dynamically updates the offset into the target region that an alias points
1940 * to, as if the fourth argument to memory_region_init_alias() has changed.
1942 * @mr: the #MemoryRegion to be updated; should be an alias.
1943 * @offset: the new offset into the target memory region
1945 void memory_region_set_alias_offset(MemoryRegion *mr,
1946 hwaddr offset);
1949 * memory_region_present: checks if an address relative to a @container
1950 * translates into #MemoryRegion within @container
1952 * Answer whether a #MemoryRegion within @container covers the address
1953 * @addr.
1955 * @container: a #MemoryRegion within which @addr is a relative address
1956 * @addr: the area within @container to be searched
1958 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1961 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1962 * into any address space.
1964 * @mr: a #MemoryRegion which should be checked if it's mapped
1966 bool memory_region_is_mapped(MemoryRegion *mr);
1969 * memory_region_find: translate an address/size relative to a
1970 * MemoryRegion into a #MemoryRegionSection.
1972 * Locates the first #MemoryRegion within @mr that overlaps the range
1973 * given by @addr and @size.
1975 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1976 * It will have the following characteristics:
1977 * - @size = 0 iff no overlap was found
1978 * - @mr is non-%NULL iff an overlap was found
1980 * Remember that in the return value the @offset_within_region is
1981 * relative to the returned region (in the .@mr field), not to the
1982 * @mr argument.
1984 * Similarly, the .@offset_within_address_space is relative to the
1985 * address space that contains both regions, the passed and the
1986 * returned one. However, in the special case where the @mr argument
1987 * has no container (and thus is the root of the address space), the
1988 * following will hold:
1989 * - @offset_within_address_space >= @addr
1990 * - @offset_within_address_space + .@size <= @addr + @size
1992 * @mr: a MemoryRegion within which @addr is a relative address
1993 * @addr: start of the area within @as to be searched
1994 * @size: size of the area to be searched
1996 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1997 hwaddr addr, uint64_t size);
2000 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2002 * Synchronizes the dirty page log for all address spaces.
2004 void memory_global_dirty_log_sync(void);
2007 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2009 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2010 * This function must be called after the dirty log bitmap is cleared, and
2011 * before dirty guest memory pages are read. If you are using
2012 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2013 * care of doing this.
2015 void memory_global_after_dirty_log_sync(void);
2018 * memory_region_transaction_begin: Start a transaction.
2020 * During a transaction, changes will be accumulated and made visible
2021 * only when the transaction ends (is committed).
2023 void memory_region_transaction_begin(void);
2026 * memory_region_transaction_commit: Commit a transaction and make changes
2027 * visible to the guest.
2029 void memory_region_transaction_commit(void);
2032 * memory_listener_register: register callbacks to be called when memory
2033 * sections are mapped or unmapped into an address
2034 * space
2036 * @listener: an object containing the callbacks to be called
2037 * @filter: if non-%NULL, only regions in this address space will be observed
2039 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2042 * memory_listener_unregister: undo the effect of memory_listener_register()
2044 * @listener: an object containing the callbacks to be removed
2046 void memory_listener_unregister(MemoryListener *listener);
2049 * memory_global_dirty_log_start: begin dirty logging for all regions
2051 void memory_global_dirty_log_start(void);
2054 * memory_global_dirty_log_stop: end dirty logging for all regions
2056 void memory_global_dirty_log_stop(void);
2058 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2061 * memory_region_dispatch_read: perform a read directly to the specified
2062 * MemoryRegion.
2064 * @mr: #MemoryRegion to access
2065 * @addr: address within that region
2066 * @pval: pointer to uint64_t which the data is written to
2067 * @op: size, sign, and endianness of the memory operation
2068 * @attrs: memory transaction attributes to use for the access
2070 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2071 hwaddr addr,
2072 uint64_t *pval,
2073 MemOp op,
2074 MemTxAttrs attrs);
2076 * memory_region_dispatch_write: perform a write directly to the specified
2077 * MemoryRegion.
2079 * @mr: #MemoryRegion to access
2080 * @addr: address within that region
2081 * @data: data to write
2082 * @op: size, sign, and endianness of the memory operation
2083 * @attrs: memory transaction attributes to use for the access
2085 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2086 hwaddr addr,
2087 uint64_t data,
2088 MemOp op,
2089 MemTxAttrs attrs);
2092 * address_space_init: initializes an address space
2094 * @as: an uninitialized #AddressSpace
2095 * @root: a #MemoryRegion that routes addresses for the address space
2096 * @name: an address space name. The name is only used for debugging
2097 * output.
2099 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2102 * address_space_destroy: destroy an address space
2104 * Releases all resources associated with an address space. After an address space
2105 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2106 * as well.
2108 * @as: address space to be destroyed
2110 void address_space_destroy(AddressSpace *as);
2113 * address_space_remove_listeners: unregister all listeners of an address space
2115 * Removes all callbacks previously registered with memory_listener_register()
2116 * for @as.
2118 * @as: an initialized #AddressSpace
2120 void address_space_remove_listeners(AddressSpace *as);
2123 * address_space_rw: read from or write to an address space.
2125 * Return a MemTxResult indicating whether the operation succeeded
2126 * or failed (eg unassigned memory, device rejected the transaction,
2127 * IOMMU fault).
2129 * @as: #AddressSpace to be accessed
2130 * @addr: address within that address space
2131 * @attrs: memory transaction attributes
2132 * @buf: buffer with the data transferred
2133 * @len: the number of bytes to read or write
2134 * @is_write: indicates the transfer direction
2136 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2137 MemTxAttrs attrs, void *buf,
2138 hwaddr len, bool is_write);
2141 * address_space_write: write to address space.
2143 * Return a MemTxResult indicating whether the operation succeeded
2144 * or failed (eg unassigned memory, device rejected the transaction,
2145 * IOMMU fault).
2147 * @as: #AddressSpace to be accessed
2148 * @addr: address within that address space
2149 * @attrs: memory transaction attributes
2150 * @buf: buffer with the data transferred
2151 * @len: the number of bytes to write
2153 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2154 MemTxAttrs attrs,
2155 const void *buf, hwaddr len);
2158 * address_space_write_rom: write to address space, including ROM.
2160 * This function writes to the specified address space, but will
2161 * write data to both ROM and RAM. This is used for non-guest
2162 * writes like writes from the gdb debug stub or initial loading
2163 * of ROM contents.
2165 * Note that portions of the write which attempt to write data to
2166 * a device will be silently ignored -- only real RAM and ROM will
2167 * be written to.
2169 * Return a MemTxResult indicating whether the operation succeeded
2170 * or failed (eg unassigned memory, device rejected the transaction,
2171 * IOMMU fault).
2173 * @as: #AddressSpace to be accessed
2174 * @addr: address within that address space
2175 * @attrs: memory transaction attributes
2176 * @buf: buffer with the data transferred
2177 * @len: the number of bytes to write
2179 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2180 MemTxAttrs attrs,
2181 const void *buf, hwaddr len);
2183 /* address_space_ld*: load from an address space
2184 * address_space_st*: store to an address space
2186 * These functions perform a load or store of the byte, word,
2187 * longword or quad to the specified address within the AddressSpace.
2188 * The _le suffixed functions treat the data as little endian;
2189 * _be indicates big endian; no suffix indicates "same endianness
2190 * as guest CPU".
2192 * The "guest CPU endianness" accessors are deprecated for use outside
2193 * target-* code; devices should be CPU-agnostic and use either the LE
2194 * or the BE accessors.
2196 * @as #AddressSpace to be accessed
2197 * @addr: address within that address space
2198 * @val: data value, for stores
2199 * @attrs: memory transaction attributes
2200 * @result: location to write the success/failure of the transaction;
2201 * if NULL, this information is discarded
2204 #define SUFFIX
2205 #define ARG1 as
2206 #define ARG1_DECL AddressSpace *as
2207 #include "exec/memory_ldst.h.inc"
2209 #define SUFFIX
2210 #define ARG1 as
2211 #define ARG1_DECL AddressSpace *as
2212 #include "exec/memory_ldst_phys.h.inc"
2214 struct MemoryRegionCache {
2215 void *ptr;
2216 hwaddr xlat;
2217 hwaddr len;
2218 FlatView *fv;
2219 MemoryRegionSection mrs;
2220 bool is_write;
2223 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2226 /* address_space_ld*_cached: load from a cached #MemoryRegion
2227 * address_space_st*_cached: store into a cached #MemoryRegion
2229 * These functions perform a load or store of the byte, word,
2230 * longword or quad to the specified address. The address is
2231 * a physical address in the AddressSpace, but it must lie within
2232 * a #MemoryRegion that was mapped with address_space_cache_init.
2234 * The _le suffixed functions treat the data as little endian;
2235 * _be indicates big endian; no suffix indicates "same endianness
2236 * as guest CPU".
2238 * The "guest CPU endianness" accessors are deprecated for use outside
2239 * target-* code; devices should be CPU-agnostic and use either the LE
2240 * or the BE accessors.
2242 * @cache: previously initialized #MemoryRegionCache to be accessed
2243 * @addr: address within the address space
2244 * @val: data value, for stores
2245 * @attrs: memory transaction attributes
2246 * @result: location to write the success/failure of the transaction;
2247 * if NULL, this information is discarded
2250 #define SUFFIX _cached_slow
2251 #define ARG1 cache
2252 #define ARG1_DECL MemoryRegionCache *cache
2253 #include "exec/memory_ldst.h.inc"
2255 /* Inline fast path for direct RAM access. */
2256 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2257 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2259 assert(addr < cache->len);
2260 if (likely(cache->ptr)) {
2261 return ldub_p(cache->ptr + addr);
2262 } else {
2263 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2267 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2268 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2270 assert(addr < cache->len);
2271 if (likely(cache->ptr)) {
2272 stb_p(cache->ptr + addr, val);
2273 } else {
2274 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2278 #define ENDIANNESS _le
2279 #include "exec/memory_ldst_cached.h.inc"
2281 #define ENDIANNESS _be
2282 #include "exec/memory_ldst_cached.h.inc"
2284 #define SUFFIX _cached
2285 #define ARG1 cache
2286 #define ARG1_DECL MemoryRegionCache *cache
2287 #include "exec/memory_ldst_phys.h.inc"
2289 /* address_space_cache_init: prepare for repeated access to a physical
2290 * memory region
2292 * @cache: #MemoryRegionCache to be filled
2293 * @as: #AddressSpace to be accessed
2294 * @addr: address within that address space
2295 * @len: length of buffer
2296 * @is_write: indicates the transfer direction
2298 * Will only work with RAM, and may map a subset of the requested range by
2299 * returning a value that is less than @len. On failure, return a negative
2300 * errno value.
2302 * Because it only works with RAM, this function can be used for
2303 * read-modify-write operations. In this case, is_write should be %true.
2305 * Note that addresses passed to the address_space_*_cached functions
2306 * are relative to @addr.
2308 int64_t address_space_cache_init(MemoryRegionCache *cache,
2309 AddressSpace *as,
2310 hwaddr addr,
2311 hwaddr len,
2312 bool is_write);
2315 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2317 * @cache: The #MemoryRegionCache to operate on.
2318 * @addr: The first physical address that was written, relative to the
2319 * address that was passed to @address_space_cache_init.
2320 * @access_len: The number of bytes that were written starting at @addr.
2322 void address_space_cache_invalidate(MemoryRegionCache *cache,
2323 hwaddr addr,
2324 hwaddr access_len);
2327 * address_space_cache_destroy: free a #MemoryRegionCache
2329 * @cache: The #MemoryRegionCache whose memory should be released.
2331 void address_space_cache_destroy(MemoryRegionCache *cache);
2333 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2334 * entry. Should be called from an RCU critical section.
2336 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2337 bool is_write, MemTxAttrs attrs);
2339 /* address_space_translate: translate an address range into an address space
2340 * into a MemoryRegion and an address range into that section. Should be
2341 * called from an RCU critical section, to avoid that the last reference
2342 * to the returned region disappears after address_space_translate returns.
2344 * @fv: #FlatView to be accessed
2345 * @addr: address within that address space
2346 * @xlat: pointer to address within the returned memory region section's
2347 * #MemoryRegion.
2348 * @len: pointer to length
2349 * @is_write: indicates the transfer direction
2350 * @attrs: memory attributes
2352 MemoryRegion *flatview_translate(FlatView *fv,
2353 hwaddr addr, hwaddr *xlat,
2354 hwaddr *len, bool is_write,
2355 MemTxAttrs attrs);
2357 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2358 hwaddr addr, hwaddr *xlat,
2359 hwaddr *len, bool is_write,
2360 MemTxAttrs attrs)
2362 return flatview_translate(address_space_to_flatview(as),
2363 addr, xlat, len, is_write, attrs);
2366 /* address_space_access_valid: check for validity of accessing an address
2367 * space range
2369 * Check whether memory is assigned to the given address space range, and
2370 * access is permitted by any IOMMU regions that are active for the address
2371 * space.
2373 * For now, addr and len should be aligned to a page size. This limitation
2374 * will be lifted in the future.
2376 * @as: #AddressSpace to be accessed
2377 * @addr: address within that address space
2378 * @len: length of the area to be checked
2379 * @is_write: indicates the transfer direction
2380 * @attrs: memory attributes
2382 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2383 bool is_write, MemTxAttrs attrs);
2385 /* address_space_map: map a physical memory region into a host virtual address
2387 * May map a subset of the requested range, given by and returned in @plen.
2388 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2389 * the mapping are exhausted.
2390 * Use only for reads OR writes - not for read-modify-write operations.
2391 * Use cpu_register_map_client() to know when retrying the map operation is
2392 * likely to succeed.
2394 * @as: #AddressSpace to be accessed
2395 * @addr: address within that address space
2396 * @plen: pointer to length of buffer; updated on return
2397 * @is_write: indicates the transfer direction
2398 * @attrs: memory attributes
2400 void *address_space_map(AddressSpace *as, hwaddr addr,
2401 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2403 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2405 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2406 * the amount of memory that was actually read or written by the caller.
2408 * @as: #AddressSpace used
2409 * @buffer: host pointer as returned by address_space_map()
2410 * @len: buffer length as returned by address_space_map()
2411 * @access_len: amount of data actually transferred
2412 * @is_write: indicates the transfer direction
2414 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2415 bool is_write, hwaddr access_len);
2418 /* Internal functions, part of the implementation of address_space_read. */
2419 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2420 MemTxAttrs attrs, void *buf, hwaddr len);
2421 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2422 MemTxAttrs attrs, void *buf,
2423 hwaddr len, hwaddr addr1, hwaddr l,
2424 MemoryRegion *mr);
2425 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2427 /* Internal functions, part of the implementation of address_space_read_cached
2428 * and address_space_write_cached. */
2429 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2430 hwaddr addr, void *buf, hwaddr len);
2431 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2432 hwaddr addr, const void *buf,
2433 hwaddr len);
2435 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2437 if (is_write) {
2438 return memory_region_is_ram(mr) && !mr->readonly &&
2439 !mr->rom_device && !memory_region_is_ram_device(mr);
2440 } else {
2441 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2442 memory_region_is_romd(mr);
2447 * address_space_read: read from an address space.
2449 * Return a MemTxResult indicating whether the operation succeeded
2450 * or failed (eg unassigned memory, device rejected the transaction,
2451 * IOMMU fault). Called within RCU critical section.
2453 * @as: #AddressSpace to be accessed
2454 * @addr: address within that address space
2455 * @attrs: memory transaction attributes
2456 * @buf: buffer with the data transferred
2457 * @len: length of the data transferred
2459 static inline __attribute__((__always_inline__))
2460 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2461 MemTxAttrs attrs, void *buf,
2462 hwaddr len)
2464 MemTxResult result = MEMTX_OK;
2465 hwaddr l, addr1;
2466 void *ptr;
2467 MemoryRegion *mr;
2468 FlatView *fv;
2470 if (__builtin_constant_p(len)) {
2471 if (len) {
2472 RCU_READ_LOCK_GUARD();
2473 fv = address_space_to_flatview(as);
2474 l = len;
2475 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2476 if (len == l && memory_access_is_direct(mr, false)) {
2477 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2478 memcpy(buf, ptr, len);
2479 } else {
2480 result = flatview_read_continue(fv, addr, attrs, buf, len,
2481 addr1, l, mr);
2484 } else {
2485 result = address_space_read_full(as, addr, attrs, buf, len);
2487 return result;
2491 * address_space_read_cached: read from a cached RAM region
2493 * @cache: Cached region to be addressed
2494 * @addr: address relative to the base of the RAM region
2495 * @buf: buffer with the data transferred
2496 * @len: length of the data transferred
2498 static inline MemTxResult
2499 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2500 void *buf, hwaddr len)
2502 assert(addr < cache->len && len <= cache->len - addr);
2503 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr, false);
2504 if (likely(cache->ptr)) {
2505 memcpy(buf, cache->ptr + addr, len);
2506 return MEMTX_OK;
2507 } else {
2508 return address_space_read_cached_slow(cache, addr, buf, len);
2513 * address_space_write_cached: write to a cached RAM region
2515 * @cache: Cached region to be addressed
2516 * @addr: address relative to the base of the RAM region
2517 * @buf: buffer with the data transferred
2518 * @len: length of the data transferred
2520 static inline MemTxResult
2521 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2522 const void *buf, hwaddr len)
2524 assert(addr < cache->len && len <= cache->len - addr);
2525 if (likely(cache->ptr)) {
2526 memcpy(cache->ptr + addr, buf, len);
2527 return MEMTX_OK;
2528 } else {
2529 return address_space_write_cached_slow(cache, addr, buf, len);
2533 #ifdef NEED_CPU_H
2534 /* enum device_endian to MemOp. */
2535 static inline MemOp devend_memop(enum device_endian end)
2537 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2538 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2540 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2541 /* Swap if non-host endianness or native (target) endianness */
2542 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2543 #else
2544 const int non_host_endianness =
2545 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2547 /* In this case, native (target) endianness needs no swap. */
2548 return (end == non_host_endianness) ? MO_BSWAP : 0;
2549 #endif
2551 #endif
2554 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2555 * to manage the actual amount of memory consumed by the VM (then, the memory
2556 * provided by RAM blocks might be bigger than the desired memory consumption).
2557 * This *must* be set if:
2558 * - Discarding parts of a RAM blocks does not result in the change being
2559 * reflected in the VM and the pages getting freed.
2560 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2561 * discards blindly.
2562 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2563 * encrypted VMs).
2564 * Technologies that only temporarily pin the current working set of a
2565 * driver are fine, because we don't expect such pages to be discarded
2566 * (esp. based on guest action like balloon inflation).
2568 * This is *not* to be used to protect from concurrent discards (esp.,
2569 * postcopy).
2571 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2572 * discards to work reliably is active.
2574 int ram_block_discard_disable(bool state);
2577 * Inhibit technologies that disable discarding of pages in RAM blocks.
2579 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2580 * broken.
2582 int ram_block_discard_require(bool state);
2585 * Test if discarding of memory in ram blocks is disabled.
2587 bool ram_block_discard_is_disabled(void);
2590 * Test if discarding of memory in ram blocks is required to work reliably.
2592 bool ram_block_discard_is_required(void);
2594 #endif
2596 #endif