2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
19 #include "gicv3_internal.h"
23 void gicv3_set_gicv3state(CPUState
*cpu
, GICv3CPUState
*s
)
25 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
26 CPUARMState
*env
= &arm_cpu
->env
;
28 env
->gicv3state
= (void *)s
;
31 static GICv3CPUState
*icc_cs_from_env(CPUARMState
*env
)
33 return env
->gicv3state
;
36 static bool gicv3_use_ns_bank(CPUARMState
*env
)
38 /* Return true if we should use the NonSecure bank for a banked GIC
39 * CPU interface register. Note that this differs from the
40 * access_secure_reg() function because GICv3 banked registers are
41 * banked even for AArch64, unlike the other CPU system registers.
43 return !arm_is_secure_below_el3(env
);
46 /* The minimum BPR for the virtual interface is a configurable property */
47 static inline int icv_min_vbpr(GICv3CPUState
*cs
)
49 return 7 - cs
->vprebits
;
52 /* Simple accessor functions for LR fields */
53 static uint32_t ich_lr_vintid(uint64_t lr
)
55 return extract64(lr
, ICH_LR_EL2_VINTID_SHIFT
, ICH_LR_EL2_VINTID_LENGTH
);
58 static uint32_t ich_lr_pintid(uint64_t lr
)
60 return extract64(lr
, ICH_LR_EL2_PINTID_SHIFT
, ICH_LR_EL2_PINTID_LENGTH
);
63 static uint32_t ich_lr_prio(uint64_t lr
)
65 return extract64(lr
, ICH_LR_EL2_PRIORITY_SHIFT
, ICH_LR_EL2_PRIORITY_LENGTH
);
68 static int ich_lr_state(uint64_t lr
)
70 return extract64(lr
, ICH_LR_EL2_STATE_SHIFT
, ICH_LR_EL2_STATE_LENGTH
);
73 static bool icv_access(CPUARMState
*env
, int hcr_flags
)
75 /* Return true if this ICC_ register access should really be
76 * directed to an ICV_ access. hcr_flags is a mask of
77 * HCR_EL2 bits to check: we treat this as an ICV_ access
78 * if we are in NS EL1 and at least one of the specified
79 * HCR_EL2 bits is set.
81 * ICV registers fall into four categories:
82 * * access if NS EL1 and HCR_EL2.FMO == 1:
83 * all ICV regs with '0' in their name
84 * * access if NS EL1 and HCR_EL2.IMO == 1:
85 * all ICV regs with '1' in their name
86 * * access if NS EL1 and either IMO or FMO == 1:
89 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
90 bool flagmatch
= hcr_el2
& hcr_flags
& (HCR_IMO
| HCR_FMO
);
92 return flagmatch
&& arm_current_el(env
) == 1
93 && !arm_is_secure_below_el3(env
);
96 static int read_vbpr(GICv3CPUState
*cs
, int grp
)
98 /* Read VBPR value out of the VMCR field (caller must handle
99 * VCBPR effects if required)
101 if (grp
== GICV3_G0
) {
102 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
103 ICH_VMCR_EL2_VBPR0_LENGTH
);
105 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
106 ICH_VMCR_EL2_VBPR1_LENGTH
);
110 static void write_vbpr(GICv3CPUState
*cs
, int grp
, int value
)
112 /* Write new VBPR1 value, handling the "writing a value less than
113 * the minimum sets it to the minimum" semantics.
115 int min
= icv_min_vbpr(cs
);
117 if (grp
!= GICV3_G0
) {
121 value
= MAX(value
, min
);
123 if (grp
== GICV3_G0
) {
124 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
125 ICH_VMCR_EL2_VBPR0_LENGTH
, value
);
127 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
128 ICH_VMCR_EL2_VBPR1_LENGTH
, value
);
132 static uint32_t icv_fullprio_mask(GICv3CPUState
*cs
)
134 /* Return a mask word which clears the unimplemented priority bits
135 * from a priority value for a virtual interrupt. (Not to be confused
136 * with the group priority, whose mask depends on the value of VBPR
137 * for the interrupt group.)
139 return ~0U << (8 - cs
->vpribits
);
142 static int ich_highest_active_virt_prio(GICv3CPUState
*cs
)
144 /* Calculate the current running priority based on the set bits
145 * in the ICH Active Priority Registers.
148 int aprmax
= 1 << (cs
->vprebits
- 5);
150 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
152 for (i
= 0; i
< aprmax
; i
++) {
153 uint32_t apr
= cs
->ich_apr
[GICV3_G0
][i
] |
154 cs
->ich_apr
[GICV3_G1NS
][i
];
159 return (i
* 32 + ctz32(apr
)) << (icv_min_vbpr(cs
) + 1);
161 /* No current active interrupts: return idle priority */
165 static int hppvi_index(GICv3CPUState
*cs
)
167 /* Return the list register index of the highest priority pending
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
173 /* Note that a list register entry with a priority of 0xff will
174 * never be reported by this function; this is the architecturally
179 if (!(cs
->ich_vmcr_el2
& (ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
))) {
180 /* Both groups disabled, definitely nothing to do */
184 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
185 uint64_t lr
= cs
->ich_lr_el2
[i
];
188 if (ich_lr_state(lr
) != ICH_LR_EL2_STATE_PENDING
) {
193 /* Ignore interrupts if relevant group enable not set */
194 if (lr
& ICH_LR_EL2_GROUP
) {
195 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
199 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
204 thisprio
= ich_lr_prio(lr
);
206 if (thisprio
< prio
) {
215 static uint32_t icv_gprio_mask(GICv3CPUState
*cs
, int group
)
217 /* Return a mask word which clears the subpriority bits from
218 * a priority value for a virtual interrupt in the specified group.
219 * This depends on the VBPR value.
220 * If using VBPR0 then:
221 * a BPR of 0 means the group priority bits are [7:1];
222 * a BPR of 1 means they are [7:2], and so on down to
223 * a BPR of 7 meaning no group priority bits at all.
224 * If using VBPR1 then:
225 * a BPR of 0 is impossible (the minimum value is 1)
226 * a BPR of 1 means the group priority bits are [7:1];
227 * a BPR of 2 means they are [7:2], and so on down to
228 * a BPR of 7 meaning the group priority is [7].
230 * Which BPR to use depends on the group of the interrupt and
231 * the current ICH_VMCR_EL2.VCBPR settings.
233 * This corresponds to the VGroupBits() pseudocode.
237 if (group
== GICV3_G1NS
&& cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
241 bpr
= read_vbpr(cs
, group
);
242 if (group
== GICV3_G1NS
) {
247 return ~0U << (bpr
+ 1);
250 static bool icv_hppi_can_preempt(GICv3CPUState
*cs
, uint64_t lr
)
252 /* Return true if we can signal this virtual interrupt defined by
253 * the given list register value; see the pseudocode functions
254 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
255 * Compare also icc_hppi_can_preempt() which is the non-virtual
256 * equivalent of these checks.
259 uint32_t mask
, prio
, rprio
, vpmr
;
261 if (!(cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
)) {
262 /* Virtual interface disabled */
266 /* We don't need to check that this LR is in Pending state because
267 * that has already been done in hppvi_index().
270 prio
= ich_lr_prio(lr
);
271 vpmr
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
272 ICH_VMCR_EL2_VPMR_LENGTH
);
275 /* Priority mask masks this interrupt */
279 rprio
= ich_highest_active_virt_prio(cs
);
281 /* No running interrupt so we can preempt */
285 grp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
287 mask
= icv_gprio_mask(cs
, grp
);
289 /* We only preempt a running interrupt if the pending interrupt's
290 * group priority is sufficient (the subpriorities are not considered).
292 if ((prio
& mask
) < (rprio
& mask
)) {
299 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState
*cs
,
302 /* Return a set of bits indicating the EOI maintenance interrupt status
303 * for each list register. The EOI maintenance interrupt status is
304 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
305 * (see the GICv3 spec for the ICH_EISR_EL2 register).
306 * If misr is not NULL then we should also collect the information
307 * about the MISR.EOI, MISR.NP and MISR.U bits.
311 bool seenpending
= false;
314 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
315 uint64_t lr
= cs
->ich_lr_el2
[i
];
317 if ((lr
& (ICH_LR_EL2_STATE_MASK
| ICH_LR_EL2_HW
| ICH_LR_EL2_EOI
))
321 if ((lr
& ICH_LR_EL2_STATE_MASK
)) {
324 if (ich_lr_state(lr
) == ICH_LR_EL2_STATE_PENDING
) {
330 if (validcount
< 2 && (cs
->ich_hcr_el2
& ICH_HCR_EL2_UIE
)) {
331 *misr
|= ICH_MISR_EL2_U
;
333 if (!seenpending
&& (cs
->ich_hcr_el2
& ICH_HCR_EL2_NPIE
)) {
334 *misr
|= ICH_MISR_EL2_NP
;
337 *misr
|= ICH_MISR_EL2_EOI
;
343 static uint32_t maintenance_interrupt_state(GICv3CPUState
*cs
)
345 /* Return a set of bits indicating the maintenance interrupt status
346 * (as seen in the ICH_MISR_EL2 register).
350 /* Scan list registers and fill in the U, NP and EOI bits */
351 eoi_maintenance_interrupt_state(cs
, &value
);
353 if (cs
->ich_hcr_el2
& (ICH_HCR_EL2_LRENPIE
| ICH_HCR_EL2_EOICOUNT_MASK
)) {
354 value
|= ICH_MISR_EL2_LRENP
;
357 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0EIE
) &&
358 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
359 value
|= ICH_MISR_EL2_VGRP0E
;
362 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0DIE
) &&
363 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
364 value
|= ICH_MISR_EL2_VGRP0D
;
366 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1EIE
) &&
367 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
368 value
|= ICH_MISR_EL2_VGRP1E
;
371 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1DIE
) &&
372 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
373 value
|= ICH_MISR_EL2_VGRP1D
;
379 static void gicv3_cpuif_virt_update(GICv3CPUState
*cs
)
381 /* Tell the CPU about any pending virtual interrupts or
382 * maintenance interrupts, following a change to the state
383 * of the CPU interface relevant to virtual interrupts.
385 * CAUTION: this function will call qemu_set_irq() on the
386 * CPU maintenance IRQ line, which is typically wired up
387 * to the GIC as a per-CPU interrupt. This means that it
388 * will recursively call back into the GIC code via
389 * gicv3_redist_set_irq() and thus into the CPU interface code's
390 * gicv3_cpuif_update(). It is therefore important that this
391 * function is only called as the final action of a CPU interface
392 * register write implementation, after all the GIC state
393 * fields have been updated. gicv3_cpuif_update() also must
394 * not cause this function to be called, but that happens
395 * naturally as a result of there being no architectural
396 * linkage between the physical and virtual GIC logic.
403 idx
= hppvi_index(cs
);
404 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs
), idx
);
406 uint64_t lr
= cs
->ich_lr_el2
[idx
];
408 if (icv_hppi_can_preempt(cs
, lr
)) {
409 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
410 if (lr
& ICH_LR_EL2_GROUP
) {
418 if (cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
) {
419 maintlevel
= maintenance_interrupt_state(cs
);
422 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs
), fiqlevel
,
423 irqlevel
, maintlevel
);
425 qemu_set_irq(cs
->parent_vfiq
, fiqlevel
);
426 qemu_set_irq(cs
->parent_virq
, irqlevel
);
427 qemu_set_irq(cs
->maintenance_irq
, maintlevel
);
430 static uint64_t icv_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
432 GICv3CPUState
*cs
= icc_cs_from_env(env
);
433 int regno
= ri
->opc2
& 3;
434 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
435 uint64_t value
= cs
->ich_apr
[grp
][regno
];
437 trace_gicv3_icv_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
441 static void icv_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
444 GICv3CPUState
*cs
= icc_cs_from_env(env
);
445 int regno
= ri
->opc2
& 3;
446 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
448 trace_gicv3_icv_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
450 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
452 gicv3_cpuif_virt_update(cs
);
456 static uint64_t icv_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
458 GICv3CPUState
*cs
= icc_cs_from_env(env
);
459 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
463 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
464 /* reads return bpr0 + 1 saturated to 7, writes ignored */
469 bpr
= read_vbpr(cs
, grp
);
476 trace_gicv3_icv_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
481 static void icv_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
484 GICv3CPUState
*cs
= icc_cs_from_env(env
);
485 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
487 trace_gicv3_icv_bpr_write(ri
->crm
== 8 ? 0 : 1,
488 gicv3_redist_affid(cs
), value
);
490 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
491 /* reads return bpr0 + 1 saturated to 7, writes ignored */
495 write_vbpr(cs
, grp
, value
);
497 gicv3_cpuif_virt_update(cs
);
500 static uint64_t icv_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
502 GICv3CPUState
*cs
= icc_cs_from_env(env
);
505 value
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
506 ICH_VMCR_EL2_VPMR_LENGTH
);
508 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs
), value
);
512 static void icv_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
515 GICv3CPUState
*cs
= icc_cs_from_env(env
);
517 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs
), value
);
519 value
&= icv_fullprio_mask(cs
);
521 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
522 ICH_VMCR_EL2_VPMR_LENGTH
, value
);
524 gicv3_cpuif_virt_update(cs
);
527 static uint64_t icv_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
529 GICv3CPUState
*cs
= icc_cs_from_env(env
);
533 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
534 value
= extract64(cs
->ich_vmcr_el2
, enbit
, 1);
536 trace_gicv3_icv_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
537 gicv3_redist_affid(cs
), value
);
541 static void icv_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
544 GICv3CPUState
*cs
= icc_cs_from_env(env
);
547 trace_gicv3_icv_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
548 gicv3_redist_affid(cs
), value
);
550 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
552 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, enbit
, 1, value
);
553 gicv3_cpuif_virt_update(cs
);
556 static uint64_t icv_ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
558 GICv3CPUState
*cs
= icc_cs_from_env(env
);
561 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
562 * should match the ones reported in ich_vtr_read().
564 value
= ICC_CTLR_EL1_A3V
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
565 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
567 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
) {
568 value
|= ICC_CTLR_EL1_EOIMODE
;
571 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
572 value
|= ICC_CTLR_EL1_CBPR
;
575 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs
), value
);
579 static void icv_ctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
582 GICv3CPUState
*cs
= icc_cs_from_env(env
);
584 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs
), value
);
586 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VCBPR_SHIFT
,
587 1, value
& ICC_CTLR_EL1_CBPR
? 1 : 0);
588 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VEOIM_SHIFT
,
589 1, value
& ICC_CTLR_EL1_EOIMODE
? 1 : 0);
591 gicv3_cpuif_virt_update(cs
);
594 static uint64_t icv_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
596 GICv3CPUState
*cs
= icc_cs_from_env(env
);
597 int prio
= ich_highest_active_virt_prio(cs
);
599 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs
), prio
);
603 static uint64_t icv_hppir_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
605 GICv3CPUState
*cs
= icc_cs_from_env(env
);
606 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
607 int idx
= hppvi_index(cs
);
608 uint64_t value
= INTID_SPURIOUS
;
611 uint64_t lr
= cs
->ich_lr_el2
[idx
];
612 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
614 if (grp
== thisgrp
) {
615 value
= ich_lr_vintid(lr
);
619 trace_gicv3_icv_hppir_read(grp
, gicv3_redist_affid(cs
), value
);
623 static void icv_activate_irq(GICv3CPUState
*cs
, int idx
, int grp
)
625 /* Activate the interrupt in the specified list register
626 * by moving it from Pending to Active state, and update the
627 * Active Priority Registers.
629 uint32_t mask
= icv_gprio_mask(cs
, grp
);
630 int prio
= ich_lr_prio(cs
->ich_lr_el2
[idx
]) & mask
;
631 int aprbit
= prio
>> (8 - cs
->vprebits
);
632 int regno
= aprbit
/ 32;
633 int regbit
= aprbit
% 32;
635 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
636 cs
->ich_lr_el2
[idx
] |= ICH_LR_EL2_STATE_ACTIVE_BIT
;
637 cs
->ich_apr
[grp
][regno
] |= (1 << regbit
);
640 static uint64_t icv_iar_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
642 GICv3CPUState
*cs
= icc_cs_from_env(env
);
643 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
644 int idx
= hppvi_index(cs
);
645 uint64_t intid
= INTID_SPURIOUS
;
648 uint64_t lr
= cs
->ich_lr_el2
[idx
];
649 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
651 if (thisgrp
== grp
&& icv_hppi_can_preempt(cs
, lr
)) {
652 intid
= ich_lr_vintid(lr
);
653 if (intid
< INTID_SECURE
) {
654 icv_activate_irq(cs
, idx
, grp
);
656 /* Interrupt goes from Pending to Invalid */
657 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
658 /* We will now return the (bogus) ID from the list register,
659 * as per the pseudocode.
665 trace_gicv3_icv_iar_read(ri
->crm
== 8 ? 0 : 1,
666 gicv3_redist_affid(cs
), intid
);
668 gicv3_cpuif_virt_update(cs
);
673 static int icc_highest_active_prio(GICv3CPUState
*cs
)
675 /* Calculate the current running priority based on the set bits
676 * in the Active Priority Registers.
680 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
681 uint32_t apr
= cs
->icc_apr
[GICV3_G0
][i
] |
682 cs
->icc_apr
[GICV3_G1
][i
] | cs
->icc_apr
[GICV3_G1NS
][i
];
687 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
689 /* No current active interrupts: return idle priority */
693 static uint32_t icc_gprio_mask(GICv3CPUState
*cs
, int group
)
695 /* Return a mask word which clears the subpriority bits from
696 * a priority value for an interrupt in the specified group.
697 * This depends on the BPR value. For CBPR0 (S or NS):
698 * a BPR of 0 means the group priority bits are [7:1];
699 * a BPR of 1 means they are [7:2], and so on down to
700 * a BPR of 7 meaning no group priority bits at all.
702 * a BPR of 0 is impossible (the minimum value is 1)
703 * a BPR of 1 means the group priority bits are [7:1];
704 * a BPR of 2 means they are [7:2], and so on down to
705 * a BPR of 7 meaning the group priority is [7].
707 * Which BPR to use depends on the group of the interrupt and
708 * the current ICC_CTLR.CBPR settings.
710 * This corresponds to the GroupBits() pseudocode.
714 if ((group
== GICV3_G1
&& cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
) ||
715 (group
== GICV3_G1NS
&&
716 cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
720 bpr
= cs
->icc_bpr
[group
] & 7;
722 if (group
== GICV3_G1NS
) {
727 return ~0U << (bpr
+ 1);
730 static bool icc_no_enabled_hppi(GICv3CPUState
*cs
)
732 /* Return true if there is no pending interrupt, or the
733 * highest priority pending interrupt is in a group which has been
734 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
736 return cs
->hppi
.prio
== 0xff || (cs
->icc_igrpen
[cs
->hppi
.grp
] == 0);
739 static bool icc_hppi_can_preempt(GICv3CPUState
*cs
)
741 /* Return true if we have a pending interrupt of sufficient
742 * priority to preempt.
747 if (icc_no_enabled_hppi(cs
)) {
751 if (cs
->hppi
.prio
>= cs
->icc_pmr_el1
) {
752 /* Priority mask masks this interrupt */
756 rprio
= icc_highest_active_prio(cs
);
758 /* No currently running interrupt so we can preempt */
762 mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
764 /* We only preempt a running interrupt if the pending interrupt's
765 * group priority is sufficient (the subpriorities are not considered).
767 if ((cs
->hppi
.prio
& mask
) < (rprio
& mask
)) {
774 void gicv3_cpuif_update(GICv3CPUState
*cs
)
776 /* Tell the CPU about its highest priority pending interrupt */
779 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
780 CPUARMState
*env
= &cpu
->env
;
782 g_assert(qemu_mutex_iothread_locked());
784 trace_gicv3_cpuif_update(gicv3_redist_affid(cs
), cs
->hppi
.irq
,
785 cs
->hppi
.grp
, cs
->hppi
.prio
);
787 if (cs
->hppi
.grp
== GICV3_G1
&& !arm_feature(env
, ARM_FEATURE_EL3
)) {
788 /* If a Security-enabled GIC sends a G1S interrupt to a
789 * Security-disabled CPU, we must treat it as if it were G0.
791 cs
->hppi
.grp
= GICV3_G0
;
794 if (icc_hppi_can_preempt(cs
)) {
795 /* We have an interrupt: should we signal it as IRQ or FIQ?
796 * This is described in the GICv3 spec section 4.6.2.
800 switch (cs
->hppi
.grp
) {
805 isfiq
= (!arm_is_secure(env
) ||
806 (arm_current_el(env
) == 3 && arm_el_is_aa64(env
, 3)));
809 isfiq
= arm_is_secure(env
);
812 g_assert_not_reached();
822 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs
), fiqlevel
, irqlevel
);
824 qemu_set_irq(cs
->parent_fiq
, fiqlevel
);
825 qemu_set_irq(cs
->parent_irq
, irqlevel
);
828 static uint64_t icc_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
830 GICv3CPUState
*cs
= icc_cs_from_env(env
);
831 uint32_t value
= cs
->icc_pmr_el1
;
833 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
834 return icv_pmr_read(env
, ri
);
837 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
838 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
839 /* NS access and Group 0 is inaccessible to NS: return the
840 * NS view of the current priority
842 if ((value
& 0x80) == 0) {
843 /* Secure priorities not visible to NS */
845 } else if (value
!= 0xff) {
846 value
= (value
<< 1) & 0xff;
850 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs
), value
);
855 static void icc_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
858 GICv3CPUState
*cs
= icc_cs_from_env(env
);
860 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
861 return icv_pmr_write(env
, ri
, value
);
864 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs
), value
);
868 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
869 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
870 /* NS access and Group 0 is inaccessible to NS: return the
871 * NS view of the current priority
873 if (!(cs
->icc_pmr_el1
& 0x80)) {
874 /* Current PMR in the secure range, don't allow NS to change it */
877 value
= (value
>> 1) | 0x80;
879 cs
->icc_pmr_el1
= value
;
880 gicv3_cpuif_update(cs
);
883 static void icc_activate_irq(GICv3CPUState
*cs
, int irq
)
885 /* Move the interrupt from the Pending state to Active, and update
886 * the Active Priority Registers
888 uint32_t mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
889 int prio
= cs
->hppi
.prio
& mask
;
890 int aprbit
= prio
>> 1;
891 int regno
= aprbit
/ 32;
892 int regbit
= aprbit
% 32;
894 cs
->icc_apr
[cs
->hppi
.grp
][regno
] |= (1 << regbit
);
896 if (irq
< GIC_INTERNAL
) {
897 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 1);
898 cs
->gicr_ipendr0
= deposit32(cs
->gicr_ipendr0
, irq
, 1, 0);
899 gicv3_redist_update(cs
);
901 gicv3_gicd_active_set(cs
->gic
, irq
);
902 gicv3_gicd_pending_clear(cs
->gic
, irq
);
903 gicv3_update(cs
->gic
, irq
, 1);
907 static uint64_t icc_hppir0_value(GICv3CPUState
*cs
, CPUARMState
*env
)
909 /* Return the highest priority pending interrupt register value
914 if (cs
->hppi
.prio
== 0xff) {
915 return INTID_SPURIOUS
;
918 /* Check whether we can return the interrupt or if we should return
919 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
920 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
923 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
924 (cs
->hppi
.grp
!= GICV3_G1NS
));
926 if (cs
->hppi
.grp
!= GICV3_G0
&& !arm_is_el3_or_mon(env
)) {
927 return INTID_SPURIOUS
;
929 if (irq_is_secure
&& !arm_is_secure(env
)) {
930 /* Secure interrupts not visible to Nonsecure */
931 return INTID_SPURIOUS
;
934 if (cs
->hppi
.grp
!= GICV3_G0
) {
935 /* Indicate to EL3 that there's a Group 1 interrupt for the other
938 return irq_is_secure
? INTID_SECURE
: INTID_NONSECURE
;
944 static uint64_t icc_hppir1_value(GICv3CPUState
*cs
, CPUARMState
*env
)
946 /* Return the highest priority pending interrupt register value
951 if (cs
->hppi
.prio
== 0xff) {
952 return INTID_SPURIOUS
;
955 /* Check whether we can return the interrupt or if we should return
956 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
957 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
960 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
961 (cs
->hppi
.grp
!= GICV3_G1NS
));
963 if (cs
->hppi
.grp
== GICV3_G0
) {
964 /* Group 0 interrupts not visible via HPPIR1 */
965 return INTID_SPURIOUS
;
968 if (!arm_is_secure(env
)) {
969 /* Secure interrupts not visible in Non-secure */
970 return INTID_SPURIOUS
;
972 } else if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
973 /* Group 1 non-secure interrupts not visible in Secure EL1 */
974 return INTID_SPURIOUS
;
980 static uint64_t icc_iar0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
982 GICv3CPUState
*cs
= icc_cs_from_env(env
);
985 if (icv_access(env
, HCR_FMO
)) {
986 return icv_iar_read(env
, ri
);
989 if (!icc_hppi_can_preempt(cs
)) {
990 intid
= INTID_SPURIOUS
;
992 intid
= icc_hppir0_value(cs
, env
);
995 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
996 icc_activate_irq(cs
, intid
);
999 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs
), intid
);
1003 static uint64_t icc_iar1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1005 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1008 if (icv_access(env
, HCR_IMO
)) {
1009 return icv_iar_read(env
, ri
);
1012 if (!icc_hppi_can_preempt(cs
)) {
1013 intid
= INTID_SPURIOUS
;
1015 intid
= icc_hppir1_value(cs
, env
);
1018 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
1019 icc_activate_irq(cs
, intid
);
1022 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs
), intid
);
1026 static void icc_drop_prio(GICv3CPUState
*cs
, int grp
)
1028 /* Drop the priority of the currently active interrupt in
1029 * the specified group.
1031 * Note that we can guarantee (because of the requirement to nest
1032 * ICC_IAR reads [which activate an interrupt and raise priority]
1033 * with ICC_EOIR writes [which drop the priority for the interrupt])
1034 * that the interrupt we're being called for is the highest priority
1035 * active interrupt, meaning that it has the lowest set bit in the
1038 * If the guest does not honour the ordering constraints then the
1039 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1040 * the values of the APR registers might become incorrect and the
1041 * running priority will be wrong, so interrupts that should preempt
1042 * might not do so, and interrupts that should not preempt might do so.
1046 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[grp
]); i
++) {
1047 uint64_t *papr
= &cs
->icc_apr
[grp
][i
];
1052 /* Clear the lowest set bit */
1057 /* running priority change means we need an update for this cpu i/f */
1058 gicv3_cpuif_update(cs
);
1061 static bool icc_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1063 /* Return true if we should split priority drop and interrupt
1064 * deactivation, ie whether the relevant EOIMode bit is set.
1066 if (arm_is_el3_or_mon(env
)) {
1067 return cs
->icc_ctlr_el3
& ICC_CTLR_EL3_EOIMODE_EL3
;
1069 if (arm_is_secure_below_el3(env
)) {
1070 return cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_EOIMODE
;
1072 return cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
;
1076 static int icc_highest_active_group(GICv3CPUState
*cs
)
1078 /* Return the group with the highest priority active interrupt.
1079 * We can do this by just comparing the APRs to see which one
1080 * has the lowest set bit.
1081 * (If more than one group is active at the same priority then
1082 * we're in UNPREDICTABLE territory.)
1086 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
1087 int g0ctz
= ctz32(cs
->icc_apr
[GICV3_G0
][i
]);
1088 int g1ctz
= ctz32(cs
->icc_apr
[GICV3_G1
][i
]);
1089 int g1nsctz
= ctz32(cs
->icc_apr
[GICV3_G1NS
][i
]);
1091 if (g1nsctz
< g0ctz
&& g1nsctz
< g1ctz
) {
1094 if (g1ctz
< g0ctz
) {
1101 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1102 * ignores the spurious EOI attempt.
1107 static void icc_deactivate_irq(GICv3CPUState
*cs
, int irq
)
1109 if (irq
< GIC_INTERNAL
) {
1110 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 0);
1111 gicv3_redist_update(cs
);
1113 gicv3_gicd_active_clear(cs
->gic
, irq
);
1114 gicv3_update(cs
->gic
, irq
, 1);
1118 static bool icv_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1120 /* Return true if we should split priority drop and interrupt
1121 * deactivation, ie whether the virtual EOIMode bit is set.
1123 return cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
;
1126 static int icv_find_active(GICv3CPUState
*cs
, int irq
)
1128 /* Given an interrupt number for an active interrupt, return the index
1129 * of the corresponding list register, or -1 if there is no match.
1130 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1134 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
1135 uint64_t lr
= cs
->ich_lr_el2
[i
];
1137 if ((lr
& ICH_LR_EL2_STATE_ACTIVE_BIT
) && ich_lr_vintid(lr
) == irq
) {
1145 static void icv_deactivate_irq(GICv3CPUState
*cs
, int idx
)
1147 /* Deactivate the interrupt in the specified list register index */
1148 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1150 if (lr
& ICH_LR_EL2_HW
) {
1151 /* Deactivate the associated physical interrupt */
1152 int pirq
= ich_lr_pintid(lr
);
1154 if (pirq
< INTID_SECURE
) {
1155 icc_deactivate_irq(cs
, pirq
);
1159 /* Clear the 'active' part of the state, so ActivePending->Pending
1160 * and Active->Invalid.
1162 lr
&= ~ICH_LR_EL2_STATE_ACTIVE_BIT
;
1163 cs
->ich_lr_el2
[idx
] = lr
;
1166 static void icv_increment_eoicount(GICv3CPUState
*cs
)
1168 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1169 int eoicount
= extract64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1170 ICH_HCR_EL2_EOICOUNT_LENGTH
);
1172 cs
->ich_hcr_el2
= deposit64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1173 ICH_HCR_EL2_EOICOUNT_LENGTH
, eoicount
+ 1);
1176 static int icv_drop_prio(GICv3CPUState
*cs
)
1178 /* Drop the priority of the currently active virtual interrupt
1179 * (favouring group 0 if there is a set active bit at
1180 * the same priority for both group 0 and group 1).
1181 * Return the priority value for the bit we just cleared,
1182 * or 0xff if no bits were set in the AP registers at all.
1183 * Note that though the ich_apr[] are uint64_t only the low
1184 * 32 bits are actually relevant.
1187 int aprmax
= 1 << (cs
->vprebits
- 5);
1189 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
1191 for (i
= 0; i
< aprmax
; i
++) {
1192 uint64_t *papr0
= &cs
->ich_apr
[GICV3_G0
][i
];
1193 uint64_t *papr1
= &cs
->ich_apr
[GICV3_G1NS
][i
];
1194 int apr0count
, apr1count
;
1196 if (!*papr0
&& !*papr1
) {
1200 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1201 * because we need to return the bit number we cleared so
1202 * it can be compared against the list register's priority field.
1204 apr0count
= ctz32(*papr0
);
1205 apr1count
= ctz32(*papr1
);
1207 if (apr0count
<= apr1count
) {
1208 *papr0
&= *papr0
- 1;
1209 return (apr0count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1211 *papr1
&= *papr1
- 1;
1212 return (apr1count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1218 static void icv_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1221 /* Deactivate interrupt */
1222 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1224 int irq
= value
& 0xffffff;
1226 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs
), value
);
1228 if (irq
>= cs
->gic
->num_irq
) {
1229 /* Also catches special interrupt numbers and LPIs */
1233 if (!icv_eoi_split(env
, cs
)) {
1237 idx
= icv_find_active(cs
, irq
);
1240 /* No list register matching this, so increment the EOI count
1241 * (might trigger a maintenance interrupt)
1243 icv_increment_eoicount(cs
);
1245 icv_deactivate_irq(cs
, idx
);
1248 gicv3_cpuif_virt_update(cs
);
1251 static void icv_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1254 /* End of Interrupt */
1255 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1256 int irq
= value
& 0xffffff;
1257 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
1260 trace_gicv3_icv_eoir_write(ri
->crm
== 8 ? 0 : 1,
1261 gicv3_redist_affid(cs
), value
);
1263 if (irq
>= cs
->gic
->num_irq
) {
1264 /* Also catches special interrupt numbers and LPIs */
1268 /* We implement the IMPDEF choice of "drop priority before doing
1269 * error checks" (because that lets us avoid scanning the AP
1272 dropprio
= icv_drop_prio(cs
);
1273 if (dropprio
== 0xff) {
1274 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1275 * whether the list registers are checked in this
1276 * situation; we choose not to.
1281 idx
= icv_find_active(cs
, irq
);
1284 /* No valid list register corresponding to EOI ID */
1285 icv_increment_eoicount(cs
);
1287 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1288 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
1289 int lr_gprio
= ich_lr_prio(lr
) & icv_gprio_mask(cs
, grp
);
1291 if (thisgrp
== grp
&& lr_gprio
== dropprio
) {
1292 if (!icv_eoi_split(env
, cs
)) {
1293 /* Priority drop and deactivate not split: deactivate irq now */
1294 icv_deactivate_irq(cs
, idx
);
1299 gicv3_cpuif_virt_update(cs
);
1302 static void icc_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1305 /* End of Interrupt */
1306 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1307 int irq
= value
& 0xffffff;
1310 if (icv_access(env
, ri
->crm
== 8 ? HCR_FMO
: HCR_IMO
)) {
1311 icv_eoir_write(env
, ri
, value
);
1315 trace_gicv3_icc_eoir_write(ri
->crm
== 8 ? 0 : 1,
1316 gicv3_redist_affid(cs
), value
);
1323 if (arm_is_secure(env
)) {
1330 if (irq
>= cs
->gic
->num_irq
) {
1331 /* This handles two cases:
1332 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1333 * to the GICC_EOIR, the GIC ignores that write.
1334 * 2. If software writes the number of a non-existent interrupt
1335 * this must be a subcase of "value written does not match the last
1336 * valid interrupt value read from the Interrupt Acknowledge
1337 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1342 if (icc_highest_active_group(cs
) != grp
) {
1346 icc_drop_prio(cs
, grp
);
1348 if (!icc_eoi_split(env
, cs
)) {
1349 /* Priority drop and deactivate not split: deactivate irq now */
1350 icc_deactivate_irq(cs
, irq
);
1354 static uint64_t icc_hppir0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1356 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1359 if (icv_access(env
, HCR_FMO
)) {
1360 return icv_hppir_read(env
, ri
);
1363 value
= icc_hppir0_value(cs
, env
);
1364 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs
), value
);
1368 static uint64_t icc_hppir1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1370 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1373 if (icv_access(env
, HCR_IMO
)) {
1374 return icv_hppir_read(env
, ri
);
1377 value
= icc_hppir1_value(cs
, env
);
1378 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs
), value
);
1382 static uint64_t icc_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1384 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1385 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1386 bool satinc
= false;
1389 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1390 return icv_bpr_read(env
, ri
);
1393 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1397 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1398 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1399 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1405 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1406 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1407 /* reads return bpr0 + 1 sat to 7, writes ignored */
1412 bpr
= cs
->icc_bpr
[grp
];
1418 trace_gicv3_icc_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
1423 static void icc_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1426 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1427 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1430 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1431 icv_bpr_write(env
, ri
, value
);
1435 trace_gicv3_icc_bpr_write(ri
->crm
== 8 ? 0 : 1,
1436 gicv3_redist_affid(cs
), value
);
1438 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1442 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1443 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1444 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1450 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1451 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1452 /* reads return bpr0 + 1 sat to 7, writes ignored */
1456 minval
= (grp
== GICV3_G1NS
) ? GIC_MIN_BPR_NS
: GIC_MIN_BPR
;
1457 if (value
< minval
) {
1461 cs
->icc_bpr
[grp
] = value
& 7;
1462 gicv3_cpuif_update(cs
);
1465 static uint64_t icc_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1467 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1470 int regno
= ri
->opc2
& 3;
1471 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1473 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1474 return icv_ap_read(env
, ri
);
1477 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1481 value
= cs
->icc_apr
[grp
][regno
];
1483 trace_gicv3_icc_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1487 static void icc_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1490 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1492 int regno
= ri
->opc2
& 3;
1493 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1495 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1496 icv_ap_write(env
, ri
, value
);
1500 trace_gicv3_icc_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1502 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1506 /* It's not possible to claim that a Non-secure interrupt is active
1507 * at a priority outside the Non-secure range (128..255), since this
1508 * would otherwise allow malicious NS code to block delivery of S interrupts
1509 * by writing a bad value to these registers.
1511 if (grp
== GICV3_G1NS
&& regno
< 2 && arm_feature(env
, ARM_FEATURE_EL3
)) {
1515 cs
->icc_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
1516 gicv3_cpuif_update(cs
);
1519 static void icc_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1522 /* Deactivate interrupt */
1523 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1524 int irq
= value
& 0xffffff;
1525 bool irq_is_secure
, single_sec_state
, irq_is_grp0
;
1526 bool route_fiq_to_el3
, route_irq_to_el3
, route_fiq_to_el2
, route_irq_to_el2
;
1528 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1529 icv_dir_write(env
, ri
, value
);
1533 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs
), value
);
1535 if (irq
>= cs
->gic
->num_irq
) {
1536 /* Also catches special interrupt numbers and LPIs */
1540 if (!icc_eoi_split(env
, cs
)) {
1544 int grp
= gicv3_irq_group(cs
->gic
, cs
, irq
);
1546 single_sec_state
= cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
;
1547 irq_is_secure
= !single_sec_state
&& (grp
!= GICV3_G1NS
);
1548 irq_is_grp0
= grp
== GICV3_G0
;
1550 /* Check whether we're allowed to deactivate this interrupt based
1551 * on its group and the current CPU state.
1552 * These checks are laid out to correspond to the spec's pseudocode.
1554 route_fiq_to_el3
= env
->cp15
.scr_el3
& SCR_FIQ
;
1555 route_irq_to_el3
= env
->cp15
.scr_el3
& SCR_IRQ
;
1556 /* No need to include !IsSecure in route_*_to_el2 as it's only
1557 * tested in cases where we know !IsSecure is true.
1559 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1560 route_fiq_to_el2
= hcr_el2
& HCR_FMO
;
1561 route_irq_to_el2
= hcr_el2
& HCR_IMO
;
1563 switch (arm_current_el(env
)) {
1567 if (single_sec_state
&& irq_is_grp0
&& !route_fiq_to_el3
) {
1570 if (!irq_is_secure
&& !irq_is_grp0
&& !route_irq_to_el3
) {
1575 if (!arm_is_secure_below_el3(env
)) {
1576 if (single_sec_state
&& irq_is_grp0
&&
1577 !route_fiq_to_el3
&& !route_fiq_to_el2
) {
1580 if (!irq_is_secure
&& !irq_is_grp0
&&
1581 !route_irq_to_el3
&& !route_irq_to_el2
) {
1585 if (irq_is_grp0
&& !route_fiq_to_el3
) {
1589 (!irq_is_secure
|| !single_sec_state
) &&
1590 !route_irq_to_el3
) {
1596 g_assert_not_reached();
1599 icc_deactivate_irq(cs
, irq
);
1602 static uint64_t icc_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1604 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1607 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1608 return icv_rpr_read(env
, ri
);
1611 prio
= icc_highest_active_prio(cs
);
1613 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1614 !arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_FIQ
)) {
1615 /* NS GIC access and Group 0 is inaccessible to NS */
1616 if ((prio
& 0x80) == 0) {
1617 /* NS mustn't see priorities in the Secure half of the range */
1619 } else if (prio
!= 0xff) {
1620 /* Non-idle priority: show the Non-secure view of it */
1621 prio
= (prio
<< 1) & 0xff;
1625 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs
), prio
);
1629 static void icc_generate_sgi(CPUARMState
*env
, GICv3CPUState
*cs
,
1630 uint64_t value
, int grp
, bool ns
)
1632 GICv3State
*s
= cs
->gic
;
1634 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1635 uint64_t aff
= extract64(value
, 48, 8) << 16 |
1636 extract64(value
, 32, 8) << 8 |
1637 extract64(value
, 16, 8);
1638 uint32_t targetlist
= extract64(value
, 0, 16);
1639 uint32_t irq
= extract64(value
, 24, 4);
1640 bool irm
= extract64(value
, 40, 1);
1643 if (grp
== GICV3_G1
&& s
->gicd_ctlr
& GICD_CTLR_DS
) {
1644 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1645 * interrupts as Group 0 interrupts and must send Secure Group 0
1646 * interrupts to the target CPUs.
1651 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs
), irq
, irm
,
1654 for (i
= 0; i
< s
->num_cpu
; i
++) {
1655 GICv3CPUState
*ocs
= &s
->cpu
[i
];
1658 /* IRM == 1 : route to all CPUs except self */
1663 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1664 * where the corresponding bit is set in targetlist
1668 if (ocs
->gicr_typer
>> 40 != aff
) {
1671 aff0
= extract64(ocs
->gicr_typer
, 32, 8);
1672 if (aff0
> 15 || extract32(targetlist
, aff0
, 1) == 0) {
1677 /* The redistributor will check against its own GICR_NSACR as needed */
1678 gicv3_redist_send_sgi(ocs
, grp
, irq
, ns
);
1682 static void icc_sgi0r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1685 /* Generate Secure Group 0 SGI. */
1686 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1687 bool ns
= !arm_is_secure(env
);
1689 icc_generate_sgi(env
, cs
, value
, GICV3_G0
, ns
);
1692 static void icc_sgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1695 /* Generate Group 1 SGI for the current Security state */
1696 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1698 bool ns
= !arm_is_secure(env
);
1700 grp
= ns
? GICV3_G1NS
: GICV3_G1
;
1701 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1704 static void icc_asgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1707 /* Generate Group 1 SGI for the Security state that is not
1710 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1712 bool ns
= !arm_is_secure(env
);
1714 grp
= ns
? GICV3_G1
: GICV3_G1NS
;
1715 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1718 static uint64_t icc_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1720 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1721 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1724 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1725 return icv_igrpen_read(env
, ri
);
1728 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1732 value
= cs
->icc_igrpen
[grp
];
1733 trace_gicv3_icc_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
1734 gicv3_redist_affid(cs
), value
);
1738 static void icc_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1741 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1742 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1744 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1745 icv_igrpen_write(env
, ri
, value
);
1749 trace_gicv3_icc_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
1750 gicv3_redist_affid(cs
), value
);
1752 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1756 cs
->icc_igrpen
[grp
] = value
& ICC_IGRPEN_ENABLE
;
1757 gicv3_cpuif_update(cs
);
1760 static uint64_t icc_igrpen1_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1762 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1765 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1766 value
= cs
->icc_igrpen
[GICV3_G1NS
] | (cs
->icc_igrpen
[GICV3_G1
] << 1);
1767 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs
), value
);
1771 static void icc_igrpen1_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1774 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1776 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs
), value
);
1778 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1779 cs
->icc_igrpen
[GICV3_G1NS
] = extract32(value
, 0, 1);
1780 cs
->icc_igrpen
[GICV3_G1
] = extract32(value
, 1, 1);
1781 gicv3_cpuif_update(cs
);
1784 static uint64_t icc_ctlr_el1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1786 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1787 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1790 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1791 return icv_ctlr_read(env
, ri
);
1794 value
= cs
->icc_ctlr_el1
[bank
];
1795 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs
), value
);
1799 static void icc_ctlr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1802 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1803 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1806 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1807 icv_ctlr_write(env
, ri
, value
);
1811 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs
), value
);
1813 /* Only CBPR and EOIMODE can be RW;
1814 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1815 * the asseciated priority-based routing of them);
1816 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1818 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1819 ((cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) == 0)) {
1820 mask
= ICC_CTLR_EL1_EOIMODE
;
1822 mask
= ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
;
1825 cs
->icc_ctlr_el1
[bank
] &= ~mask
;
1826 cs
->icc_ctlr_el1
[bank
] |= (value
& mask
);
1827 gicv3_cpuif_update(cs
);
1831 static uint64_t icc_ctlr_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1833 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1836 value
= cs
->icc_ctlr_el3
;
1837 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1838 value
|= ICC_CTLR_EL3_EOIMODE_EL1NS
;
1840 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1841 value
|= ICC_CTLR_EL3_CBPR_EL1NS
;
1843 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1844 value
|= ICC_CTLR_EL3_EOIMODE_EL1S
;
1846 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1847 value
|= ICC_CTLR_EL3_CBPR_EL1S
;
1850 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs
), value
);
1854 static void icc_ctlr_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1857 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1860 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs
), value
);
1862 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1863 cs
->icc_ctlr_el1
[GICV3_NS
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1864 if (value
& ICC_CTLR_EL3_EOIMODE_EL1NS
) {
1865 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_EOIMODE
;
1867 if (value
& ICC_CTLR_EL3_CBPR_EL1NS
) {
1868 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_CBPR
;
1871 cs
->icc_ctlr_el1
[GICV3_S
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1872 if (value
& ICC_CTLR_EL3_EOIMODE_EL1S
) {
1873 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_EOIMODE
;
1875 if (value
& ICC_CTLR_EL3_CBPR_EL1S
) {
1876 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_CBPR
;
1879 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1880 mask
= ICC_CTLR_EL3_EOIMODE_EL3
;
1882 cs
->icc_ctlr_el3
&= ~mask
;
1883 cs
->icc_ctlr_el3
|= (value
& mask
);
1884 gicv3_cpuif_update(cs
);
1887 static CPAccessResult
gicv3_irqfiq_access(CPUARMState
*env
,
1888 const ARMCPRegInfo
*ri
, bool isread
)
1890 CPAccessResult r
= CP_ACCESS_OK
;
1891 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1892 int el
= arm_current_el(env
);
1894 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TC
) &&
1895 el
== 1 && !arm_is_secure_below_el3(env
)) {
1896 /* Takes priority over a possible EL3 trap */
1897 return CP_ACCESS_TRAP_EL2
;
1900 if ((env
->cp15
.scr_el3
& (SCR_FIQ
| SCR_IRQ
)) == (SCR_FIQ
| SCR_IRQ
)) {
1903 /* Note that arm_hcr_el2_eff takes secure state into account. */
1904 if ((arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) == 0) {
1905 r
= CP_ACCESS_TRAP_EL3
;
1909 r
= CP_ACCESS_TRAP_EL3
;
1912 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1913 r
= CP_ACCESS_TRAP_EL3
;
1917 g_assert_not_reached();
1921 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1927 static CPAccessResult
gicv3_dir_access(CPUARMState
*env
,
1928 const ARMCPRegInfo
*ri
, bool isread
)
1930 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1932 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TDIR
) &&
1933 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1934 /* Takes priority over a possible EL3 trap */
1935 return CP_ACCESS_TRAP_EL2
;
1938 return gicv3_irqfiq_access(env
, ri
, isread
);
1941 static CPAccessResult
gicv3_sgi_access(CPUARMState
*env
,
1942 const ARMCPRegInfo
*ri
, bool isread
)
1944 if (arm_current_el(env
) == 1 &&
1945 (arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) != 0) {
1946 /* Takes priority over a possible EL3 trap */
1947 return CP_ACCESS_TRAP_EL2
;
1950 return gicv3_irqfiq_access(env
, ri
, isread
);
1953 static CPAccessResult
gicv3_fiq_access(CPUARMState
*env
,
1954 const ARMCPRegInfo
*ri
, bool isread
)
1956 CPAccessResult r
= CP_ACCESS_OK
;
1957 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1958 int el
= arm_current_el(env
);
1960 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL0
) &&
1961 el
== 1 && !arm_is_secure_below_el3(env
)) {
1962 /* Takes priority over a possible EL3 trap */
1963 return CP_ACCESS_TRAP_EL2
;
1966 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
1969 if ((arm_hcr_el2_eff(env
) & HCR_FMO
) == 0) {
1970 r
= CP_ACCESS_TRAP_EL3
;
1974 r
= CP_ACCESS_TRAP_EL3
;
1977 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1978 r
= CP_ACCESS_TRAP_EL3
;
1982 g_assert_not_reached();
1986 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1992 static CPAccessResult
gicv3_irq_access(CPUARMState
*env
,
1993 const ARMCPRegInfo
*ri
, bool isread
)
1995 CPAccessResult r
= CP_ACCESS_OK
;
1996 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1997 int el
= arm_current_el(env
);
1999 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL1
) &&
2000 el
== 1 && !arm_is_secure_below_el3(env
)) {
2001 /* Takes priority over a possible EL3 trap */
2002 return CP_ACCESS_TRAP_EL2
;
2005 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
2008 if ((arm_hcr_el2_eff(env
) & HCR_IMO
) == 0) {
2009 r
= CP_ACCESS_TRAP_EL3
;
2013 r
= CP_ACCESS_TRAP_EL3
;
2016 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
2017 r
= CP_ACCESS_TRAP_EL3
;
2021 g_assert_not_reached();
2025 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2031 static void icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2033 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2035 cs
->icc_ctlr_el1
[GICV3_S
] = ICC_CTLR_EL1_A3V
|
2036 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2037 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2038 cs
->icc_ctlr_el1
[GICV3_NS
] = ICC_CTLR_EL1_A3V
|
2039 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2040 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2041 cs
->icc_pmr_el1
= 0;
2042 cs
->icc_bpr
[GICV3_G0
] = GIC_MIN_BPR
;
2043 cs
->icc_bpr
[GICV3_G1
] = GIC_MIN_BPR
;
2044 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR_NS
;
2045 memset(cs
->icc_apr
, 0, sizeof(cs
->icc_apr
));
2046 memset(cs
->icc_igrpen
, 0, sizeof(cs
->icc_igrpen
));
2047 cs
->icc_ctlr_el3
= ICC_CTLR_EL3_NDS
| ICC_CTLR_EL3_A3V
|
2048 (1 << ICC_CTLR_EL3_IDBITS_SHIFT
) |
2049 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT
);
2051 memset(cs
->ich_apr
, 0, sizeof(cs
->ich_apr
));
2052 cs
->ich_hcr_el2
= 0;
2053 memset(cs
->ich_lr_el2
, 0, sizeof(cs
->ich_lr_el2
));
2054 cs
->ich_vmcr_el2
= ICH_VMCR_EL2_VFIQEN
|
2055 ((icv_min_vbpr(cs
) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT
) |
2056 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR0_SHIFT
);
2059 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
2060 { .name
= "ICC_PMR_EL1", .state
= ARM_CP_STATE_BOTH
,
2061 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 6, .opc2
= 0,
2062 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2063 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2064 .readfn
= icc_pmr_read
,
2065 .writefn
= icc_pmr_write
,
2066 /* We hang the whole cpu interface reset routine off here
2067 * rather than parcelling it out into one little function
2070 .resetfn
= icc_reset
,
2072 { .name
= "ICC_IAR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2073 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 0,
2074 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2075 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2076 .readfn
= icc_iar0_read
,
2078 { .name
= "ICC_EOIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2079 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 1,
2080 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2081 .access
= PL1_W
, .accessfn
= gicv3_fiq_access
,
2082 .writefn
= icc_eoir_write
,
2084 { .name
= "ICC_HPPIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2085 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 2,
2086 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2087 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2088 .readfn
= icc_hppir0_read
,
2090 { .name
= "ICC_BPR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2091 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 3,
2092 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2093 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2094 .readfn
= icc_bpr_read
,
2095 .writefn
= icc_bpr_write
,
2097 { .name
= "ICC_AP0R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2098 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 4,
2099 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2100 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2101 .readfn
= icc_ap_read
,
2102 .writefn
= icc_ap_write
,
2104 { .name
= "ICC_AP0R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2105 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 5,
2106 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2107 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2108 .readfn
= icc_ap_read
,
2109 .writefn
= icc_ap_write
,
2111 { .name
= "ICC_AP0R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2112 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 6,
2113 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2114 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2115 .readfn
= icc_ap_read
,
2116 .writefn
= icc_ap_write
,
2118 { .name
= "ICC_AP0R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2119 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 7,
2120 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2121 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2122 .readfn
= icc_ap_read
,
2123 .writefn
= icc_ap_write
,
2125 /* All the ICC_AP1R*_EL1 registers are banked */
2126 { .name
= "ICC_AP1R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2127 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 0,
2128 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2129 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2130 .readfn
= icc_ap_read
,
2131 .writefn
= icc_ap_write
,
2133 { .name
= "ICC_AP1R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2134 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 1,
2135 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2136 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2137 .readfn
= icc_ap_read
,
2138 .writefn
= icc_ap_write
,
2140 { .name
= "ICC_AP1R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2141 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 2,
2142 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2143 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2144 .readfn
= icc_ap_read
,
2145 .writefn
= icc_ap_write
,
2147 { .name
= "ICC_AP1R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2148 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 3,
2149 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2150 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2151 .readfn
= icc_ap_read
,
2152 .writefn
= icc_ap_write
,
2154 { .name
= "ICC_DIR_EL1", .state
= ARM_CP_STATE_BOTH
,
2155 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 1,
2156 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2157 .access
= PL1_W
, .accessfn
= gicv3_dir_access
,
2158 .writefn
= icc_dir_write
,
2160 { .name
= "ICC_RPR_EL1", .state
= ARM_CP_STATE_BOTH
,
2161 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 3,
2162 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2163 .access
= PL1_R
, .accessfn
= gicv3_irqfiq_access
,
2164 .readfn
= icc_rpr_read
,
2166 { .name
= "ICC_SGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2167 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 5,
2168 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2169 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2170 .writefn
= icc_sgi1r_write
,
2172 { .name
= "ICC_SGI1R",
2173 .cp
= 15, .opc1
= 0, .crm
= 12,
2174 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2175 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2176 .writefn
= icc_sgi1r_write
,
2178 { .name
= "ICC_ASGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2179 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 6,
2180 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2181 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2182 .writefn
= icc_asgi1r_write
,
2184 { .name
= "ICC_ASGI1R",
2185 .cp
= 15, .opc1
= 1, .crm
= 12,
2186 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2187 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2188 .writefn
= icc_asgi1r_write
,
2190 { .name
= "ICC_SGI0R_EL1", .state
= ARM_CP_STATE_AA64
,
2191 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 7,
2192 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2193 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2194 .writefn
= icc_sgi0r_write
,
2196 { .name
= "ICC_SGI0R",
2197 .cp
= 15, .opc1
= 2, .crm
= 12,
2198 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2199 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2200 .writefn
= icc_sgi0r_write
,
2202 { .name
= "ICC_IAR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2203 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 0,
2204 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2205 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2206 .readfn
= icc_iar1_read
,
2208 { .name
= "ICC_EOIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2209 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 1,
2210 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2211 .access
= PL1_W
, .accessfn
= gicv3_irq_access
,
2212 .writefn
= icc_eoir_write
,
2214 { .name
= "ICC_HPPIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2215 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 2,
2216 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2217 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2218 .readfn
= icc_hppir1_read
,
2220 /* This register is banked */
2221 { .name
= "ICC_BPR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2222 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 3,
2223 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2224 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2225 .readfn
= icc_bpr_read
,
2226 .writefn
= icc_bpr_write
,
2228 /* This register is banked */
2229 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2230 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
2231 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2232 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2233 .readfn
= icc_ctlr_el1_read
,
2234 .writefn
= icc_ctlr_el1_write
,
2236 { .name
= "ICC_SRE_EL1", .state
= ARM_CP_STATE_BOTH
,
2237 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 5,
2238 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2240 /* We don't support IRQ/FIQ bypass and system registers are
2241 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2242 * This register is banked but since it's constant we don't
2243 * need to do anything special.
2247 { .name
= "ICC_IGRPEN0_EL1", .state
= ARM_CP_STATE_BOTH
,
2248 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 6,
2249 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2250 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2251 .readfn
= icc_igrpen_read
,
2252 .writefn
= icc_igrpen_write
,
2254 /* This register is banked */
2255 { .name
= "ICC_IGRPEN1_EL1", .state
= ARM_CP_STATE_BOTH
,
2256 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 7,
2257 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2258 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2259 .readfn
= icc_igrpen_read
,
2260 .writefn
= icc_igrpen_write
,
2262 { .name
= "ICC_SRE_EL2", .state
= ARM_CP_STATE_BOTH
,
2263 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 5,
2264 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2266 /* We don't support IRQ/FIQ bypass and system registers are
2267 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2271 { .name
= "ICC_CTLR_EL3", .state
= ARM_CP_STATE_BOTH
,
2272 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 4,
2273 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2275 .readfn
= icc_ctlr_el3_read
,
2276 .writefn
= icc_ctlr_el3_write
,
2278 { .name
= "ICC_SRE_EL3", .state
= ARM_CP_STATE_BOTH
,
2279 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 5,
2280 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2282 /* We don't support IRQ/FIQ bypass and system registers are
2283 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2287 { .name
= "ICC_IGRPEN1_EL3", .state
= ARM_CP_STATE_BOTH
,
2288 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 7,
2289 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2291 .readfn
= icc_igrpen1_el3_read
,
2292 .writefn
= icc_igrpen1_el3_write
,
2297 static uint64_t ich_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2299 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2300 int regno
= ri
->opc2
& 3;
2301 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2304 value
= cs
->ich_apr
[grp
][regno
];
2305 trace_gicv3_ich_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2309 static void ich_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2312 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2313 int regno
= ri
->opc2
& 3;
2314 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2316 trace_gicv3_ich_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2318 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
2319 gicv3_cpuif_virt_update(cs
);
2322 static uint64_t ich_hcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2324 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2325 uint64_t value
= cs
->ich_hcr_el2
;
2327 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs
), value
);
2331 static void ich_hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2334 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2336 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs
), value
);
2338 value
&= ICH_HCR_EL2_EN
| ICH_HCR_EL2_UIE
| ICH_HCR_EL2_LRENPIE
|
2339 ICH_HCR_EL2_NPIE
| ICH_HCR_EL2_VGRP0EIE
| ICH_HCR_EL2_VGRP0DIE
|
2340 ICH_HCR_EL2_VGRP1EIE
| ICH_HCR_EL2_VGRP1DIE
| ICH_HCR_EL2_TC
|
2341 ICH_HCR_EL2_TALL0
| ICH_HCR_EL2_TALL1
| ICH_HCR_EL2_TSEI
|
2342 ICH_HCR_EL2_TDIR
| ICH_HCR_EL2_EOICOUNT_MASK
;
2344 cs
->ich_hcr_el2
= value
;
2345 gicv3_cpuif_virt_update(cs
);
2348 static uint64_t ich_vmcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2350 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2351 uint64_t value
= cs
->ich_vmcr_el2
;
2353 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs
), value
);
2357 static void ich_vmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2360 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2362 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs
), value
);
2364 value
&= ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
| ICH_VMCR_EL2_VCBPR
|
2365 ICH_VMCR_EL2_VEOIM
| ICH_VMCR_EL2_VBPR1_MASK
|
2366 ICH_VMCR_EL2_VBPR0_MASK
| ICH_VMCR_EL2_VPMR_MASK
;
2367 value
|= ICH_VMCR_EL2_VFIQEN
;
2369 cs
->ich_vmcr_el2
= value
;
2370 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2371 * by reading and writing back the fields.
2373 write_vbpr(cs
, GICV3_G0
, read_vbpr(cs
, GICV3_G0
));
2374 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G1
));
2376 gicv3_cpuif_virt_update(cs
);
2379 static uint64_t ich_lr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2381 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2382 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2385 /* This read function handles all of:
2386 * 64-bit reads of the whole LR
2387 * 32-bit reads of the low half of the LR
2388 * 32-bit reads of the high half of the LR
2390 if (ri
->state
== ARM_CP_STATE_AA32
) {
2391 if (ri
->crm
>= 14) {
2392 value
= extract64(cs
->ich_lr_el2
[regno
], 32, 32);
2393 trace_gicv3_ich_lrc_read(regno
, gicv3_redist_affid(cs
), value
);
2395 value
= extract64(cs
->ich_lr_el2
[regno
], 0, 32);
2396 trace_gicv3_ich_lr32_read(regno
, gicv3_redist_affid(cs
), value
);
2399 value
= cs
->ich_lr_el2
[regno
];
2400 trace_gicv3_ich_lr_read(regno
, gicv3_redist_affid(cs
), value
);
2406 static void ich_lr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2409 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2410 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2412 /* This write function handles all of:
2413 * 64-bit writes to the whole LR
2414 * 32-bit writes to the low half of the LR
2415 * 32-bit writes to the high half of the LR
2417 if (ri
->state
== ARM_CP_STATE_AA32
) {
2418 if (ri
->crm
>= 14) {
2419 trace_gicv3_ich_lrc_write(regno
, gicv3_redist_affid(cs
), value
);
2420 value
= deposit64(cs
->ich_lr_el2
[regno
], 32, 32, value
);
2422 trace_gicv3_ich_lr32_write(regno
, gicv3_redist_affid(cs
), value
);
2423 value
= deposit64(cs
->ich_lr_el2
[regno
], 0, 32, value
);
2426 trace_gicv3_ich_lr_write(regno
, gicv3_redist_affid(cs
), value
);
2429 /* Enforce RES0 bits in priority field */
2430 if (cs
->vpribits
< 8) {
2431 value
= deposit64(value
, ICH_LR_EL2_PRIORITY_SHIFT
,
2432 8 - cs
->vpribits
, 0);
2435 cs
->ich_lr_el2
[regno
] = value
;
2436 gicv3_cpuif_virt_update(cs
);
2439 static uint64_t ich_vtr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2441 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2444 value
= ((cs
->num_list_regs
- 1) << ICH_VTR_EL2_LISTREGS_SHIFT
)
2445 | ICH_VTR_EL2_TDS
| ICH_VTR_EL2_NV4
| ICH_VTR_EL2_A3V
2446 | (1 << ICH_VTR_EL2_IDBITS_SHIFT
)
2447 | ((cs
->vprebits
- 1) << ICH_VTR_EL2_PREBITS_SHIFT
)
2448 | ((cs
->vpribits
- 1) << ICH_VTR_EL2_PRIBITS_SHIFT
);
2450 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs
), value
);
2454 static uint64_t ich_misr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2456 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2457 uint64_t value
= maintenance_interrupt_state(cs
);
2459 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs
), value
);
2463 static uint64_t ich_eisr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2465 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2466 uint64_t value
= eoi_maintenance_interrupt_state(cs
, NULL
);
2468 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs
), value
);
2472 static uint64_t ich_elrsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2474 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2478 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
2479 uint64_t lr
= cs
->ich_lr_el2
[i
];
2481 if ((lr
& ICH_LR_EL2_STATE_MASK
) == 0 &&
2482 ((lr
& ICH_LR_EL2_HW
) != 0 || (lr
& ICH_LR_EL2_EOI
) == 0)) {
2487 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs
), value
);
2491 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo
[] = {
2492 { .name
= "ICH_AP0R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2493 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 0,
2494 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2496 .readfn
= ich_ap_read
,
2497 .writefn
= ich_ap_write
,
2499 { .name
= "ICH_AP1R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2500 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 0,
2501 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2503 .readfn
= ich_ap_read
,
2504 .writefn
= ich_ap_write
,
2506 { .name
= "ICH_HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2507 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 0,
2508 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2510 .readfn
= ich_hcr_read
,
2511 .writefn
= ich_hcr_write
,
2513 { .name
= "ICH_VTR_EL2", .state
= ARM_CP_STATE_BOTH
,
2514 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 1,
2515 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2517 .readfn
= ich_vtr_read
,
2519 { .name
= "ICH_MISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2520 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 2,
2521 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2523 .readfn
= ich_misr_read
,
2525 { .name
= "ICH_EISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2526 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 3,
2527 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2529 .readfn
= ich_eisr_read
,
2531 { .name
= "ICH_ELRSR_EL2", .state
= ARM_CP_STATE_BOTH
,
2532 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 5,
2533 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2535 .readfn
= ich_elrsr_read
,
2537 { .name
= "ICH_VMCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2538 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 7,
2539 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2541 .readfn
= ich_vmcr_read
,
2542 .writefn
= ich_vmcr_write
,
2547 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo
[] = {
2548 { .name
= "ICH_AP0R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2549 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 1,
2550 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2552 .readfn
= ich_ap_read
,
2553 .writefn
= ich_ap_write
,
2555 { .name
= "ICH_AP1R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2556 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 1,
2557 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2559 .readfn
= ich_ap_read
,
2560 .writefn
= ich_ap_write
,
2565 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo
[] = {
2566 { .name
= "ICH_AP0R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2567 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 2,
2568 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2570 .readfn
= ich_ap_read
,
2571 .writefn
= ich_ap_write
,
2573 { .name
= "ICH_AP0R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2574 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 3,
2575 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2577 .readfn
= ich_ap_read
,
2578 .writefn
= ich_ap_write
,
2580 { .name
= "ICH_AP1R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2581 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 2,
2582 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2584 .readfn
= ich_ap_read
,
2585 .writefn
= ich_ap_write
,
2587 { .name
= "ICH_AP1R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2588 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 3,
2589 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2591 .readfn
= ich_ap_read
,
2592 .writefn
= ich_ap_write
,
2597 static void gicv3_cpuif_el_change_hook(ARMCPU
*cpu
, void *opaque
)
2599 GICv3CPUState
*cs
= opaque
;
2601 gicv3_cpuif_update(cs
);
2604 void gicv3_init_cpuif(GICv3State
*s
)
2606 /* Called from the GICv3 realize function; register our system
2607 * registers with the CPU
2611 for (i
= 0; i
< s
->num_cpu
; i
++) {
2612 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
2613 GICv3CPUState
*cs
= &s
->cpu
[i
];
2615 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2616 * in define_arm_cp_regs_with_opaque(), because when we're called back
2617 * it might be with code translated by CPU 0 but run by CPU 1, in
2618 * which case we'd get the wrong value.
2619 * So instead we define the regs with no ri->opaque info, and
2620 * get back to the GICv3CPUState from the CPUARMState.
2622 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
2623 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)
2624 && cpu
->gic_num_lrs
) {
2627 cs
->maintenance_irq
= cpu
->gicv3_maintenance_interrupt
;
2629 cs
->num_list_regs
= cpu
->gic_num_lrs
;
2630 cs
->vpribits
= cpu
->gic_vpribits
;
2631 cs
->vprebits
= cpu
->gic_vprebits
;
2633 /* Check against architectural constraints: getting these
2634 * wrong would be a bug in the CPU code defining these,
2635 * and the implementation relies on them holding.
2637 g_assert(cs
->vprebits
<= cs
->vpribits
);
2638 g_assert(cs
->vprebits
>= 5 && cs
->vprebits
<= 7);
2639 g_assert(cs
->vpribits
>= 5 && cs
->vpribits
<= 8);
2641 define_arm_cp_regs(cpu
, gicv3_cpuif_hcr_reginfo
);
2643 for (j
= 0; j
< cs
->num_list_regs
; j
++) {
2644 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2645 * are split into two cp15 regs, LR (the low part, with the
2646 * same encoding as the AArch64 LR) and LRC (the high part).
2648 ARMCPRegInfo lr_regset
[] = {
2649 { .name
= "ICH_LRn_EL2", .state
= ARM_CP_STATE_BOTH
,
2650 .opc0
= 3, .opc1
= 4, .crn
= 12,
2651 .crm
= 12 + (j
>> 3), .opc2
= j
& 7,
2652 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2654 .readfn
= ich_lr_read
,
2655 .writefn
= ich_lr_write
,
2657 { .name
= "ICH_LRCn_EL2", .state
= ARM_CP_STATE_AA32
,
2658 .cp
= 15, .opc1
= 4, .crn
= 12,
2659 .crm
= 14 + (j
>> 3), .opc2
= j
& 7,
2660 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2662 .readfn
= ich_lr_read
,
2663 .writefn
= ich_lr_write
,
2667 define_arm_cp_regs(cpu
, lr_regset
);
2669 if (cs
->vprebits
>= 6) {
2670 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr1_reginfo
);
2672 if (cs
->vprebits
== 7) {
2673 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr23_reginfo
);
2676 arm_register_el_change_hook(cpu
, gicv3_cpuif_el_change_hook
, cs
);