memory: split dirty bitmap into three
[qemu/ar7.git] / exec.c
blob028eee4f59c5dccc5af3fc8997ffbd76b05ed6ec
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
53 #include "qemu/cache-utils.h"
55 #include "qemu/range.h"
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 static int in_migration;
62 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
64 static MemoryRegion *system_memory;
65 static MemoryRegion *system_io;
67 AddressSpace address_space_io;
68 AddressSpace address_space_memory;
70 MemoryRegion io_mem_rom, io_mem_notdirty;
71 static MemoryRegion io_mem_unassigned;
73 #endif
75 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
76 /* current CPU in the current thread. It is only valid inside
77 cpu_exec() */
78 DEFINE_TLS(CPUState *, current_cpu);
79 /* 0 = Do not count executed instructions.
80 1 = Precise instruction counting.
81 2 = Adaptive rate instruction counting. */
82 int use_icount;
84 #if !defined(CONFIG_USER_ONLY)
86 typedef struct PhysPageEntry PhysPageEntry;
88 struct PhysPageEntry {
89 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
90 uint32_t skip : 6;
91 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
92 uint32_t ptr : 26;
95 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97 /* Size of the L2 (and L3, etc) page tables. */
98 #define ADDR_SPACE_BITS 64
100 #define P_L2_BITS 9
101 #define P_L2_SIZE (1 << P_L2_BITS)
103 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105 typedef PhysPageEntry Node[P_L2_SIZE];
107 typedef struct PhysPageMap {
108 unsigned sections_nb;
109 unsigned sections_nb_alloc;
110 unsigned nodes_nb;
111 unsigned nodes_nb_alloc;
112 Node *nodes;
113 MemoryRegionSection *sections;
114 } PhysPageMap;
116 struct AddressSpaceDispatch {
117 /* This is a multi-level map on the physical address space.
118 * The bottom level has pointers to MemoryRegionSections.
120 PhysPageEntry phys_map;
121 PhysPageMap map;
122 AddressSpace *as;
125 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
126 typedef struct subpage_t {
127 MemoryRegion iomem;
128 AddressSpace *as;
129 hwaddr base;
130 uint16_t sub_section[TARGET_PAGE_SIZE];
131 } subpage_t;
133 #define PHYS_SECTION_UNASSIGNED 0
134 #define PHYS_SECTION_NOTDIRTY 1
135 #define PHYS_SECTION_ROM 2
136 #define PHYS_SECTION_WATCH 3
138 static void io_mem_init(void);
139 static void memory_map_init(void);
141 static MemoryRegion io_mem_watch;
142 #endif
144 #if !defined(CONFIG_USER_ONLY)
146 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
148 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
149 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
150 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
151 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
155 static uint32_t phys_map_node_alloc(PhysPageMap *map)
157 unsigned i;
158 uint32_t ret;
160 ret = map->nodes_nb++;
161 assert(ret != PHYS_MAP_NODE_NIL);
162 assert(ret != map->nodes_nb_alloc);
163 for (i = 0; i < P_L2_SIZE; ++i) {
164 map->nodes[ret][i].skip = 1;
165 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
167 return ret;
170 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
171 hwaddr *index, hwaddr *nb, uint16_t leaf,
172 int level)
174 PhysPageEntry *p;
175 int i;
176 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
178 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
179 lp->ptr = phys_map_node_alloc(map);
180 p = map->nodes[lp->ptr];
181 if (level == 0) {
182 for (i = 0; i < P_L2_SIZE; i++) {
183 p[i].skip = 0;
184 p[i].ptr = PHYS_SECTION_UNASSIGNED;
187 } else {
188 p = map->nodes[lp->ptr];
190 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
192 while (*nb && lp < &p[P_L2_SIZE]) {
193 if ((*index & (step - 1)) == 0 && *nb >= step) {
194 lp->skip = 0;
195 lp->ptr = leaf;
196 *index += step;
197 *nb -= step;
198 } else {
199 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
201 ++lp;
205 static void phys_page_set(AddressSpaceDispatch *d,
206 hwaddr index, hwaddr nb,
207 uint16_t leaf)
209 /* Wildly overreserve - it doesn't matter much. */
210 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
212 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
215 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
216 * and update our entry so we can skip it and go directly to the destination.
218 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
220 unsigned valid_ptr = P_L2_SIZE;
221 int valid = 0;
222 PhysPageEntry *p;
223 int i;
225 if (lp->ptr == PHYS_MAP_NODE_NIL) {
226 return;
229 p = nodes[lp->ptr];
230 for (i = 0; i < P_L2_SIZE; i++) {
231 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
232 continue;
235 valid_ptr = i;
236 valid++;
237 if (p[i].skip) {
238 phys_page_compact(&p[i], nodes, compacted);
242 /* We can only compress if there's only one child. */
243 if (valid != 1) {
244 return;
247 assert(valid_ptr < P_L2_SIZE);
249 /* Don't compress if it won't fit in the # of bits we have. */
250 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
251 return;
254 lp->ptr = p[valid_ptr].ptr;
255 if (!p[valid_ptr].skip) {
256 /* If our only child is a leaf, make this a leaf. */
257 /* By design, we should have made this node a leaf to begin with so we
258 * should never reach here.
259 * But since it's so simple to handle this, let's do it just in case we
260 * change this rule.
262 lp->skip = 0;
263 } else {
264 lp->skip += p[valid_ptr].skip;
268 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
270 DECLARE_BITMAP(compacted, nodes_nb);
272 if (d->phys_map.skip) {
273 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
277 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
278 Node *nodes, MemoryRegionSection *sections)
280 PhysPageEntry *p;
281 hwaddr index = addr >> TARGET_PAGE_BITS;
282 int i;
284 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
285 if (lp.ptr == PHYS_MAP_NODE_NIL) {
286 return &sections[PHYS_SECTION_UNASSIGNED];
288 p = nodes[lp.ptr];
289 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
292 if (sections[lp.ptr].size.hi ||
293 range_covers_byte(sections[lp.ptr].offset_within_address_space,
294 sections[lp.ptr].size.lo, addr)) {
295 return &sections[lp.ptr];
296 } else {
297 return &sections[PHYS_SECTION_UNASSIGNED];
301 bool memory_region_is_unassigned(MemoryRegion *mr)
303 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
304 && mr != &io_mem_watch;
307 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
308 hwaddr addr,
309 bool resolve_subpage)
311 MemoryRegionSection *section;
312 subpage_t *subpage;
314 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
315 if (resolve_subpage && section->mr->subpage) {
316 subpage = container_of(section->mr, subpage_t, iomem);
317 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
319 return section;
322 static MemoryRegionSection *
323 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
324 hwaddr *plen, bool resolve_subpage)
326 MemoryRegionSection *section;
327 Int128 diff;
329 section = address_space_lookup_region(d, addr, resolve_subpage);
330 /* Compute offset within MemoryRegionSection */
331 addr -= section->offset_within_address_space;
333 /* Compute offset within MemoryRegion */
334 *xlat = addr + section->offset_within_region;
336 diff = int128_sub(section->mr->size, int128_make64(addr));
337 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
338 return section;
341 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
342 hwaddr *xlat, hwaddr *plen,
343 bool is_write)
345 IOMMUTLBEntry iotlb;
346 MemoryRegionSection *section;
347 MemoryRegion *mr;
348 hwaddr len = *plen;
350 for (;;) {
351 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
352 mr = section->mr;
354 if (!mr->iommu_ops) {
355 break;
358 iotlb = mr->iommu_ops->translate(mr, addr);
359 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
360 | (addr & iotlb.addr_mask));
361 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
362 if (!(iotlb.perm & (1 << is_write))) {
363 mr = &io_mem_unassigned;
364 break;
367 as = iotlb.target_as;
370 *plen = len;
371 *xlat = addr;
372 return mr;
375 MemoryRegionSection *
376 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
377 hwaddr *plen)
379 MemoryRegionSection *section;
380 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
382 assert(!section->mr->iommu_ops);
383 return section;
385 #endif
387 void cpu_exec_init_all(void)
389 #if !defined(CONFIG_USER_ONLY)
390 qemu_mutex_init(&ram_list.mutex);
391 memory_map_init();
392 io_mem_init();
393 #endif
396 #if !defined(CONFIG_USER_ONLY)
398 static int cpu_common_post_load(void *opaque, int version_id)
400 CPUState *cpu = opaque;
402 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
403 version_id is increased. */
404 cpu->interrupt_request &= ~0x01;
405 tlb_flush(cpu->env_ptr, 1);
407 return 0;
410 const VMStateDescription vmstate_cpu_common = {
411 .name = "cpu_common",
412 .version_id = 1,
413 .minimum_version_id = 1,
414 .minimum_version_id_old = 1,
415 .post_load = cpu_common_post_load,
416 .fields = (VMStateField []) {
417 VMSTATE_UINT32(halted, CPUState),
418 VMSTATE_UINT32(interrupt_request, CPUState),
419 VMSTATE_END_OF_LIST()
423 #endif
425 CPUState *qemu_get_cpu(int index)
427 CPUState *cpu;
429 CPU_FOREACH(cpu) {
430 if (cpu->cpu_index == index) {
431 return cpu;
435 return NULL;
438 void cpu_exec_init(CPUArchState *env)
440 CPUState *cpu = ENV_GET_CPU(env);
441 CPUClass *cc = CPU_GET_CLASS(cpu);
442 CPUState *some_cpu;
443 int cpu_index;
445 #if defined(CONFIG_USER_ONLY)
446 cpu_list_lock();
447 #endif
448 cpu_index = 0;
449 CPU_FOREACH(some_cpu) {
450 cpu_index++;
452 cpu->cpu_index = cpu_index;
453 cpu->numa_node = 0;
454 QTAILQ_INIT(&env->breakpoints);
455 QTAILQ_INIT(&env->watchpoints);
456 #ifndef CONFIG_USER_ONLY
457 cpu->thread_id = qemu_get_thread_id();
458 #endif
459 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
460 #if defined(CONFIG_USER_ONLY)
461 cpu_list_unlock();
462 #endif
463 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
464 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
466 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
467 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
468 cpu_save, cpu_load, env);
469 assert(cc->vmsd == NULL);
470 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
471 #endif
472 if (cc->vmsd != NULL) {
473 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
477 #if defined(TARGET_HAS_ICE)
478 #if defined(CONFIG_USER_ONLY)
479 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
481 tb_invalidate_phys_page_range(pc, pc + 1, 0);
483 #else
484 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
486 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
487 if (phys != -1) {
488 tb_invalidate_phys_addr(phys | (pc & ~TARGET_PAGE_MASK));
491 #endif
492 #endif /* TARGET_HAS_ICE */
494 #if defined(CONFIG_USER_ONLY)
495 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
500 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
501 int flags, CPUWatchpoint **watchpoint)
503 return -ENOSYS;
505 #else
506 /* Add a watchpoint. */
507 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
508 int flags, CPUWatchpoint **watchpoint)
510 target_ulong len_mask = ~(len - 1);
511 CPUWatchpoint *wp;
513 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
514 if ((len & (len - 1)) || (addr & ~len_mask) ||
515 len == 0 || len > TARGET_PAGE_SIZE) {
516 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
517 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
518 return -EINVAL;
520 wp = g_malloc(sizeof(*wp));
522 wp->vaddr = addr;
523 wp->len_mask = len_mask;
524 wp->flags = flags;
526 /* keep all GDB-injected watchpoints in front */
527 if (flags & BP_GDB)
528 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
529 else
530 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
532 tlb_flush_page(env, addr);
534 if (watchpoint)
535 *watchpoint = wp;
536 return 0;
539 /* Remove a specific watchpoint. */
540 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
541 int flags)
543 target_ulong len_mask = ~(len - 1);
544 CPUWatchpoint *wp;
546 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
547 if (addr == wp->vaddr && len_mask == wp->len_mask
548 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
549 cpu_watchpoint_remove_by_ref(env, wp);
550 return 0;
553 return -ENOENT;
556 /* Remove a specific watchpoint by reference. */
557 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
559 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
561 tlb_flush_page(env, watchpoint->vaddr);
563 g_free(watchpoint);
566 /* Remove all matching watchpoints. */
567 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
569 CPUWatchpoint *wp, *next;
571 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
572 if (wp->flags & mask)
573 cpu_watchpoint_remove_by_ref(env, wp);
576 #endif
578 /* Add a breakpoint. */
579 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
580 CPUBreakpoint **breakpoint)
582 #if defined(TARGET_HAS_ICE)
583 CPUBreakpoint *bp;
585 bp = g_malloc(sizeof(*bp));
587 bp->pc = pc;
588 bp->flags = flags;
590 /* keep all GDB-injected breakpoints in front */
591 if (flags & BP_GDB) {
592 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
593 } else {
594 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
597 breakpoint_invalidate(ENV_GET_CPU(env), pc);
599 if (breakpoint) {
600 *breakpoint = bp;
602 return 0;
603 #else
604 return -ENOSYS;
605 #endif
608 /* Remove a specific breakpoint. */
609 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
611 #if defined(TARGET_HAS_ICE)
612 CPUBreakpoint *bp;
614 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
615 if (bp->pc == pc && bp->flags == flags) {
616 cpu_breakpoint_remove_by_ref(env, bp);
617 return 0;
620 return -ENOENT;
621 #else
622 return -ENOSYS;
623 #endif
626 /* Remove a specific breakpoint by reference. */
627 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
629 #if defined(TARGET_HAS_ICE)
630 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
632 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
634 g_free(breakpoint);
635 #endif
638 /* Remove all matching breakpoints. */
639 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
641 #if defined(TARGET_HAS_ICE)
642 CPUBreakpoint *bp, *next;
644 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
645 if (bp->flags & mask)
646 cpu_breakpoint_remove_by_ref(env, bp);
648 #endif
651 /* enable or disable single step mode. EXCP_DEBUG is returned by the
652 CPU loop after each instruction */
653 void cpu_single_step(CPUState *cpu, int enabled)
655 #if defined(TARGET_HAS_ICE)
656 if (cpu->singlestep_enabled != enabled) {
657 cpu->singlestep_enabled = enabled;
658 if (kvm_enabled()) {
659 kvm_update_guest_debug(cpu, 0);
660 } else {
661 /* must flush all the translated code to avoid inconsistencies */
662 /* XXX: only flush what is necessary */
663 CPUArchState *env = cpu->env_ptr;
664 tb_flush(env);
667 #endif
670 void cpu_abort(CPUArchState *env, const char *fmt, ...)
672 CPUState *cpu = ENV_GET_CPU(env);
673 va_list ap;
674 va_list ap2;
676 va_start(ap, fmt);
677 va_copy(ap2, ap);
678 fprintf(stderr, "qemu: fatal: ");
679 vfprintf(stderr, fmt, ap);
680 fprintf(stderr, "\n");
681 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
682 if (qemu_log_enabled()) {
683 qemu_log("qemu: fatal: ");
684 qemu_log_vprintf(fmt, ap2);
685 qemu_log("\n");
686 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
687 qemu_log_flush();
688 qemu_log_close();
690 va_end(ap2);
691 va_end(ap);
692 #if defined(CONFIG_USER_ONLY)
694 struct sigaction act;
695 sigfillset(&act.sa_mask);
696 act.sa_handler = SIG_DFL;
697 sigaction(SIGABRT, &act, NULL);
699 #endif
700 abort();
703 #if !defined(CONFIG_USER_ONLY)
704 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
706 RAMBlock *block;
708 /* The list is protected by the iothread lock here. */
709 block = ram_list.mru_block;
710 if (block && addr - block->offset < block->length) {
711 goto found;
713 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
714 if (addr - block->offset < block->length) {
715 goto found;
719 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
720 abort();
722 found:
723 ram_list.mru_block = block;
724 return block;
727 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
728 uintptr_t length)
730 RAMBlock *block;
731 ram_addr_t start1;
733 block = qemu_get_ram_block(start);
734 assert(block == qemu_get_ram_block(end - 1));
735 start1 = (uintptr_t)block->host + (start - block->offset);
736 cpu_tlb_reset_dirty_all(start1, length);
739 /* Note: start and end must be within the same ram block. */
740 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
741 unsigned client)
743 uintptr_t length;
745 start &= TARGET_PAGE_MASK;
746 end = TARGET_PAGE_ALIGN(end);
748 length = end - start;
749 if (length == 0)
750 return;
751 cpu_physical_memory_mask_dirty_range(start, length, client);
753 if (tcg_enabled()) {
754 tlb_reset_dirty_range_all(start, end, length);
758 static int cpu_physical_memory_set_dirty_tracking(int enable)
760 int ret = 0;
761 in_migration = enable;
762 return ret;
765 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
766 MemoryRegionSection *section,
767 target_ulong vaddr,
768 hwaddr paddr, hwaddr xlat,
769 int prot,
770 target_ulong *address)
772 hwaddr iotlb;
773 CPUWatchpoint *wp;
775 if (memory_region_is_ram(section->mr)) {
776 /* Normal RAM. */
777 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
778 + xlat;
779 if (!section->readonly) {
780 iotlb |= PHYS_SECTION_NOTDIRTY;
781 } else {
782 iotlb |= PHYS_SECTION_ROM;
784 } else {
785 iotlb = section - address_space_memory.dispatch->map.sections;
786 iotlb += xlat;
789 /* Make accesses to pages with watchpoints go via the
790 watchpoint trap routines. */
791 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
792 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
793 /* Avoid trapping reads of pages with a write breakpoint. */
794 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
795 iotlb = PHYS_SECTION_WATCH + paddr;
796 *address |= TLB_MMIO;
797 break;
802 return iotlb;
804 #endif /* defined(CONFIG_USER_ONLY) */
806 #if !defined(CONFIG_USER_ONLY)
808 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
809 uint16_t section);
810 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
812 static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
815 * Set a custom physical guest memory alloator.
816 * Accelerators with unusual needs may need this. Hopefully, we can
817 * get rid of it eventually.
819 void phys_mem_set_alloc(void *(*alloc)(size_t))
821 phys_mem_alloc = alloc;
824 static uint16_t phys_section_add(PhysPageMap *map,
825 MemoryRegionSection *section)
827 /* The physical section number is ORed with a page-aligned
828 * pointer to produce the iotlb entries. Thus it should
829 * never overflow into the page-aligned value.
831 assert(map->sections_nb < TARGET_PAGE_SIZE);
833 if (map->sections_nb == map->sections_nb_alloc) {
834 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
835 map->sections = g_renew(MemoryRegionSection, map->sections,
836 map->sections_nb_alloc);
838 map->sections[map->sections_nb] = *section;
839 memory_region_ref(section->mr);
840 return map->sections_nb++;
843 static void phys_section_destroy(MemoryRegion *mr)
845 memory_region_unref(mr);
847 if (mr->subpage) {
848 subpage_t *subpage = container_of(mr, subpage_t, iomem);
849 memory_region_destroy(&subpage->iomem);
850 g_free(subpage);
854 static void phys_sections_free(PhysPageMap *map)
856 while (map->sections_nb > 0) {
857 MemoryRegionSection *section = &map->sections[--map->sections_nb];
858 phys_section_destroy(section->mr);
860 g_free(map->sections);
861 g_free(map->nodes);
864 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
866 subpage_t *subpage;
867 hwaddr base = section->offset_within_address_space
868 & TARGET_PAGE_MASK;
869 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
870 d->map.nodes, d->map.sections);
871 MemoryRegionSection subsection = {
872 .offset_within_address_space = base,
873 .size = int128_make64(TARGET_PAGE_SIZE),
875 hwaddr start, end;
877 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
879 if (!(existing->mr->subpage)) {
880 subpage = subpage_init(d->as, base);
881 subsection.mr = &subpage->iomem;
882 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
883 phys_section_add(&d->map, &subsection));
884 } else {
885 subpage = container_of(existing->mr, subpage_t, iomem);
887 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
888 end = start + int128_get64(section->size) - 1;
889 subpage_register(subpage, start, end,
890 phys_section_add(&d->map, section));
894 static void register_multipage(AddressSpaceDispatch *d,
895 MemoryRegionSection *section)
897 hwaddr start_addr = section->offset_within_address_space;
898 uint16_t section_index = phys_section_add(&d->map, section);
899 uint64_t num_pages = int128_get64(int128_rshift(section->size,
900 TARGET_PAGE_BITS));
902 assert(num_pages);
903 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
906 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
908 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
909 AddressSpaceDispatch *d = as->next_dispatch;
910 MemoryRegionSection now = *section, remain = *section;
911 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
913 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
914 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
915 - now.offset_within_address_space;
917 now.size = int128_min(int128_make64(left), now.size);
918 register_subpage(d, &now);
919 } else {
920 now.size = int128_zero();
922 while (int128_ne(remain.size, now.size)) {
923 remain.size = int128_sub(remain.size, now.size);
924 remain.offset_within_address_space += int128_get64(now.size);
925 remain.offset_within_region += int128_get64(now.size);
926 now = remain;
927 if (int128_lt(remain.size, page_size)) {
928 register_subpage(d, &now);
929 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
930 now.size = page_size;
931 register_subpage(d, &now);
932 } else {
933 now.size = int128_and(now.size, int128_neg(page_size));
934 register_multipage(d, &now);
939 void qemu_flush_coalesced_mmio_buffer(void)
941 if (kvm_enabled())
942 kvm_flush_coalesced_mmio_buffer();
945 void qemu_mutex_lock_ramlist(void)
947 qemu_mutex_lock(&ram_list.mutex);
950 void qemu_mutex_unlock_ramlist(void)
952 qemu_mutex_unlock(&ram_list.mutex);
955 #ifdef __linux__
957 #include <sys/vfs.h>
959 #define HUGETLBFS_MAGIC 0x958458f6
961 static long gethugepagesize(const char *path)
963 struct statfs fs;
964 int ret;
966 do {
967 ret = statfs(path, &fs);
968 } while (ret != 0 && errno == EINTR);
970 if (ret != 0) {
971 perror(path);
972 return 0;
975 if (fs.f_type != HUGETLBFS_MAGIC)
976 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
978 return fs.f_bsize;
981 static sigjmp_buf sigjump;
983 static void sigbus_handler(int signal)
985 siglongjmp(sigjump, 1);
988 static void *file_ram_alloc(RAMBlock *block,
989 ram_addr_t memory,
990 const char *path)
992 char *filename;
993 char *sanitized_name;
994 char *c;
995 void *area;
996 int fd;
997 unsigned long hpagesize;
999 hpagesize = gethugepagesize(path);
1000 if (!hpagesize) {
1001 return NULL;
1004 if (memory < hpagesize) {
1005 return NULL;
1008 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1009 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1010 return NULL;
1013 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1014 sanitized_name = g_strdup(block->mr->name);
1015 for (c = sanitized_name; *c != '\0'; c++) {
1016 if (*c == '/')
1017 *c = '_';
1020 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1021 sanitized_name);
1022 g_free(sanitized_name);
1024 fd = mkstemp(filename);
1025 if (fd < 0) {
1026 perror("unable to create backing store for hugepages");
1027 g_free(filename);
1028 return NULL;
1030 unlink(filename);
1031 g_free(filename);
1033 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1036 * ftruncate is not supported by hugetlbfs in older
1037 * hosts, so don't bother bailing out on errors.
1038 * If anything goes wrong with it under other filesystems,
1039 * mmap will fail.
1041 if (ftruncate(fd, memory))
1042 perror("ftruncate");
1044 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
1045 if (area == MAP_FAILED) {
1046 perror("file_ram_alloc: can't mmap RAM pages");
1047 close(fd);
1048 return (NULL);
1051 if (mem_prealloc) {
1052 int ret, i;
1053 struct sigaction act, oldact;
1054 sigset_t set, oldset;
1056 memset(&act, 0, sizeof(act));
1057 act.sa_handler = &sigbus_handler;
1058 act.sa_flags = 0;
1060 ret = sigaction(SIGBUS, &act, &oldact);
1061 if (ret) {
1062 perror("file_ram_alloc: failed to install signal handler");
1063 exit(1);
1066 /* unblock SIGBUS */
1067 sigemptyset(&set);
1068 sigaddset(&set, SIGBUS);
1069 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1071 if (sigsetjmp(sigjump, 1)) {
1072 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1073 exit(1);
1076 /* MAP_POPULATE silently ignores failures */
1077 for (i = 0; i < (memory/hpagesize)-1; i++) {
1078 memset(area + (hpagesize*i), 0, 1);
1081 ret = sigaction(SIGBUS, &oldact, NULL);
1082 if (ret) {
1083 perror("file_ram_alloc: failed to reinstall signal handler");
1084 exit(1);
1087 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1090 block->fd = fd;
1091 return area;
1093 #else
1094 static void *file_ram_alloc(RAMBlock *block,
1095 ram_addr_t memory,
1096 const char *path)
1098 fprintf(stderr, "-mem-path not supported on this host\n");
1099 exit(1);
1101 #endif
1103 static ram_addr_t find_ram_offset(ram_addr_t size)
1105 RAMBlock *block, *next_block;
1106 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1108 assert(size != 0); /* it would hand out same offset multiple times */
1110 if (QTAILQ_EMPTY(&ram_list.blocks))
1111 return 0;
1113 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1114 ram_addr_t end, next = RAM_ADDR_MAX;
1116 end = block->offset + block->length;
1118 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1119 if (next_block->offset >= end) {
1120 next = MIN(next, next_block->offset);
1123 if (next - end >= size && next - end < mingap) {
1124 offset = end;
1125 mingap = next - end;
1129 if (offset == RAM_ADDR_MAX) {
1130 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1131 (uint64_t)size);
1132 abort();
1135 return offset;
1138 ram_addr_t last_ram_offset(void)
1140 RAMBlock *block;
1141 ram_addr_t last = 0;
1143 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1144 last = MAX(last, block->offset + block->length);
1146 return last;
1149 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1151 int ret;
1153 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1154 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1155 "dump-guest-core", true)) {
1156 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1157 if (ret) {
1158 perror("qemu_madvise");
1159 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1160 "but dump_guest_core=off specified\n");
1165 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1167 RAMBlock *new_block, *block;
1169 new_block = NULL;
1170 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1171 if (block->offset == addr) {
1172 new_block = block;
1173 break;
1176 assert(new_block);
1177 assert(!new_block->idstr[0]);
1179 if (dev) {
1180 char *id = qdev_get_dev_path(dev);
1181 if (id) {
1182 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1183 g_free(id);
1186 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1188 /* This assumes the iothread lock is taken here too. */
1189 qemu_mutex_lock_ramlist();
1190 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1191 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1192 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1193 new_block->idstr);
1194 abort();
1197 qemu_mutex_unlock_ramlist();
1200 static int memory_try_enable_merging(void *addr, size_t len)
1202 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1203 /* disabled by the user */
1204 return 0;
1207 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1210 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1211 MemoryRegion *mr)
1213 RAMBlock *block, *new_block;
1214 ram_addr_t old_ram_size, new_ram_size;
1216 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1218 size = TARGET_PAGE_ALIGN(size);
1219 new_block = g_malloc0(sizeof(*new_block));
1220 new_block->fd = -1;
1222 /* This assumes the iothread lock is taken here too. */
1223 qemu_mutex_lock_ramlist();
1224 new_block->mr = mr;
1225 new_block->offset = find_ram_offset(size);
1226 if (host) {
1227 new_block->host = host;
1228 new_block->flags |= RAM_PREALLOC_MASK;
1229 } else if (xen_enabled()) {
1230 if (mem_path) {
1231 fprintf(stderr, "-mem-path not supported with Xen\n");
1232 exit(1);
1234 xen_ram_alloc(new_block->offset, size, mr);
1235 } else {
1236 if (mem_path) {
1237 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1239 * file_ram_alloc() needs to allocate just like
1240 * phys_mem_alloc, but we haven't bothered to provide
1241 * a hook there.
1243 fprintf(stderr,
1244 "-mem-path not supported with this accelerator\n");
1245 exit(1);
1247 new_block->host = file_ram_alloc(new_block, size, mem_path);
1249 if (!new_block->host) {
1250 new_block->host = phys_mem_alloc(size);
1251 if (!new_block->host) {
1252 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1253 new_block->mr->name, strerror(errno));
1254 exit(1);
1256 memory_try_enable_merging(new_block->host, size);
1259 new_block->length = size;
1261 /* Keep the list sorted from biggest to smallest block. */
1262 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1263 if (block->length < new_block->length) {
1264 break;
1267 if (block) {
1268 QTAILQ_INSERT_BEFORE(block, new_block, next);
1269 } else {
1270 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1272 ram_list.mru_block = NULL;
1274 ram_list.version++;
1275 qemu_mutex_unlock_ramlist();
1277 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1279 if (new_ram_size > old_ram_size) {
1280 int i;
1281 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1282 ram_list.dirty_memory[i] =
1283 bitmap_zero_extend(ram_list.dirty_memory[i],
1284 old_ram_size, new_ram_size);
1287 cpu_physical_memory_set_dirty_range(new_block->offset, size);
1289 qemu_ram_setup_dump(new_block->host, size);
1290 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1291 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
1293 if (kvm_enabled())
1294 kvm_setup_guest_memory(new_block->host, size);
1296 return new_block->offset;
1299 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1301 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1304 void qemu_ram_free_from_ptr(ram_addr_t addr)
1306 RAMBlock *block;
1308 /* This assumes the iothread lock is taken here too. */
1309 qemu_mutex_lock_ramlist();
1310 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1311 if (addr == block->offset) {
1312 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1313 ram_list.mru_block = NULL;
1314 ram_list.version++;
1315 g_free(block);
1316 break;
1319 qemu_mutex_unlock_ramlist();
1322 void qemu_ram_free(ram_addr_t addr)
1324 RAMBlock *block;
1326 /* This assumes the iothread lock is taken here too. */
1327 qemu_mutex_lock_ramlist();
1328 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1329 if (addr == block->offset) {
1330 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1331 ram_list.mru_block = NULL;
1332 ram_list.version++;
1333 if (block->flags & RAM_PREALLOC_MASK) {
1335 } else if (xen_enabled()) {
1336 xen_invalidate_map_cache_entry(block->host);
1337 #ifndef _WIN32
1338 } else if (block->fd >= 0) {
1339 munmap(block->host, block->length);
1340 close(block->fd);
1341 #endif
1342 } else {
1343 qemu_anon_ram_free(block->host, block->length);
1345 g_free(block);
1346 break;
1349 qemu_mutex_unlock_ramlist();
1353 #ifndef _WIN32
1354 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1356 RAMBlock *block;
1357 ram_addr_t offset;
1358 int flags;
1359 void *area, *vaddr;
1361 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1362 offset = addr - block->offset;
1363 if (offset < block->length) {
1364 vaddr = block->host + offset;
1365 if (block->flags & RAM_PREALLOC_MASK) {
1367 } else if (xen_enabled()) {
1368 abort();
1369 } else {
1370 flags = MAP_FIXED;
1371 munmap(vaddr, length);
1372 if (block->fd >= 0) {
1373 #ifdef MAP_POPULATE
1374 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1375 MAP_PRIVATE;
1376 #else
1377 flags |= MAP_PRIVATE;
1378 #endif
1379 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1380 flags, block->fd, offset);
1381 } else {
1383 * Remap needs to match alloc. Accelerators that
1384 * set phys_mem_alloc never remap. If they did,
1385 * we'd need a remap hook here.
1387 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1389 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1390 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1391 flags, -1, 0);
1393 if (area != vaddr) {
1394 fprintf(stderr, "Could not remap addr: "
1395 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1396 length, addr);
1397 exit(1);
1399 memory_try_enable_merging(vaddr, length);
1400 qemu_ram_setup_dump(vaddr, length);
1402 return;
1406 #endif /* !_WIN32 */
1408 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1409 With the exception of the softmmu code in this file, this should
1410 only be used for local memory (e.g. video ram) that the device owns,
1411 and knows it isn't going to access beyond the end of the block.
1413 It should not be used for general purpose DMA.
1414 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1416 void *qemu_get_ram_ptr(ram_addr_t addr)
1418 RAMBlock *block = qemu_get_ram_block(addr);
1420 if (xen_enabled()) {
1421 /* We need to check if the requested address is in the RAM
1422 * because we don't want to map the entire memory in QEMU.
1423 * In that case just map until the end of the page.
1425 if (block->offset == 0) {
1426 return xen_map_cache(addr, 0, 0);
1427 } else if (block->host == NULL) {
1428 block->host =
1429 xen_map_cache(block->offset, block->length, 1);
1432 return block->host + (addr - block->offset);
1435 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1436 * but takes a size argument */
1437 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1439 if (*size == 0) {
1440 return NULL;
1442 if (xen_enabled()) {
1443 return xen_map_cache(addr, *size, 1);
1444 } else {
1445 RAMBlock *block;
1447 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1448 if (addr - block->offset < block->length) {
1449 if (addr - block->offset + *size > block->length)
1450 *size = block->length - addr + block->offset;
1451 return block->host + (addr - block->offset);
1455 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1456 abort();
1460 /* Some of the softmmu routines need to translate from a host pointer
1461 (typically a TLB entry) back to a ram offset. */
1462 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1464 RAMBlock *block;
1465 uint8_t *host = ptr;
1467 if (xen_enabled()) {
1468 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1469 return qemu_get_ram_block(*ram_addr)->mr;
1472 block = ram_list.mru_block;
1473 if (block && block->host && host - block->host < block->length) {
1474 goto found;
1477 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1478 /* This case append when the block is not mapped. */
1479 if (block->host == NULL) {
1480 continue;
1482 if (host - block->host < block->length) {
1483 goto found;
1487 return NULL;
1489 found:
1490 *ram_addr = block->offset + (host - block->host);
1491 return block->mr;
1494 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1495 uint64_t val, unsigned size)
1497 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1498 tb_invalidate_phys_page_fast(ram_addr, size);
1500 switch (size) {
1501 case 1:
1502 stb_p(qemu_get_ram_ptr(ram_addr), val);
1503 break;
1504 case 2:
1505 stw_p(qemu_get_ram_ptr(ram_addr), val);
1506 break;
1507 case 4:
1508 stl_p(qemu_get_ram_ptr(ram_addr), val);
1509 break;
1510 default:
1511 abort();
1513 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1514 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
1515 /* we remove the notdirty callback only if the code has been
1516 flushed */
1517 if (cpu_physical_memory_is_dirty(ram_addr)) {
1518 CPUArchState *env = current_cpu->env_ptr;
1519 tlb_set_dirty(env, env->mem_io_vaddr);
1523 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1524 unsigned size, bool is_write)
1526 return is_write;
1529 static const MemoryRegionOps notdirty_mem_ops = {
1530 .write = notdirty_mem_write,
1531 .valid.accepts = notdirty_mem_accepts,
1532 .endianness = DEVICE_NATIVE_ENDIAN,
1535 /* Generate a debug exception if a watchpoint has been hit. */
1536 static void check_watchpoint(int offset, int len_mask, int flags)
1538 CPUArchState *env = current_cpu->env_ptr;
1539 target_ulong pc, cs_base;
1540 target_ulong vaddr;
1541 CPUWatchpoint *wp;
1542 int cpu_flags;
1544 if (env->watchpoint_hit) {
1545 /* We re-entered the check after replacing the TB. Now raise
1546 * the debug interrupt so that is will trigger after the
1547 * current instruction. */
1548 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1549 return;
1551 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1552 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1553 if ((vaddr == (wp->vaddr & len_mask) ||
1554 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1555 wp->flags |= BP_WATCHPOINT_HIT;
1556 if (!env->watchpoint_hit) {
1557 env->watchpoint_hit = wp;
1558 tb_check_watchpoint(env);
1559 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1560 env->exception_index = EXCP_DEBUG;
1561 cpu_loop_exit(env);
1562 } else {
1563 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1564 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1565 cpu_resume_from_signal(env, NULL);
1568 } else {
1569 wp->flags &= ~BP_WATCHPOINT_HIT;
1574 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1575 so these check for a hit then pass through to the normal out-of-line
1576 phys routines. */
1577 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1578 unsigned size)
1580 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1581 switch (size) {
1582 case 1: return ldub_phys(addr);
1583 case 2: return lduw_phys(addr);
1584 case 4: return ldl_phys(addr);
1585 default: abort();
1589 static void watch_mem_write(void *opaque, hwaddr addr,
1590 uint64_t val, unsigned size)
1592 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1593 switch (size) {
1594 case 1:
1595 stb_phys(addr, val);
1596 break;
1597 case 2:
1598 stw_phys(addr, val);
1599 break;
1600 case 4:
1601 stl_phys(addr, val);
1602 break;
1603 default: abort();
1607 static const MemoryRegionOps watch_mem_ops = {
1608 .read = watch_mem_read,
1609 .write = watch_mem_write,
1610 .endianness = DEVICE_NATIVE_ENDIAN,
1613 static uint64_t subpage_read(void *opaque, hwaddr addr,
1614 unsigned len)
1616 subpage_t *subpage = opaque;
1617 uint8_t buf[4];
1619 #if defined(DEBUG_SUBPAGE)
1620 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
1621 subpage, len, addr);
1622 #endif
1623 address_space_read(subpage->as, addr + subpage->base, buf, len);
1624 switch (len) {
1625 case 1:
1626 return ldub_p(buf);
1627 case 2:
1628 return lduw_p(buf);
1629 case 4:
1630 return ldl_p(buf);
1631 default:
1632 abort();
1636 static void subpage_write(void *opaque, hwaddr addr,
1637 uint64_t value, unsigned len)
1639 subpage_t *subpage = opaque;
1640 uint8_t buf[4];
1642 #if defined(DEBUG_SUBPAGE)
1643 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1644 " value %"PRIx64"\n",
1645 __func__, subpage, len, addr, value);
1646 #endif
1647 switch (len) {
1648 case 1:
1649 stb_p(buf, value);
1650 break;
1651 case 2:
1652 stw_p(buf, value);
1653 break;
1654 case 4:
1655 stl_p(buf, value);
1656 break;
1657 default:
1658 abort();
1660 address_space_write(subpage->as, addr + subpage->base, buf, len);
1663 static bool subpage_accepts(void *opaque, hwaddr addr,
1664 unsigned len, bool is_write)
1666 subpage_t *subpage = opaque;
1667 #if defined(DEBUG_SUBPAGE)
1668 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
1669 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1670 #endif
1672 return address_space_access_valid(subpage->as, addr + subpage->base,
1673 len, is_write);
1676 static const MemoryRegionOps subpage_ops = {
1677 .read = subpage_read,
1678 .write = subpage_write,
1679 .valid.accepts = subpage_accepts,
1680 .endianness = DEVICE_NATIVE_ENDIAN,
1683 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1684 uint16_t section)
1686 int idx, eidx;
1688 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1689 return -1;
1690 idx = SUBPAGE_IDX(start);
1691 eidx = SUBPAGE_IDX(end);
1692 #if defined(DEBUG_SUBPAGE)
1693 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1694 __func__, mmio, start, end, idx, eidx, section);
1695 #endif
1696 for (; idx <= eidx; idx++) {
1697 mmio->sub_section[idx] = section;
1700 return 0;
1703 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1705 subpage_t *mmio;
1707 mmio = g_malloc0(sizeof(subpage_t));
1709 mmio->as = as;
1710 mmio->base = base;
1711 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1712 "subpage", TARGET_PAGE_SIZE);
1713 mmio->iomem.subpage = true;
1714 #if defined(DEBUG_SUBPAGE)
1715 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1716 mmio, base, TARGET_PAGE_SIZE);
1717 #endif
1718 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1720 return mmio;
1723 static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
1725 MemoryRegionSection section = {
1726 .mr = mr,
1727 .offset_within_address_space = 0,
1728 .offset_within_region = 0,
1729 .size = int128_2_64(),
1732 return phys_section_add(map, &section);
1735 MemoryRegion *iotlb_to_region(hwaddr index)
1737 return address_space_memory.dispatch->map.sections[
1738 index & ~TARGET_PAGE_MASK].mr;
1741 static void io_mem_init(void)
1743 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1744 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1745 "unassigned", UINT64_MAX);
1746 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1747 "notdirty", UINT64_MAX);
1748 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1749 "watch", UINT64_MAX);
1752 static void mem_begin(MemoryListener *listener)
1754 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1755 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1756 uint16_t n;
1758 n = dummy_section(&d->map, &io_mem_unassigned);
1759 assert(n == PHYS_SECTION_UNASSIGNED);
1760 n = dummy_section(&d->map, &io_mem_notdirty);
1761 assert(n == PHYS_SECTION_NOTDIRTY);
1762 n = dummy_section(&d->map, &io_mem_rom);
1763 assert(n == PHYS_SECTION_ROM);
1764 n = dummy_section(&d->map, &io_mem_watch);
1765 assert(n == PHYS_SECTION_WATCH);
1767 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
1768 d->as = as;
1769 as->next_dispatch = d;
1772 static void mem_commit(MemoryListener *listener)
1774 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1775 AddressSpaceDispatch *cur = as->dispatch;
1776 AddressSpaceDispatch *next = as->next_dispatch;
1778 phys_page_compact_all(next, next->map.nodes_nb);
1780 as->dispatch = next;
1782 if (cur) {
1783 phys_sections_free(&cur->map);
1784 g_free(cur);
1788 static void tcg_commit(MemoryListener *listener)
1790 CPUState *cpu;
1792 /* since each CPU stores ram addresses in its TLB cache, we must
1793 reset the modified entries */
1794 /* XXX: slow ! */
1795 CPU_FOREACH(cpu) {
1796 CPUArchState *env = cpu->env_ptr;
1798 tlb_flush(env, 1);
1802 static void core_log_global_start(MemoryListener *listener)
1804 cpu_physical_memory_set_dirty_tracking(1);
1807 static void core_log_global_stop(MemoryListener *listener)
1809 cpu_physical_memory_set_dirty_tracking(0);
1812 static MemoryListener core_memory_listener = {
1813 .log_global_start = core_log_global_start,
1814 .log_global_stop = core_log_global_stop,
1815 .priority = 1,
1818 static MemoryListener tcg_memory_listener = {
1819 .commit = tcg_commit,
1822 void address_space_init_dispatch(AddressSpace *as)
1824 as->dispatch = NULL;
1825 as->dispatch_listener = (MemoryListener) {
1826 .begin = mem_begin,
1827 .commit = mem_commit,
1828 .region_add = mem_add,
1829 .region_nop = mem_add,
1830 .priority = 0,
1832 memory_listener_register(&as->dispatch_listener, as);
1835 void address_space_destroy_dispatch(AddressSpace *as)
1837 AddressSpaceDispatch *d = as->dispatch;
1839 memory_listener_unregister(&as->dispatch_listener);
1840 g_free(d);
1841 as->dispatch = NULL;
1844 static void memory_map_init(void)
1846 system_memory = g_malloc(sizeof(*system_memory));
1848 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
1849 address_space_init(&address_space_memory, system_memory, "memory");
1851 system_io = g_malloc(sizeof(*system_io));
1852 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1853 65536);
1854 address_space_init(&address_space_io, system_io, "I/O");
1856 memory_listener_register(&core_memory_listener, &address_space_memory);
1857 if (tcg_enabled()) {
1858 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1862 MemoryRegion *get_system_memory(void)
1864 return system_memory;
1867 MemoryRegion *get_system_io(void)
1869 return system_io;
1872 #endif /* !defined(CONFIG_USER_ONLY) */
1874 /* physical memory access (slow version, mainly for debug) */
1875 #if defined(CONFIG_USER_ONLY)
1876 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1877 uint8_t *buf, int len, int is_write)
1879 int l, flags;
1880 target_ulong page;
1881 void * p;
1883 while (len > 0) {
1884 page = addr & TARGET_PAGE_MASK;
1885 l = (page + TARGET_PAGE_SIZE) - addr;
1886 if (l > len)
1887 l = len;
1888 flags = page_get_flags(page);
1889 if (!(flags & PAGE_VALID))
1890 return -1;
1891 if (is_write) {
1892 if (!(flags & PAGE_WRITE))
1893 return -1;
1894 /* XXX: this code should not depend on lock_user */
1895 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1896 return -1;
1897 memcpy(p, buf, l);
1898 unlock_user(p, addr, l);
1899 } else {
1900 if (!(flags & PAGE_READ))
1901 return -1;
1902 /* XXX: this code should not depend on lock_user */
1903 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1904 return -1;
1905 memcpy(buf, p, l);
1906 unlock_user(p, addr, 0);
1908 len -= l;
1909 buf += l;
1910 addr += l;
1912 return 0;
1915 #else
1917 static void invalidate_and_set_dirty(hwaddr addr,
1918 hwaddr length)
1920 if (!cpu_physical_memory_is_dirty(addr)) {
1921 /* invalidate code */
1922 tb_invalidate_phys_page_range(addr, addr + length, 0);
1923 /* set dirty bit */
1924 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1925 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
1927 xen_modified_memory(addr, length);
1930 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1932 if (memory_region_is_ram(mr)) {
1933 return !(is_write && mr->readonly);
1935 if (memory_region_is_romd(mr)) {
1936 return !is_write;
1939 return false;
1942 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1944 unsigned access_size_max = mr->ops->valid.max_access_size;
1946 /* Regions are assumed to support 1-4 byte accesses unless
1947 otherwise specified. */
1948 if (access_size_max == 0) {
1949 access_size_max = 4;
1952 /* Bound the maximum access by the alignment of the address. */
1953 if (!mr->ops->impl.unaligned) {
1954 unsigned align_size_max = addr & -addr;
1955 if (align_size_max != 0 && align_size_max < access_size_max) {
1956 access_size_max = align_size_max;
1960 /* Don't attempt accesses larger than the maximum. */
1961 if (l > access_size_max) {
1962 l = access_size_max;
1964 if (l & (l - 1)) {
1965 l = 1 << (qemu_fls(l) - 1);
1968 return l;
1971 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1972 int len, bool is_write)
1974 hwaddr l;
1975 uint8_t *ptr;
1976 uint64_t val;
1977 hwaddr addr1;
1978 MemoryRegion *mr;
1979 bool error = false;
1981 while (len > 0) {
1982 l = len;
1983 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1985 if (is_write) {
1986 if (!memory_access_is_direct(mr, is_write)) {
1987 l = memory_access_size(mr, l, addr1);
1988 /* XXX: could force current_cpu to NULL to avoid
1989 potential bugs */
1990 switch (l) {
1991 case 8:
1992 /* 64 bit write access */
1993 val = ldq_p(buf);
1994 error |= io_mem_write(mr, addr1, val, 8);
1995 break;
1996 case 4:
1997 /* 32 bit write access */
1998 val = ldl_p(buf);
1999 error |= io_mem_write(mr, addr1, val, 4);
2000 break;
2001 case 2:
2002 /* 16 bit write access */
2003 val = lduw_p(buf);
2004 error |= io_mem_write(mr, addr1, val, 2);
2005 break;
2006 case 1:
2007 /* 8 bit write access */
2008 val = ldub_p(buf);
2009 error |= io_mem_write(mr, addr1, val, 1);
2010 break;
2011 default:
2012 abort();
2014 } else {
2015 addr1 += memory_region_get_ram_addr(mr);
2016 /* RAM case */
2017 ptr = qemu_get_ram_ptr(addr1);
2018 memcpy(ptr, buf, l);
2019 invalidate_and_set_dirty(addr1, l);
2021 } else {
2022 if (!memory_access_is_direct(mr, is_write)) {
2023 /* I/O case */
2024 l = memory_access_size(mr, l, addr1);
2025 switch (l) {
2026 case 8:
2027 /* 64 bit read access */
2028 error |= io_mem_read(mr, addr1, &val, 8);
2029 stq_p(buf, val);
2030 break;
2031 case 4:
2032 /* 32 bit read access */
2033 error |= io_mem_read(mr, addr1, &val, 4);
2034 stl_p(buf, val);
2035 break;
2036 case 2:
2037 /* 16 bit read access */
2038 error |= io_mem_read(mr, addr1, &val, 2);
2039 stw_p(buf, val);
2040 break;
2041 case 1:
2042 /* 8 bit read access */
2043 error |= io_mem_read(mr, addr1, &val, 1);
2044 stb_p(buf, val);
2045 break;
2046 default:
2047 abort();
2049 } else {
2050 /* RAM case */
2051 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2052 memcpy(buf, ptr, l);
2055 len -= l;
2056 buf += l;
2057 addr += l;
2060 return error;
2063 bool address_space_write(AddressSpace *as, hwaddr addr,
2064 const uint8_t *buf, int len)
2066 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2069 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2071 return address_space_rw(as, addr, buf, len, false);
2075 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2076 int len, int is_write)
2078 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2081 enum write_rom_type {
2082 WRITE_DATA,
2083 FLUSH_CACHE,
2086 static inline void cpu_physical_memory_write_rom_internal(
2087 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2089 hwaddr l;
2090 uint8_t *ptr;
2091 hwaddr addr1;
2092 MemoryRegion *mr;
2094 while (len > 0) {
2095 l = len;
2096 mr = address_space_translate(&address_space_memory,
2097 addr, &addr1, &l, true);
2099 if (!(memory_region_is_ram(mr) ||
2100 memory_region_is_romd(mr))) {
2101 /* do nothing */
2102 } else {
2103 addr1 += memory_region_get_ram_addr(mr);
2104 /* ROM/RAM case */
2105 ptr = qemu_get_ram_ptr(addr1);
2106 switch (type) {
2107 case WRITE_DATA:
2108 memcpy(ptr, buf, l);
2109 invalidate_and_set_dirty(addr1, l);
2110 break;
2111 case FLUSH_CACHE:
2112 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2113 break;
2116 len -= l;
2117 buf += l;
2118 addr += l;
2122 /* used for ROM loading : can write in RAM and ROM */
2123 void cpu_physical_memory_write_rom(hwaddr addr,
2124 const uint8_t *buf, int len)
2126 cpu_physical_memory_write_rom_internal(addr, buf, len, WRITE_DATA);
2129 void cpu_flush_icache_range(hwaddr start, int len)
2132 * This function should do the same thing as an icache flush that was
2133 * triggered from within the guest. For TCG we are always cache coherent,
2134 * so there is no need to flush anything. For KVM / Xen we need to flush
2135 * the host's instruction cache at least.
2137 if (tcg_enabled()) {
2138 return;
2141 cpu_physical_memory_write_rom_internal(start, NULL, len, FLUSH_CACHE);
2144 typedef struct {
2145 MemoryRegion *mr;
2146 void *buffer;
2147 hwaddr addr;
2148 hwaddr len;
2149 } BounceBuffer;
2151 static BounceBuffer bounce;
2153 typedef struct MapClient {
2154 void *opaque;
2155 void (*callback)(void *opaque);
2156 QLIST_ENTRY(MapClient) link;
2157 } MapClient;
2159 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2160 = QLIST_HEAD_INITIALIZER(map_client_list);
2162 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2164 MapClient *client = g_malloc(sizeof(*client));
2166 client->opaque = opaque;
2167 client->callback = callback;
2168 QLIST_INSERT_HEAD(&map_client_list, client, link);
2169 return client;
2172 static void cpu_unregister_map_client(void *_client)
2174 MapClient *client = (MapClient *)_client;
2176 QLIST_REMOVE(client, link);
2177 g_free(client);
2180 static void cpu_notify_map_clients(void)
2182 MapClient *client;
2184 while (!QLIST_EMPTY(&map_client_list)) {
2185 client = QLIST_FIRST(&map_client_list);
2186 client->callback(client->opaque);
2187 cpu_unregister_map_client(client);
2191 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2193 MemoryRegion *mr;
2194 hwaddr l, xlat;
2196 while (len > 0) {
2197 l = len;
2198 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2199 if (!memory_access_is_direct(mr, is_write)) {
2200 l = memory_access_size(mr, l, addr);
2201 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2202 return false;
2206 len -= l;
2207 addr += l;
2209 return true;
2212 /* Map a physical memory region into a host virtual address.
2213 * May map a subset of the requested range, given by and returned in *plen.
2214 * May return NULL if resources needed to perform the mapping are exhausted.
2215 * Use only for reads OR writes - not for read-modify-write operations.
2216 * Use cpu_register_map_client() to know when retrying the map operation is
2217 * likely to succeed.
2219 void *address_space_map(AddressSpace *as,
2220 hwaddr addr,
2221 hwaddr *plen,
2222 bool is_write)
2224 hwaddr len = *plen;
2225 hwaddr done = 0;
2226 hwaddr l, xlat, base;
2227 MemoryRegion *mr, *this_mr;
2228 ram_addr_t raddr;
2230 if (len == 0) {
2231 return NULL;
2234 l = len;
2235 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2236 if (!memory_access_is_direct(mr, is_write)) {
2237 if (bounce.buffer) {
2238 return NULL;
2240 /* Avoid unbounded allocations */
2241 l = MIN(l, TARGET_PAGE_SIZE);
2242 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2243 bounce.addr = addr;
2244 bounce.len = l;
2246 memory_region_ref(mr);
2247 bounce.mr = mr;
2248 if (!is_write) {
2249 address_space_read(as, addr, bounce.buffer, l);
2252 *plen = l;
2253 return bounce.buffer;
2256 base = xlat;
2257 raddr = memory_region_get_ram_addr(mr);
2259 for (;;) {
2260 len -= l;
2261 addr += l;
2262 done += l;
2263 if (len == 0) {
2264 break;
2267 l = len;
2268 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2269 if (this_mr != mr || xlat != base + done) {
2270 break;
2274 memory_region_ref(mr);
2275 *plen = done;
2276 return qemu_ram_ptr_length(raddr + base, plen);
2279 /* Unmaps a memory region previously mapped by address_space_map().
2280 * Will also mark the memory as dirty if is_write == 1. access_len gives
2281 * the amount of memory that was actually read or written by the caller.
2283 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2284 int is_write, hwaddr access_len)
2286 if (buffer != bounce.buffer) {
2287 MemoryRegion *mr;
2288 ram_addr_t addr1;
2290 mr = qemu_ram_addr_from_host(buffer, &addr1);
2291 assert(mr != NULL);
2292 if (is_write) {
2293 while (access_len) {
2294 unsigned l;
2295 l = TARGET_PAGE_SIZE;
2296 if (l > access_len)
2297 l = access_len;
2298 invalidate_and_set_dirty(addr1, l);
2299 addr1 += l;
2300 access_len -= l;
2303 if (xen_enabled()) {
2304 xen_invalidate_map_cache_entry(buffer);
2306 memory_region_unref(mr);
2307 return;
2309 if (is_write) {
2310 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2312 qemu_vfree(bounce.buffer);
2313 bounce.buffer = NULL;
2314 memory_region_unref(bounce.mr);
2315 cpu_notify_map_clients();
2318 void *cpu_physical_memory_map(hwaddr addr,
2319 hwaddr *plen,
2320 int is_write)
2322 return address_space_map(&address_space_memory, addr, plen, is_write);
2325 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2326 int is_write, hwaddr access_len)
2328 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2331 /* warning: addr must be aligned */
2332 static inline uint32_t ldl_phys_internal(hwaddr addr,
2333 enum device_endian endian)
2335 uint8_t *ptr;
2336 uint64_t val;
2337 MemoryRegion *mr;
2338 hwaddr l = 4;
2339 hwaddr addr1;
2341 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2342 false);
2343 if (l < 4 || !memory_access_is_direct(mr, false)) {
2344 /* I/O case */
2345 io_mem_read(mr, addr1, &val, 4);
2346 #if defined(TARGET_WORDS_BIGENDIAN)
2347 if (endian == DEVICE_LITTLE_ENDIAN) {
2348 val = bswap32(val);
2350 #else
2351 if (endian == DEVICE_BIG_ENDIAN) {
2352 val = bswap32(val);
2354 #endif
2355 } else {
2356 /* RAM case */
2357 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2358 & TARGET_PAGE_MASK)
2359 + addr1);
2360 switch (endian) {
2361 case DEVICE_LITTLE_ENDIAN:
2362 val = ldl_le_p(ptr);
2363 break;
2364 case DEVICE_BIG_ENDIAN:
2365 val = ldl_be_p(ptr);
2366 break;
2367 default:
2368 val = ldl_p(ptr);
2369 break;
2372 return val;
2375 uint32_t ldl_phys(hwaddr addr)
2377 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2380 uint32_t ldl_le_phys(hwaddr addr)
2382 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2385 uint32_t ldl_be_phys(hwaddr addr)
2387 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2390 /* warning: addr must be aligned */
2391 static inline uint64_t ldq_phys_internal(hwaddr addr,
2392 enum device_endian endian)
2394 uint8_t *ptr;
2395 uint64_t val;
2396 MemoryRegion *mr;
2397 hwaddr l = 8;
2398 hwaddr addr1;
2400 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2401 false);
2402 if (l < 8 || !memory_access_is_direct(mr, false)) {
2403 /* I/O case */
2404 io_mem_read(mr, addr1, &val, 8);
2405 #if defined(TARGET_WORDS_BIGENDIAN)
2406 if (endian == DEVICE_LITTLE_ENDIAN) {
2407 val = bswap64(val);
2409 #else
2410 if (endian == DEVICE_BIG_ENDIAN) {
2411 val = bswap64(val);
2413 #endif
2414 } else {
2415 /* RAM case */
2416 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2417 & TARGET_PAGE_MASK)
2418 + addr1);
2419 switch (endian) {
2420 case DEVICE_LITTLE_ENDIAN:
2421 val = ldq_le_p(ptr);
2422 break;
2423 case DEVICE_BIG_ENDIAN:
2424 val = ldq_be_p(ptr);
2425 break;
2426 default:
2427 val = ldq_p(ptr);
2428 break;
2431 return val;
2434 uint64_t ldq_phys(hwaddr addr)
2436 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2439 uint64_t ldq_le_phys(hwaddr addr)
2441 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2444 uint64_t ldq_be_phys(hwaddr addr)
2446 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2449 /* XXX: optimize */
2450 uint32_t ldub_phys(hwaddr addr)
2452 uint8_t val;
2453 cpu_physical_memory_read(addr, &val, 1);
2454 return val;
2457 /* warning: addr must be aligned */
2458 static inline uint32_t lduw_phys_internal(hwaddr addr,
2459 enum device_endian endian)
2461 uint8_t *ptr;
2462 uint64_t val;
2463 MemoryRegion *mr;
2464 hwaddr l = 2;
2465 hwaddr addr1;
2467 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2468 false);
2469 if (l < 2 || !memory_access_is_direct(mr, false)) {
2470 /* I/O case */
2471 io_mem_read(mr, addr1, &val, 2);
2472 #if defined(TARGET_WORDS_BIGENDIAN)
2473 if (endian == DEVICE_LITTLE_ENDIAN) {
2474 val = bswap16(val);
2476 #else
2477 if (endian == DEVICE_BIG_ENDIAN) {
2478 val = bswap16(val);
2480 #endif
2481 } else {
2482 /* RAM case */
2483 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2484 & TARGET_PAGE_MASK)
2485 + addr1);
2486 switch (endian) {
2487 case DEVICE_LITTLE_ENDIAN:
2488 val = lduw_le_p(ptr);
2489 break;
2490 case DEVICE_BIG_ENDIAN:
2491 val = lduw_be_p(ptr);
2492 break;
2493 default:
2494 val = lduw_p(ptr);
2495 break;
2498 return val;
2501 uint32_t lduw_phys(hwaddr addr)
2503 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2506 uint32_t lduw_le_phys(hwaddr addr)
2508 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2511 uint32_t lduw_be_phys(hwaddr addr)
2513 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2516 /* warning: addr must be aligned. The ram page is not masked as dirty
2517 and the code inside is not invalidated. It is useful if the dirty
2518 bits are used to track modified PTEs */
2519 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2521 uint8_t *ptr;
2522 MemoryRegion *mr;
2523 hwaddr l = 4;
2524 hwaddr addr1;
2526 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2527 true);
2528 if (l < 4 || !memory_access_is_direct(mr, true)) {
2529 io_mem_write(mr, addr1, val, 4);
2530 } else {
2531 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2532 ptr = qemu_get_ram_ptr(addr1);
2533 stl_p(ptr, val);
2535 if (unlikely(in_migration)) {
2536 if (!cpu_physical_memory_is_dirty(addr1)) {
2537 /* invalidate code */
2538 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2539 /* set dirty bit */
2540 cpu_physical_memory_set_dirty_flag(addr1,
2541 DIRTY_MEMORY_MIGRATION);
2542 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
2548 /* warning: addr must be aligned */
2549 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2550 enum device_endian endian)
2552 uint8_t *ptr;
2553 MemoryRegion *mr;
2554 hwaddr l = 4;
2555 hwaddr addr1;
2557 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2558 true);
2559 if (l < 4 || !memory_access_is_direct(mr, true)) {
2560 #if defined(TARGET_WORDS_BIGENDIAN)
2561 if (endian == DEVICE_LITTLE_ENDIAN) {
2562 val = bswap32(val);
2564 #else
2565 if (endian == DEVICE_BIG_ENDIAN) {
2566 val = bswap32(val);
2568 #endif
2569 io_mem_write(mr, addr1, val, 4);
2570 } else {
2571 /* RAM case */
2572 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2573 ptr = qemu_get_ram_ptr(addr1);
2574 switch (endian) {
2575 case DEVICE_LITTLE_ENDIAN:
2576 stl_le_p(ptr, val);
2577 break;
2578 case DEVICE_BIG_ENDIAN:
2579 stl_be_p(ptr, val);
2580 break;
2581 default:
2582 stl_p(ptr, val);
2583 break;
2585 invalidate_and_set_dirty(addr1, 4);
2589 void stl_phys(hwaddr addr, uint32_t val)
2591 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2594 void stl_le_phys(hwaddr addr, uint32_t val)
2596 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2599 void stl_be_phys(hwaddr addr, uint32_t val)
2601 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2604 /* XXX: optimize */
2605 void stb_phys(hwaddr addr, uint32_t val)
2607 uint8_t v = val;
2608 cpu_physical_memory_write(addr, &v, 1);
2611 /* warning: addr must be aligned */
2612 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2613 enum device_endian endian)
2615 uint8_t *ptr;
2616 MemoryRegion *mr;
2617 hwaddr l = 2;
2618 hwaddr addr1;
2620 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2621 true);
2622 if (l < 2 || !memory_access_is_direct(mr, true)) {
2623 #if defined(TARGET_WORDS_BIGENDIAN)
2624 if (endian == DEVICE_LITTLE_ENDIAN) {
2625 val = bswap16(val);
2627 #else
2628 if (endian == DEVICE_BIG_ENDIAN) {
2629 val = bswap16(val);
2631 #endif
2632 io_mem_write(mr, addr1, val, 2);
2633 } else {
2634 /* RAM case */
2635 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2636 ptr = qemu_get_ram_ptr(addr1);
2637 switch (endian) {
2638 case DEVICE_LITTLE_ENDIAN:
2639 stw_le_p(ptr, val);
2640 break;
2641 case DEVICE_BIG_ENDIAN:
2642 stw_be_p(ptr, val);
2643 break;
2644 default:
2645 stw_p(ptr, val);
2646 break;
2648 invalidate_and_set_dirty(addr1, 2);
2652 void stw_phys(hwaddr addr, uint32_t val)
2654 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2657 void stw_le_phys(hwaddr addr, uint32_t val)
2659 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2662 void stw_be_phys(hwaddr addr, uint32_t val)
2664 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2667 /* XXX: optimize */
2668 void stq_phys(hwaddr addr, uint64_t val)
2670 val = tswap64(val);
2671 cpu_physical_memory_write(addr, &val, 8);
2674 void stq_le_phys(hwaddr addr, uint64_t val)
2676 val = cpu_to_le64(val);
2677 cpu_physical_memory_write(addr, &val, 8);
2680 void stq_be_phys(hwaddr addr, uint64_t val)
2682 val = cpu_to_be64(val);
2683 cpu_physical_memory_write(addr, &val, 8);
2686 /* virtual memory access for debug (includes writing to ROM) */
2687 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2688 uint8_t *buf, int len, int is_write)
2690 int l;
2691 hwaddr phys_addr;
2692 target_ulong page;
2694 while (len > 0) {
2695 page = addr & TARGET_PAGE_MASK;
2696 phys_addr = cpu_get_phys_page_debug(cpu, page);
2697 /* if no physical page mapped, return an error */
2698 if (phys_addr == -1)
2699 return -1;
2700 l = (page + TARGET_PAGE_SIZE) - addr;
2701 if (l > len)
2702 l = len;
2703 phys_addr += (addr & ~TARGET_PAGE_MASK);
2704 if (is_write)
2705 cpu_physical_memory_write_rom(phys_addr, buf, l);
2706 else
2707 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2708 len -= l;
2709 buf += l;
2710 addr += l;
2712 return 0;
2714 #endif
2716 #if !defined(CONFIG_USER_ONLY)
2719 * A helper function for the _utterly broken_ virtio device model to find out if
2720 * it's running on a big endian machine. Don't do this at home kids!
2722 bool virtio_is_big_endian(void);
2723 bool virtio_is_big_endian(void)
2725 #if defined(TARGET_WORDS_BIGENDIAN)
2726 return true;
2727 #else
2728 return false;
2729 #endif
2732 #endif
2734 #ifndef CONFIG_USER_ONLY
2735 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2737 MemoryRegion*mr;
2738 hwaddr l = 1;
2740 mr = address_space_translate(&address_space_memory,
2741 phys_addr, &phys_addr, &l, false);
2743 return !(memory_region_is_ram(mr) ||
2744 memory_region_is_romd(mr));
2747 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2749 RAMBlock *block;
2751 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2752 func(block->host, block->offset, block->length, opaque);
2755 #endif