vhost: restrict Linux dependency to kernel vhost
[qemu/ar7.git] / include / qom / cpu.h
blob1d6099e5d4be3c1afd349f8fde73fe0e6306bd49
1 /*
2 * QEMU CPU model
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
23 #include "hw/qdev-core.h"
24 #include "disas/bfd.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/fprintf-fn.h"
30 #include "qemu/rcu_queue.h"
31 #include "qemu/queue.h"
32 #include "qemu/thread.h"
34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
35 void *opaque);
37 /**
38 * vaddr:
39 * Type wide enough to contain any #target_ulong virtual address.
41 typedef uint64_t vaddr;
42 #define VADDR_PRId PRId64
43 #define VADDR_PRIu PRIu64
44 #define VADDR_PRIo PRIo64
45 #define VADDR_PRIx PRIx64
46 #define VADDR_PRIX PRIX64
47 #define VADDR_MAX UINT64_MAX
49 /**
50 * SECTION:cpu
51 * @section_id: QEMU-cpu
52 * @title: CPU Class
53 * @short_description: Base class for all CPUs
56 #define TYPE_CPU "cpu"
58 /* Since this macro is used a lot in hot code paths and in conjunction with
59 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
60 * an unchecked cast.
62 #define CPU(obj) ((CPUState *)(obj))
64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
67 typedef enum MMUAccessType {
68 MMU_DATA_LOAD = 0,
69 MMU_DATA_STORE = 1,
70 MMU_INST_FETCH = 2
71 } MMUAccessType;
73 typedef struct CPUWatchpoint CPUWatchpoint;
75 typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
76 bool is_write, bool is_exec, int opaque,
77 unsigned size);
79 struct TranslationBlock;
81 /**
82 * CPUClass:
83 * @class_by_name: Callback to map -cpu command line model name to an
84 * instantiatable CPU type.
85 * @parse_features: Callback to parse command line arguments.
86 * @reset: Callback to reset the #CPUState to its initial state.
87 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
88 * @has_work: Callback for checking if there is work to do.
89 * @do_interrupt: Callback for interrupt handling.
90 * @do_unassigned_access: Callback for unassigned access handling.
91 * (this is deprecated: new targets should use do_transaction_failed instead)
92 * @do_unaligned_access: Callback for unaligned access handling, if
93 * the target defines #ALIGNED_ONLY.
94 * @do_transaction_failed: Callback for handling failed memory transactions
95 * (ie bus faults or external aborts; not MMU faults)
96 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
97 * runtime configurable endianness is currently big-endian. Non-configurable
98 * CPUs can use the default implementation of this method. This method should
99 * not be used by any callers other than the pre-1.0 virtio devices.
100 * @memory_rw_debug: Callback for GDB memory access.
101 * @dump_state: Callback for dumping state.
102 * @dump_statistics: Callback for dumping statistics.
103 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
104 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
105 * @get_memory_mapping: Callback for obtaining the memory mappings.
106 * @set_pc: Callback for setting the Program Counter register. This
107 * should have the semantics used by the target architecture when
108 * setting the PC from a source such as an ELF file entry point;
109 * for example on Arm it will also set the Thumb mode bit based
110 * on the least significant bit of the new PC value.
111 * If the target behaviour here is anything other than "set
112 * the PC register to the value passed in" then the target must
113 * also implement the synchronize_from_tb hook.
114 * @synchronize_from_tb: Callback for synchronizing state from a TCG
115 * #TranslationBlock. This is called when we abandon execution
116 * of a TB before starting it, and must set all parts of the CPU
117 * state which the previous TB in the chain may not have updated.
118 * This always includes at least the program counter; some targets
119 * will need to do more. If this hook is not implemented then the
120 * default is to call @set_pc(tb->pc).
121 * @handle_mmu_fault: Callback for handling an MMU fault.
122 * @get_phys_page_debug: Callback for obtaining a physical address.
123 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
124 * associated memory transaction attributes to use for the access.
125 * CPUs which use memory transaction attributes should implement this
126 * instead of get_phys_page_debug.
127 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
128 * a memory access with the specified memory transaction attributes.
129 * @gdb_read_register: Callback for letting GDB read a register.
130 * @gdb_write_register: Callback for letting GDB write a register.
131 * @debug_check_watchpoint: Callback: return true if the architectural
132 * watchpoint whose address has matched should really fire.
133 * @debug_excp_handler: Callback for handling debug exceptions.
134 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
135 * 64-bit VM coredump.
136 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
137 * note to a 32-bit VM coredump.
138 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
139 * 32-bit VM coredump.
140 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
141 * note to a 32-bit VM coredump.
142 * @vmsd: State description for migration.
143 * @gdb_num_core_regs: Number of core registers accessible to GDB.
144 * @gdb_core_xml_file: File name for core registers GDB XML description.
145 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
146 * before the insn which triggers a watchpoint rather than after it.
147 * @gdb_arch_name: Optional callback that returns the architecture name known
148 * to GDB. The caller must free the returned string with g_free.
149 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
150 * gdb stub. Returns a pointer to the XML contents for the specified XML file
151 * or NULL if the CPU doesn't have a dynamically generated content for it.
152 * @cpu_exec_enter: Callback for cpu_exec preparation.
153 * @cpu_exec_exit: Callback for cpu_exec cleanup.
154 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
155 * @disas_set_info: Setup architecture specific components of disassembly info
156 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
157 * address before attempting to match it against watchpoints.
159 * Represents a CPU family or model.
161 typedef struct CPUClass {
162 /*< private >*/
163 DeviceClass parent_class;
164 /*< public >*/
166 ObjectClass *(*class_by_name)(const char *cpu_model);
167 void (*parse_features)(const char *typename, char *str, Error **errp);
169 void (*reset)(CPUState *cpu);
170 int reset_dump_flags;
171 bool (*has_work)(CPUState *cpu);
172 void (*do_interrupt)(CPUState *cpu);
173 CPUUnassignedAccess do_unassigned_access;
174 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
175 MMUAccessType access_type,
176 int mmu_idx, uintptr_t retaddr);
177 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
178 unsigned size, MMUAccessType access_type,
179 int mmu_idx, MemTxAttrs attrs,
180 MemTxResult response, uintptr_t retaddr);
181 bool (*virtio_is_big_endian)(CPUState *cpu);
182 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
183 uint8_t *buf, int len, bool is_write);
184 void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
185 int flags);
186 GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
187 void (*dump_statistics)(CPUState *cpu, FILE *f,
188 fprintf_function cpu_fprintf, int flags);
189 int64_t (*get_arch_id)(CPUState *cpu);
190 bool (*get_paging_enabled)(const CPUState *cpu);
191 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
192 Error **errp);
193 void (*set_pc)(CPUState *cpu, vaddr value);
194 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
195 int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int size, int rw,
196 int mmu_index);
197 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
198 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
199 MemTxAttrs *attrs);
200 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
201 int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
202 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
203 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
204 void (*debug_excp_handler)(CPUState *cpu);
206 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
207 int cpuid, void *opaque);
208 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
209 void *opaque);
210 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
211 int cpuid, void *opaque);
212 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
213 void *opaque);
215 const struct VMStateDescription *vmsd;
216 const char *gdb_core_xml_file;
217 gchar * (*gdb_arch_name)(CPUState *cpu);
218 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
219 void (*cpu_exec_enter)(CPUState *cpu);
220 void (*cpu_exec_exit)(CPUState *cpu);
221 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
223 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
224 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
225 void (*tcg_initialize)(void);
227 /* Keep non-pointer data at the end to minimize holes. */
228 int gdb_num_core_regs;
229 bool gdb_stop_before_watchpoint;
230 } CPUClass;
232 #ifdef HOST_WORDS_BIGENDIAN
233 typedef struct icount_decr_u16 {
234 uint16_t high;
235 uint16_t low;
236 } icount_decr_u16;
237 #else
238 typedef struct icount_decr_u16 {
239 uint16_t low;
240 uint16_t high;
241 } icount_decr_u16;
242 #endif
244 typedef struct CPUBreakpoint {
245 vaddr pc;
246 int flags; /* BP_* */
247 QTAILQ_ENTRY(CPUBreakpoint) entry;
248 } CPUBreakpoint;
250 struct CPUWatchpoint {
251 vaddr vaddr;
252 vaddr len;
253 vaddr hitaddr;
254 MemTxAttrs hitattrs;
255 int flags; /* BP_* */
256 QTAILQ_ENTRY(CPUWatchpoint) entry;
259 struct KVMState;
260 struct kvm_run;
262 struct hax_vcpu_state;
264 #define TB_JMP_CACHE_BITS 12
265 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
267 /* work queue */
269 /* The union type allows passing of 64 bit target pointers on 32 bit
270 * hosts in a single parameter
272 typedef union {
273 int host_int;
274 unsigned long host_ulong;
275 void *host_ptr;
276 vaddr target_ptr;
277 } run_on_cpu_data;
279 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
280 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
281 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
282 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
283 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
285 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
287 struct qemu_work_item;
289 #define CPU_UNSET_NUMA_NODE_ID -1
290 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
293 * CPUState:
294 * @cpu_index: CPU index (informative).
295 * @cluster_index: Identifies which cluster this CPU is in.
296 * For boards which don't define clusters or for "loose" CPUs not assigned
297 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
298 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
299 * QOM parent.
300 * @nr_cores: Number of cores within this CPU package.
301 * @nr_threads: Number of threads within this CPU.
302 * @running: #true if CPU is currently running (lockless).
303 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
304 * valid under cpu_list_lock.
305 * @created: Indicates whether the CPU thread has been successfully created.
306 * @interrupt_request: Indicates a pending interrupt request.
307 * @halted: Nonzero if the CPU is in suspended state.
308 * @stop: Indicates a pending stop request.
309 * @stopped: Indicates the CPU has been artificially stopped.
310 * @unplug: Indicates a pending CPU unplug request.
311 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
312 * @singlestep_enabled: Flags for single-stepping.
313 * @icount_extra: Instructions until next timer event.
314 * @icount_decr: Low 16 bits: number of cycles left, only used in icount mode.
315 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs for this
316 * CPU and return to its top level loop (even in non-icount mode).
317 * This allows a single read-compare-cbranch-write sequence to test
318 * for both decrementer underflow and exceptions.
319 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
320 * requires that IO only be performed on the last instruction of a TB
321 * so that interrupts take effect immediately.
322 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
323 * AddressSpaces this CPU has)
324 * @num_ases: number of CPUAddressSpaces in @cpu_ases
325 * @as: Pointer to the first AddressSpace, for the convenience of targets which
326 * only have a single AddressSpace
327 * @env_ptr: Pointer to subclass-specific CPUArchState field.
328 * @gdb_regs: Additional GDB registers.
329 * @gdb_num_regs: Number of total registers accessible to GDB.
330 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
331 * @next_cpu: Next CPU sharing TB cache.
332 * @opaque: User data.
333 * @mem_io_pc: Host Program Counter at which the memory was accessed.
334 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
335 * @kvm_fd: vCPU file descriptor for KVM.
336 * @work_mutex: Lock to prevent multiple access to queued_work_*.
337 * @queued_work_first: First asynchronous work pending.
338 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
339 * to @trace_dstate).
340 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
341 * @ignore_memory_transaction_failures: Cached copy of the MachineState
342 * flag of the same name: allows the board to suppress calling of the
343 * CPU do_transaction_failed hook function.
345 * State of one CPU core or thread.
347 struct CPUState {
348 /*< private >*/
349 DeviceState parent_obj;
350 /*< public >*/
352 int nr_cores;
353 int nr_threads;
355 struct QemuThread *thread;
356 #ifdef _WIN32
357 HANDLE hThread;
358 #endif
359 int thread_id;
360 bool running, has_waiter;
361 struct QemuCond *halt_cond;
362 bool thread_kicked;
363 bool created;
364 bool stop;
365 bool stopped;
366 bool unplug;
367 bool crash_occurred;
368 bool exit_request;
369 uint32_t cflags_next_tb;
370 /* updates protected by BQL */
371 uint32_t interrupt_request;
372 int singlestep_enabled;
373 int64_t icount_budget;
374 int64_t icount_extra;
375 sigjmp_buf jmp_env;
377 QemuMutex work_mutex;
378 struct qemu_work_item *queued_work_first, *queued_work_last;
380 CPUAddressSpace *cpu_ases;
381 int num_ases;
382 AddressSpace *as;
383 MemoryRegion *memory;
385 void *env_ptr; /* CPUArchState */
387 /* Accessed in parallel; all accesses must be atomic */
388 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
390 struct GDBRegisterState *gdb_regs;
391 int gdb_num_regs;
392 int gdb_num_g_regs;
393 QTAILQ_ENTRY(CPUState) node;
395 /* ice debug support */
396 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
398 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
399 CPUWatchpoint *watchpoint_hit;
401 void *opaque;
403 /* In order to avoid passing too many arguments to the MMIO helpers,
404 * we store some rarely used information in the CPU context.
406 uintptr_t mem_io_pc;
407 vaddr mem_io_vaddr;
409 * This is only needed for the legacy cpu_unassigned_access() hook;
410 * when all targets using it have been converted to use
411 * cpu_transaction_failed() instead it can be removed.
413 MMUAccessType mem_io_access_type;
415 int kvm_fd;
416 struct KVMState *kvm_state;
417 struct kvm_run *kvm_run;
419 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
420 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
421 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
423 /* TODO Move common fields from CPUArchState here. */
424 int cpu_index;
425 int cluster_index;
426 uint32_t halted;
427 uint32_t can_do_io;
428 int32_t exception_index;
430 /* shared by kvm, hax and hvf */
431 bool vcpu_dirty;
433 /* Used to keep track of an outstanding cpu throttle thread for migration
434 * autoconverge
436 bool throttle_thread_scheduled;
438 bool ignore_memory_transaction_failures;
440 /* Note that this is accessed at the start of every TB via a negative
441 offset from AREG0. Leave this field at the end so as to make the
442 (absolute value) offset as small as possible. This reduces code
443 size, especially for hosts without large memory offsets. */
444 union {
445 uint32_t u32;
446 icount_decr_u16 u16;
447 } icount_decr;
449 struct hax_vcpu_state *hax_vcpu;
451 int hvf_fd;
453 /* track IOMMUs whose translations we've cached in the TCG TLB */
454 GArray *iommu_notifiers;
457 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
458 extern CPUTailQ cpus;
460 #define first_cpu QTAILQ_FIRST_RCU(&cpus)
461 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
462 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
463 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
464 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
466 extern __thread CPUState *current_cpu;
468 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
470 unsigned int i;
472 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
473 atomic_set(&cpu->tb_jmp_cache[i], NULL);
478 * qemu_tcg_mttcg_enabled:
479 * Check whether we are running MultiThread TCG or not.
481 * Returns: %true if we are in MTTCG mode %false otherwise.
483 extern bool mttcg_enabled;
484 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
487 * cpu_paging_enabled:
488 * @cpu: The CPU whose state is to be inspected.
490 * Returns: %true if paging is enabled, %false otherwise.
492 bool cpu_paging_enabled(const CPUState *cpu);
495 * cpu_get_memory_mapping:
496 * @cpu: The CPU whose memory mappings are to be obtained.
497 * @list: Where to write the memory mappings to.
498 * @errp: Pointer for reporting an #Error.
500 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
501 Error **errp);
504 * cpu_write_elf64_note:
505 * @f: pointer to a function that writes memory to a file
506 * @cpu: The CPU whose memory is to be dumped
507 * @cpuid: ID number of the CPU
508 * @opaque: pointer to the CPUState struct
510 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
511 int cpuid, void *opaque);
514 * cpu_write_elf64_qemunote:
515 * @f: pointer to a function that writes memory to a file
516 * @cpu: The CPU whose memory is to be dumped
517 * @cpuid: ID number of the CPU
518 * @opaque: pointer to the CPUState struct
520 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
521 void *opaque);
524 * cpu_write_elf32_note:
525 * @f: pointer to a function that writes memory to a file
526 * @cpu: The CPU whose memory is to be dumped
527 * @cpuid: ID number of the CPU
528 * @opaque: pointer to the CPUState struct
530 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
531 int cpuid, void *opaque);
534 * cpu_write_elf32_qemunote:
535 * @f: pointer to a function that writes memory to a file
536 * @cpu: The CPU whose memory is to be dumped
537 * @cpuid: ID number of the CPU
538 * @opaque: pointer to the CPUState struct
540 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
541 void *opaque);
544 * cpu_get_crash_info:
545 * @cpu: The CPU to get crash information for
547 * Gets the previously saved crash information.
548 * Caller is responsible for freeing the data.
550 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
553 * CPUDumpFlags:
554 * @CPU_DUMP_CODE:
555 * @CPU_DUMP_FPU: dump FPU register state, not just integer
556 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
558 enum CPUDumpFlags {
559 CPU_DUMP_CODE = 0x00010000,
560 CPU_DUMP_FPU = 0x00020000,
561 CPU_DUMP_CCOP = 0x00040000,
565 * cpu_dump_state:
566 * @cpu: The CPU whose state is to be dumped.
567 * @f: File to dump to.
568 * @cpu_fprintf: Function to dump with.
569 * @flags: Flags what to dump.
571 * Dumps CPU state.
573 void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
574 int flags);
577 * cpu_dump_statistics:
578 * @cpu: The CPU whose state is to be dumped.
579 * @f: File to dump to.
580 * @cpu_fprintf: Function to dump with.
581 * @flags: Flags what to dump.
583 * Dumps CPU statistics.
585 void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
586 int flags);
588 #ifndef CONFIG_USER_ONLY
590 * cpu_get_phys_page_attrs_debug:
591 * @cpu: The CPU to obtain the physical page address for.
592 * @addr: The virtual address.
593 * @attrs: Updated on return with the memory transaction attributes to use
594 * for this access.
596 * Obtains the physical page corresponding to a virtual one, together
597 * with the corresponding memory transaction attributes to use for the access.
598 * Use it only for debugging because no protection checks are done.
600 * Returns: Corresponding physical page address or -1 if no page found.
602 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
603 MemTxAttrs *attrs)
605 CPUClass *cc = CPU_GET_CLASS(cpu);
607 if (cc->get_phys_page_attrs_debug) {
608 return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
610 /* Fallback for CPUs which don't implement the _attrs_ hook */
611 *attrs = MEMTXATTRS_UNSPECIFIED;
612 return cc->get_phys_page_debug(cpu, addr);
616 * cpu_get_phys_page_debug:
617 * @cpu: The CPU to obtain the physical page address for.
618 * @addr: The virtual address.
620 * Obtains the physical page corresponding to a virtual one.
621 * Use it only for debugging because no protection checks are done.
623 * Returns: Corresponding physical page address or -1 if no page found.
625 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
627 MemTxAttrs attrs = {};
629 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
632 /** cpu_asidx_from_attrs:
633 * @cpu: CPU
634 * @attrs: memory transaction attributes
636 * Returns the address space index specifying the CPU AddressSpace
637 * to use for a memory access with the given transaction attributes.
639 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
641 CPUClass *cc = CPU_GET_CLASS(cpu);
642 int ret = 0;
644 if (cc->asidx_from_attrs) {
645 ret = cc->asidx_from_attrs(cpu, attrs);
646 assert(ret < cpu->num_ases && ret >= 0);
648 return ret;
650 #endif
653 * cpu_list_add:
654 * @cpu: The CPU to be added to the list of CPUs.
656 void cpu_list_add(CPUState *cpu);
659 * cpu_list_remove:
660 * @cpu: The CPU to be removed from the list of CPUs.
662 void cpu_list_remove(CPUState *cpu);
665 * cpu_reset:
666 * @cpu: The CPU whose state is to be reset.
668 void cpu_reset(CPUState *cpu);
671 * cpu_class_by_name:
672 * @typename: The CPU base type.
673 * @cpu_model: The model string without any parameters.
675 * Looks up a CPU #ObjectClass matching name @cpu_model.
677 * Returns: A #CPUClass or %NULL if not matching class is found.
679 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
682 * cpu_create:
683 * @typename: The CPU type.
685 * Instantiates a CPU and realizes the CPU.
687 * Returns: A #CPUState or %NULL if an error occurred.
689 CPUState *cpu_create(const char *typename);
692 * parse_cpu_model:
693 * @cpu_model: The model string including optional parameters.
695 * processes optional parameters and registers them as global properties
697 * Returns: type of CPU to create or prints error and terminates process
698 * if an error occurred.
700 const char *parse_cpu_model(const char *cpu_model);
703 * cpu_has_work:
704 * @cpu: The vCPU to check.
706 * Checks whether the CPU has work to do.
708 * Returns: %true if the CPU has work, %false otherwise.
710 static inline bool cpu_has_work(CPUState *cpu)
712 CPUClass *cc = CPU_GET_CLASS(cpu);
714 g_assert(cc->has_work);
715 return cc->has_work(cpu);
719 * qemu_cpu_is_self:
720 * @cpu: The vCPU to check against.
722 * Checks whether the caller is executing on the vCPU thread.
724 * Returns: %true if called from @cpu's thread, %false otherwise.
726 bool qemu_cpu_is_self(CPUState *cpu);
729 * qemu_cpu_kick:
730 * @cpu: The vCPU to kick.
732 * Kicks @cpu's thread.
734 void qemu_cpu_kick(CPUState *cpu);
737 * cpu_is_stopped:
738 * @cpu: The CPU to check.
740 * Checks whether the CPU is stopped.
742 * Returns: %true if run state is not running or if artificially stopped;
743 * %false otherwise.
745 bool cpu_is_stopped(CPUState *cpu);
748 * do_run_on_cpu:
749 * @cpu: The vCPU to run on.
750 * @func: The function to be executed.
751 * @data: Data to pass to the function.
752 * @mutex: Mutex to release while waiting for @func to run.
754 * Used internally in the implementation of run_on_cpu.
756 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
757 QemuMutex *mutex);
760 * run_on_cpu:
761 * @cpu: The vCPU to run on.
762 * @func: The function to be executed.
763 * @data: Data to pass to the function.
765 * Schedules the function @func for execution on the vCPU @cpu.
767 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
770 * async_run_on_cpu:
771 * @cpu: The vCPU to run on.
772 * @func: The function to be executed.
773 * @data: Data to pass to the function.
775 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
777 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
780 * async_safe_run_on_cpu:
781 * @cpu: The vCPU to run on.
782 * @func: The function to be executed.
783 * @data: Data to pass to the function.
785 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
786 * while all other vCPUs are sleeping.
788 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
789 * BQL.
791 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
794 * qemu_get_cpu:
795 * @index: The CPUState@cpu_index value of the CPU to obtain.
797 * Gets a CPU matching @index.
799 * Returns: The CPU or %NULL if there is no matching CPU.
801 CPUState *qemu_get_cpu(int index);
804 * cpu_exists:
805 * @id: Guest-exposed CPU ID to lookup.
807 * Search for CPU with specified ID.
809 * Returns: %true - CPU is found, %false - CPU isn't found.
811 bool cpu_exists(int64_t id);
814 * cpu_by_arch_id:
815 * @id: Guest-exposed CPU ID of the CPU to obtain.
817 * Get a CPU with matching @id.
819 * Returns: The CPU or %NULL if there is no matching CPU.
821 CPUState *cpu_by_arch_id(int64_t id);
824 * cpu_throttle_set:
825 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
827 * Throttles all vcpus by forcing them to sleep for the given percentage of
828 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
829 * (example: 10ms sleep for every 30ms awake).
831 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
832 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
833 * is called.
835 void cpu_throttle_set(int new_throttle_pct);
838 * cpu_throttle_stop:
840 * Stops the vcpu throttling started by cpu_throttle_set.
842 void cpu_throttle_stop(void);
845 * cpu_throttle_active:
847 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
849 bool cpu_throttle_active(void);
852 * cpu_throttle_get_percentage:
854 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
856 * Returns: The throttle percentage in range 1 to 99.
858 int cpu_throttle_get_percentage(void);
860 #ifndef CONFIG_USER_ONLY
862 typedef void (*CPUInterruptHandler)(CPUState *, int);
864 extern CPUInterruptHandler cpu_interrupt_handler;
867 * cpu_interrupt:
868 * @cpu: The CPU to set an interrupt on.
869 * @mask: The interrupts to set.
871 * Invokes the interrupt handler.
873 static inline void cpu_interrupt(CPUState *cpu, int mask)
875 cpu_interrupt_handler(cpu, mask);
878 #else /* USER_ONLY */
880 void cpu_interrupt(CPUState *cpu, int mask);
882 #endif /* USER_ONLY */
884 #ifdef NEED_CPU_H
886 #ifdef CONFIG_SOFTMMU
887 static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
888 bool is_write, bool is_exec,
889 int opaque, unsigned size)
891 CPUClass *cc = CPU_GET_CLASS(cpu);
893 if (cc->do_unassigned_access) {
894 cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
898 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
899 MMUAccessType access_type,
900 int mmu_idx, uintptr_t retaddr)
902 CPUClass *cc = CPU_GET_CLASS(cpu);
904 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
907 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
908 vaddr addr, unsigned size,
909 MMUAccessType access_type,
910 int mmu_idx, MemTxAttrs attrs,
911 MemTxResult response,
912 uintptr_t retaddr)
914 CPUClass *cc = CPU_GET_CLASS(cpu);
916 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
917 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
918 mmu_idx, attrs, response, retaddr);
921 #endif
923 #endif /* NEED_CPU_H */
926 * cpu_set_pc:
927 * @cpu: The CPU to set the program counter for.
928 * @addr: Program counter value.
930 * Sets the program counter for a CPU.
932 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
934 CPUClass *cc = CPU_GET_CLASS(cpu);
936 cc->set_pc(cpu, addr);
940 * cpu_reset_interrupt:
941 * @cpu: The CPU to clear the interrupt on.
942 * @mask: The interrupt mask to clear.
944 * Resets interrupts on the vCPU @cpu.
946 void cpu_reset_interrupt(CPUState *cpu, int mask);
949 * cpu_exit:
950 * @cpu: The CPU to exit.
952 * Requests the CPU @cpu to exit execution.
954 void cpu_exit(CPUState *cpu);
957 * cpu_resume:
958 * @cpu: The CPU to resume.
960 * Resumes CPU, i.e. puts CPU into runnable state.
962 void cpu_resume(CPUState *cpu);
965 * cpu_remove:
966 * @cpu: The CPU to remove.
968 * Requests the CPU to be removed.
970 void cpu_remove(CPUState *cpu);
973 * cpu_remove_sync:
974 * @cpu: The CPU to remove.
976 * Requests the CPU to be removed and waits till it is removed.
978 void cpu_remove_sync(CPUState *cpu);
981 * process_queued_cpu_work() - process all items on CPU work queue
982 * @cpu: The CPU which work queue to process.
984 void process_queued_cpu_work(CPUState *cpu);
987 * cpu_exec_start:
988 * @cpu: The CPU for the current thread.
990 * Record that a CPU has started execution and can be interrupted with
991 * cpu_exit.
993 void cpu_exec_start(CPUState *cpu);
996 * cpu_exec_end:
997 * @cpu: The CPU for the current thread.
999 * Record that a CPU has stopped execution and exclusive sections
1000 * can be executed without interrupting it.
1002 void cpu_exec_end(CPUState *cpu);
1005 * start_exclusive:
1007 * Wait for a concurrent exclusive section to end, and then start
1008 * a section of work that is run while other CPUs are not running
1009 * between cpu_exec_start and cpu_exec_end. CPUs that are running
1010 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
1011 * during the exclusive section go to sleep until this CPU calls
1012 * end_exclusive.
1014 void start_exclusive(void);
1017 * end_exclusive:
1019 * Concludes an exclusive execution section started by start_exclusive.
1021 void end_exclusive(void);
1024 * qemu_init_vcpu:
1025 * @cpu: The vCPU to initialize.
1027 * Initializes a vCPU.
1029 void qemu_init_vcpu(CPUState *cpu);
1031 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
1032 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
1033 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
1036 * cpu_single_step:
1037 * @cpu: CPU to the flags for.
1038 * @enabled: Flags to enable.
1040 * Enables or disables single-stepping for @cpu.
1042 void cpu_single_step(CPUState *cpu, int enabled);
1044 /* Breakpoint/watchpoint flags */
1045 #define BP_MEM_READ 0x01
1046 #define BP_MEM_WRITE 0x02
1047 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
1048 #define BP_STOP_BEFORE_ACCESS 0x04
1049 /* 0x08 currently unused */
1050 #define BP_GDB 0x10
1051 #define BP_CPU 0x20
1052 #define BP_ANY (BP_GDB | BP_CPU)
1053 #define BP_WATCHPOINT_HIT_READ 0x40
1054 #define BP_WATCHPOINT_HIT_WRITE 0x80
1055 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1057 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1058 CPUBreakpoint **breakpoint);
1059 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1060 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1061 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1063 /* Return true if PC matches an installed breakpoint. */
1064 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1066 CPUBreakpoint *bp;
1068 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1069 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1070 if (bp->pc == pc && (bp->flags & mask)) {
1071 return true;
1075 return false;
1078 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1079 int flags, CPUWatchpoint **watchpoint);
1080 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1081 vaddr len, int flags);
1082 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1083 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1086 * cpu_get_address_space:
1087 * @cpu: CPU to get address space from
1088 * @asidx: index identifying which address space to get
1090 * Return the requested address space of this CPU. @asidx
1091 * specifies which address space to read.
1093 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1095 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1096 GCC_FMT_ATTR(2, 3);
1097 extern Property cpu_common_props[];
1098 void cpu_exec_initfn(CPUState *cpu);
1099 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1100 void cpu_exec_unrealizefn(CPUState *cpu);
1103 * target_words_bigendian:
1104 * Returns true if the (default) endianness of the target is big endian,
1105 * false otherwise. Note that in target-specific code, you can use
1106 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1107 * code should normally never need to know about the endianness of the
1108 * target, so please do *not* use this function unless you know very well
1109 * what you are doing!
1111 bool target_words_bigendian(void);
1113 #ifdef NEED_CPU_H
1115 #ifdef CONFIG_SOFTMMU
1116 extern const struct VMStateDescription vmstate_cpu_common;
1117 #else
1118 #define vmstate_cpu_common vmstate_dummy
1119 #endif
1121 #define VMSTATE_CPU() { \
1122 .name = "parent_obj", \
1123 .size = sizeof(CPUState), \
1124 .vmsd = &vmstate_cpu_common, \
1125 .flags = VMS_STRUCT, \
1126 .offset = 0, \
1129 #endif /* NEED_CPU_H */
1131 #define UNASSIGNED_CPU_INDEX -1
1132 #define UNASSIGNED_CLUSTER_INDEX -1
1134 #endif