hw: Do not include qemu/log.h if it is not necessary
[qemu/ar7.git] / hw / riscv / numa.c
blob7fe92d402f697651c1856a60fc3fd481b2d5692e
1 /*
2 * QEMU RISC-V NUMA Helper
4 * Copyright (c) 2020 Western Digital Corporation or its affiliates.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/units.h"
21 #include "qemu/error-report.h"
22 #include "qapi/error.h"
23 #include "hw/boards.h"
24 #include "hw/qdev-properties.h"
25 #include "hw/riscv/numa.h"
26 #include "sysemu/device_tree.h"
28 static bool numa_enabled(const MachineState *ms)
30 return (ms->numa_state && ms->numa_state->num_nodes) ? true : false;
33 int riscv_socket_count(const MachineState *ms)
35 return (numa_enabled(ms)) ? ms->numa_state->num_nodes : 1;
38 int riscv_socket_first_hartid(const MachineState *ms, int socket_id)
40 int i, first_hartid = ms->smp.cpus;
42 if (!numa_enabled(ms)) {
43 return (!socket_id) ? 0 : -1;
46 for (i = 0; i < ms->smp.cpus; i++) {
47 if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
48 continue;
50 if (i < first_hartid) {
51 first_hartid = i;
55 return (first_hartid < ms->smp.cpus) ? first_hartid : -1;
58 int riscv_socket_last_hartid(const MachineState *ms, int socket_id)
60 int i, last_hartid = -1;
62 if (!numa_enabled(ms)) {
63 return (!socket_id) ? ms->smp.cpus - 1 : -1;
66 for (i = 0; i < ms->smp.cpus; i++) {
67 if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
68 continue;
70 if (i > last_hartid) {
71 last_hartid = i;
75 return (last_hartid < ms->smp.cpus) ? last_hartid : -1;
78 int riscv_socket_hart_count(const MachineState *ms, int socket_id)
80 int first_hartid, last_hartid;
82 if (!numa_enabled(ms)) {
83 return (!socket_id) ? ms->smp.cpus : -1;
86 first_hartid = riscv_socket_first_hartid(ms, socket_id);
87 if (first_hartid < 0) {
88 return -1;
91 last_hartid = riscv_socket_last_hartid(ms, socket_id);
92 if (last_hartid < 0) {
93 return -1;
96 if (first_hartid > last_hartid) {
97 return -1;
100 return last_hartid - first_hartid + 1;
103 bool riscv_socket_check_hartids(const MachineState *ms, int socket_id)
105 int i, first_hartid, last_hartid;
107 if (!numa_enabled(ms)) {
108 return (!socket_id) ? true : false;
111 first_hartid = riscv_socket_first_hartid(ms, socket_id);
112 if (first_hartid < 0) {
113 return false;
116 last_hartid = riscv_socket_last_hartid(ms, socket_id);
117 if (last_hartid < 0) {
118 return false;
121 for (i = first_hartid; i <= last_hartid; i++) {
122 if (ms->possible_cpus->cpus[i].props.node_id != socket_id) {
123 return false;
127 return true;
130 uint64_t riscv_socket_mem_offset(const MachineState *ms, int socket_id)
132 int i;
133 uint64_t mem_offset = 0;
135 if (!numa_enabled(ms)) {
136 return 0;
139 for (i = 0; i < ms->numa_state->num_nodes; i++) {
140 if (i == socket_id) {
141 break;
143 mem_offset += ms->numa_state->nodes[i].node_mem;
146 return (i == socket_id) ? mem_offset : 0;
149 uint64_t riscv_socket_mem_size(const MachineState *ms, int socket_id)
151 if (!numa_enabled(ms)) {
152 return (!socket_id) ? ms->ram_size : 0;
155 return (socket_id < ms->numa_state->num_nodes) ?
156 ms->numa_state->nodes[socket_id].node_mem : 0;
159 void riscv_socket_fdt_write_id(const MachineState *ms, void *fdt,
160 const char *node_name, int socket_id)
162 if (numa_enabled(ms)) {
163 qemu_fdt_setprop_cell(fdt, node_name, "numa-node-id", socket_id);
167 void riscv_socket_fdt_write_distance_matrix(const MachineState *ms, void *fdt)
169 int i, j, idx;
170 uint32_t *dist_matrix, dist_matrix_size;
172 if (numa_enabled(ms) && ms->numa_state->have_numa_distance) {
173 dist_matrix_size = riscv_socket_count(ms) * riscv_socket_count(ms);
174 dist_matrix_size *= (3 * sizeof(uint32_t));
175 dist_matrix = g_malloc0(dist_matrix_size);
177 for (i = 0; i < riscv_socket_count(ms); i++) {
178 for (j = 0; j < riscv_socket_count(ms); j++) {
179 idx = (i * riscv_socket_count(ms) + j) * 3;
180 dist_matrix[idx + 0] = cpu_to_be32(i);
181 dist_matrix[idx + 1] = cpu_to_be32(j);
182 dist_matrix[idx + 2] =
183 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
187 qemu_fdt_add_subnode(fdt, "/distance-map");
188 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
189 "numa-distance-map-v1");
190 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
191 dist_matrix, dist_matrix_size);
192 g_free(dist_matrix);
196 CpuInstanceProperties
197 riscv_numa_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
199 MachineClass *mc = MACHINE_GET_CLASS(ms);
200 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
202 assert(cpu_index < possible_cpus->len);
203 return possible_cpus->cpus[cpu_index].props;
206 int64_t riscv_numa_get_default_cpu_node_id(const MachineState *ms, int idx)
208 int64_t nidx = 0;
210 if (ms->numa_state->num_nodes) {
211 nidx = idx / (ms->smp.cpus / ms->numa_state->num_nodes);
212 if (ms->numa_state->num_nodes <= nidx) {
213 nidx = ms->numa_state->num_nodes - 1;
217 return nidx;
220 const CPUArchIdList *riscv_numa_possible_cpu_arch_ids(MachineState *ms)
222 int n;
223 unsigned int max_cpus = ms->smp.max_cpus;
225 if (ms->possible_cpus) {
226 assert(ms->possible_cpus->len == max_cpus);
227 return ms->possible_cpus;
230 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
231 sizeof(CPUArchId) * max_cpus);
232 ms->possible_cpus->len = max_cpus;
233 for (n = 0; n < ms->possible_cpus->len; n++) {
234 ms->possible_cpus->cpus[n].type = ms->cpu_type;
235 ms->possible_cpus->cpus[n].arch_id = n;
236 ms->possible_cpus->cpus[n].props.has_core_id = true;
237 ms->possible_cpus->cpus[n].props.core_id = n;
240 return ms->possible_cpus;