hw/intc/armv7m_nvic: Fix "return from inactive handler" check
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blobcf233c05616c2f2f4c11905cc78a64fbd1bdbe21
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
30 /* IRQ number counting:
32 * the num-irq property counts the number of external IRQ lines
34 * NVICState::num_irq counts the total number of exceptions
35 * (external IRQs, the 15 internal exceptions including reset,
36 * and one for the unused exception number 0).
38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
42 * Iterating through all exceptions should typically be done with
43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
45 * The external qemu_irq lines are the NVIC's external IRQ lines,
46 * so line 0 is exception 16.
48 * In the terminology of the architecture manual, "interrupts" are
49 * a subcategory of exception referring to the external interrupts
50 * (which are exception numbers NVIC_FIRST_IRQ and upward).
51 * For historical reasons QEMU tends to use "interrupt" and
52 * "exception" more or less interchangeably.
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
57 /* Effective running priority of the CPU when no exception is active
58 * (higher than the highest possible priority value)
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
64 static const uint8_t nvic_id[] = {
65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
68 static void signal_sysresetreq(NVICState *s)
70 if (qemu_irq_is_connected(s->sysresetreq)) {
71 qemu_irq_pulse(s->sysresetreq);
72 } else {
74 * Default behaviour if the SoC doesn't need to wire up
75 * SYSRESETREQ (eg to a system reset controller of some kind):
76 * perform a system reset via the usual QEMU API.
78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
82 static int nvic_pending_prio(NVICState *s)
84 /* return the group priority of the current pending interrupt,
85 * or NVIC_NOEXC_PRIO if no interrupt is pending
87 return s->vectpending_prio;
90 /* Return the value of the ISCR RETTOBASE bit:
91 * 1 if there is exactly one active exception
92 * 0 if there is more than one active exception
93 * UNKNOWN if there are no active exceptions (we choose 1,
94 * which matches the choice Cortex-M3 is documented as making).
96 * NB: some versions of the documentation talk about this
97 * counting "active exceptions other than the one shown by IPSR";
98 * this is only different in the obscure corner case where guest
99 * code has manually deactivated an exception and is about
100 * to fail an exception-return integrity check. The definition
101 * above is the one from the v8M ARM ARM and is also in line
102 * with the behaviour documented for the Cortex-M3.
104 static bool nvic_rettobase(NVICState *s)
106 int irq, nhand = 0;
107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110 if (s->vectors[irq].active ||
111 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112 s->sec_vectors[irq].active)) {
113 nhand++;
114 if (nhand == 2) {
115 return 0;
120 return 1;
123 /* Return the value of the ISCR ISRPENDING bit:
124 * 1 if an external interrupt is pending
125 * 0 if no external interrupt is pending
127 static bool nvic_isrpending(NVICState *s)
129 int irq;
131 /* We can shortcut if the highest priority pending interrupt
132 * happens to be external or if there is nothing pending.
134 if (s->vectpending > NVIC_FIRST_IRQ) {
135 return true;
137 if (s->vectpending == 0) {
138 return false;
141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142 if (s->vectors[irq].pending) {
143 return true;
146 return false;
149 static bool exc_is_banked(int exc)
151 /* Return true if this is one of the limited set of exceptions which
152 * are banked (and thus have state in sec_vectors[])
154 return exc == ARMV7M_EXCP_HARD ||
155 exc == ARMV7M_EXCP_MEM ||
156 exc == ARMV7M_EXCP_USAGE ||
157 exc == ARMV7M_EXCP_SVC ||
158 exc == ARMV7M_EXCP_PENDSV ||
159 exc == ARMV7M_EXCP_SYSTICK;
162 /* Return a mask word which clears the subpriority bits from
163 * a priority value for an M-profile exception, leaving only
164 * the group priority.
166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
168 return ~0U << (s->prigroup[secure] + 1);
171 static bool exc_targets_secure(NVICState *s, int exc)
173 /* Return true if this non-banked exception targets Secure state. */
174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175 return false;
178 if (exc >= NVIC_FIRST_IRQ) {
179 return !s->itns[exc];
182 /* Function shouldn't be called for banked exceptions. */
183 assert(!exc_is_banked(exc));
185 switch (exc) {
186 case ARMV7M_EXCP_NMI:
187 case ARMV7M_EXCP_BUS:
188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189 case ARMV7M_EXCP_SECURE:
190 return true;
191 case ARMV7M_EXCP_DEBUG:
192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193 return false;
194 default:
195 /* reset, and reserved (unused) low exception numbers.
196 * We'll get called by code that loops through all the exception
197 * numbers, but it doesn't matter what we return here as these
198 * non-existent exceptions will never be pended or active.
200 return true;
204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
206 /* Return the group priority for this exception, given its raw
207 * (group-and-subgroup) priority value and whether it is targeting
208 * secure state or not.
210 if (rawprio < 0) {
211 return rawprio;
213 rawprio &= nvic_gprio_mask(s, targets_secure);
214 /* AIRCR.PRIS causes us to squash all NS priorities into the
215 * lower half of the total range
217 if (!targets_secure &&
218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
221 return rawprio;
224 /* Recompute vectpending and exception_prio for a CPU which implements
225 * the Security extension
227 static void nvic_recompute_state_secure(NVICState *s)
229 int i, bank;
230 int pend_prio = NVIC_NOEXC_PRIO;
231 int active_prio = NVIC_NOEXC_PRIO;
232 int pend_irq = 0;
233 bool pending_is_s_banked = false;
234 int pend_subprio = 0;
236 /* R_CQRV: precedence is by:
237 * - lowest group priority; if both the same then
238 * - lowest subpriority; if both the same then
239 * - lowest exception number; if both the same (ie banked) then
240 * - secure exception takes precedence
241 * Compare pseudocode RawExecutionPriority.
242 * Annoyingly, now we have two prigroup values (for S and NS)
243 * we can't do the loop comparison on raw priority values.
245 for (i = 1; i < s->num_irq; i++) {
246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247 VecInfo *vec;
248 int prio, subprio;
249 bool targets_secure;
251 if (bank == M_REG_S) {
252 if (!exc_is_banked(i)) {
253 continue;
255 vec = &s->sec_vectors[i];
256 targets_secure = true;
257 } else {
258 vec = &s->vectors[i];
259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
262 prio = exc_group_prio(s, vec->prio, targets_secure);
263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264 if (vec->enabled && vec->pending &&
265 ((prio < pend_prio) ||
266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267 pend_prio = prio;
268 pend_subprio = subprio;
269 pend_irq = i;
270 pending_is_s_banked = (bank == M_REG_S);
272 if (vec->active && prio < active_prio) {
273 active_prio = prio;
278 s->vectpending_is_s_banked = pending_is_s_banked;
279 s->vectpending = pend_irq;
280 s->vectpending_prio = pend_prio;
281 s->exception_prio = active_prio;
283 trace_nvic_recompute_state_secure(s->vectpending,
284 s->vectpending_is_s_banked,
285 s->vectpending_prio,
286 s->exception_prio);
289 /* Recompute vectpending and exception_prio */
290 static void nvic_recompute_state(NVICState *s)
292 int i;
293 int pend_prio = NVIC_NOEXC_PRIO;
294 int active_prio = NVIC_NOEXC_PRIO;
295 int pend_irq = 0;
297 /* In theory we could write one function that handled both
298 * the "security extension present" and "not present"; however
299 * the security related changes significantly complicate the
300 * recomputation just by themselves and mixing both cases together
301 * would be even worse, so we retain a separate non-secure-only
302 * version for CPUs which don't implement the security extension.
304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305 nvic_recompute_state_secure(s);
306 return;
309 for (i = 1; i < s->num_irq; i++) {
310 VecInfo *vec = &s->vectors[i];
312 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313 pend_prio = vec->prio;
314 pend_irq = i;
316 if (vec->active && vec->prio < active_prio) {
317 active_prio = vec->prio;
321 if (active_prio > 0) {
322 active_prio &= nvic_gprio_mask(s, false);
325 if (pend_prio > 0) {
326 pend_prio &= nvic_gprio_mask(s, false);
329 s->vectpending = pend_irq;
330 s->vectpending_prio = pend_prio;
331 s->exception_prio = active_prio;
333 trace_nvic_recompute_state(s->vectpending,
334 s->vectpending_prio,
335 s->exception_prio);
338 /* Return the current execution priority of the CPU
339 * (equivalent to the pseudocode ExecutionPriority function).
340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
342 static inline int nvic_exec_prio(NVICState *s)
344 CPUARMState *env = &s->cpu->env;
345 int running = NVIC_NOEXC_PRIO;
347 if (env->v7m.basepri[M_REG_NS] > 0) {
348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
351 if (env->v7m.basepri[M_REG_S] > 0) {
352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353 if (running > basepri) {
354 running = basepri;
358 if (env->v7m.primask[M_REG_NS]) {
359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360 if (running > NVIC_NS_PRIO_LIMIT) {
361 running = NVIC_NS_PRIO_LIMIT;
363 } else {
364 running = 0;
368 if (env->v7m.primask[M_REG_S]) {
369 running = 0;
372 if (env->v7m.faultmask[M_REG_NS]) {
373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374 running = -1;
375 } else {
376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377 if (running > NVIC_NS_PRIO_LIMIT) {
378 running = NVIC_NS_PRIO_LIMIT;
380 } else {
381 running = 0;
386 if (env->v7m.faultmask[M_REG_S]) {
387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
390 /* consider priority of active handler */
391 return MIN(running, s->exception_prio);
394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
396 /* Return true if the requested execution priority is negative
397 * for the specified security state, ie that security state
398 * has an active NMI or HardFault or has set its FAULTMASK.
399 * Note that this is not the same as whether the execution
400 * priority is actually negative (for instance AIRCR.PRIS may
401 * mean we don't allow FAULTMASK_NS to actually make the execution
402 * priority negative). Compare pseudocode IsReqExcPriNeg().
404 NVICState *s = opaque;
406 if (s->cpu->env.v7m.faultmask[secure]) {
407 return true;
410 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
411 s->vectors[ARMV7M_EXCP_HARD].active) {
412 return true;
415 if (s->vectors[ARMV7M_EXCP_NMI].active &&
416 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
417 return true;
420 return false;
423 bool armv7m_nvic_can_take_pending_exception(void *opaque)
425 NVICState *s = opaque;
427 return nvic_exec_prio(s) > nvic_pending_prio(s);
430 int armv7m_nvic_raw_execution_priority(void *opaque)
432 NVICState *s = opaque;
434 return s->exception_prio;
437 /* caller must call nvic_irq_update() after this.
438 * secure indicates the bank to use for banked exceptions (we assert if
439 * we are passed secure=true for a non-banked exception).
441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
443 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
444 assert(irq < s->num_irq);
446 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
448 if (secure) {
449 assert(exc_is_banked(irq));
450 s->sec_vectors[irq].prio = prio;
451 } else {
452 s->vectors[irq].prio = prio;
455 trace_nvic_set_prio(irq, secure, prio);
458 /* Return the current raw priority register value.
459 * secure indicates the bank to use for banked exceptions (we assert if
460 * we are passed secure=true for a non-banked exception).
462 static int get_prio(NVICState *s, unsigned irq, bool secure)
464 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
465 assert(irq < s->num_irq);
467 if (secure) {
468 assert(exc_is_banked(irq));
469 return s->sec_vectors[irq].prio;
470 } else {
471 return s->vectors[irq].prio;
475 /* Recompute state and assert irq line accordingly.
476 * Must be called after changes to:
477 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
478 * prigroup
480 static void nvic_irq_update(NVICState *s)
482 int lvl;
483 int pend_prio;
485 nvic_recompute_state(s);
486 pend_prio = nvic_pending_prio(s);
488 /* Raise NVIC output if this IRQ would be taken, except that we
489 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
490 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
491 * to those CPU registers don't cause us to recalculate the NVIC
492 * pending info.
494 lvl = (pend_prio < s->exception_prio);
495 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
496 qemu_set_irq(s->excpout, lvl);
500 * armv7m_nvic_clear_pending: mark the specified exception as not pending
501 * @opaque: the NVIC
502 * @irq: the exception number to mark as not pending
503 * @secure: false for non-banked exceptions or for the nonsecure
504 * version of a banked exception, true for the secure version of a banked
505 * exception.
507 * Marks the specified exception as not pending. Note that we will assert()
508 * if @secure is true and @irq does not specify one of the fixed set
509 * of architecturally banked exceptions.
511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
513 NVICState *s = (NVICState *)opaque;
514 VecInfo *vec;
516 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
518 if (secure) {
519 assert(exc_is_banked(irq));
520 vec = &s->sec_vectors[irq];
521 } else {
522 vec = &s->vectors[irq];
524 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
525 if (vec->pending) {
526 vec->pending = 0;
527 nvic_irq_update(s);
531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
532 bool derived)
534 /* Pend an exception, including possibly escalating it to HardFault.
536 * This function handles both "normal" pending of interrupts and
537 * exceptions, and also derived exceptions (ones which occur as
538 * a result of trying to take some other exception).
540 * If derived == true, the caller guarantees that we are part way through
541 * trying to take an exception (but have not yet called
542 * armv7m_nvic_acknowledge_irq() to make it active), and so:
543 * - s->vectpending is the "original exception" we were trying to take
544 * - irq is the "derived exception"
545 * - nvic_exec_prio(s) gives the priority before exception entry
546 * Here we handle the prioritization logic which the pseudocode puts
547 * in the DerivedLateArrival() function.
550 NVICState *s = (NVICState *)opaque;
551 bool banked = exc_is_banked(irq);
552 VecInfo *vec;
553 bool targets_secure;
555 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
556 assert(!secure || banked);
558 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
560 targets_secure = banked ? secure : exc_targets_secure(s, irq);
562 trace_nvic_set_pending(irq, secure, targets_secure,
563 derived, vec->enabled, vec->prio);
565 if (derived) {
566 /* Derived exceptions are always synchronous. */
567 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
569 if (irq == ARMV7M_EXCP_DEBUG &&
570 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
571 /* DebugMonitorFault, but its priority is lower than the
572 * preempted exception priority: just ignore it.
574 return;
577 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
578 /* If this is a terminal exception (one which means we cannot
579 * take the original exception, like a failure to read its
580 * vector table entry), then we must take the derived exception.
581 * If the derived exception can't take priority over the
582 * original exception, then we go into Lockup.
584 * For QEMU, we rely on the fact that a derived exception is
585 * terminal if and only if it's reported to us as HardFault,
586 * which saves having to have an extra argument is_terminal
587 * that we'd only use in one place.
589 cpu_abort(&s->cpu->parent_obj,
590 "Lockup: can't take terminal derived exception "
591 "(original exception priority %d)\n",
592 s->vectpending_prio);
594 /* We now continue with the same code as for a normal pending
595 * exception, which will cause us to pend the derived exception.
596 * We'll then take either the original or the derived exception
597 * based on which is higher priority by the usual mechanism
598 * for selecting the highest priority pending interrupt.
602 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
603 /* If a synchronous exception is pending then it may be
604 * escalated to HardFault if:
605 * * it is equal or lower priority to current execution
606 * * it is disabled
607 * (ie we need to take it immediately but we can't do so).
608 * Asynchronous exceptions (and interrupts) simply remain pending.
610 * For QEMU, we don't have any imprecise (asynchronous) faults,
611 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
612 * synchronous.
613 * Debug exceptions are awkward because only Debug exceptions
614 * resulting from the BKPT instruction should be escalated,
615 * but we don't currently implement any Debug exceptions other
616 * than those that result from BKPT, so we treat all debug exceptions
617 * as needing escalation.
619 * This all means we can identify whether to escalate based only on
620 * the exception number and don't (yet) need the caller to explicitly
621 * tell us whether this exception is synchronous or not.
623 int running = nvic_exec_prio(s);
624 bool escalate = false;
626 if (exc_group_prio(s, vec->prio, secure) >= running) {
627 trace_nvic_escalate_prio(irq, vec->prio, running);
628 escalate = true;
629 } else if (!vec->enabled) {
630 trace_nvic_escalate_disabled(irq);
631 escalate = true;
634 if (escalate) {
636 /* We need to escalate this exception to a synchronous HardFault.
637 * If BFHFNMINS is set then we escalate to the banked HF for
638 * the target security state of the original exception; otherwise
639 * we take a Secure HardFault.
641 irq = ARMV7M_EXCP_HARD;
642 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
643 (targets_secure ||
644 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
645 vec = &s->sec_vectors[irq];
646 } else {
647 vec = &s->vectors[irq];
649 if (running <= vec->prio) {
650 /* We want to escalate to HardFault but we can't take the
651 * synchronous HardFault at this point either. This is a
652 * Lockup condition due to a guest bug. We don't model
653 * Lockup, so report via cpu_abort() instead.
655 cpu_abort(&s->cpu->parent_obj,
656 "Lockup: can't escalate %d to HardFault "
657 "(current priority %d)\n", irq, running);
660 /* HF may be banked but there is only one shared HFSR */
661 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
665 if (!vec->pending) {
666 vec->pending = 1;
667 nvic_irq_update(s);
671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
673 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
678 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
684 * Pend an exception during lazy FP stacking. This differs
685 * from the usual exception pending because the logic for
686 * whether we should escalate depends on the saved context
687 * in the FPCCR register, not on the current state of the CPU/NVIC.
689 NVICState *s = (NVICState *)opaque;
690 bool banked = exc_is_banked(irq);
691 VecInfo *vec;
692 bool targets_secure;
693 bool escalate = false;
695 * We will only look at bits in fpccr if this is a banked exception
696 * (in which case 'secure' tells us whether it is the S or NS version).
697 * All the bits for the non-banked exceptions are in fpccr_s.
699 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
700 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
702 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
703 assert(!secure || banked);
705 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
707 targets_secure = banked ? secure : exc_targets_secure(s, irq);
709 switch (irq) {
710 case ARMV7M_EXCP_DEBUG:
711 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
712 /* Ignore DebugMonitor exception */
713 return;
715 break;
716 case ARMV7M_EXCP_MEM:
717 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
718 break;
719 case ARMV7M_EXCP_USAGE:
720 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
721 break;
722 case ARMV7M_EXCP_BUS:
723 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
724 break;
725 case ARMV7M_EXCP_SECURE:
726 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
727 break;
728 default:
729 g_assert_not_reached();
732 if (escalate) {
734 * Escalate to HardFault: faults that initially targeted Secure
735 * continue to do so, even if HF normally targets NonSecure.
737 irq = ARMV7M_EXCP_HARD;
738 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
739 (targets_secure ||
740 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
741 vec = &s->sec_vectors[irq];
742 } else {
743 vec = &s->vectors[irq];
747 if (!vec->enabled ||
748 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
749 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
751 * We want to escalate to HardFault but the context the
752 * FP state belongs to prevents the exception pre-empting.
754 cpu_abort(&s->cpu->parent_obj,
755 "Lockup: can't escalate to HardFault during "
756 "lazy FP register stacking\n");
760 if (escalate) {
761 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
763 if (!vec->pending) {
764 vec->pending = 1;
766 * We do not call nvic_irq_update(), because we know our caller
767 * is going to handle causing us to take the exception by
768 * raising EXCP_LAZYFP, so raising the IRQ line would be
769 * pointless extra work. We just need to recompute the
770 * priorities so that armv7m_nvic_can_take_pending_exception()
771 * returns the right answer.
773 nvic_recompute_state(s);
777 /* Make pending IRQ active. */
778 void armv7m_nvic_acknowledge_irq(void *opaque)
780 NVICState *s = (NVICState *)opaque;
781 CPUARMState *env = &s->cpu->env;
782 const int pending = s->vectpending;
783 const int running = nvic_exec_prio(s);
784 VecInfo *vec;
786 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
788 if (s->vectpending_is_s_banked) {
789 vec = &s->sec_vectors[pending];
790 } else {
791 vec = &s->vectors[pending];
794 assert(vec->enabled);
795 assert(vec->pending);
797 assert(s->vectpending_prio < running);
799 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
801 vec->active = 1;
802 vec->pending = 0;
804 write_v7m_exception(env, s->vectpending);
806 nvic_irq_update(s);
809 void armv7m_nvic_get_pending_irq_info(void *opaque,
810 int *pirq, bool *ptargets_secure)
812 NVICState *s = (NVICState *)opaque;
813 const int pending = s->vectpending;
814 bool targets_secure;
816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
818 if (s->vectpending_is_s_banked) {
819 targets_secure = true;
820 } else {
821 targets_secure = !exc_is_banked(pending) &&
822 exc_targets_secure(s, pending);
825 trace_nvic_get_pending_irq_info(pending, targets_secure);
827 *ptargets_secure = targets_secure;
828 *pirq = pending;
831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
833 NVICState *s = (NVICState *)opaque;
834 VecInfo *vec = NULL;
835 int ret = 0;
837 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
839 trace_nvic_complete_irq(irq, secure);
841 if (secure && exc_is_banked(irq)) {
842 vec = &s->sec_vectors[irq];
843 } else {
844 vec = &s->vectors[irq];
848 * Identify illegal exception return cases. We can't immediately
849 * return at this point because we still need to deactivate
850 * (either this exception or NMI/HardFault) first.
852 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
854 * Return from a configurable exception targeting the opposite
855 * security state from the one we're trying to complete it for.
856 * Clear vec because it's not really the VecInfo for this
857 * (irq, secstate) so we mustn't deactivate it.
859 ret = -1;
860 vec = NULL;
861 } else if (!vec->active) {
862 /* Return from an inactive interrupt */
863 ret = -1;
864 } else {
865 /* Legal return, we will return the RETTOBASE bit value to the caller */
866 ret = nvic_rettobase(s);
870 * For negative priorities, v8M will forcibly deactivate the appropriate
871 * NMI or HardFault regardless of what interrupt we're being asked to
872 * deactivate (compare the DeActivate() pseudocode). This is a guard
873 * against software returning from NMI or HardFault with a corrupted
874 * IPSR and leaving the CPU in a negative-priority state.
875 * v7M does not do this, but simply deactivates the requested interrupt.
877 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
878 switch (armv7m_nvic_raw_execution_priority(s)) {
879 case -1:
880 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
881 vec = &s->vectors[ARMV7M_EXCP_HARD];
882 } else {
883 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
885 break;
886 case -2:
887 vec = &s->vectors[ARMV7M_EXCP_NMI];
888 break;
889 case -3:
890 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
891 break;
892 default:
893 break;
897 if (!vec) {
898 return ret;
901 vec->active = 0;
902 if (vec->level) {
903 /* Re-pend the exception if it's still held high; only
904 * happens for extenal IRQs
906 assert(irq >= NVIC_FIRST_IRQ);
907 vec->pending = 1;
910 nvic_irq_update(s);
912 return ret;
915 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
918 * Return whether an exception is "ready", i.e. it is enabled and is
919 * configured at a priority which would allow it to interrupt the
920 * current execution priority.
922 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
923 * for non-banked exceptions secure is always false; for banked exceptions
924 * it indicates which of the exceptions is required.
926 NVICState *s = (NVICState *)opaque;
927 bool banked = exc_is_banked(irq);
928 VecInfo *vec;
929 int running = nvic_exec_prio(s);
931 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
932 assert(!secure || banked);
935 * HardFault is an odd special case: we always check against -1,
936 * even if we're secure and HardFault has priority -3; we never
937 * need to check for enabled state.
939 if (irq == ARMV7M_EXCP_HARD) {
940 return running > -1;
943 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
945 return vec->enabled &&
946 exc_group_prio(s, vec->prio, secure) < running;
949 /* callback when external interrupt line is changed */
950 static void set_irq_level(void *opaque, int n, int level)
952 NVICState *s = opaque;
953 VecInfo *vec;
955 n += NVIC_FIRST_IRQ;
957 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
959 trace_nvic_set_irq_level(n, level);
961 /* The pending status of an external interrupt is
962 * latched on rising edge and exception handler return.
964 * Pulsing the IRQ will always run the handler
965 * once, and the handler will re-run until the
966 * level is low when the handler completes.
968 vec = &s->vectors[n];
969 if (level != vec->level) {
970 vec->level = level;
971 if (level) {
972 armv7m_nvic_set_pending(s, n, false);
977 /* callback when external NMI line is changed */
978 static void nvic_nmi_trigger(void *opaque, int n, int level)
980 NVICState *s = opaque;
982 trace_nvic_set_nmi_level(level);
985 * The architecture doesn't specify whether NMI should share
986 * the normal-interrupt behaviour of being resampled on
987 * exception handler return. We choose not to, so just
988 * set NMI pending here and don't track the current level.
990 if (level) {
991 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
995 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
997 ARMCPU *cpu = s->cpu;
998 uint32_t val;
1000 switch (offset) {
1001 case 4: /* Interrupt Control Type. */
1002 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1003 goto bad_offset;
1005 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1006 case 0xc: /* CPPWR */
1007 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1008 goto bad_offset;
1010 /* We make the IMPDEF choice that nothing can ever go into a
1011 * non-retentive power state, which allows us to RAZ/WI this.
1013 return 0;
1014 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1016 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1017 int i;
1019 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1020 goto bad_offset;
1022 if (!attrs.secure) {
1023 return 0;
1025 val = 0;
1026 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1027 if (s->itns[startvec + i]) {
1028 val |= (1 << i);
1031 return val;
1033 case 0xcfc:
1034 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1035 goto bad_offset;
1037 return cpu->revidr;
1038 case 0xd00: /* CPUID Base. */
1039 return cpu->midr;
1040 case 0xd04: /* Interrupt Control State (ICSR) */
1041 /* VECTACTIVE */
1042 val = cpu->env.v7m.exception;
1043 /* VECTPENDING */
1044 val |= (s->vectpending & 0xff) << 12;
1045 /* ISRPENDING - set if any external IRQ is pending */
1046 if (nvic_isrpending(s)) {
1047 val |= (1 << 22);
1049 /* RETTOBASE - set if only one handler is active */
1050 if (nvic_rettobase(s)) {
1051 val |= (1 << 11);
1053 if (attrs.secure) {
1054 /* PENDSTSET */
1055 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1056 val |= (1 << 26);
1058 /* PENDSVSET */
1059 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1060 val |= (1 << 28);
1062 } else {
1063 /* PENDSTSET */
1064 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1065 val |= (1 << 26);
1067 /* PENDSVSET */
1068 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1069 val |= (1 << 28);
1072 /* NMIPENDSET */
1073 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1074 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1075 val |= (1 << 31);
1077 /* ISRPREEMPT: RES0 when halting debug not implemented */
1078 /* STTNS: RES0 for the Main Extension */
1079 return val;
1080 case 0xd08: /* Vector Table Offset. */
1081 return cpu->env.v7m.vecbase[attrs.secure];
1082 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1083 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1084 if (attrs.secure) {
1085 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1086 val |= cpu->env.v7m.aircr;
1087 } else {
1088 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1089 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1090 * security isn't supported then BFHFNMINS is RAO (and
1091 * the bit in env.v7m.aircr is always set).
1093 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1096 return val;
1097 case 0xd10: /* System Control. */
1098 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1099 goto bad_offset;
1101 return cpu->env.v7m.scr[attrs.secure];
1102 case 0xd14: /* Configuration Control. */
1104 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1105 * and TRD (stored in the S copy of the register)
1107 val = cpu->env.v7m.ccr[attrs.secure];
1108 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1109 return val;
1110 case 0xd24: /* System Handler Control and State (SHCSR) */
1111 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1112 goto bad_offset;
1114 val = 0;
1115 if (attrs.secure) {
1116 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1117 val |= (1 << 0);
1119 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1120 val |= (1 << 2);
1122 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1123 val |= (1 << 3);
1125 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1126 val |= (1 << 7);
1128 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1129 val |= (1 << 10);
1131 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1132 val |= (1 << 11);
1134 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1135 val |= (1 << 12);
1137 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1138 val |= (1 << 13);
1140 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1141 val |= (1 << 15);
1143 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1144 val |= (1 << 16);
1146 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1147 val |= (1 << 18);
1149 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1150 val |= (1 << 21);
1152 /* SecureFault is not banked but is always RAZ/WI to NS */
1153 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1154 val |= (1 << 4);
1156 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1157 val |= (1 << 19);
1159 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1160 val |= (1 << 20);
1162 } else {
1163 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1164 val |= (1 << 0);
1166 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1167 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1168 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1169 val |= (1 << 2);
1171 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1172 val |= (1 << 21);
1175 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1176 val |= (1 << 3);
1178 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1179 val |= (1 << 7);
1181 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1182 val |= (1 << 10);
1184 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1185 val |= (1 << 11);
1187 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1188 val |= (1 << 12);
1190 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1191 val |= (1 << 13);
1193 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1194 val |= (1 << 15);
1196 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1197 val |= (1 << 16);
1199 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1200 val |= (1 << 18);
1203 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1204 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1205 val |= (1 << 1);
1207 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1208 val |= (1 << 14);
1210 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1211 val |= (1 << 17);
1213 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1214 s->vectors[ARMV7M_EXCP_NMI].active) {
1215 /* NMIACT is not present in v7M */
1216 val |= (1 << 5);
1220 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1221 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1222 val |= (1 << 8);
1224 return val;
1225 case 0xd2c: /* Hard Fault Status. */
1226 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1227 goto bad_offset;
1229 return cpu->env.v7m.hfsr;
1230 case 0xd30: /* Debug Fault Status. */
1231 return cpu->env.v7m.dfsr;
1232 case 0xd34: /* MMFAR MemManage Fault Address */
1233 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1234 goto bad_offset;
1236 return cpu->env.v7m.mmfar[attrs.secure];
1237 case 0xd38: /* Bus Fault Address. */
1238 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1239 goto bad_offset;
1241 if (!attrs.secure &&
1242 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1243 return 0;
1245 return cpu->env.v7m.bfar;
1246 case 0xd3c: /* Aux Fault Status. */
1247 /* TODO: Implement fault status registers. */
1248 qemu_log_mask(LOG_UNIMP,
1249 "Aux Fault status registers unimplemented\n");
1250 return 0;
1251 case 0xd40: /* PFR0. */
1252 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1253 goto bad_offset;
1255 return cpu->isar.id_pfr0;
1256 case 0xd44: /* PFR1. */
1257 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1258 goto bad_offset;
1260 return cpu->isar.id_pfr1;
1261 case 0xd48: /* DFR0. */
1262 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1263 goto bad_offset;
1265 return cpu->isar.id_dfr0;
1266 case 0xd4c: /* AFR0. */
1267 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1268 goto bad_offset;
1270 return cpu->id_afr0;
1271 case 0xd50: /* MMFR0. */
1272 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1273 goto bad_offset;
1275 return cpu->isar.id_mmfr0;
1276 case 0xd54: /* MMFR1. */
1277 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1278 goto bad_offset;
1280 return cpu->isar.id_mmfr1;
1281 case 0xd58: /* MMFR2. */
1282 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1283 goto bad_offset;
1285 return cpu->isar.id_mmfr2;
1286 case 0xd5c: /* MMFR3. */
1287 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1288 goto bad_offset;
1290 return cpu->isar.id_mmfr3;
1291 case 0xd60: /* ISAR0. */
1292 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1293 goto bad_offset;
1295 return cpu->isar.id_isar0;
1296 case 0xd64: /* ISAR1. */
1297 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1298 goto bad_offset;
1300 return cpu->isar.id_isar1;
1301 case 0xd68: /* ISAR2. */
1302 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1303 goto bad_offset;
1305 return cpu->isar.id_isar2;
1306 case 0xd6c: /* ISAR3. */
1307 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1308 goto bad_offset;
1310 return cpu->isar.id_isar3;
1311 case 0xd70: /* ISAR4. */
1312 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1313 goto bad_offset;
1315 return cpu->isar.id_isar4;
1316 case 0xd74: /* ISAR5. */
1317 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1318 goto bad_offset;
1320 return cpu->isar.id_isar5;
1321 case 0xd78: /* CLIDR */
1322 return cpu->clidr;
1323 case 0xd7c: /* CTR */
1324 return cpu->ctr;
1325 case 0xd80: /* CSSIDR */
1327 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1328 return cpu->ccsidr[idx];
1330 case 0xd84: /* CSSELR */
1331 return cpu->env.v7m.csselr[attrs.secure];
1332 case 0xd88: /* CPACR */
1333 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1334 return 0;
1336 return cpu->env.v7m.cpacr[attrs.secure];
1337 case 0xd8c: /* NSACR */
1338 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1339 return 0;
1341 return cpu->env.v7m.nsacr;
1342 /* TODO: Implement debug registers. */
1343 case 0xd90: /* MPU_TYPE */
1344 /* Unified MPU; if the MPU is not present this value is zero */
1345 return cpu->pmsav7_dregion << 8;
1346 case 0xd94: /* MPU_CTRL */
1347 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1348 case 0xd98: /* MPU_RNR */
1349 return cpu->env.pmsav7.rnr[attrs.secure];
1350 case 0xd9c: /* MPU_RBAR */
1351 case 0xda4: /* MPU_RBAR_A1 */
1352 case 0xdac: /* MPU_RBAR_A2 */
1353 case 0xdb4: /* MPU_RBAR_A3 */
1355 int region = cpu->env.pmsav7.rnr[attrs.secure];
1357 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1358 /* PMSAv8M handling of the aliases is different from v7M:
1359 * aliases A1, A2, A3 override the low two bits of the region
1360 * number in MPU_RNR, and there is no 'region' field in the
1361 * RBAR register.
1363 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1364 if (aliasno) {
1365 region = deposit32(region, 0, 2, aliasno);
1367 if (region >= cpu->pmsav7_dregion) {
1368 return 0;
1370 return cpu->env.pmsav8.rbar[attrs.secure][region];
1373 if (region >= cpu->pmsav7_dregion) {
1374 return 0;
1376 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1378 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1379 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1380 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1381 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1383 int region = cpu->env.pmsav7.rnr[attrs.secure];
1385 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1386 /* PMSAv8M handling of the aliases is different from v7M:
1387 * aliases A1, A2, A3 override the low two bits of the region
1388 * number in MPU_RNR.
1390 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1391 if (aliasno) {
1392 region = deposit32(region, 0, 2, aliasno);
1394 if (region >= cpu->pmsav7_dregion) {
1395 return 0;
1397 return cpu->env.pmsav8.rlar[attrs.secure][region];
1400 if (region >= cpu->pmsav7_dregion) {
1401 return 0;
1403 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1404 (cpu->env.pmsav7.drsr[region] & 0xffff);
1406 case 0xdc0: /* MPU_MAIR0 */
1407 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1408 goto bad_offset;
1410 return cpu->env.pmsav8.mair0[attrs.secure];
1411 case 0xdc4: /* MPU_MAIR1 */
1412 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1413 goto bad_offset;
1415 return cpu->env.pmsav8.mair1[attrs.secure];
1416 case 0xdd0: /* SAU_CTRL */
1417 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1418 goto bad_offset;
1420 if (!attrs.secure) {
1421 return 0;
1423 return cpu->env.sau.ctrl;
1424 case 0xdd4: /* SAU_TYPE */
1425 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1426 goto bad_offset;
1428 if (!attrs.secure) {
1429 return 0;
1431 return cpu->sau_sregion;
1432 case 0xdd8: /* SAU_RNR */
1433 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1434 goto bad_offset;
1436 if (!attrs.secure) {
1437 return 0;
1439 return cpu->env.sau.rnr;
1440 case 0xddc: /* SAU_RBAR */
1442 int region = cpu->env.sau.rnr;
1444 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1445 goto bad_offset;
1447 if (!attrs.secure) {
1448 return 0;
1450 if (region >= cpu->sau_sregion) {
1451 return 0;
1453 return cpu->env.sau.rbar[region];
1455 case 0xde0: /* SAU_RLAR */
1457 int region = cpu->env.sau.rnr;
1459 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1460 goto bad_offset;
1462 if (!attrs.secure) {
1463 return 0;
1465 if (region >= cpu->sau_sregion) {
1466 return 0;
1468 return cpu->env.sau.rlar[region];
1470 case 0xde4: /* SFSR */
1471 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1472 goto bad_offset;
1474 if (!attrs.secure) {
1475 return 0;
1477 return cpu->env.v7m.sfsr;
1478 case 0xde8: /* SFAR */
1479 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1480 goto bad_offset;
1482 if (!attrs.secure) {
1483 return 0;
1485 return cpu->env.v7m.sfar;
1486 case 0xf34: /* FPCCR */
1487 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1488 return 0;
1490 if (attrs.secure) {
1491 return cpu->env.v7m.fpccr[M_REG_S];
1492 } else {
1494 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1495 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1496 * other non-banked bits RAZ.
1497 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1499 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1500 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1501 R_V7M_FPCCR_CLRONRET_MASK |
1502 R_V7M_FPCCR_MONRDY_MASK;
1504 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1505 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1508 value &= mask;
1510 value |= cpu->env.v7m.fpccr[M_REG_NS];
1511 return value;
1513 case 0xf38: /* FPCAR */
1514 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1515 return 0;
1517 return cpu->env.v7m.fpcar[attrs.secure];
1518 case 0xf3c: /* FPDSCR */
1519 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1520 return 0;
1522 return cpu->env.v7m.fpdscr[attrs.secure];
1523 case 0xf40: /* MVFR0 */
1524 return cpu->isar.mvfr0;
1525 case 0xf44: /* MVFR1 */
1526 return cpu->isar.mvfr1;
1527 case 0xf48: /* MVFR2 */
1528 return cpu->isar.mvfr2;
1529 default:
1530 bad_offset:
1531 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1532 return 0;
1536 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1537 MemTxAttrs attrs)
1539 ARMCPU *cpu = s->cpu;
1541 switch (offset) {
1542 case 0xc: /* CPPWR */
1543 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1544 goto bad_offset;
1546 /* Make the IMPDEF choice to RAZ/WI this. */
1547 break;
1548 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1550 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1551 int i;
1553 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1554 goto bad_offset;
1556 if (!attrs.secure) {
1557 break;
1559 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1560 s->itns[startvec + i] = (value >> i) & 1;
1562 nvic_irq_update(s);
1563 break;
1565 case 0xd04: /* Interrupt Control State (ICSR) */
1566 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1567 if (value & (1 << 31)) {
1568 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1569 } else if (value & (1 << 30) &&
1570 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1571 /* PENDNMICLR didn't exist in v7M */
1572 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1575 if (value & (1 << 28)) {
1576 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1577 } else if (value & (1 << 27)) {
1578 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1580 if (value & (1 << 26)) {
1581 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1582 } else if (value & (1 << 25)) {
1583 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1585 break;
1586 case 0xd08: /* Vector Table Offset. */
1587 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1588 break;
1589 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1590 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1591 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1592 if (attrs.secure ||
1593 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1594 signal_sysresetreq(s);
1597 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1598 qemu_log_mask(LOG_GUEST_ERROR,
1599 "Setting VECTCLRACTIVE when not in DEBUG mode "
1600 "is UNPREDICTABLE\n");
1602 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1603 /* NB: this bit is RES0 in v8M */
1604 qemu_log_mask(LOG_GUEST_ERROR,
1605 "Setting VECTRESET when not in DEBUG mode "
1606 "is UNPREDICTABLE\n");
1608 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1609 s->prigroup[attrs.secure] =
1610 extract32(value,
1611 R_V7M_AIRCR_PRIGROUP_SHIFT,
1612 R_V7M_AIRCR_PRIGROUP_LENGTH);
1614 if (attrs.secure) {
1615 /* These bits are only writable by secure */
1616 cpu->env.v7m.aircr = value &
1617 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1618 R_V7M_AIRCR_BFHFNMINS_MASK |
1619 R_V7M_AIRCR_PRIS_MASK);
1620 /* BFHFNMINS changes the priority of Secure HardFault, and
1621 * allows a pending Non-secure HardFault to preempt (which
1622 * we implement by marking it enabled).
1624 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1625 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1626 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1627 } else {
1628 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1629 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1632 nvic_irq_update(s);
1634 break;
1635 case 0xd10: /* System Control. */
1636 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1637 goto bad_offset;
1639 /* We don't implement deep-sleep so these bits are RAZ/WI.
1640 * The other bits in the register are banked.
1641 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1642 * is architecturally permitted.
1644 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1645 cpu->env.v7m.scr[attrs.secure] = value;
1646 break;
1647 case 0xd14: /* Configuration Control. */
1649 uint32_t mask;
1651 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1652 goto bad_offset;
1655 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1656 mask = R_V7M_CCR_STKALIGN_MASK |
1657 R_V7M_CCR_BFHFNMIGN_MASK |
1658 R_V7M_CCR_DIV_0_TRP_MASK |
1659 R_V7M_CCR_UNALIGN_TRP_MASK |
1660 R_V7M_CCR_USERSETMPEND_MASK |
1661 R_V7M_CCR_NONBASETHRDENA_MASK;
1662 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1663 /* TRD is always RAZ/WI from NS */
1664 mask |= R_V7M_CCR_TRD_MASK;
1666 value &= mask;
1668 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1669 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1670 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1671 | R_V7M_CCR_STKALIGN_MASK;
1673 if (attrs.secure) {
1674 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1675 cpu->env.v7m.ccr[M_REG_NS] =
1676 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1677 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1678 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1681 cpu->env.v7m.ccr[attrs.secure] = value;
1682 break;
1684 case 0xd24: /* System Handler Control and State (SHCSR) */
1685 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1686 goto bad_offset;
1688 if (attrs.secure) {
1689 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1690 /* Secure HardFault active bit cannot be written */
1691 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1692 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1693 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1694 (value & (1 << 10)) != 0;
1695 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1696 (value & (1 << 11)) != 0;
1697 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1698 (value & (1 << 12)) != 0;
1699 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1700 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1701 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1702 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1703 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1704 (value & (1 << 18)) != 0;
1705 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1706 /* SecureFault not banked, but RAZ/WI to NS */
1707 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1708 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1709 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1710 } else {
1711 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1712 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1713 /* HARDFAULTPENDED is not present in v7M */
1714 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1716 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1717 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1718 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1719 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1720 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1721 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1722 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1723 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1724 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1726 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1727 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1728 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1729 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1731 /* NMIACT can only be written if the write is of a zero, with
1732 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1734 if (!attrs.secure && cpu->env.v7m.secure &&
1735 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1736 (value & (1 << 5)) == 0) {
1737 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1739 /* HARDFAULTACT can only be written if the write is of a zero
1740 * to the non-secure HardFault state by the CPU in secure state.
1741 * The only case where we can be targeting the non-secure HF state
1742 * when in secure state is if this is a write via the NS alias
1743 * and BFHFNMINS is 1.
1745 if (!attrs.secure && cpu->env.v7m.secure &&
1746 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1747 (value & (1 << 2)) == 0) {
1748 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1751 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1752 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1753 nvic_irq_update(s);
1754 break;
1755 case 0xd2c: /* Hard Fault Status. */
1756 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1757 goto bad_offset;
1759 cpu->env.v7m.hfsr &= ~value; /* W1C */
1760 break;
1761 case 0xd30: /* Debug Fault Status. */
1762 cpu->env.v7m.dfsr &= ~value; /* W1C */
1763 break;
1764 case 0xd34: /* Mem Manage Address. */
1765 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1766 goto bad_offset;
1768 cpu->env.v7m.mmfar[attrs.secure] = value;
1769 return;
1770 case 0xd38: /* Bus Fault Address. */
1771 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1772 goto bad_offset;
1774 if (!attrs.secure &&
1775 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1776 return;
1778 cpu->env.v7m.bfar = value;
1779 return;
1780 case 0xd3c: /* Aux Fault Status. */
1781 qemu_log_mask(LOG_UNIMP,
1782 "NVIC: Aux fault status registers unimplemented\n");
1783 break;
1784 case 0xd84: /* CSSELR */
1785 if (!arm_v7m_csselr_razwi(cpu)) {
1786 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1788 break;
1789 case 0xd88: /* CPACR */
1790 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1791 /* We implement only the Floating Point extension's CP10/CP11 */
1792 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1794 break;
1795 case 0xd8c: /* NSACR */
1796 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1797 /* We implement only the Floating Point extension's CP10/CP11 */
1798 cpu->env.v7m.nsacr = value & (3 << 10);
1800 break;
1801 case 0xd90: /* MPU_TYPE */
1802 return; /* RO */
1803 case 0xd94: /* MPU_CTRL */
1804 if ((value &
1805 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1806 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1807 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1808 "UNPREDICTABLE\n");
1810 cpu->env.v7m.mpu_ctrl[attrs.secure]
1811 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1812 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1813 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1814 tlb_flush(CPU(cpu));
1815 break;
1816 case 0xd98: /* MPU_RNR */
1817 if (value >= cpu->pmsav7_dregion) {
1818 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1819 PRIu32 "/%" PRIu32 "\n",
1820 value, cpu->pmsav7_dregion);
1821 } else {
1822 cpu->env.pmsav7.rnr[attrs.secure] = value;
1824 break;
1825 case 0xd9c: /* MPU_RBAR */
1826 case 0xda4: /* MPU_RBAR_A1 */
1827 case 0xdac: /* MPU_RBAR_A2 */
1828 case 0xdb4: /* MPU_RBAR_A3 */
1830 int region;
1832 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1833 /* PMSAv8M handling of the aliases is different from v7M:
1834 * aliases A1, A2, A3 override the low two bits of the region
1835 * number in MPU_RNR, and there is no 'region' field in the
1836 * RBAR register.
1838 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1840 region = cpu->env.pmsav7.rnr[attrs.secure];
1841 if (aliasno) {
1842 region = deposit32(region, 0, 2, aliasno);
1844 if (region >= cpu->pmsav7_dregion) {
1845 return;
1847 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1848 tlb_flush(CPU(cpu));
1849 return;
1852 if (value & (1 << 4)) {
1853 /* VALID bit means use the region number specified in this
1854 * value and also update MPU_RNR.REGION with that value.
1856 region = extract32(value, 0, 4);
1857 if (region >= cpu->pmsav7_dregion) {
1858 qemu_log_mask(LOG_GUEST_ERROR,
1859 "MPU region out of range %u/%" PRIu32 "\n",
1860 region, cpu->pmsav7_dregion);
1861 return;
1863 cpu->env.pmsav7.rnr[attrs.secure] = region;
1864 } else {
1865 region = cpu->env.pmsav7.rnr[attrs.secure];
1868 if (region >= cpu->pmsav7_dregion) {
1869 return;
1872 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1873 tlb_flush(CPU(cpu));
1874 break;
1876 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1877 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1878 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1879 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1881 int region = cpu->env.pmsav7.rnr[attrs.secure];
1883 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1884 /* PMSAv8M handling of the aliases is different from v7M:
1885 * aliases A1, A2, A3 override the low two bits of the region
1886 * number in MPU_RNR.
1888 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1890 region = cpu->env.pmsav7.rnr[attrs.secure];
1891 if (aliasno) {
1892 region = deposit32(region, 0, 2, aliasno);
1894 if (region >= cpu->pmsav7_dregion) {
1895 return;
1897 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1898 tlb_flush(CPU(cpu));
1899 return;
1902 if (region >= cpu->pmsav7_dregion) {
1903 return;
1906 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1907 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1908 tlb_flush(CPU(cpu));
1909 break;
1911 case 0xdc0: /* MPU_MAIR0 */
1912 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1913 goto bad_offset;
1915 if (cpu->pmsav7_dregion) {
1916 /* Register is RES0 if no MPU regions are implemented */
1917 cpu->env.pmsav8.mair0[attrs.secure] = value;
1919 /* We don't need to do anything else because memory attributes
1920 * only affect cacheability, and we don't implement caching.
1922 break;
1923 case 0xdc4: /* MPU_MAIR1 */
1924 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1925 goto bad_offset;
1927 if (cpu->pmsav7_dregion) {
1928 /* Register is RES0 if no MPU regions are implemented */
1929 cpu->env.pmsav8.mair1[attrs.secure] = value;
1931 /* We don't need to do anything else because memory attributes
1932 * only affect cacheability, and we don't implement caching.
1934 break;
1935 case 0xdd0: /* SAU_CTRL */
1936 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1937 goto bad_offset;
1939 if (!attrs.secure) {
1940 return;
1942 cpu->env.sau.ctrl = value & 3;
1943 break;
1944 case 0xdd4: /* SAU_TYPE */
1945 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1946 goto bad_offset;
1948 break;
1949 case 0xdd8: /* SAU_RNR */
1950 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1951 goto bad_offset;
1953 if (!attrs.secure) {
1954 return;
1956 if (value >= cpu->sau_sregion) {
1957 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1958 PRIu32 "/%" PRIu32 "\n",
1959 value, cpu->sau_sregion);
1960 } else {
1961 cpu->env.sau.rnr = value;
1963 break;
1964 case 0xddc: /* SAU_RBAR */
1966 int region = cpu->env.sau.rnr;
1968 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1969 goto bad_offset;
1971 if (!attrs.secure) {
1972 return;
1974 if (region >= cpu->sau_sregion) {
1975 return;
1977 cpu->env.sau.rbar[region] = value & ~0x1f;
1978 tlb_flush(CPU(cpu));
1979 break;
1981 case 0xde0: /* SAU_RLAR */
1983 int region = cpu->env.sau.rnr;
1985 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1986 goto bad_offset;
1988 if (!attrs.secure) {
1989 return;
1991 if (region >= cpu->sau_sregion) {
1992 return;
1994 cpu->env.sau.rlar[region] = value & ~0x1c;
1995 tlb_flush(CPU(cpu));
1996 break;
1998 case 0xde4: /* SFSR */
1999 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2000 goto bad_offset;
2002 if (!attrs.secure) {
2003 return;
2005 cpu->env.v7m.sfsr &= ~value; /* W1C */
2006 break;
2007 case 0xde8: /* SFAR */
2008 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2009 goto bad_offset;
2011 if (!attrs.secure) {
2012 return;
2014 cpu->env.v7m.sfsr = value;
2015 break;
2016 case 0xf00: /* Software Triggered Interrupt Register */
2018 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2020 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2021 goto bad_offset;
2024 if (excnum < s->num_irq) {
2025 armv7m_nvic_set_pending(s, excnum, false);
2027 break;
2029 case 0xf34: /* FPCCR */
2030 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2031 /* Not all bits here are banked. */
2032 uint32_t fpccr_s;
2034 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2035 /* Don't allow setting of bits not present in v7M */
2036 value &= (R_V7M_FPCCR_LSPACT_MASK |
2037 R_V7M_FPCCR_USER_MASK |
2038 R_V7M_FPCCR_THREAD_MASK |
2039 R_V7M_FPCCR_HFRDY_MASK |
2040 R_V7M_FPCCR_MMRDY_MASK |
2041 R_V7M_FPCCR_BFRDY_MASK |
2042 R_V7M_FPCCR_MONRDY_MASK |
2043 R_V7M_FPCCR_LSPEN_MASK |
2044 R_V7M_FPCCR_ASPEN_MASK);
2046 value &= ~R_V7M_FPCCR_RES0_MASK;
2048 if (!attrs.secure) {
2049 /* Some non-banked bits are configurably writable by NS */
2050 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2051 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2052 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2053 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2055 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2056 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2057 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2059 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2060 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2061 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2062 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2063 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2065 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2067 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2068 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2072 * All other non-banked bits are RAZ/WI from NS; write
2073 * just the banked bits to fpccr[M_REG_NS].
2075 value &= R_V7M_FPCCR_BANKED_MASK;
2076 cpu->env.v7m.fpccr[M_REG_NS] = value;
2077 } else {
2078 fpccr_s = value;
2080 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2082 break;
2083 case 0xf38: /* FPCAR */
2084 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2085 value &= ~7;
2086 cpu->env.v7m.fpcar[attrs.secure] = value;
2088 break;
2089 case 0xf3c: /* FPDSCR */
2090 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2091 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2092 if (cpu_isar_feature(any_fp16, cpu)) {
2093 mask |= FPCR_FZ16;
2095 value &= mask;
2096 if (cpu_isar_feature(aa32_lob, cpu)) {
2097 value |= 4 << FPCR_LTPSIZE_SHIFT;
2099 cpu->env.v7m.fpdscr[attrs.secure] = value;
2101 break;
2102 case 0xf50: /* ICIALLU */
2103 case 0xf58: /* ICIMVAU */
2104 case 0xf5c: /* DCIMVAC */
2105 case 0xf60: /* DCISW */
2106 case 0xf64: /* DCCMVAU */
2107 case 0xf68: /* DCCMVAC */
2108 case 0xf6c: /* DCCSW */
2109 case 0xf70: /* DCCIMVAC */
2110 case 0xf74: /* DCCISW */
2111 case 0xf78: /* BPIALL */
2112 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2113 break;
2114 default:
2115 bad_offset:
2116 qemu_log_mask(LOG_GUEST_ERROR,
2117 "NVIC: Bad write offset 0x%x\n", offset);
2121 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2123 /* Return true if unprivileged access to this register is permitted. */
2124 switch (offset) {
2125 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2126 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2127 * controls access even though the CPU is in Secure state (I_QDKX).
2129 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2130 default:
2131 /* All other user accesses cause a BusFault unconditionally */
2132 return false;
2136 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2138 /* Behaviour for the SHPR register field for this exception:
2139 * return M_REG_NS to use the nonsecure vector (including for
2140 * non-banked exceptions), M_REG_S for the secure version of
2141 * a banked exception, and -1 if this field should RAZ/WI.
2143 switch (exc) {
2144 case ARMV7M_EXCP_MEM:
2145 case ARMV7M_EXCP_USAGE:
2146 case ARMV7M_EXCP_SVC:
2147 case ARMV7M_EXCP_PENDSV:
2148 case ARMV7M_EXCP_SYSTICK:
2149 /* Banked exceptions */
2150 return attrs.secure;
2151 case ARMV7M_EXCP_BUS:
2152 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2153 if (!attrs.secure &&
2154 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2155 return -1;
2157 return M_REG_NS;
2158 case ARMV7M_EXCP_SECURE:
2159 /* Not banked, RAZ/WI from nonsecure */
2160 if (!attrs.secure) {
2161 return -1;
2163 return M_REG_NS;
2164 case ARMV7M_EXCP_DEBUG:
2165 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2166 return M_REG_NS;
2167 case 8 ... 10:
2168 case 13:
2169 /* RES0 */
2170 return -1;
2171 default:
2172 /* Not reachable due to decode of SHPR register addresses */
2173 g_assert_not_reached();
2177 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2178 uint64_t *data, unsigned size,
2179 MemTxAttrs attrs)
2181 NVICState *s = (NVICState *)opaque;
2182 uint32_t offset = addr;
2183 unsigned i, startvec, end;
2184 uint32_t val;
2186 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2187 /* Generate BusFault for unprivileged accesses */
2188 return MEMTX_ERROR;
2191 switch (offset) {
2192 /* reads of set and clear both return the status */
2193 case 0x100 ... 0x13f: /* NVIC Set enable */
2194 offset += 0x80;
2195 /* fall through */
2196 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2197 val = 0;
2198 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2200 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2201 if (s->vectors[startvec + i].enabled &&
2202 (attrs.secure || s->itns[startvec + i])) {
2203 val |= (1 << i);
2206 break;
2207 case 0x200 ... 0x23f: /* NVIC Set pend */
2208 offset += 0x80;
2209 /* fall through */
2210 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2211 val = 0;
2212 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2213 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2214 if (s->vectors[startvec + i].pending &&
2215 (attrs.secure || s->itns[startvec + i])) {
2216 val |= (1 << i);
2219 break;
2220 case 0x300 ... 0x33f: /* NVIC Active */
2221 val = 0;
2223 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2224 break;
2227 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2229 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2230 if (s->vectors[startvec + i].active &&
2231 (attrs.secure || s->itns[startvec + i])) {
2232 val |= (1 << i);
2235 break;
2236 case 0x400 ... 0x5ef: /* NVIC Priority */
2237 val = 0;
2238 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2240 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2241 if (attrs.secure || s->itns[startvec + i]) {
2242 val |= s->vectors[startvec + i].prio << (8 * i);
2245 break;
2246 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2247 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2248 val = 0;
2249 break;
2251 /* fall through */
2252 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2253 val = 0;
2254 for (i = 0; i < size; i++) {
2255 unsigned hdlidx = (offset - 0xd14) + i;
2256 int sbank = shpr_bank(s, hdlidx, attrs);
2258 if (sbank < 0) {
2259 continue;
2261 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2263 break;
2264 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2265 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2266 val = 0;
2267 break;
2270 * The BFSR bits [15:8] are shared between security states
2271 * and we store them in the NS copy. They are RAZ/WI for
2272 * NS code if AIRCR.BFHFNMINS is 0.
2274 val = s->cpu->env.v7m.cfsr[attrs.secure];
2275 if (!attrs.secure &&
2276 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2277 val &= ~R_V7M_CFSR_BFSR_MASK;
2278 } else {
2279 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2281 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2282 break;
2283 case 0xfe0 ... 0xfff: /* ID. */
2284 if (offset & 3) {
2285 val = 0;
2286 } else {
2287 val = nvic_id[(offset - 0xfe0) >> 2];
2289 break;
2290 default:
2291 if (size == 4) {
2292 val = nvic_readl(s, offset, attrs);
2293 } else {
2294 qemu_log_mask(LOG_GUEST_ERROR,
2295 "NVIC: Bad read of size %d at offset 0x%x\n",
2296 size, offset);
2297 val = 0;
2301 trace_nvic_sysreg_read(addr, val, size);
2302 *data = val;
2303 return MEMTX_OK;
2306 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2307 uint64_t value, unsigned size,
2308 MemTxAttrs attrs)
2310 NVICState *s = (NVICState *)opaque;
2311 uint32_t offset = addr;
2312 unsigned i, startvec, end;
2313 unsigned setval = 0;
2315 trace_nvic_sysreg_write(addr, value, size);
2317 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2318 /* Generate BusFault for unprivileged accesses */
2319 return MEMTX_ERROR;
2322 switch (offset) {
2323 case 0x100 ... 0x13f: /* NVIC Set enable */
2324 offset += 0x80;
2325 setval = 1;
2326 /* fall through */
2327 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2328 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2330 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2331 if (value & (1 << i) &&
2332 (attrs.secure || s->itns[startvec + i])) {
2333 s->vectors[startvec + i].enabled = setval;
2336 nvic_irq_update(s);
2337 goto exit_ok;
2338 case 0x200 ... 0x23f: /* NVIC Set pend */
2339 /* the special logic in armv7m_nvic_set_pending()
2340 * is not needed since IRQs are never escalated
2342 offset += 0x80;
2343 setval = 1;
2344 /* fall through */
2345 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2346 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2348 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2349 if (value & (1 << i) &&
2350 (attrs.secure || s->itns[startvec + i])) {
2351 s->vectors[startvec + i].pending = setval;
2354 nvic_irq_update(s);
2355 goto exit_ok;
2356 case 0x300 ... 0x33f: /* NVIC Active */
2357 goto exit_ok; /* R/O */
2358 case 0x400 ... 0x5ef: /* NVIC Priority */
2359 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2361 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2362 if (attrs.secure || s->itns[startvec + i]) {
2363 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2366 nvic_irq_update(s);
2367 goto exit_ok;
2368 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2369 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2370 goto exit_ok;
2372 /* fall through */
2373 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2374 for (i = 0; i < size; i++) {
2375 unsigned hdlidx = (offset - 0xd14) + i;
2376 int newprio = extract32(value, i * 8, 8);
2377 int sbank = shpr_bank(s, hdlidx, attrs);
2379 if (sbank < 0) {
2380 continue;
2382 set_prio(s, hdlidx, sbank, newprio);
2384 nvic_irq_update(s);
2385 goto exit_ok;
2386 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2387 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2388 goto exit_ok;
2390 /* All bits are W1C, so construct 32 bit value with 0s in
2391 * the parts not written by the access size
2393 value <<= ((offset - 0xd28) * 8);
2395 if (!attrs.secure &&
2396 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2397 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2398 value &= ~R_V7M_CFSR_BFSR_MASK;
2401 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2402 if (attrs.secure) {
2403 /* The BFSR bits [15:8] are shared between security states
2404 * and we store them in the NS copy.
2406 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2408 goto exit_ok;
2410 if (size == 4) {
2411 nvic_writel(s, offset, value, attrs);
2412 goto exit_ok;
2414 qemu_log_mask(LOG_GUEST_ERROR,
2415 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2416 /* This is UNPREDICTABLE; treat as RAZ/WI */
2418 exit_ok:
2419 /* Ensure any changes made are reflected in the cached hflags. */
2420 arm_rebuild_hflags(&s->cpu->env);
2421 return MEMTX_OK;
2424 static const MemoryRegionOps nvic_sysreg_ops = {
2425 .read_with_attrs = nvic_sysreg_read,
2426 .write_with_attrs = nvic_sysreg_write,
2427 .endianness = DEVICE_NATIVE_ENDIAN,
2430 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2431 uint64_t value, unsigned size,
2432 MemTxAttrs attrs)
2434 MemoryRegion *mr = opaque;
2436 if (attrs.secure) {
2437 /* S accesses to the alias act like NS accesses to the real region */
2438 attrs.secure = 0;
2439 return memory_region_dispatch_write(mr, addr, value,
2440 size_memop(size) | MO_TE, attrs);
2441 } else {
2442 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2443 if (attrs.user) {
2444 return MEMTX_ERROR;
2446 return MEMTX_OK;
2450 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2451 uint64_t *data, unsigned size,
2452 MemTxAttrs attrs)
2454 MemoryRegion *mr = opaque;
2456 if (attrs.secure) {
2457 /* S accesses to the alias act like NS accesses to the real region */
2458 attrs.secure = 0;
2459 return memory_region_dispatch_read(mr, addr, data,
2460 size_memop(size) | MO_TE, attrs);
2461 } else {
2462 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2463 if (attrs.user) {
2464 return MEMTX_ERROR;
2466 *data = 0;
2467 return MEMTX_OK;
2471 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2472 .read_with_attrs = nvic_sysreg_ns_read,
2473 .write_with_attrs = nvic_sysreg_ns_write,
2474 .endianness = DEVICE_NATIVE_ENDIAN,
2477 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2478 uint64_t value, unsigned size,
2479 MemTxAttrs attrs)
2481 NVICState *s = opaque;
2482 MemoryRegion *mr;
2484 /* Direct the access to the correct systick */
2485 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2486 return memory_region_dispatch_write(mr, addr, value,
2487 size_memop(size) | MO_TE, attrs);
2490 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2491 uint64_t *data, unsigned size,
2492 MemTxAttrs attrs)
2494 NVICState *s = opaque;
2495 MemoryRegion *mr;
2497 /* Direct the access to the correct systick */
2498 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2499 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
2500 attrs);
2503 static const MemoryRegionOps nvic_systick_ops = {
2504 .read_with_attrs = nvic_systick_read,
2505 .write_with_attrs = nvic_systick_write,
2506 .endianness = DEVICE_NATIVE_ENDIAN,
2510 * Unassigned portions of the PPB space are RAZ/WI for privileged
2511 * accesses, and fault for non-privileged accesses.
2513 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
2514 uint64_t *data, unsigned size,
2515 MemTxAttrs attrs)
2517 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
2518 (uint32_t)addr);
2519 if (attrs.user) {
2520 return MEMTX_ERROR;
2522 *data = 0;
2523 return MEMTX_OK;
2526 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
2527 uint64_t value, unsigned size,
2528 MemTxAttrs attrs)
2530 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
2531 (uint32_t)addr);
2532 if (attrs.user) {
2533 return MEMTX_ERROR;
2535 return MEMTX_OK;
2538 static const MemoryRegionOps ppb_default_ops = {
2539 .read_with_attrs = ppb_default_read,
2540 .write_with_attrs = ppb_default_write,
2541 .endianness = DEVICE_NATIVE_ENDIAN,
2542 .valid.min_access_size = 1,
2543 .valid.max_access_size = 8,
2546 static int nvic_post_load(void *opaque, int version_id)
2548 NVICState *s = opaque;
2549 unsigned i;
2550 int resetprio;
2552 /* Check for out of range priority settings */
2553 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2555 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2556 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2557 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2558 return 1;
2560 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2561 if (s->vectors[i].prio & ~0xff) {
2562 return 1;
2566 nvic_recompute_state(s);
2568 return 0;
2571 static const VMStateDescription vmstate_VecInfo = {
2572 .name = "armv7m_nvic_info",
2573 .version_id = 1,
2574 .minimum_version_id = 1,
2575 .fields = (VMStateField[]) {
2576 VMSTATE_INT16(prio, VecInfo),
2577 VMSTATE_UINT8(enabled, VecInfo),
2578 VMSTATE_UINT8(pending, VecInfo),
2579 VMSTATE_UINT8(active, VecInfo),
2580 VMSTATE_UINT8(level, VecInfo),
2581 VMSTATE_END_OF_LIST()
2585 static bool nvic_security_needed(void *opaque)
2587 NVICState *s = opaque;
2589 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2592 static int nvic_security_post_load(void *opaque, int version_id)
2594 NVICState *s = opaque;
2595 int i;
2597 /* Check for out of range priority settings */
2598 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2599 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2600 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2601 * if the CPU state has been migrated yet; a mismatch won't
2602 * cause the emulation to blow up, though.
2604 return 1;
2606 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2607 if (s->sec_vectors[i].prio & ~0xff) {
2608 return 1;
2611 return 0;
2614 static const VMStateDescription vmstate_nvic_security = {
2615 .name = "armv7m_nvic/m-security",
2616 .version_id = 1,
2617 .minimum_version_id = 1,
2618 .needed = nvic_security_needed,
2619 .post_load = &nvic_security_post_load,
2620 .fields = (VMStateField[]) {
2621 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2622 vmstate_VecInfo, VecInfo),
2623 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2624 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2625 VMSTATE_END_OF_LIST()
2629 static const VMStateDescription vmstate_nvic = {
2630 .name = "armv7m_nvic",
2631 .version_id = 4,
2632 .minimum_version_id = 4,
2633 .post_load = &nvic_post_load,
2634 .fields = (VMStateField[]) {
2635 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2636 vmstate_VecInfo, VecInfo),
2637 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2638 VMSTATE_END_OF_LIST()
2640 .subsections = (const VMStateDescription*[]) {
2641 &vmstate_nvic_security,
2642 NULL
2646 static Property props_nvic[] = {
2647 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2648 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2649 DEFINE_PROP_END_OF_LIST()
2652 static void armv7m_nvic_reset(DeviceState *dev)
2654 int resetprio;
2655 NVICState *s = NVIC(dev);
2657 memset(s->vectors, 0, sizeof(s->vectors));
2658 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2659 s->prigroup[M_REG_NS] = 0;
2660 s->prigroup[M_REG_S] = 0;
2662 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2663 /* MEM, BUS, and USAGE are enabled through
2664 * the System Handler Control register
2666 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2667 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2668 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2670 /* DebugMonitor is enabled via DEMCR.MON_EN */
2671 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2673 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2674 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2675 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2676 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2678 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2679 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2680 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2681 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2682 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2684 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2685 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2686 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2687 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2688 } else {
2689 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2692 /* Strictly speaking the reset handler should be enabled.
2693 * However, we don't simulate soft resets through the NVIC,
2694 * and the reset vector should never be pended.
2695 * So we leave it disabled to catch logic errors.
2698 s->exception_prio = NVIC_NOEXC_PRIO;
2699 s->vectpending = 0;
2700 s->vectpending_is_s_banked = false;
2701 s->vectpending_prio = NVIC_NOEXC_PRIO;
2703 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2704 memset(s->itns, 0, sizeof(s->itns));
2705 } else {
2706 /* This state is constant and not guest accessible in a non-security
2707 * NVIC; we set the bits to true to avoid having to do a feature
2708 * bit check in the NVIC enable/pend/etc register accessors.
2710 int i;
2712 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2713 s->itns[i] = true;
2718 * We updated state that affects the CPU's MMUidx and thus its hflags;
2719 * and we can't guarantee that we run before the CPU reset function.
2721 arm_rebuild_hflags(&s->cpu->env);
2724 static void nvic_systick_trigger(void *opaque, int n, int level)
2726 NVICState *s = opaque;
2728 if (level) {
2729 /* SysTick just asked us to pend its exception.
2730 * (This is different from an external interrupt line's
2731 * behaviour.)
2732 * n == 0 : NonSecure systick
2733 * n == 1 : Secure systick
2735 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2739 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2741 NVICState *s = NVIC(dev);
2743 /* The armv7m container object will have set our CPU pointer */
2744 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2745 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2746 return;
2749 if (s->num_irq > NVIC_MAX_IRQ) {
2750 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2751 return;
2754 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2756 /* include space for internal exception vectors */
2757 s->num_irq += NVIC_FIRST_IRQ;
2759 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2761 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
2762 return;
2764 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2765 qdev_get_gpio_in_named(dev, "systick-trigger",
2766 M_REG_NS));
2768 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2769 /* We couldn't init the secure systick device in instance_init
2770 * as we didn't know then if the CPU had the security extensions;
2771 * so we have to do it here.
2773 object_initialize_child(OBJECT(dev), "systick-reg-s",
2774 &s->systick[M_REG_S], TYPE_SYSTICK);
2776 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
2777 return;
2779 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2780 qdev_get_gpio_in_named(dev, "systick-trigger",
2781 M_REG_S));
2785 * This device provides a single sysbus memory region which
2786 * represents the whole of the "System PPB" space. This is the
2787 * range from 0xe0000000 to 0xe00fffff and includes the NVIC,
2788 * the System Control Space (system registers), the systick timer,
2789 * and for CPUs with the Security extension an NS banked version
2790 * of all of these.
2792 * The default behaviour for unimplemented registers/ranges
2793 * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
2794 * is to RAZ/WI for privileged access and BusFault for non-privileged
2795 * access.
2797 * The NVIC and System Control Space (SCS) starts at 0xe000e000
2798 * and looks like this:
2799 * 0x004 - ICTR
2800 * 0x010 - 0xff - systick
2801 * 0x100..0x7ec - NVIC
2802 * 0x7f0..0xcff - Reserved
2803 * 0xd00..0xd3c - SCS registers
2804 * 0xd40..0xeff - Reserved or Not implemented
2805 * 0xf00 - STIR
2807 * Some registers within this space are banked between security states.
2808 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2809 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2810 * to the main SCS range, and non-secure accesses (including when
2811 * the security extension is not implemented) are RAZ/WI.
2812 * Note that both the main SCS range and the alias range are defined
2813 * to be exempt from memory attribution (R_BLJT) and so the memory
2814 * transaction attribute always matches the current CPU security
2815 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2816 * wrappers we change attrs.secure to indicate the NS access; so
2817 * generally code determining which banked register to use should
2818 * use attrs.secure; code determining actual behaviour of the system
2819 * should use env->v7m.secure.
2821 * The container covers the whole PPB space. Within it the priority
2822 * of overlapping regions is:
2823 * - default region (for RAZ/WI and BusFault) : -1
2824 * - system register regions : 0
2825 * - systick : 1
2826 * This is because the systick device is a small block of registers
2827 * in the middle of the other system control registers.
2829 memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000);
2830 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
2831 "nvic-default", 0x100000);
2832 memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1);
2833 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2834 "nvic_sysregs", 0x1000);
2835 memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem);
2837 memory_region_init_io(&s->systickmem, OBJECT(s),
2838 &nvic_systick_ops, s,
2839 "nvic_systick", 0xe0);
2841 memory_region_add_subregion_overlap(&s->container, 0xe010,
2842 &s->systickmem, 1);
2844 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2845 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2846 &nvic_sysreg_ns_ops, &s->sysregmem,
2847 "nvic_sysregs_ns", 0x1000);
2848 memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem);
2849 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2850 &nvic_sysreg_ns_ops, &s->systickmem,
2851 "nvic_systick_ns", 0xe0);
2852 memory_region_add_subregion_overlap(&s->container, 0x2e010,
2853 &s->systick_ns_mem, 1);
2856 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2859 static void armv7m_nvic_instance_init(Object *obj)
2861 /* We have a different default value for the num-irq property
2862 * than our superclass. This function runs after qdev init
2863 * has set the defaults from the Property array and before
2864 * any user-specified property setting, so just modify the
2865 * value in the GICState struct.
2867 DeviceState *dev = DEVICE(obj);
2868 NVICState *nvic = NVIC(obj);
2869 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2871 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2872 TYPE_SYSTICK);
2873 /* We can't initialize the secure systick here, as we don't know
2874 * yet if we need it.
2877 sysbus_init_irq(sbd, &nvic->excpout);
2878 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2879 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2880 M_REG_NUM_BANKS);
2881 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2884 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2886 DeviceClass *dc = DEVICE_CLASS(klass);
2888 dc->vmsd = &vmstate_nvic;
2889 device_class_set_props(dc, props_nvic);
2890 dc->reset = armv7m_nvic_reset;
2891 dc->realize = armv7m_nvic_realize;
2894 static const TypeInfo armv7m_nvic_info = {
2895 .name = TYPE_NVIC,
2896 .parent = TYPE_SYS_BUS_DEVICE,
2897 .instance_init = armv7m_nvic_instance_init,
2898 .instance_size = sizeof(NVICState),
2899 .class_init = armv7m_nvic_class_init,
2900 .class_size = sizeof(SysBusDeviceClass),
2903 static void armv7m_nvic_register_types(void)
2905 type_register_static(&armv7m_nvic_info);
2908 type_init(armv7m_nvic_register_types)