nios2: define tcg_env
[qemu/ar7.git] / hw / intc / arm_gic_common.c
blobaee50a20e024ffdb41a51daac61f228552ad956a
1 /*
2 * ARM GIC support - common bits of emulated and KVM kernel model
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "gic_internal.h"
24 #include "hw/arm/linux-boot-if.h"
26 static int gic_pre_save(void *opaque)
28 GICState *s = (GICState *)opaque;
29 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
31 if (c->pre_save) {
32 c->pre_save(s);
35 return 0;
38 static int gic_post_load(void *opaque, int version_id)
40 GICState *s = (GICState *)opaque;
41 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
43 if (c->post_load) {
44 c->post_load(s);
46 return 0;
49 static const VMStateDescription vmstate_gic_irq_state = {
50 .name = "arm_gic_irq_state",
51 .version_id = 1,
52 .minimum_version_id = 1,
53 .fields = (VMStateField[]) {
54 VMSTATE_UINT8(enabled, gic_irq_state),
55 VMSTATE_UINT8(pending, gic_irq_state),
56 VMSTATE_UINT8(active, gic_irq_state),
57 VMSTATE_UINT8(level, gic_irq_state),
58 VMSTATE_BOOL(model, gic_irq_state),
59 VMSTATE_BOOL(edge_trigger, gic_irq_state),
60 VMSTATE_UINT8(group, gic_irq_state),
61 VMSTATE_END_OF_LIST()
65 static const VMStateDescription vmstate_gic = {
66 .name = "arm_gic",
67 .version_id = 12,
68 .minimum_version_id = 12,
69 .pre_save = gic_pre_save,
70 .post_load = gic_post_load,
71 .fields = (VMStateField[]) {
72 VMSTATE_UINT32(ctlr, GICState),
73 VMSTATE_UINT32_ARRAY(cpu_ctlr, GICState, GIC_NCPU),
74 VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
75 vmstate_gic_irq_state, gic_irq_state),
76 VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
77 VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
78 VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
79 VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
80 VMSTATE_UINT16_ARRAY(priority_mask, GICState, GIC_NCPU),
81 VMSTATE_UINT16_ARRAY(running_priority, GICState, GIC_NCPU),
82 VMSTATE_UINT16_ARRAY(current_pending, GICState, GIC_NCPU),
83 VMSTATE_UINT8_ARRAY(bpr, GICState, GIC_NCPU),
84 VMSTATE_UINT8_ARRAY(abpr, GICState, GIC_NCPU),
85 VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
86 VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
87 VMSTATE_END_OF_LIST()
91 void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
92 const MemoryRegionOps *ops)
94 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
95 int i = s->num_irq - GIC_INTERNAL;
97 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
98 * GPIO array layout is thus:
99 * [0..N-1] SPIs
100 * [N..N+31] PPIs for CPU 0
101 * [N+32..N+63] PPIs for CPU 1
102 * ...
104 i += (GIC_INTERNAL * s->num_cpu);
105 qdev_init_gpio_in(DEVICE(s), handler, i);
107 for (i = 0; i < s->num_cpu; i++) {
108 sysbus_init_irq(sbd, &s->parent_irq[i]);
110 for (i = 0; i < s->num_cpu; i++) {
111 sysbus_init_irq(sbd, &s->parent_fiq[i]);
113 for (i = 0; i < s->num_cpu; i++) {
114 sysbus_init_irq(sbd, &s->parent_virq[i]);
116 for (i = 0; i < s->num_cpu; i++) {
117 sysbus_init_irq(sbd, &s->parent_vfiq[i]);
120 /* Distributor */
121 memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
122 sysbus_init_mmio(sbd, &s->iomem);
124 /* This is the main CPU interface "for this core". It is always
125 * present because it is required by both software emulation and KVM.
127 memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
128 s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
129 sysbus_init_mmio(sbd, &s->cpuiomem[0]);
132 static void arm_gic_common_realize(DeviceState *dev, Error **errp)
134 GICState *s = ARM_GIC_COMMON(dev);
135 int num_irq = s->num_irq;
137 if (s->num_cpu > GIC_NCPU) {
138 error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
139 s->num_cpu, GIC_NCPU);
140 return;
142 s->num_irq += GIC_BASE_IRQ;
143 if (s->num_irq > GIC_MAXIRQ) {
144 error_setg(errp,
145 "requested %u interrupt lines exceeds GIC maximum %d",
146 num_irq, GIC_MAXIRQ);
147 return;
149 /* ITLinesNumber is represented as (N / 32) - 1 (see
150 * gic_dist_readb) so this is an implementation imposed
151 * restriction, not an architectural one:
153 if (s->num_irq < 32 || (s->num_irq % 32)) {
154 error_setg(errp,
155 "%d interrupt lines unsupported: not divisible by 32",
156 num_irq);
157 return;
160 if (s->security_extn &&
161 (s->revision == REV_11MPCORE)) {
162 error_setg(errp, "this GIC revision does not implement "
163 "the security extensions");
164 return;
168 static void arm_gic_common_reset(DeviceState *dev)
170 GICState *s = ARM_GIC_COMMON(dev);
171 int i, j;
172 int resetprio;
174 /* If we're resetting a TZ-aware GIC as if secure firmware
175 * had set it up ready to start a kernel in non-secure,
176 * we need to set interrupt priorities to a "zero for the
177 * NS view" value. This is particularly critical for the
178 * priority_mask[] values, because if they are zero then NS
179 * code cannot ever rewrite the priority to anything else.
181 if (s->security_extn && s->irq_reset_nonsecure) {
182 resetprio = 0x80;
183 } else {
184 resetprio = 0;
187 memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
188 for (i = 0 ; i < s->num_cpu; i++) {
189 if (s->revision == REV_11MPCORE) {
190 s->priority_mask[i] = 0xf0;
191 } else {
192 s->priority_mask[i] = resetprio;
194 s->current_pending[i] = 1023;
195 s->running_priority[i] = 0x100;
196 s->cpu_ctlr[i] = 0;
197 s->bpr[i] = GIC_MIN_BPR;
198 s->abpr[i] = GIC_MIN_ABPR;
199 for (j = 0; j < GIC_INTERNAL; j++) {
200 s->priority1[j][i] = resetprio;
202 for (j = 0; j < GIC_NR_SGIS; j++) {
203 s->sgi_pending[j][i] = 0;
206 for (i = 0; i < GIC_NR_SGIS; i++) {
207 GIC_SET_ENABLED(i, ALL_CPU_MASK);
208 GIC_SET_EDGE_TRIGGER(i);
211 for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
212 s->priority2[i] = resetprio;
215 for (i = 0; i < GIC_MAXIRQ; i++) {
216 /* For uniprocessor GICs all interrupts always target the sole CPU */
217 if (s->num_cpu == 1) {
218 s->irq_target[i] = 1;
219 } else {
220 s->irq_target[i] = 0;
223 if (s->security_extn && s->irq_reset_nonsecure) {
224 for (i = 0; i < GIC_MAXIRQ; i++) {
225 GIC_SET_GROUP(i, ALL_CPU_MASK);
229 s->ctlr = 0;
232 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
233 bool secure_boot)
235 GICState *s = ARM_GIC_COMMON(obj);
237 if (s->security_extn && !secure_boot) {
238 /* We're directly booting a kernel into NonSecure. If this GIC
239 * implements the security extensions then we must configure it
240 * to have all the interrupts be NonSecure (this is a job that
241 * is done by the Secure boot firmware in real hardware, and in
242 * this mode QEMU is acting as a minimalist firmware-and-bootloader
243 * equivalent).
245 s->irq_reset_nonsecure = true;
249 static Property arm_gic_common_properties[] = {
250 DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
251 DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
252 /* Revision can be 1 or 2 for GIC architecture specification
253 * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
255 DEFINE_PROP_UINT32("revision", GICState, revision, 1),
256 /* True if the GIC should implement the security extensions */
257 DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
258 DEFINE_PROP_END_OF_LIST(),
261 static void arm_gic_common_class_init(ObjectClass *klass, void *data)
263 DeviceClass *dc = DEVICE_CLASS(klass);
264 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
266 dc->reset = arm_gic_common_reset;
267 dc->realize = arm_gic_common_realize;
268 dc->props = arm_gic_common_properties;
269 dc->vmsd = &vmstate_gic;
270 albifc->arm_linux_init = arm_gic_common_linux_init;
273 static const TypeInfo arm_gic_common_type = {
274 .name = TYPE_ARM_GIC_COMMON,
275 .parent = TYPE_SYS_BUS_DEVICE,
276 .instance_size = sizeof(GICState),
277 .class_size = sizeof(ARMGICCommonClass),
278 .class_init = arm_gic_common_class_init,
279 .abstract = true,
280 .interfaces = (InterfaceInfo []) {
281 { TYPE_ARM_LINUX_BOOT_IF },
282 { },
286 static void register_types(void)
288 type_register_static(&arm_gic_common_type);
291 type_init(register_types)