2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qom/object.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/kvm.h"
24 #include "sysemu/kvm_int.h"
28 #include "internals.h"
29 #include "hw/pci/pci.h"
30 #include "exec/memattrs.h"
31 #include "exec/address-spaces.h"
32 #include "hw/boards.h"
36 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
40 static bool cap_has_mp_state
;
41 static bool cap_has_inject_serror_esr
;
42 static bool cap_has_inject_ext_dabt
;
44 static ARMHostCPUFeatures arm_host_cpu_features
;
46 int kvm_arm_vcpu_init(CPUState
*cs
)
48 ARMCPU
*cpu
= ARM_CPU(cs
);
49 struct kvm_vcpu_init init
;
51 init
.target
= cpu
->kvm_target
;
52 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
54 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
57 int kvm_arm_vcpu_finalize(CPUState
*cs
, int feature
)
59 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_FINALIZE
, &feature
);
62 void kvm_arm_init_serror_injection(CPUState
*cs
)
64 cap_has_inject_serror_esr
= kvm_check_extension(cs
->kvm_state
,
65 KVM_CAP_ARM_INJECT_SERROR_ESR
);
68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
70 struct kvm_vcpu_init
*init
)
72 int ret
= 0, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
75 kvmfd
= qemu_open_old("/dev/kvm", O_RDWR
);
79 max_vm_pa_size
= ioctl(kvmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_ARM_VM_IPA_SIZE
);
80 if (max_vm_pa_size
< 0) {
83 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, max_vm_pa_size
);
87 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
93 /* Caller doesn't want the VCPU to be initialized, so skip it */
97 if (init
->target
== -1) {
98 struct kvm_vcpu_init preferred
;
100 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, &preferred
);
102 init
->target
= preferred
.target
;
106 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
110 } else if (cpus_to_try
) {
111 /* Old kernel which doesn't know about the
112 * PREFERRED_TARGET ioctl: we know it will only support
113 * creating one kind of guest CPU which is its preferred
116 struct kvm_vcpu_init
try;
118 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
119 try.target
= *cpus_to_try
++;
120 memcpy(try.features
, init
->features
, sizeof(init
->features
));
121 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, &try);
129 init
->target
= try.target
;
131 /* Treat a NULL cpus_to_try argument the same as an empty
132 * list, which means we will fail the call since this must
133 * be an old kernel which doesn't support PREFERRED_TARGET.
159 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
163 for (i
= 2; i
>= 0; i
--) {
168 void kvm_arm_set_cpu_features_from_host(ARMCPU
*cpu
)
170 CPUARMState
*env
= &cpu
->env
;
172 if (!arm_host_cpu_features
.dtb_compatible
) {
173 if (!kvm_enabled() ||
174 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features
)) {
175 /* We can't report this error yet, so flag that we need to
176 * in arm_cpu_realizefn().
178 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
179 cpu
->host_cpu_probe_failed
= true;
184 cpu
->kvm_target
= arm_host_cpu_features
.target
;
185 cpu
->dtb_compatible
= arm_host_cpu_features
.dtb_compatible
;
186 cpu
->isar
= arm_host_cpu_features
.isar
;
187 env
->features
= arm_host_cpu_features
.features
;
190 static bool kvm_no_adjvtime_get(Object
*obj
, Error
**errp
)
192 return !ARM_CPU(obj
)->kvm_adjvtime
;
195 static void kvm_no_adjvtime_set(Object
*obj
, bool value
, Error
**errp
)
197 ARM_CPU(obj
)->kvm_adjvtime
= !value
;
200 static bool kvm_steal_time_get(Object
*obj
, Error
**errp
)
202 return ARM_CPU(obj
)->kvm_steal_time
!= ON_OFF_AUTO_OFF
;
205 static void kvm_steal_time_set(Object
*obj
, bool value
, Error
**errp
)
207 ARM_CPU(obj
)->kvm_steal_time
= value
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
210 /* KVM VCPU properties should be prefixed with "kvm-". */
211 void kvm_arm_add_vcpu_properties(Object
*obj
)
213 ARMCPU
*cpu
= ARM_CPU(obj
);
214 CPUARMState
*env
= &cpu
->env
;
216 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
217 cpu
->kvm_adjvtime
= true;
218 object_property_add_bool(obj
, "kvm-no-adjvtime", kvm_no_adjvtime_get
,
219 kvm_no_adjvtime_set
);
220 object_property_set_description(obj
, "kvm-no-adjvtime",
221 "Set on to disable the adjustment of "
222 "the virtual counter. VM stopped time "
226 cpu
->kvm_steal_time
= ON_OFF_AUTO_AUTO
;
227 object_property_add_bool(obj
, "kvm-steal-time", kvm_steal_time_get
,
229 object_property_set_description(obj
, "kvm-steal-time",
230 "Set off to disable KVM steal time.");
233 bool kvm_arm_pmu_supported(void)
235 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_PMU_V3
);
238 int kvm_arm_get_max_vm_ipa_size(MachineState
*ms
, bool *fixed_ipa
)
240 KVMState
*s
= KVM_STATE(ms
->accelerator
);
243 ret
= kvm_check_extension(s
, KVM_CAP_ARM_VM_IPA_SIZE
);
244 *fixed_ipa
= ret
<= 0;
246 return ret
> 0 ? ret
: 40;
249 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
252 /* For ARM interrupt delivery is always asynchronous,
253 * whether we are using an in-kernel VGIC or not.
255 kvm_async_interrupts_allowed
= true;
258 * PSCI wakes up secondary cores, so we always need to
259 * have vCPUs waiting in kernel space
261 kvm_halt_in_kernel_allowed
= true;
263 cap_has_mp_state
= kvm_check_extension(s
, KVM_CAP_MP_STATE
);
265 if (ms
->smp
.cpus
> 256 &&
266 !kvm_check_extension(s
, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2
)) {
267 error_report("Using more than 256 vcpus requires a host kernel "
268 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
272 if (kvm_check_extension(s
, KVM_CAP_ARM_NISV_TO_USER
)) {
273 if (kvm_vm_enable_cap(s
, KVM_CAP_ARM_NISV_TO_USER
, 0)) {
274 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
276 /* Set status for supporting the external dabt injection */
277 cap_has_inject_ext_dabt
= kvm_check_extension(s
,
278 KVM_CAP_ARM_INJECT_EXT_DABT
);
285 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
287 return cpu
->cpu_index
;
290 /* We track all the KVM devices which need their memory addresses
291 * passing to the kernel in a list of these structures.
292 * When board init is complete we run through the list and
293 * tell the kernel the base addresses of the memory regions.
294 * We use a MemoryListener to track mapping and unmapping of
295 * the regions during board creation, so the board models don't
296 * need to do anything special for the KVM case.
298 * Sometimes the address must be OR'ed with some other fields
299 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
300 * @kda_addr_ormask aims at storing the value of those fields.
302 typedef struct KVMDevice
{
303 struct kvm_arm_device_addr kda
;
304 struct kvm_device_attr kdattr
;
305 uint64_t kda_addr_ormask
;
307 QSLIST_ENTRY(KVMDevice
) entries
;
311 static QSLIST_HEAD(, KVMDevice
) kvm_devices_head
;
313 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
314 MemoryRegionSection
*section
)
318 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
319 if (section
->mr
== kd
->mr
) {
320 kd
->kda
.addr
= section
->offset_within_address_space
;
325 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
326 MemoryRegionSection
*section
)
330 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
331 if (section
->mr
== kd
->mr
) {
337 static MemoryListener devlistener
= {
339 .region_add
= kvm_arm_devlistener_add
,
340 .region_del
= kvm_arm_devlistener_del
,
343 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
345 struct kvm_device_attr
*attr
= &kd
->kdattr
;
348 /* If the device control API is available and we have a device fd on the
349 * KVMDevice struct, let's use the newer API
351 if (kd
->dev_fd
>= 0) {
352 uint64_t addr
= kd
->kda
.addr
;
354 addr
|= kd
->kda_addr_ormask
;
355 attr
->addr
= (uintptr_t)&addr
;
356 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
358 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
362 fprintf(stderr
, "Failed to set device address: %s\n",
368 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
372 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
373 if (kd
->kda
.addr
!= -1) {
374 kvm_arm_set_device_addr(kd
);
376 memory_region_unref(kd
->mr
);
377 QSLIST_REMOVE_HEAD(&kvm_devices_head
, entries
);
380 memory_listener_unregister(&devlistener
);
383 static Notifier notify
= {
384 .notify
= kvm_arm_machine_init_done
,
387 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
388 uint64_t attr
, int dev_fd
, uint64_t addr_ormask
)
392 if (!kvm_irqchip_in_kernel()) {
396 if (QSLIST_EMPTY(&kvm_devices_head
)) {
397 memory_listener_register(&devlistener
, &address_space_memory
);
398 qemu_add_machine_init_done_notifier(¬ify
);
400 kd
= g_new0(KVMDevice
, 1);
404 kd
->kdattr
.flags
= 0;
405 kd
->kdattr
.group
= group
;
406 kd
->kdattr
.attr
= attr
;
408 kd
->kda_addr_ormask
= addr_ormask
;
409 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
410 memory_region_ref(kd
->mr
);
413 static int compare_u64(const void *a
, const void *b
)
415 if (*(uint64_t *)a
> *(uint64_t *)b
) {
418 if (*(uint64_t *)a
< *(uint64_t *)b
) {
425 * cpreg_values are sorted in ascending order by KVM register ID
426 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
427 * the storage for a KVM register by ID with a binary search.
429 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU
*cpu
, uint64_t regidx
)
433 res
= bsearch(®idx
, cpu
->cpreg_indexes
, cpu
->cpreg_array_len
,
434 sizeof(uint64_t), compare_u64
);
437 return &cpu
->cpreg_values
[res
- cpu
->cpreg_indexes
];
440 /* Initialize the ARMCPU cpreg list according to the kernel's
441 * definition of what CPU registers it knows about (and throw away
442 * the previous TCG-created cpreg list).
444 int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
446 struct kvm_reg_list rl
;
447 struct kvm_reg_list
*rlp
;
448 int i
, ret
, arraylen
;
449 CPUState
*cs
= CPU(cpu
);
452 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
456 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
458 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
462 /* Sort the list we get back from the kernel, since cpreg_tuples
463 * must be in strictly ascending order.
465 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
467 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
468 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
471 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
472 case KVM_REG_SIZE_U32
:
473 case KVM_REG_SIZE_U64
:
476 fprintf(stderr
, "Can't handle size of register in kernel list\n");
484 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
485 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
486 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
488 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
490 cpu
->cpreg_array_len
= arraylen
;
491 cpu
->cpreg_vmstate_array_len
= arraylen
;
493 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
494 uint64_t regidx
= rlp
->reg
[i
];
495 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
498 cpu
->cpreg_indexes
[arraylen
] = regidx
;
501 assert(cpu
->cpreg_array_len
== arraylen
);
503 if (!write_kvmstate_to_list(cpu
)) {
504 /* Shouldn't happen unless kernel is inconsistent about
505 * what registers exist.
507 fprintf(stderr
, "Initial read of kernel register state failed\n");
517 bool write_kvmstate_to_list(ARMCPU
*cpu
)
519 CPUState
*cs
= CPU(cpu
);
523 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
524 struct kvm_one_reg r
;
525 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
531 switch (regidx
& KVM_REG_SIZE_MASK
) {
532 case KVM_REG_SIZE_U32
:
533 r
.addr
= (uintptr_t)&v32
;
534 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
536 cpu
->cpreg_values
[i
] = v32
;
539 case KVM_REG_SIZE_U64
:
540 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
541 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
553 bool write_list_to_kvmstate(ARMCPU
*cpu
, int level
)
555 CPUState
*cs
= CPU(cpu
);
559 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
560 struct kvm_one_reg r
;
561 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
565 if (kvm_arm_cpreg_level(regidx
) > level
) {
570 switch (regidx
& KVM_REG_SIZE_MASK
) {
571 case KVM_REG_SIZE_U32
:
572 v32
= cpu
->cpreg_values
[i
];
573 r
.addr
= (uintptr_t)&v32
;
575 case KVM_REG_SIZE_U64
:
576 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
581 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
583 /* We might fail for "unknown register" and also for
584 * "you tried to set a register which is constant with
585 * a different value from what it actually contains".
593 void kvm_arm_cpu_pre_save(ARMCPU
*cpu
)
595 /* KVM virtual time adjustment */
596 if (cpu
->kvm_vtime_dirty
) {
597 *kvm_arm_get_cpreg_ptr(cpu
, KVM_REG_ARM_TIMER_CNT
) = cpu
->kvm_vtime
;
601 void kvm_arm_cpu_post_load(ARMCPU
*cpu
)
603 /* KVM virtual time adjustment */
604 if (cpu
->kvm_adjvtime
) {
605 cpu
->kvm_vtime
= *kvm_arm_get_cpreg_ptr(cpu
, KVM_REG_ARM_TIMER_CNT
);
606 cpu
->kvm_vtime_dirty
= true;
610 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
614 /* Re-init VCPU so that all registers are set to
615 * their respective reset values.
617 ret
= kvm_arm_vcpu_init(CPU(cpu
));
619 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
622 if (!write_kvmstate_to_list(cpu
)) {
623 fprintf(stderr
, "write_kvmstate_to_list failed\n");
627 * Sync the reset values also into the CPUState. This is necessary
628 * because the next thing we do will be a kvm_arch_put_registers()
629 * which will update the list values from the CPUState before copying
630 * the list values back to KVM. It's OK to ignore failure returns here
631 * for the same reason we do so in kvm_arch_get_registers().
633 write_list_to_cpustate(cpu
);
637 * Update KVM's MP_STATE based on what QEMU thinks it is
639 int kvm_arm_sync_mpstate_to_kvm(ARMCPU
*cpu
)
641 if (cap_has_mp_state
) {
642 struct kvm_mp_state mp_state
= {
643 .mp_state
= (cpu
->power_state
== PSCI_OFF
) ?
644 KVM_MP_STATE_STOPPED
: KVM_MP_STATE_RUNNABLE
646 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
648 fprintf(stderr
, "%s: failed to set MP_STATE %d/%s\n",
649 __func__
, ret
, strerror(-ret
));
658 * Sync the KVM MP_STATE into QEMU
660 int kvm_arm_sync_mpstate_to_qemu(ARMCPU
*cpu
)
662 if (cap_has_mp_state
) {
663 struct kvm_mp_state mp_state
;
664 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MP_STATE
, &mp_state
);
666 fprintf(stderr
, "%s: failed to get MP_STATE %d/%s\n",
667 __func__
, ret
, strerror(-ret
));
670 cpu
->power_state
= (mp_state
.mp_state
== KVM_MP_STATE_STOPPED
) ?
677 void kvm_arm_get_virtual_time(CPUState
*cs
)
679 ARMCPU
*cpu
= ARM_CPU(cs
);
680 struct kvm_one_reg reg
= {
681 .id
= KVM_REG_ARM_TIMER_CNT
,
682 .addr
= (uintptr_t)&cpu
->kvm_vtime
,
686 if (cpu
->kvm_vtime_dirty
) {
690 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
692 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
696 cpu
->kvm_vtime_dirty
= true;
699 void kvm_arm_put_virtual_time(CPUState
*cs
)
701 ARMCPU
*cpu
= ARM_CPU(cs
);
702 struct kvm_one_reg reg
= {
703 .id
= KVM_REG_ARM_TIMER_CNT
,
704 .addr
= (uintptr_t)&cpu
->kvm_vtime
,
708 if (!cpu
->kvm_vtime_dirty
) {
712 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
714 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
718 cpu
->kvm_vtime_dirty
= false;
721 int kvm_put_vcpu_events(ARMCPU
*cpu
)
723 CPUARMState
*env
= &cpu
->env
;
724 struct kvm_vcpu_events events
;
727 if (!kvm_has_vcpu_events()) {
731 memset(&events
, 0, sizeof(events
));
732 events
.exception
.serror_pending
= env
->serror
.pending
;
734 /* Inject SError to guest with specified syndrome if host kernel
735 * supports it, otherwise inject SError without syndrome.
737 if (cap_has_inject_serror_esr
) {
738 events
.exception
.serror_has_esr
= env
->serror
.has_esr
;
739 events
.exception
.serror_esr
= env
->serror
.esr
;
742 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
744 error_report("failed to put vcpu events");
750 int kvm_get_vcpu_events(ARMCPU
*cpu
)
752 CPUARMState
*env
= &cpu
->env
;
753 struct kvm_vcpu_events events
;
756 if (!kvm_has_vcpu_events()) {
760 memset(&events
, 0, sizeof(events
));
761 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
763 error_report("failed to get vcpu events");
767 env
->serror
.pending
= events
.exception
.serror_pending
;
768 env
->serror
.has_esr
= events
.exception
.serror_has_esr
;
769 env
->serror
.esr
= events
.exception
.serror_esr
;
774 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
776 ARMCPU
*cpu
= ARM_CPU(cs
);
777 CPUARMState
*env
= &cpu
->env
;
779 if (unlikely(env
->ext_dabt_raised
)) {
781 * Verifying that the ext DABT has been properly injected,
782 * otherwise risking indefinitely re-running the faulting instruction
783 * Covering a very narrow case for kernels 5.5..5.5.4
784 * when injected abort was misconfigured to be
785 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
787 if (!arm_feature(env
, ARM_FEATURE_AARCH64
) &&
788 unlikely(!kvm_arm_verify_ext_dabt_pending(cs
))) {
790 error_report("Data abort exception with no valid ISS generated by "
791 "guest memory access. KVM unable to emulate faulting "
792 "instruction. Failed to inject an external data abort "
796 /* Clear the status */
797 env
->ext_dabt_raised
= 0;
801 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
804 uint32_t switched_level
;
806 if (kvm_irqchip_in_kernel()) {
808 * We only need to sync timer states with user-space interrupt
809 * controllers, so return early and save cycles if we don't.
811 return MEMTXATTRS_UNSPECIFIED
;
816 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
817 if (run
->s
.regs
.device_irq_level
!= cpu
->device_irq_level
) {
818 switched_level
= cpu
->device_irq_level
^ run
->s
.regs
.device_irq_level
;
820 qemu_mutex_lock_iothread();
822 if (switched_level
& KVM_ARM_DEV_EL1_VTIMER
) {
823 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_VIRT
],
824 !!(run
->s
.regs
.device_irq_level
&
825 KVM_ARM_DEV_EL1_VTIMER
));
826 switched_level
&= ~KVM_ARM_DEV_EL1_VTIMER
;
829 if (switched_level
& KVM_ARM_DEV_EL1_PTIMER
) {
830 qemu_set_irq(cpu
->gt_timer_outputs
[GTIMER_PHYS
],
831 !!(run
->s
.regs
.device_irq_level
&
832 KVM_ARM_DEV_EL1_PTIMER
));
833 switched_level
&= ~KVM_ARM_DEV_EL1_PTIMER
;
836 if (switched_level
& KVM_ARM_DEV_PMU
) {
837 qemu_set_irq(cpu
->pmu_interrupt
,
838 !!(run
->s
.regs
.device_irq_level
& KVM_ARM_DEV_PMU
));
839 switched_level
&= ~KVM_ARM_DEV_PMU
;
842 if (switched_level
) {
843 qemu_log_mask(LOG_UNIMP
, "%s: unhandled in-kernel device IRQ %x\n",
844 __func__
, switched_level
);
847 /* We also mark unknown levels as processed to not waste cycles */
848 cpu
->device_irq_level
= run
->s
.regs
.device_irq_level
;
849 qemu_mutex_unlock_iothread();
852 return MEMTXATTRS_UNSPECIFIED
;
855 void kvm_arm_vm_state_change(void *opaque
, bool running
, RunState state
)
857 CPUState
*cs
= opaque
;
858 ARMCPU
*cpu
= ARM_CPU(cs
);
861 if (cpu
->kvm_adjvtime
) {
862 kvm_arm_put_virtual_time(cs
);
865 if (cpu
->kvm_adjvtime
) {
866 kvm_arm_get_virtual_time(cs
);
872 * kvm_arm_handle_dabt_nisv:
874 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
875 * ISV bit set to '0b0' -> no valid instruction syndrome
876 * @fault_ipa: faulting address for the synchronous data abort
878 * Returns: 0 if the exception has been handled, < 0 otherwise
880 static int kvm_arm_handle_dabt_nisv(CPUState
*cs
, uint64_t esr_iss
,
883 ARMCPU
*cpu
= ARM_CPU(cs
);
884 CPUARMState
*env
= &cpu
->env
;
886 * Request KVM to inject the external data abort into the guest
888 if (cap_has_inject_ext_dabt
) {
889 struct kvm_vcpu_events events
= { };
891 * The external data abort event will be handled immediately by KVM
892 * using the address fault that triggered the exit on given VCPU.
893 * Requesting injection of the external data abort does not rely
894 * on any other VCPU state. Therefore, in this particular case, the VCPU
895 * synchronization can be exceptionally skipped.
897 events
.exception
.ext_dabt_pending
= 1;
898 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
899 if (!kvm_vcpu_ioctl(cs
, KVM_SET_VCPU_EVENTS
, &events
)) {
900 env
->ext_dabt_raised
= 1;
904 error_report("Data abort exception triggered by guest memory access "
905 "at physical address: 0x" TARGET_FMT_lx
,
906 (target_ulong
)fault_ipa
);
907 error_printf("KVM unable to emulate faulting instruction.\n");
912 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
916 switch (run
->exit_reason
) {
918 if (kvm_arm_handle_debug(cs
, &run
->debug
.arch
)) {
920 } /* otherwise return to guest */
922 case KVM_EXIT_ARM_NISV
:
923 /* External DABT with no valid iss to decode */
924 ret
= kvm_arm_handle_dabt_nisv(cs
, run
->arm_nisv
.esr_iss
,
925 run
->arm_nisv
.fault_ipa
);
928 qemu_log_mask(LOG_UNIMP
, "%s: un-handled exit reason %d\n",
929 __func__
, run
->exit_reason
);
935 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
940 int kvm_arch_process_async_events(CPUState
*cs
)
945 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
947 if (kvm_sw_breakpoints_active(cs
)) {
948 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
950 if (kvm_arm_hw_debug_active(cs
)) {
951 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW
;
952 kvm_arm_copy_hw_debug_data(&dbg
->arch
);
956 void kvm_arch_init_irq_routing(KVMState
*s
)
960 int kvm_arch_irqchip_create(KVMState
*s
)
962 if (kvm_kernel_irqchip_split()) {
963 perror("-machine kernel_irqchip=split is not supported on ARM.");
967 /* If we can create the VGIC using the newer device control API, we
968 * let the device do this when it initializes itself, otherwise we
969 * fall back to the old API */
970 return kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
);
973 int kvm_arm_vgic_probe(void)
977 if (kvm_create_device(kvm_state
,
978 KVM_DEV_TYPE_ARM_VGIC_V3
, true) == 0) {
979 val
|= KVM_ARM_VGIC_V3
;
981 if (kvm_create_device(kvm_state
,
982 KVM_DEV_TYPE_ARM_VGIC_V2
, true) == 0) {
983 val
|= KVM_ARM_VGIC_V2
;
988 int kvm_arm_set_irq(int cpu
, int irqtype
, int irq
, int level
)
990 int kvm_irq
= (irqtype
<< KVM_ARM_IRQ_TYPE_SHIFT
) | irq
;
991 int cpu_idx1
= cpu
% 256;
992 int cpu_idx2
= cpu
/ 256;
994 kvm_irq
|= (cpu_idx1
<< KVM_ARM_IRQ_VCPU_SHIFT
) |
995 (cpu_idx2
<< KVM_ARM_IRQ_VCPU2_SHIFT
);
997 return kvm_set_irq(kvm_state
, kvm_irq
, !!level
);
1000 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
1001 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
1003 AddressSpace
*as
= pci_device_iommu_address_space(dev
);
1004 hwaddr xlat
, len
, doorbell_gpa
;
1005 MemoryRegionSection mrs
;
1008 if (as
== &address_space_memory
) {
1012 /* MSI doorbell address is translated by an IOMMU */
1014 RCU_READ_LOCK_GUARD();
1016 mr
= address_space_translate(as
, address
, &xlat
, &len
, true,
1017 MEMTXATTRS_UNSPECIFIED
);
1023 mrs
= memory_region_find(mr
, xlat
, 1);
1029 doorbell_gpa
= mrs
.offset_within_address_space
;
1030 memory_region_unref(mrs
.mr
);
1032 route
->u
.msi
.address_lo
= doorbell_gpa
;
1033 route
->u
.msi
.address_hi
= doorbell_gpa
>> 32;
1035 trace_kvm_arm_fixup_msi_route(address
, doorbell_gpa
);
1040 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
1041 int vector
, PCIDevice
*dev
)
1046 int kvm_arch_release_virq_post(int virq
)
1051 int kvm_arch_msi_data_to_gsi(uint32_t data
)
1053 return (data
- 32) & 0xffff;
1056 bool kvm_arch_cpu_check_are_resettable(void)