2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
24 #include "hw/qdev-clock.h"
26 /* Format of the System Information block SYS_CONFIG register */
27 typedef enum SysConfigFormat
{
38 SysConfigFormat sys_config_format
;
47 static Property iotkit_properties
[] = {
48 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
50 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
52 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], true),
54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], true),
55 DEFINE_PROP_END_OF_LIST()
58 static Property armsse_properties
[] = {
59 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
62 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
63 DEFINE_PROP_UINT32("init-svtor", ARMSSE
, init_svtor
, 0x10000000),
64 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE
, cpu_fpu
[0], false),
65 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE
, cpu_dsp
[0], false),
66 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE
, cpu_fpu
[1], true),
67 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE
, cpu_dsp
[1], true),
68 DEFINE_PROP_END_OF_LIST()
71 static const ARMSSEInfo armsse_variants
[] = {
76 .sys_version
= 0x41743,
78 .sys_config_format
= IoTKitFormat
,
81 .has_cachectrl
= false,
82 .has_cpusecctrl
= false,
84 .props
= iotkit_properties
,
90 .sys_version
= 0x22041743,
92 .sys_config_format
= SSE200Format
,
95 .has_cachectrl
= true,
96 .has_cpusecctrl
= true,
98 .props
= armsse_properties
,
102 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
104 /* Return the SYS_CONFIG value for this SSE */
107 switch (info
->sys_config_format
) {
110 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
111 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
115 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
116 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
117 sys_config
= deposit32(sys_config
, 24, 4, 2);
118 if (info
->num_cpus
> 1) {
119 sys_config
= deposit32(sys_config
, 10, 1, 1);
120 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
121 sys_config
= deposit32(sys_config
, 28, 4, 2);
125 g_assert_not_reached();
130 /* Clock frequency in HZ of the 32KHz "slow clock" */
131 #define S32KCLK (32 * 1000)
133 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
134 static bool irq_is_common
[32] = {
136 /* 6, 7: per-CPU MHU interrupts */
138 /* 13: per-CPU icache interrupt */
144 /* 28, 29: per-CPU CTI interrupts */
145 /* 30, 31: reserved */
149 * Create an alias region in @container of @size bytes starting at @base
150 * which mirrors the memory starting at @orig.
152 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, MemoryRegion
*container
,
153 const char *name
, hwaddr base
, hwaddr size
, hwaddr orig
)
155 memory_region_init_alias(mr
, NULL
, name
, container
, orig
, size
);
156 /* The alias is even lower priority than unimplemented_device regions */
157 memory_region_add_subregion_overlap(container
, base
, mr
, -1500);
160 static void irq_status_forwarder(void *opaque
, int n
, int level
)
162 qemu_irq destirq
= opaque
;
164 qemu_set_irq(destirq
, level
);
167 static void nsccfg_handler(void *opaque
, int n
, int level
)
169 ARMSSE
*s
= ARM_SSE(opaque
);
174 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
176 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
177 * system using the ARMSSE has a collection of control lines which
178 * are provided by the security controller and which we want to
179 * expose as control lines on the ARMSSE device itself, so the
180 * code using the ARMSSE can wire them up to the PPCs.
182 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
183 DeviceState
*armssedev
= DEVICE(s
);
184 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
185 DeviceState
*dev_splitter
= DEVICE(splitter
);
188 name
= g_strdup_printf("%s_nonsec", ppcname
);
189 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
191 name
= g_strdup_printf("%s_ap", ppcname
);
192 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
194 name
= g_strdup_printf("%s_irq_enable", ppcname
);
195 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
197 name
= g_strdup_printf("%s_irq_clear", ppcname
);
198 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
201 /* irq_status is a little more tricky, because we need to
202 * split it so we can send it both to the security controller
203 * and to our OR gate for the NVIC interrupt line.
204 * Connect up the splitter's outputs, and create a GPIO input
205 * which will pass the line state to the input splitter.
207 name
= g_strdup_printf("%s_irq_status", ppcname
);
208 qdev_connect_gpio_out(dev_splitter
, 0,
209 qdev_get_gpio_in_named(dev_secctl
,
211 qdev_connect_gpio_out(dev_splitter
, 1,
212 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
213 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
214 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
215 s
->irq_status_in
[ppcnum
], name
, 1);
219 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
221 /* Forward the 3rd output from the splitter device as a
222 * named GPIO output of the armsse object.
224 DeviceState
*dev
= DEVICE(s
);
225 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
227 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
228 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
230 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
233 static void armsse_mainclk_update(void *opaque
)
235 ARMSSE
*s
= ARM_SSE(opaque
);
237 * Set system_clock_scale from our Clock input; this is what
238 * controls the tick rate of the CPU SysTick timer.
240 system_clock_scale
= clock_ticks_to_ns(s
->mainclk
, 1);
243 static void armsse_init(Object
*obj
)
245 ARMSSE
*s
= ARM_SSE(obj
);
246 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(obj
);
247 const ARMSSEInfo
*info
= asc
->info
;
250 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
251 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
253 s
->mainclk
= qdev_init_clock_in(DEVICE(s
), "MAINCLK",
254 armsse_mainclk_update
, s
);
255 s
->s32kclk
= qdev_init_clock_in(DEVICE(s
), "S32KCLK", NULL
, NULL
);
257 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
259 for (i
= 0; i
< info
->num_cpus
; i
++) {
261 * We put each CPU in its own cluster as they are logically
262 * distinct and may be configured differently.
266 name
= g_strdup_printf("cluster%d", i
);
267 object_initialize_child(obj
, name
, &s
->cluster
[i
], TYPE_CPU_CLUSTER
);
268 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
271 name
= g_strdup_printf("armv7m%d", i
);
272 object_initialize_child(OBJECT(&s
->cluster
[i
]), name
, &s
->armv7m
[i
],
274 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type",
275 ARM_CPU_TYPE_NAME("cortex-m33"));
277 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
278 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
281 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
282 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
283 name
, &s
->container
, 0, UINT64_MAX
);
288 object_initialize_child(obj
, "secctl", &s
->secctl
, TYPE_IOTKIT_SECCTL
);
289 object_initialize_child(obj
, "apb-ppc0", &s
->apb_ppc0
, TYPE_TZ_PPC
);
290 object_initialize_child(obj
, "apb-ppc1", &s
->apb_ppc1
, TYPE_TZ_PPC
);
291 for (i
= 0; i
< info
->sram_banks
; i
++) {
292 char *name
= g_strdup_printf("mpc%d", i
);
293 object_initialize_child(obj
, name
, &s
->mpc
[i
], TYPE_TZ_MPC
);
296 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
299 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
300 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
301 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
303 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
306 object_initialize_child(obj
, "timer0", &s
->timer0
, TYPE_CMSDK_APB_TIMER
);
307 object_initialize_child(obj
, "timer1", &s
->timer1
, TYPE_CMSDK_APB_TIMER
);
308 object_initialize_child(obj
, "s32ktimer", &s
->s32ktimer
,
309 TYPE_CMSDK_APB_TIMER
);
310 object_initialize_child(obj
, "dualtimer", &s
->dualtimer
,
311 TYPE_CMSDK_APB_DUALTIMER
);
312 object_initialize_child(obj
, "s32kwatchdog", &s
->s32kwatchdog
,
313 TYPE_CMSDK_APB_WATCHDOG
);
314 object_initialize_child(obj
, "nswatchdog", &s
->nswatchdog
,
315 TYPE_CMSDK_APB_WATCHDOG
);
316 object_initialize_child(obj
, "swatchdog", &s
->swatchdog
,
317 TYPE_CMSDK_APB_WATCHDOG
);
318 object_initialize_child(obj
, "armsse-sysctl", &s
->sysctl
,
320 object_initialize_child(obj
, "armsse-sysinfo", &s
->sysinfo
,
321 TYPE_IOTKIT_SYSINFO
);
322 if (info
->has_mhus
) {
323 object_initialize_child(obj
, "mhu0", &s
->mhu
[0], TYPE_ARMSSE_MHU
);
324 object_initialize_child(obj
, "mhu1", &s
->mhu
[1], TYPE_ARMSSE_MHU
);
326 if (info
->has_ppus
) {
327 for (i
= 0; i
< info
->num_cpus
; i
++) {
328 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
329 int ppuidx
= CPU0CORE_PPU
+ i
;
331 object_initialize_child(obj
, name
, &s
->ppu
[ppuidx
],
332 TYPE_UNIMPLEMENTED_DEVICE
);
335 object_initialize_child(obj
, "DBG_PPU", &s
->ppu
[DBG_PPU
],
336 TYPE_UNIMPLEMENTED_DEVICE
);
337 for (i
= 0; i
< info
->sram_banks
; i
++) {
338 char *name
= g_strdup_printf("RAM%d_PPU", i
);
339 int ppuidx
= RAM0_PPU
+ i
;
341 object_initialize_child(obj
, name
, &s
->ppu
[ppuidx
],
342 TYPE_UNIMPLEMENTED_DEVICE
);
346 if (info
->has_cachectrl
) {
347 for (i
= 0; i
< info
->num_cpus
; i
++) {
348 char *name
= g_strdup_printf("cachectrl%d", i
);
350 object_initialize_child(obj
, name
, &s
->cachectrl
[i
],
351 TYPE_UNIMPLEMENTED_DEVICE
);
355 if (info
->has_cpusecctrl
) {
356 for (i
= 0; i
< info
->num_cpus
; i
++) {
357 char *name
= g_strdup_printf("cpusecctrl%d", i
);
359 object_initialize_child(obj
, name
, &s
->cpusecctrl
[i
],
360 TYPE_UNIMPLEMENTED_DEVICE
);
364 if (info
->has_cpuid
) {
365 for (i
= 0; i
< info
->num_cpus
; i
++) {
366 char *name
= g_strdup_printf("cpuid%d", i
);
368 object_initialize_child(obj
, name
, &s
->cpuid
[i
],
373 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
, TYPE_OR_IRQ
);
374 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
376 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
378 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
379 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
380 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
382 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
385 if (info
->num_cpus
> 1) {
386 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
387 if (irq_is_common
[i
]) {
388 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
389 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
391 object_initialize_child(obj
, name
, splitter
, TYPE_SPLIT_IRQ
);
398 static void armsse_exp_irq(void *opaque
, int n
, int level
)
400 qemu_irq
*irqarray
= opaque
;
402 qemu_set_irq(irqarray
[n
], level
);
405 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
407 ARMSSE
*s
= ARM_SSE(opaque
);
408 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
411 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
414 * Return a qemu_irq which can be used to signal IRQ n to
415 * all CPUs in the SSE.
417 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(s
);
418 const ARMSSEInfo
*info
= asc
->info
;
420 assert(irq_is_common
[irqno
]);
422 if (info
->num_cpus
== 1) {
423 /* Only one CPU -- just connect directly to it */
424 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
426 /* Connect to the splitter which feeds all CPUs */
427 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
431 static void map_ppu(ARMSSE
*s
, int ppuidx
, const char *name
, hwaddr addr
)
433 /* Map a PPU unimplemented device stub */
434 DeviceState
*dev
= DEVICE(&s
->ppu
[ppuidx
]);
436 qdev_prop_set_string(dev
, "name", name
);
437 qdev_prop_set_uint64(dev
, "size", 0x1000);
438 sysbus_realize(SYS_BUS_DEVICE(dev
), &error_fatal
);
439 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ppu
[ppuidx
]), 0, addr
);
442 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
444 ARMSSE
*s
= ARM_SSE(dev
);
445 ARMSSEClass
*asc
= ARM_SSE_GET_CLASS(dev
);
446 const ARMSSEInfo
*info
= asc
->info
;
450 SysBusDevice
*sbd_apb_ppc0
;
451 SysBusDevice
*sbd_secctl
;
452 DeviceState
*dev_apb_ppc0
;
453 DeviceState
*dev_apb_ppc1
;
454 DeviceState
*dev_secctl
;
455 DeviceState
*dev_splitter
;
456 uint32_t addr_width_max
;
458 if (!s
->board_memory
) {
459 error_setg(errp
, "memory property was not set");
463 if (!clock_has_source(s
->mainclk
)) {
464 error_setg(errp
, "MAINCLK clock was not connected");
466 if (!clock_has_source(s
->s32kclk
)) {
467 error_setg(errp
, "S32KCLK clock was not connected");
470 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
472 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
473 assert(is_power_of_2(info
->sram_banks
));
474 addr_width_max
= 24 - ctz32(info
->sram_banks
);
475 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
476 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
481 /* Handling of which devices should be available only to secure
482 * code is usually done differently for M profile than for A profile.
483 * Instead of putting some devices only into the secure address space,
484 * devices exist in both address spaces but with hard-wired security
485 * permissions that will cause the CPU to fault for non-secure accesses.
487 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
488 * which specifies hard-wired security permissions for different
489 * areas of the physical address space. For the ARMSSE IDAU, the
490 * top 4 bits of the physical address are the IDAU region ID, and
491 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
492 * region, otherwise it is an S region.
494 * The various devices and RAMs are generally all mapped twice,
495 * once into a region that the IDAU defines as secure and once
496 * into a non-secure region. They sit behind either a Memory
497 * Protection Controller (for RAM) or a Peripheral Protection
498 * Controller (for devices), which allow a more fine grained
499 * configuration of whether non-secure accesses are permitted.
501 * (The other place that guest software can configure security
502 * permissions is in the architected SAU (Security Attribution
503 * Unit), which is entirely inside the CPU. The IDAU can upgrade
504 * the security attributes for a region to more restrictive than
505 * the SAU specifies, but cannot downgrade them.)
507 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
508 * 0x20000000..0x2007ffff 32KB FPGA block RAM
509 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
510 * 0x40000000..0x4000ffff base peripheral region 1
511 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
512 * 0x40020000..0x4002ffff system control element peripherals
513 * 0x40080000..0x400fffff base peripheral region 2
514 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
517 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
519 for (i
= 0; i
< info
->num_cpus
; i
++) {
520 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
521 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
525 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ 32);
527 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
528 * registers in the IoT Kit System Control Register block. In QEMU
529 * we set the initial value here, and also the reset value of the
530 * sysctl register, from this object's QOM init-svtor property.
531 * If the guest changes the INITSVTOR* registers at runtime then the
532 * code in iotkit-sysctl.c will update the CPU init-svtor property
533 * (which will then take effect on the next CPU warm-reset).
535 * Note that typically a board using the SSE-200 will have a system
536 * control processor whose boot firmware initializes the INITSVTOR*
537 * registers before powering up the CPUs. QEMU doesn't emulate
538 * the control processor, so instead we behave in the way that the
539 * firmware does: the initial value should be set by the board code
540 * (using the init-svtor property on the ARMSSE object) to match
541 * whatever its firmware does.
543 qdev_prop_set_uint32(cpudev
, "init-svtor", s
->init_svtor
);
545 * CPUs start powered down if the corresponding bit in the CPUWAIT
546 * register is 1. In real hardware the CPUWAIT register reset value is
547 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
548 * CPUWAIT1_RST parameters), but since all the boards we care about
549 * start CPU0 and leave CPU1 powered off, we hard-code that in
550 * info->cpuwait_rst for now. We can add QOM properties for this
551 * later if necessary.
553 if (extract32(info
->cpuwait_rst
, i
, 1)) {
554 if (!object_property_set_bool(cpuobj
, "start-powered-off", true,
559 if (!s
->cpu_fpu
[i
]) {
560 if (!object_property_set_bool(cpuobj
, "vfp", false, errp
)) {
564 if (!s
->cpu_dsp
[i
]) {
565 if (!object_property_set_bool(cpuobj
, "dsp", false, errp
)) {
571 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
572 &s
->container_alias
[i
- 1], -1);
574 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
577 object_property_set_link(cpuobj
, "memory",
578 OBJECT(&s
->cpu_container
[i
]), &error_abort
);
579 object_property_set_link(cpuobj
, "idau", OBJECT(s
), &error_abort
);
580 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj
), errp
)) {
584 * The cluster must be realized after the armv7m container, as
585 * the container's CPU object is only created on realize, and the
586 * CPU must exist and have been parented into the cluster before
587 * the cluster is realized.
589 if (!qdev_realize(DEVICE(&s
->cluster
[i
]), NULL
, errp
)) {
593 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
594 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
595 for (j
= 0; j
< s
->exp_numirq
; j
++) {
596 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, j
+ 32);
599 gpioname
= g_strdup("EXP_IRQ");
601 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
603 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
605 gpioname
, s
->exp_numirq
);
609 /* Wire up the splitters that connect common IRQs to all CPUs */
610 if (info
->num_cpus
> 1) {
611 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
612 if (irq_is_common
[i
]) {
613 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
614 DeviceState
*devs
= DEVICE(splitter
);
617 if (!object_property_set_int(splitter
, "num-lines",
618 info
->num_cpus
, errp
)) {
621 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
624 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
625 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
627 qdev_connect_gpio_out(devs
, cpunum
,
628 qdev_get_gpio_in(cpudev
, i
));
634 /* Set up the big aliases first */
635 make_alias(s
, &s
->alias1
, &s
->container
, "alias 1",
636 0x10000000, 0x10000000, 0x00000000);
637 make_alias(s
, &s
->alias2
, &s
->container
,
638 "alias 2", 0x30000000, 0x10000000, 0x20000000);
639 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
640 * a few extra devices that only appear there (generally the
641 * control interfaces for the protection controllers).
642 * We implement this by mapping those devices over the top of this
643 * alias MR at a higher priority. Some of the devices in this range
644 * are per-CPU, so we must put this alias in the per-cpu containers.
646 for (i
= 0; i
< info
->num_cpus
; i
++) {
647 make_alias(s
, &s
->alias3
[i
], &s
->cpu_container
[i
],
648 "alias 3", 0x50000000, 0x10000000, 0x40000000);
651 /* Security controller */
652 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->secctl
), errp
)) {
655 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
656 dev_secctl
= DEVICE(&s
->secctl
);
657 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
658 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
660 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
661 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
663 /* The sec_resp_cfg output from the security controller must be split into
664 * multiple lines, one for each of the PPCs within the ARMSSE and one
665 * that will be an output from the ARMSSE to the system.
667 if (!object_property_set_int(OBJECT(&s
->sec_resp_splitter
),
668 "num-lines", 3, errp
)) {
671 if (!qdev_realize(DEVICE(&s
->sec_resp_splitter
), NULL
, errp
)) {
674 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
675 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
676 qdev_get_gpio_in(dev_splitter
, 0));
678 /* Each SRAM bank lives behind its own Memory Protection Controller */
679 for (i
= 0; i
< info
->sram_banks
; i
++) {
680 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
681 SysBusDevice
*sbd_mpc
;
682 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
684 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
685 sram_bank_size
, &err
);
688 error_propagate(errp
, err
);
691 object_property_set_link(OBJECT(&s
->mpc
[i
]), "downstream",
692 OBJECT(&s
->sram
[i
]), &error_abort
);
693 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mpc
[i
]), errp
)) {
696 /* Map the upstream end of the MPC into the right place... */
697 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
698 memory_region_add_subregion(&s
->container
,
699 0x20000000 + i
* sram_bank_size
,
700 sysbus_mmio_get_region(sbd_mpc
, 1));
701 /* ...and its register interface */
702 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
703 sysbus_mmio_get_region(sbd_mpc
, 0));
706 /* We must OR together lines from the MPC splitters to go to the NVIC */
707 if (!object_property_set_int(OBJECT(&s
->mpc_irq_orgate
), "num-lines",
708 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
712 if (!qdev_realize(DEVICE(&s
->mpc_irq_orgate
), NULL
, errp
)) {
715 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
716 armsse_get_common_irq_in(s
, 9));
718 /* Devices behind APB PPC0:
721 * 0x40002000: dual timer
722 * 0x40003000: MHU0 (SSE-200 only)
723 * 0x40004000: MHU1 (SSE-200 only)
724 * We must configure and realize each downstream device and connect
725 * it to the appropriate PPC port; then we can realize the PPC and
726 * map its upstream ends to the right place in the container.
728 qdev_connect_clock_in(DEVICE(&s
->timer0
), "pclk", s
->mainclk
);
729 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->timer0
), errp
)) {
732 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer0
), 0,
733 armsse_get_common_irq_in(s
, 3));
734 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer0
), 0);
735 object_property_set_link(OBJECT(&s
->apb_ppc0
), "port[0]", OBJECT(mr
),
738 qdev_connect_clock_in(DEVICE(&s
->timer1
), "pclk", s
->mainclk
);
739 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->timer1
), errp
)) {
742 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer1
), 0,
743 armsse_get_common_irq_in(s
, 4));
744 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer1
), 0);
745 object_property_set_link(OBJECT(&s
->apb_ppc0
), "port[1]", OBJECT(mr
),
748 qdev_connect_clock_in(DEVICE(&s
->dualtimer
), "TIMCLK", s
->mainclk
);
749 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->dualtimer
), errp
)) {
752 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->dualtimer
), 0,
753 armsse_get_common_irq_in(s
, 5));
754 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->dualtimer
), 0);
755 object_property_set_link(OBJECT(&s
->apb_ppc0
), "port[2]", OBJECT(mr
),
758 if (info
->has_mhus
) {
760 * An SSE-200 with only one CPU should have only one MHU created,
761 * with the region where the second MHU usually is being RAZ/WI.
762 * We don't implement that SSE-200 config; if we want to support
763 * it then this code needs to be enhanced to handle creating the
764 * RAZ/WI region instead of the second MHU.
766 assert(info
->num_cpus
== ARRAY_SIZE(s
->mhu
));
768 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
771 SysBusDevice
*mhu_sbd
= SYS_BUS_DEVICE(&s
->mhu
[i
]);
773 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->mhu
[i
]), errp
)) {
776 port
= g_strdup_printf("port[%d]", i
+ 3);
777 mr
= sysbus_mmio_get_region(mhu_sbd
, 0);
778 object_property_set_link(OBJECT(&s
->apb_ppc0
), port
, OBJECT(mr
),
783 * Each MHU has an irq line for each CPU:
784 * MHU 0 irq line 0 -> CPU 0 IRQ 6
785 * MHU 0 irq line 1 -> CPU 1 IRQ 6
786 * MHU 1 irq line 0 -> CPU 0 IRQ 7
787 * MHU 1 irq line 1 -> CPU 1 IRQ 7
789 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
790 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
792 sysbus_connect_irq(mhu_sbd
, cpunum
,
793 qdev_get_gpio_in(cpudev
, 6 + i
));
798 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc0
), errp
)) {
802 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc0
);
803 dev_apb_ppc0
= DEVICE(&s
->apb_ppc0
);
805 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 0);
806 memory_region_add_subregion(&s
->container
, 0x40000000, mr
);
807 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 1);
808 memory_region_add_subregion(&s
->container
, 0x40001000, mr
);
809 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 2);
810 memory_region_add_subregion(&s
->container
, 0x40002000, mr
);
811 if (info
->has_mhus
) {
812 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
813 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
814 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
815 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
817 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
818 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
819 qdev_get_gpio_in_named(dev_apb_ppc0
,
821 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
822 qdev_get_gpio_in_named(dev_apb_ppc0
,
825 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
826 qdev_get_gpio_in_named(dev_apb_ppc0
,
828 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
829 qdev_get_gpio_in_named(dev_apb_ppc0
,
831 qdev_connect_gpio_out(dev_splitter
, 0,
832 qdev_get_gpio_in_named(dev_apb_ppc0
,
835 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
836 * ones) are sent individually to the security controller, and also
837 * ORed together to give a single combined PPC interrupt to the NVIC.
839 if (!object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
840 "num-lines", NUM_PPCS
, errp
)) {
843 if (!qdev_realize(DEVICE(&s
->ppc_irq_orgate
), NULL
, errp
)) {
846 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
847 armsse_get_common_irq_in(s
, 10));
850 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
851 * private per-CPU region (all these devices are SSE-200 only):
852 * 0x50010000: L1 icache control registers
853 * 0x50011000: CPUSECCTRL (CPU local security control registers)
854 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
856 if (info
->has_cachectrl
) {
857 for (i
= 0; i
< info
->num_cpus
; i
++) {
858 char *name
= g_strdup_printf("cachectrl%d", i
);
861 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
863 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
864 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), errp
)) {
868 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
869 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
872 if (info
->has_cpusecctrl
) {
873 for (i
= 0; i
< info
->num_cpus
; i
++) {
874 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
877 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
879 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
880 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), errp
)) {
884 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
885 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
888 if (info
->has_cpuid
) {
889 for (i
= 0; i
< info
->num_cpus
; i
++) {
892 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
893 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->cpuid
[i
]), errp
)) {
897 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
898 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
902 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
903 /* Devices behind APB PPC1:
904 * 0x4002f000: S32K timer
906 qdev_connect_clock_in(DEVICE(&s
->s32ktimer
), "pclk", s
->s32kclk
);
907 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->s32ktimer
), errp
)) {
910 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32ktimer
), 0,
911 armsse_get_common_irq_in(s
, 2));
912 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->s32ktimer
), 0);
913 object_property_set_link(OBJECT(&s
->apb_ppc1
), "port[0]", OBJECT(mr
),
916 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->apb_ppc1
), errp
)) {
919 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->apb_ppc1
), 0);
920 memory_region_add_subregion(&s
->container
, 0x4002f000, mr
);
922 dev_apb_ppc1
= DEVICE(&s
->apb_ppc1
);
923 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
924 qdev_get_gpio_in_named(dev_apb_ppc1
,
926 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
927 qdev_get_gpio_in_named(dev_apb_ppc1
,
929 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
930 qdev_get_gpio_in_named(dev_apb_ppc1
,
932 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
933 qdev_get_gpio_in_named(dev_apb_ppc1
,
935 qdev_connect_gpio_out(dev_splitter
, 1,
936 qdev_get_gpio_in_named(dev_apb_ppc1
,
939 if (!object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_VERSION",
940 info
->sys_version
, errp
)) {
943 if (!object_property_set_int(OBJECT(&s
->sysinfo
), "SYS_CONFIG",
944 armsse_sys_config_value(s
, info
), errp
)) {
947 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->sysinfo
), errp
)) {
950 /* System information registers */
951 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysinfo
), 0, 0x40020000);
952 /* System control registers */
953 object_property_set_int(OBJECT(&s
->sysctl
), "SYS_VERSION",
954 info
->sys_version
, &error_abort
);
955 object_property_set_int(OBJECT(&s
->sysctl
), "CPUWAIT_RST",
956 info
->cpuwait_rst
, &error_abort
);
957 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR0_RST",
958 s
->init_svtor
, &error_abort
);
959 object_property_set_int(OBJECT(&s
->sysctl
), "INITSVTOR1_RST",
960 s
->init_svtor
, &error_abort
);
961 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->sysctl
), errp
)) {
964 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysctl
), 0, 0x50021000);
966 if (info
->has_ppus
) {
967 /* CPUnCORE_PPU for each CPU */
968 for (i
= 0; i
< info
->num_cpus
; i
++) {
969 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
971 map_ppu(s
, CPU0CORE_PPU
+ i
, name
, 0x50023000 + i
* 0x2000);
973 * We don't support CPU debug so don't create the
974 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
978 map_ppu(s
, DBG_PPU
, "DBG_PPU", 0x50029000);
980 for (i
= 0; i
< info
->sram_banks
; i
++) {
981 char *name
= g_strdup_printf("RAM%d_PPU", i
);
983 map_ppu(s
, RAM0_PPU
+ i
, name
, 0x5002a000 + i
* 0x1000);
988 /* This OR gate wires together outputs from the secure watchdogs to NMI */
989 if (!object_property_set_int(OBJECT(&s
->nmi_orgate
), "num-lines", 2,
993 if (!qdev_realize(DEVICE(&s
->nmi_orgate
), NULL
, errp
)) {
996 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
997 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
999 qdev_connect_clock_in(DEVICE(&s
->s32kwatchdog
), "WDOGCLK", s
->s32kclk
);
1000 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->s32kwatchdog
), errp
)) {
1003 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0,
1004 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 0));
1005 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0, 0x5002e000);
1007 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1009 qdev_connect_clock_in(DEVICE(&s
->nswatchdog
), "WDOGCLK", s
->mainclk
);
1010 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->nswatchdog
), errp
)) {
1013 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->nswatchdog
), 0,
1014 armsse_get_common_irq_in(s
, 1));
1015 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->nswatchdog
), 0, 0x40081000);
1017 qdev_connect_clock_in(DEVICE(&s
->swatchdog
), "WDOGCLK", s
->mainclk
);
1018 if (!sysbus_realize(SYS_BUS_DEVICE(&s
->swatchdog
), errp
)) {
1021 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->swatchdog
), 0,
1022 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 1));
1023 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->swatchdog
), 0, 0x50081000);
1025 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1026 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1028 if (!object_property_set_int(splitter
, "num-lines", 2, errp
)) {
1031 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1036 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1037 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1039 armsse_forward_ppc(s
, ppcname
, i
);
1043 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1044 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1046 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1050 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1051 /* Wire up IRQ splitter for internal PPCs */
1052 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1053 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1054 i
- NUM_EXTERNAL_PPCS
);
1055 TZPPC
*ppc
= (i
== NUM_EXTERNAL_PPCS
) ? &s
->apb_ppc0
: &s
->apb_ppc1
;
1057 qdev_connect_gpio_out(devs
, 0,
1058 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1059 qdev_connect_gpio_out(devs
, 1,
1060 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1061 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1062 qdev_get_gpio_in(devs
, 0));
1066 /* Wire up the splitters for the MPC IRQs */
1067 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1068 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1069 DeviceState
*dev_splitter
= DEVICE(splitter
);
1071 if (!object_property_set_int(OBJECT(splitter
), "num-lines", 2,
1075 if (!qdev_realize(DEVICE(splitter
), NULL
, errp
)) {
1079 if (i
< IOTS_NUM_EXP_MPC
) {
1080 /* Splitter input is from GPIO input line */
1081 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1082 qdev_connect_gpio_out(dev_splitter
, 0,
1083 qdev_get_gpio_in_named(dev_secctl
,
1084 "mpcexp_status", i
));
1086 /* Splitter input is from our own MPC */
1087 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1089 qdev_get_gpio_in(dev_splitter
, 0));
1090 qdev_connect_gpio_out(dev_splitter
, 0,
1091 qdev_get_gpio_in_named(dev_secctl
,
1093 i
- IOTS_NUM_EXP_MPC
));
1096 qdev_connect_gpio_out(dev_splitter
, 1,
1097 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1099 /* Create GPIO inputs which will pass the line state for our
1100 * mpcexp_irq inputs to the correct splitter devices.
1102 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1105 armsse_forward_sec_resp_cfg(s
);
1107 /* Forward the MSC related signals */
1108 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1109 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1110 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1111 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1112 armsse_get_common_irq_in(s
, 11));
1115 * Expose our container region to the board model; this corresponds
1116 * to the AHB Slave Expansion ports which allow bus master devices
1117 * (eg DMA controllers) in the board model to make transactions into
1118 * devices in the ARMSSE.
1120 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1122 /* Set initial system_clock_scale from MAINCLK */
1123 armsse_mainclk_update(s
);
1126 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1127 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1130 * For ARMSSE systems the IDAU responses are simple logical functions
1131 * of the address bits. The NSC attribute is guest-adjustable via the
1132 * NSCCFG register in the security controller.
1134 ARMSSE
*s
= ARM_SSE(ii
);
1135 int region
= extract32(address
, 28, 4);
1137 *ns
= !(region
& 1);
1138 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1139 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1140 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1144 static const VMStateDescription armsse_vmstate
= {
1147 .minimum_version_id
= 2,
1148 .fields
= (VMStateField
[]) {
1149 VMSTATE_CLOCK(mainclk
, ARMSSE
),
1150 VMSTATE_CLOCK(s32kclk
, ARMSSE
),
1151 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1152 VMSTATE_END_OF_LIST()
1156 static void armsse_reset(DeviceState
*dev
)
1158 ARMSSE
*s
= ARM_SSE(dev
);
1163 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1165 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1166 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1167 ARMSSEClass
*asc
= ARM_SSE_CLASS(klass
);
1168 const ARMSSEInfo
*info
= data
;
1170 dc
->realize
= armsse_realize
;
1171 dc
->vmsd
= &armsse_vmstate
;
1172 device_class_set_props(dc
, info
->props
);
1173 dc
->reset
= armsse_reset
;
1174 iic
->check
= armsse_idau_check
;
1178 static const TypeInfo armsse_info
= {
1179 .name
= TYPE_ARM_SSE
,
1180 .parent
= TYPE_SYS_BUS_DEVICE
,
1181 .instance_size
= sizeof(ARMSSE
),
1182 .class_size
= sizeof(ARMSSEClass
),
1183 .instance_init
= armsse_init
,
1185 .interfaces
= (InterfaceInfo
[]) {
1186 { TYPE_IDAU_INTERFACE
},
1191 static void armsse_register_types(void)
1195 type_register_static(&armsse_info
);
1197 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1199 .name
= armsse_variants
[i
].name
,
1200 .parent
= TYPE_ARM_SSE
,
1201 .class_init
= armsse_class_init
,
1202 .class_data
= (void *)&armsse_variants
[i
],
1208 type_init(armsse_register_types
);