block: acquire in bdrv_query_image_info
[qemu/ar7.git] / hw / timer / hpet.c
blob0ad542037a4d0dbf6e55343ae16a6d3df178f5b3
1 /*
2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
27 #include "qemu/osdep.h"
28 #include "hw/hw.h"
29 #include "hw/i386/pc.h"
30 #include "ui/console.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/sysbus.h"
35 #include "hw/timer/mc146818rtc.h"
36 #include "hw/timer/i8254.h"
38 //#define HPET_DEBUG
39 #ifdef HPET_DEBUG
40 #define DPRINTF printf
41 #else
42 #define DPRINTF(...)
43 #endif
45 #define HPET_MSI_SUPPORT 0
47 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
49 struct HPETState;
50 typedef struct HPETTimer { /* timers */
51 uint8_t tn; /*timer number*/
52 QEMUTimer *qemu_timer;
53 struct HPETState *state;
54 /* Memory-mapped, software visible timer registers */
55 uint64_t config; /* configuration/cap */
56 uint64_t cmp; /* comparator */
57 uint64_t fsb; /* FSB route */
58 /* Hidden register state */
59 uint64_t period; /* Last value written to comparator */
60 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
61 * mode. Next pop will be actual timer expiration.
63 } HPETTimer;
65 typedef struct HPETState {
66 /*< private >*/
67 SysBusDevice parent_obj;
68 /*< public >*/
70 MemoryRegion iomem;
71 uint64_t hpet_offset;
72 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
73 uint32_t flags;
74 uint8_t rtc_irq_level;
75 qemu_irq pit_enabled;
76 uint8_t num_timers;
77 uint32_t intcap;
78 HPETTimer timer[HPET_MAX_TIMERS];
80 /* Memory-mapped, software visible registers */
81 uint64_t capability; /* capabilities */
82 uint64_t config; /* configuration */
83 uint64_t isr; /* interrupt status reg */
84 uint64_t hpet_counter; /* main counter */
85 uint8_t hpet_id; /* instance id */
86 } HPETState;
88 static uint32_t hpet_in_legacy_mode(HPETState *s)
90 return s->config & HPET_CFG_LEGACY;
93 static uint32_t timer_int_route(struct HPETTimer *timer)
95 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
98 static uint32_t timer_fsb_route(HPETTimer *t)
100 return t->config & HPET_TN_FSB_ENABLE;
103 static uint32_t hpet_enabled(HPETState *s)
105 return s->config & HPET_CFG_ENABLE;
108 static uint32_t timer_is_periodic(HPETTimer *t)
110 return t->config & HPET_TN_PERIODIC;
113 static uint32_t timer_enabled(HPETTimer *t)
115 return t->config & HPET_TN_ENABLE;
118 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
120 return ((int32_t)(b - a) < 0);
123 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
125 return ((int64_t)(b - a) < 0);
128 static uint64_t ticks_to_ns(uint64_t value)
130 return value * HPET_CLK_PERIOD;
133 static uint64_t ns_to_ticks(uint64_t value)
135 return value / HPET_CLK_PERIOD;
138 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
140 new &= mask;
141 new |= old & ~mask;
142 return new;
145 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
147 return (!(old & mask) && (new & mask));
150 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
152 return ((old & mask) && !(new & mask));
155 static uint64_t hpet_get_ticks(HPETState *s)
157 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
161 * calculate diff between comparator value and current ticks
163 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
166 if (t->config & HPET_TN_32BIT) {
167 uint32_t diff, cmp;
169 cmp = (uint32_t)t->cmp;
170 diff = cmp - (uint32_t)current;
171 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
172 return (uint64_t)diff;
173 } else {
174 uint64_t diff, cmp;
176 cmp = t->cmp;
177 diff = cmp - current;
178 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
179 return diff;
183 static void update_irq(struct HPETTimer *timer, int set)
185 uint64_t mask;
186 HPETState *s;
187 int route;
189 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
190 /* if LegacyReplacementRoute bit is set, HPET specification requires
191 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
192 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
194 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
195 } else {
196 route = timer_int_route(timer);
198 s = timer->state;
199 mask = 1 << timer->tn;
200 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
201 s->isr &= ~mask;
202 if (!timer_fsb_route(timer)) {
203 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
204 if (route >= ISA_NUM_IRQS) {
205 qemu_irq_raise(s->irqs[route]);
206 } else {
207 qemu_irq_lower(s->irqs[route]);
210 } else if (timer_fsb_route(timer)) {
211 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
212 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
213 NULL);
214 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
215 s->isr |= mask;
216 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
217 if (route >= ISA_NUM_IRQS) {
218 qemu_irq_lower(s->irqs[route]);
219 } else {
220 qemu_irq_raise(s->irqs[route]);
222 } else {
223 s->isr &= ~mask;
224 qemu_irq_pulse(s->irqs[route]);
228 static void hpet_pre_save(void *opaque)
230 HPETState *s = opaque;
232 /* save current counter value */
233 s->hpet_counter = hpet_get_ticks(s);
236 static int hpet_pre_load(void *opaque)
238 HPETState *s = opaque;
240 /* version 1 only supports 3, later versions will load the actual value */
241 s->num_timers = HPET_MIN_TIMERS;
242 return 0;
245 static bool hpet_validate_num_timers(void *opaque, int version_id)
247 HPETState *s = opaque;
249 if (s->num_timers < HPET_MIN_TIMERS) {
250 return false;
251 } else if (s->num_timers > HPET_MAX_TIMERS) {
252 return false;
254 return true;
257 static int hpet_post_load(void *opaque, int version_id)
259 HPETState *s = opaque;
261 /* Recalculate the offset between the main counter and guest time */
262 s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
264 /* Push number of timers into capability returned via HPET_ID */
265 s->capability &= ~HPET_ID_NUM_TIM_MASK;
266 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
267 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
269 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
270 s->flags &= ~(1 << HPET_MSI_SUPPORT);
271 if (s->timer[0].config & HPET_TN_FSB_CAP) {
272 s->flags |= 1 << HPET_MSI_SUPPORT;
274 return 0;
277 static bool hpet_rtc_irq_level_needed(void *opaque)
279 HPETState *s = opaque;
281 return s->rtc_irq_level != 0;
284 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
285 .name = "hpet/rtc_irq_level",
286 .version_id = 1,
287 .minimum_version_id = 1,
288 .needed = hpet_rtc_irq_level_needed,
289 .fields = (VMStateField[]) {
290 VMSTATE_UINT8(rtc_irq_level, HPETState),
291 VMSTATE_END_OF_LIST()
295 static const VMStateDescription vmstate_hpet_timer = {
296 .name = "hpet_timer",
297 .version_id = 1,
298 .minimum_version_id = 1,
299 .fields = (VMStateField[]) {
300 VMSTATE_UINT8(tn, HPETTimer),
301 VMSTATE_UINT64(config, HPETTimer),
302 VMSTATE_UINT64(cmp, HPETTimer),
303 VMSTATE_UINT64(fsb, HPETTimer),
304 VMSTATE_UINT64(period, HPETTimer),
305 VMSTATE_UINT8(wrap_flag, HPETTimer),
306 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
307 VMSTATE_END_OF_LIST()
311 static const VMStateDescription vmstate_hpet = {
312 .name = "hpet",
313 .version_id = 2,
314 .minimum_version_id = 1,
315 .pre_save = hpet_pre_save,
316 .pre_load = hpet_pre_load,
317 .post_load = hpet_post_load,
318 .fields = (VMStateField[]) {
319 VMSTATE_UINT64(config, HPETState),
320 VMSTATE_UINT64(isr, HPETState),
321 VMSTATE_UINT64(hpet_counter, HPETState),
322 VMSTATE_UINT8_V(num_timers, HPETState, 2),
323 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
324 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
325 vmstate_hpet_timer, HPETTimer),
326 VMSTATE_END_OF_LIST()
328 .subsections = (const VMStateDescription*[]) {
329 &vmstate_hpet_rtc_irq_level,
330 NULL
335 * timer expiration callback
337 static void hpet_timer(void *opaque)
339 HPETTimer *t = opaque;
340 uint64_t diff;
342 uint64_t period = t->period;
343 uint64_t cur_tick = hpet_get_ticks(t->state);
345 if (timer_is_periodic(t) && period != 0) {
346 if (t->config & HPET_TN_32BIT) {
347 while (hpet_time_after(cur_tick, t->cmp)) {
348 t->cmp = (uint32_t)(t->cmp + t->period);
350 } else {
351 while (hpet_time_after64(cur_tick, t->cmp)) {
352 t->cmp += period;
355 diff = hpet_calculate_diff(t, cur_tick);
356 timer_mod(t->qemu_timer,
357 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
358 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
359 if (t->wrap_flag) {
360 diff = hpet_calculate_diff(t, cur_tick);
361 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
362 (int64_t)ticks_to_ns(diff));
363 t->wrap_flag = 0;
366 update_irq(t, 1);
369 static void hpet_set_timer(HPETTimer *t)
371 uint64_t diff;
372 uint32_t wrap_diff; /* how many ticks until we wrap? */
373 uint64_t cur_tick = hpet_get_ticks(t->state);
375 /* whenever new timer is being set up, make sure wrap_flag is 0 */
376 t->wrap_flag = 0;
377 diff = hpet_calculate_diff(t, cur_tick);
379 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
380 * counter wraps in addition to an interrupt with comparator match.
382 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
383 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
384 if (wrap_diff < (uint32_t)diff) {
385 diff = wrap_diff;
386 t->wrap_flag = 1;
389 timer_mod(t->qemu_timer,
390 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
393 static void hpet_del_timer(HPETTimer *t)
395 timer_del(t->qemu_timer);
396 update_irq(t, 0);
399 #ifdef HPET_DEBUG
400 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
402 printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
403 return 0;
406 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
408 printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
409 return 0;
411 #endif
413 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
414 unsigned size)
416 HPETState *s = opaque;
417 uint64_t cur_tick, index;
419 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
420 index = addr;
421 /*address range of all TN regs*/
422 if (index >= 0x100 && index <= 0x3ff) {
423 uint8_t timer_id = (addr - 0x100) / 0x20;
424 HPETTimer *timer = &s->timer[timer_id];
426 if (timer_id > s->num_timers) {
427 DPRINTF("qemu: timer id out of range\n");
428 return 0;
431 switch ((addr - 0x100) % 0x20) {
432 case HPET_TN_CFG:
433 return timer->config;
434 case HPET_TN_CFG + 4: // Interrupt capabilities
435 return timer->config >> 32;
436 case HPET_TN_CMP: // comparator register
437 return timer->cmp;
438 case HPET_TN_CMP + 4:
439 return timer->cmp >> 32;
440 case HPET_TN_ROUTE:
441 return timer->fsb;
442 case HPET_TN_ROUTE + 4:
443 return timer->fsb >> 32;
444 default:
445 DPRINTF("qemu: invalid hpet_ram_readl\n");
446 break;
448 } else {
449 switch (index) {
450 case HPET_ID:
451 return s->capability;
452 case HPET_PERIOD:
453 return s->capability >> 32;
454 case HPET_CFG:
455 return s->config;
456 case HPET_CFG + 4:
457 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
458 return 0;
459 case HPET_COUNTER:
460 if (hpet_enabled(s)) {
461 cur_tick = hpet_get_ticks(s);
462 } else {
463 cur_tick = s->hpet_counter;
465 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
466 return cur_tick;
467 case HPET_COUNTER + 4:
468 if (hpet_enabled(s)) {
469 cur_tick = hpet_get_ticks(s);
470 } else {
471 cur_tick = s->hpet_counter;
473 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
474 return cur_tick >> 32;
475 case HPET_STATUS:
476 return s->isr;
477 default:
478 DPRINTF("qemu: invalid hpet_ram_readl\n");
479 break;
482 return 0;
485 static void hpet_ram_write(void *opaque, hwaddr addr,
486 uint64_t value, unsigned size)
488 int i;
489 HPETState *s = opaque;
490 uint64_t old_val, new_val, val, index;
492 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
493 index = addr;
494 old_val = hpet_ram_read(opaque, addr, 4);
495 new_val = value;
497 /*address range of all TN regs*/
498 if (index >= 0x100 && index <= 0x3ff) {
499 uint8_t timer_id = (addr - 0x100) / 0x20;
500 HPETTimer *timer = &s->timer[timer_id];
502 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
503 if (timer_id > s->num_timers) {
504 DPRINTF("qemu: timer id out of range\n");
505 return;
507 switch ((addr - 0x100) % 0x20) {
508 case HPET_TN_CFG:
509 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
510 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
511 update_irq(timer, 0);
513 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
514 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
515 if (new_val & HPET_TN_32BIT) {
516 timer->cmp = (uint32_t)timer->cmp;
517 timer->period = (uint32_t)timer->period;
519 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
520 hpet_enabled(s)) {
521 hpet_set_timer(timer);
522 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
523 hpet_del_timer(timer);
525 break;
526 case HPET_TN_CFG + 4: // Interrupt capabilities
527 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
528 break;
529 case HPET_TN_CMP: // comparator register
530 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
531 if (timer->config & HPET_TN_32BIT) {
532 new_val = (uint32_t)new_val;
534 if (!timer_is_periodic(timer)
535 || (timer->config & HPET_TN_SETVAL)) {
536 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
538 if (timer_is_periodic(timer)) {
540 * FIXME: Clamp period to reasonable min value?
541 * Clamp period to reasonable max value
543 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
544 timer->period =
545 (timer->period & 0xffffffff00000000ULL) | new_val;
547 timer->config &= ~HPET_TN_SETVAL;
548 if (hpet_enabled(s)) {
549 hpet_set_timer(timer);
551 break;
552 case HPET_TN_CMP + 4: // comparator register high order
553 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
554 if (!timer_is_periodic(timer)
555 || (timer->config & HPET_TN_SETVAL)) {
556 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
557 } else {
559 * FIXME: Clamp period to reasonable min value?
560 * Clamp period to reasonable max value
562 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
563 timer->period =
564 (timer->period & 0xffffffffULL) | new_val << 32;
566 timer->config &= ~HPET_TN_SETVAL;
567 if (hpet_enabled(s)) {
568 hpet_set_timer(timer);
570 break;
571 case HPET_TN_ROUTE:
572 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
573 break;
574 case HPET_TN_ROUTE + 4:
575 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
576 break;
577 default:
578 DPRINTF("qemu: invalid hpet_ram_writel\n");
579 break;
581 return;
582 } else {
583 switch (index) {
584 case HPET_ID:
585 return;
586 case HPET_CFG:
587 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
588 s->config = (s->config & 0xffffffff00000000ULL) | val;
589 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
590 /* Enable main counter and interrupt generation. */
591 s->hpet_offset =
592 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
593 for (i = 0; i < s->num_timers; i++) {
594 if ((&s->timer[i])->cmp != ~0ULL) {
595 hpet_set_timer(&s->timer[i]);
598 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
599 /* Halt main counter and disable interrupt generation. */
600 s->hpet_counter = hpet_get_ticks(s);
601 for (i = 0; i < s->num_timers; i++) {
602 hpet_del_timer(&s->timer[i]);
605 /* i8254 and RTC output pins are disabled
606 * when HPET is in legacy mode */
607 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
608 qemu_set_irq(s->pit_enabled, 0);
609 qemu_irq_lower(s->irqs[0]);
610 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
611 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
612 qemu_irq_lower(s->irqs[0]);
613 qemu_set_irq(s->pit_enabled, 1);
614 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
616 break;
617 case HPET_CFG + 4:
618 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
619 break;
620 case HPET_STATUS:
621 val = new_val & s->isr;
622 for (i = 0; i < s->num_timers; i++) {
623 if (val & (1 << i)) {
624 update_irq(&s->timer[i], 0);
627 break;
628 case HPET_COUNTER:
629 if (hpet_enabled(s)) {
630 DPRINTF("qemu: Writing counter while HPET enabled!\n");
632 s->hpet_counter =
633 (s->hpet_counter & 0xffffffff00000000ULL) | value;
634 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
635 value, s->hpet_counter);
636 break;
637 case HPET_COUNTER + 4:
638 if (hpet_enabled(s)) {
639 DPRINTF("qemu: Writing counter while HPET enabled!\n");
641 s->hpet_counter =
642 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
643 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
644 value, s->hpet_counter);
645 break;
646 default:
647 DPRINTF("qemu: invalid hpet_ram_writel\n");
648 break;
653 static const MemoryRegionOps hpet_ram_ops = {
654 .read = hpet_ram_read,
655 .write = hpet_ram_write,
656 .valid = {
657 .min_access_size = 4,
658 .max_access_size = 4,
660 .endianness = DEVICE_NATIVE_ENDIAN,
663 static void hpet_reset(DeviceState *d)
665 HPETState *s = HPET(d);
666 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
667 int i;
669 for (i = 0; i < s->num_timers; i++) {
670 HPETTimer *timer = &s->timer[i];
672 hpet_del_timer(timer);
673 timer->cmp = ~0ULL;
674 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
675 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
676 timer->config |= HPET_TN_FSB_CAP;
678 /* advertise availability of ioapic int */
679 timer->config |= (uint64_t)s->intcap << 32;
680 timer->period = 0ULL;
681 timer->wrap_flag = 0;
684 qemu_set_irq(s->pit_enabled, 1);
685 s->hpet_counter = 0ULL;
686 s->hpet_offset = 0ULL;
687 s->config = 0ULL;
688 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
689 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
691 /* to document that the RTC lowers its output on reset as well */
692 s->rtc_irq_level = 0;
695 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
697 HPETState *s = HPET(opaque);
699 if (n == HPET_LEGACY_PIT_INT) {
700 if (!hpet_in_legacy_mode(s)) {
701 qemu_set_irq(s->irqs[0], level);
703 } else {
704 s->rtc_irq_level = level;
705 if (!hpet_in_legacy_mode(s)) {
706 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
711 static void hpet_init(Object *obj)
713 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
714 HPETState *s = HPET(obj);
716 /* HPET Area */
717 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
718 sysbus_init_mmio(sbd, &s->iomem);
721 static void hpet_realize(DeviceState *dev, Error **errp)
723 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
724 HPETState *s = HPET(dev);
725 int i;
726 HPETTimer *timer;
728 if (!s->intcap) {
729 error_printf("Hpet's intcap not initialized.\n");
731 if (hpet_cfg.count == UINT8_MAX) {
732 /* first instance */
733 hpet_cfg.count = 0;
736 if (hpet_cfg.count == 8) {
737 error_setg(errp, "Only 8 instances of HPET is allowed");
738 return;
741 s->hpet_id = hpet_cfg.count++;
743 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
744 sysbus_init_irq(sbd, &s->irqs[i]);
747 if (s->num_timers < HPET_MIN_TIMERS) {
748 s->num_timers = HPET_MIN_TIMERS;
749 } else if (s->num_timers > HPET_MAX_TIMERS) {
750 s->num_timers = HPET_MAX_TIMERS;
752 for (i = 0; i < HPET_MAX_TIMERS; i++) {
753 timer = &s->timer[i];
754 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
755 timer->tn = i;
756 timer->state = s;
759 /* 64-bit main counter; LegacyReplacementRoute. */
760 s->capability = 0x8086a001ULL;
761 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
762 s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
764 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
765 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
768 static Property hpet_device_properties[] = {
769 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
770 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
771 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
772 DEFINE_PROP_END_OF_LIST(),
775 static void hpet_device_class_init(ObjectClass *klass, void *data)
777 DeviceClass *dc = DEVICE_CLASS(klass);
779 dc->realize = hpet_realize;
780 dc->reset = hpet_reset;
781 dc->vmsd = &vmstate_hpet;
782 dc->props = hpet_device_properties;
785 static const TypeInfo hpet_device_info = {
786 .name = TYPE_HPET,
787 .parent = TYPE_SYS_BUS_DEVICE,
788 .instance_size = sizeof(HPETState),
789 .instance_init = hpet_init,
790 .class_init = hpet_device_class_init,
793 static void hpet_register_types(void)
795 type_register_static(&hpet_device_info);
798 type_init(hpet_register_types)