cpu-exec: avoid cpu_exec_nocache infinite loop with record/replay
[qemu/ar7.git] / accel / tcg / cpu-exec.c
blobf3de96f3466517c3e77b27934d0cf9c69c51a1a2
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/rcu.h"
30 #include "exec/tb-hash.h"
31 #include "exec/tb-lookup.h"
32 #include "exec/log.h"
33 #include "qemu/main-loop.h"
34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
35 #include "hw/i386/apic.h"
36 #endif
37 #include "sysemu/cpus.h"
38 #include "sysemu/replay.h"
40 /* -icount align implementation. */
42 typedef struct SyncClocks {
43 int64_t diff_clk;
44 int64_t last_cpu_icount;
45 int64_t realtime_clock;
46 } SyncClocks;
48 #if !defined(CONFIG_USER_ONLY)
49 /* Allow the guest to have a max 3ms advance.
50 * The difference between the 2 clocks could therefore
51 * oscillate around 0.
53 #define VM_CLOCK_ADVANCE 3000000
54 #define THRESHOLD_REDUCE 1.5
55 #define MAX_DELAY_PRINT_RATE 2000000000LL
56 #define MAX_NB_PRINTS 100
58 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
60 int64_t cpu_icount;
62 if (!icount_align_option) {
63 return;
66 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
67 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
68 sc->last_cpu_icount = cpu_icount;
70 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
71 #ifndef _WIN32
72 struct timespec sleep_delay, rem_delay;
73 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
74 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
75 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
76 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
77 } else {
78 sc->diff_clk = 0;
80 #else
81 Sleep(sc->diff_clk / SCALE_MS);
82 sc->diff_clk = 0;
83 #endif
87 static void print_delay(const SyncClocks *sc)
89 static float threshold_delay;
90 static int64_t last_realtime_clock;
91 static int nb_prints;
93 if (icount_align_option &&
94 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
95 nb_prints < MAX_NB_PRINTS) {
96 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
97 (-sc->diff_clk / (float)1000000000LL <
98 (threshold_delay - THRESHOLD_REDUCE))) {
99 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
100 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
101 threshold_delay - 1,
102 threshold_delay);
103 nb_prints++;
104 last_realtime_clock = sc->realtime_clock;
109 static void init_delay_params(SyncClocks *sc,
110 const CPUState *cpu)
112 if (!icount_align_option) {
113 return;
115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
117 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
118 if (sc->diff_clk < max_delay) {
119 max_delay = sc->diff_clk;
121 if (sc->diff_clk > max_advance) {
122 max_advance = sc->diff_clk;
125 /* Print every 2s max if the guest is late. We limit the number
126 of printed messages to NB_PRINT_MAX(currently 100) */
127 print_delay(sc);
129 #else
130 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
134 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
137 #endif /* CONFIG USER ONLY */
139 /* Execute a TB, and fix up the CPU state afterwards if necessary */
140 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
142 CPUArchState *env = cpu->env_ptr;
143 uintptr_t ret;
144 TranslationBlock *last_tb;
145 int tb_exit;
146 uint8_t *tb_ptr = itb->tc.ptr;
148 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
149 "Trace %p [%d: " TARGET_FMT_lx "] %s\n",
150 itb->tc.ptr, cpu->cpu_index, itb->pc,
151 lookup_symbol(itb->pc));
153 #if defined(DEBUG_DISAS)
154 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
155 && qemu_log_in_addr_range(itb->pc)) {
156 qemu_log_lock();
157 #if defined(TARGET_I386)
158 log_cpu_state(cpu, CPU_DUMP_CCOP);
159 #else
160 log_cpu_state(cpu, 0);
161 #endif
162 qemu_log_unlock();
164 #endif /* DEBUG_DISAS */
166 cpu->can_do_io = !use_icount;
167 ret = tcg_qemu_tb_exec(env, tb_ptr);
168 cpu->can_do_io = 1;
169 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
170 tb_exit = ret & TB_EXIT_MASK;
171 trace_exec_tb_exit(last_tb, tb_exit);
173 if (tb_exit > TB_EXIT_IDX1) {
174 /* We didn't start executing this TB (eg because the instruction
175 * counter hit zero); we must restore the guest PC to the address
176 * of the start of the TB.
178 CPUClass *cc = CPU_GET_CLASS(cpu);
179 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
180 "Stopped execution of TB chain before %p ["
181 TARGET_FMT_lx "] %s\n",
182 last_tb->tc.ptr, last_tb->pc,
183 lookup_symbol(last_tb->pc));
184 if (cc->synchronize_from_tb) {
185 cc->synchronize_from_tb(cpu, last_tb);
186 } else {
187 assert(cc->set_pc);
188 cc->set_pc(cpu, last_tb->pc);
191 return ret;
194 #ifndef CONFIG_USER_ONLY
195 /* Execute the code without caching the generated code. An interpreter
196 could be used if available. */
197 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
198 TranslationBlock *orig_tb, bool ignore_icount)
200 TranslationBlock *tb;
201 uint32_t cflags = curr_cflags() | CF_NOCACHE;
203 if (ignore_icount) {
204 cflags &= ~CF_USE_ICOUNT;
207 /* Should never happen.
208 We only end up here when an existing TB is too long. */
209 cflags |= MIN(max_cycles, CF_COUNT_MASK);
211 tb_lock();
212 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
213 orig_tb->flags, cflags);
214 tb->orig_tb = orig_tb;
215 tb_unlock();
217 /* execute the generated code */
218 trace_exec_tb_nocache(tb, tb->pc);
219 cpu_tb_exec(cpu, tb);
221 tb_lock();
222 tb_phys_invalidate(tb, -1);
223 tb_remove(tb);
224 tb_unlock();
226 #endif
228 void cpu_exec_step_atomic(CPUState *cpu)
230 CPUClass *cc = CPU_GET_CLASS(cpu);
231 TranslationBlock *tb;
232 target_ulong cs_base, pc;
233 uint32_t flags;
234 uint32_t cflags = 1;
235 uint32_t cf_mask = cflags & CF_HASH_MASK;
236 /* volatile because we modify it between setjmp and longjmp */
237 volatile bool in_exclusive_region = false;
239 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
240 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
241 if (tb == NULL) {
242 mmap_lock();
243 tb_lock();
244 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
245 if (likely(tb == NULL)) {
246 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
248 tb_unlock();
249 mmap_unlock();
252 start_exclusive();
254 /* Since we got here, we know that parallel_cpus must be true. */
255 parallel_cpus = false;
256 in_exclusive_region = true;
257 cc->cpu_exec_enter(cpu);
258 /* execute the generated code */
259 trace_exec_tb(tb, pc);
260 cpu_tb_exec(cpu, tb);
261 cc->cpu_exec_exit(cpu);
262 } else {
263 /* We may have exited due to another problem here, so we need
264 * to reset any tb_locks we may have taken but didn't release.
265 * The mmap_lock is dropped by tb_gen_code if it runs out of
266 * memory.
268 #ifndef CONFIG_SOFTMMU
269 tcg_debug_assert(!have_mmap_lock());
270 #endif
271 tb_lock_reset();
274 if (in_exclusive_region) {
275 /* We might longjump out of either the codegen or the
276 * execution, so must make sure we only end the exclusive
277 * region if we started it.
279 parallel_cpus = true;
280 end_exclusive();
284 struct tb_desc {
285 target_ulong pc;
286 target_ulong cs_base;
287 CPUArchState *env;
288 tb_page_addr_t phys_page1;
289 uint32_t flags;
290 uint32_t cf_mask;
291 uint32_t trace_vcpu_dstate;
294 static bool tb_cmp(const void *p, const void *d)
296 const TranslationBlock *tb = p;
297 const struct tb_desc *desc = d;
299 if (tb->pc == desc->pc &&
300 tb->page_addr[0] == desc->phys_page1 &&
301 tb->cs_base == desc->cs_base &&
302 tb->flags == desc->flags &&
303 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
304 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
305 /* check next page if needed */
306 if (tb->page_addr[1] == -1) {
307 return true;
308 } else {
309 tb_page_addr_t phys_page2;
310 target_ulong virt_page2;
312 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
313 phys_page2 = get_page_addr_code(desc->env, virt_page2);
314 if (tb->page_addr[1] == phys_page2) {
315 return true;
319 return false;
322 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
323 target_ulong cs_base, uint32_t flags,
324 uint32_t cf_mask)
326 tb_page_addr_t phys_pc;
327 struct tb_desc desc;
328 uint32_t h;
330 desc.env = (CPUArchState *)cpu->env_ptr;
331 desc.cs_base = cs_base;
332 desc.flags = flags;
333 desc.cf_mask = cf_mask;
334 desc.trace_vcpu_dstate = *cpu->trace_dstate;
335 desc.pc = pc;
336 phys_pc = get_page_addr_code(desc.env, pc);
337 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
338 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
339 return qht_lookup(&tb_ctx.htable, tb_cmp, &desc, h);
342 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
344 if (TCG_TARGET_HAS_direct_jump) {
345 uintptr_t offset = tb->jmp_target_arg[n];
346 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
347 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
348 } else {
349 tb->jmp_target_arg[n] = addr;
353 /* Called with tb_lock held. */
354 static inline void tb_add_jump(TranslationBlock *tb, int n,
355 TranslationBlock *tb_next)
357 assert(n < ARRAY_SIZE(tb->jmp_list_next));
358 if (tb->jmp_list_next[n]) {
359 /* Another thread has already done this while we were
360 * outside of the lock; nothing to do in this case */
361 return;
363 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
364 "Linking TBs %p [" TARGET_FMT_lx
365 "] index %d -> %p [" TARGET_FMT_lx "]\n",
366 tb->tc.ptr, tb->pc, n,
367 tb_next->tc.ptr, tb_next->pc);
369 /* patch the native jump address */
370 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
372 /* add in TB jmp circular list */
373 tb->jmp_list_next[n] = tb_next->jmp_list_first;
374 tb_next->jmp_list_first = (uintptr_t)tb | n;
377 static inline TranslationBlock *tb_find(CPUState *cpu,
378 TranslationBlock *last_tb,
379 int tb_exit, uint32_t cf_mask)
381 TranslationBlock *tb;
382 target_ulong cs_base, pc;
383 uint32_t flags;
384 bool acquired_tb_lock = false;
386 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
387 if (tb == NULL) {
388 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
389 * taken outside tb_lock. As system emulation is currently
390 * single threaded the locks are NOPs.
392 mmap_lock();
393 tb_lock();
394 acquired_tb_lock = true;
396 /* There's a chance that our desired tb has been translated while
397 * taking the locks so we check again inside the lock.
399 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
400 if (likely(tb == NULL)) {
401 /* if no translated code available, then translate it now */
402 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
405 mmap_unlock();
406 /* We add the TB in the virtual pc hash table for the fast lookup */
407 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
409 #ifndef CONFIG_USER_ONLY
410 /* We don't take care of direct jumps when address mapping changes in
411 * system emulation. So it's not safe to make a direct jump to a TB
412 * spanning two pages because the mapping for the second page can change.
414 if (tb->page_addr[1] != -1) {
415 last_tb = NULL;
417 #endif
418 /* See if we can patch the calling TB. */
419 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
420 if (!acquired_tb_lock) {
421 tb_lock();
422 acquired_tb_lock = true;
424 if (!(tb->cflags & CF_INVALID)) {
425 tb_add_jump(last_tb, tb_exit, tb);
428 if (acquired_tb_lock) {
429 tb_unlock();
431 return tb;
434 static inline bool cpu_handle_halt(CPUState *cpu)
436 if (cpu->halted) {
437 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
438 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
439 && replay_interrupt()) {
440 X86CPU *x86_cpu = X86_CPU(cpu);
441 qemu_mutex_lock_iothread();
442 apic_poll_irq(x86_cpu->apic_state);
443 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
444 qemu_mutex_unlock_iothread();
446 #endif
447 if (!cpu_has_work(cpu)) {
448 return true;
451 cpu->halted = 0;
454 return false;
457 static inline void cpu_handle_debug_exception(CPUState *cpu)
459 CPUClass *cc = CPU_GET_CLASS(cpu);
460 CPUWatchpoint *wp;
462 if (!cpu->watchpoint_hit) {
463 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
464 wp->flags &= ~BP_WATCHPOINT_HIT;
468 cc->debug_excp_handler(cpu);
471 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
473 if (cpu->exception_index < 0) {
474 #ifndef CONFIG_USER_ONLY
475 if (replay_has_exception()
476 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
477 /* try to cause an exception pending in the log */
478 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
480 #endif
481 if (cpu->exception_index < 0) {
482 return false;
486 if (cpu->exception_index >= EXCP_INTERRUPT) {
487 /* exit request from the cpu execution loop */
488 *ret = cpu->exception_index;
489 if (*ret == EXCP_DEBUG) {
490 cpu_handle_debug_exception(cpu);
492 cpu->exception_index = -1;
493 return true;
494 } else {
495 #if defined(CONFIG_USER_ONLY)
496 /* if user mode only, we simulate a fake exception
497 which will be handled outside the cpu execution
498 loop */
499 #if defined(TARGET_I386)
500 CPUClass *cc = CPU_GET_CLASS(cpu);
501 cc->do_interrupt(cpu);
502 #endif
503 *ret = cpu->exception_index;
504 cpu->exception_index = -1;
505 return true;
506 #else
507 if (replay_exception()) {
508 CPUClass *cc = CPU_GET_CLASS(cpu);
509 qemu_mutex_lock_iothread();
510 cc->do_interrupt(cpu);
511 qemu_mutex_unlock_iothread();
512 cpu->exception_index = -1;
513 } else if (!replay_has_interrupt()) {
514 /* give a chance to iothread in replay mode */
515 *ret = EXCP_INTERRUPT;
516 return true;
518 #endif
521 return false;
524 static inline bool cpu_handle_interrupt(CPUState *cpu,
525 TranslationBlock **last_tb)
527 CPUClass *cc = CPU_GET_CLASS(cpu);
528 int32_t insns_left;
530 /* Clear the interrupt flag now since we're processing
531 * cpu->interrupt_request and cpu->exit_request.
533 insns_left = atomic_read(&cpu->icount_decr.u32);
534 atomic_set(&cpu->icount_decr.u16.high, 0);
535 if (unlikely(insns_left < 0)) {
536 /* Ensure the zeroing of icount_decr comes before the next read
537 * of cpu->exit_request or cpu->interrupt_request.
539 smp_mb();
542 if (unlikely(atomic_read(&cpu->interrupt_request))) {
543 int interrupt_request;
544 qemu_mutex_lock_iothread();
545 interrupt_request = cpu->interrupt_request;
546 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
547 /* Mask out external interrupts for this step. */
548 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
550 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
551 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
552 cpu->exception_index = EXCP_DEBUG;
553 qemu_mutex_unlock_iothread();
554 return true;
556 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
557 /* Do nothing */
558 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
559 replay_interrupt();
560 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
561 cpu->halted = 1;
562 cpu->exception_index = EXCP_HLT;
563 qemu_mutex_unlock_iothread();
564 return true;
566 #if defined(TARGET_I386)
567 else if (interrupt_request & CPU_INTERRUPT_INIT) {
568 X86CPU *x86_cpu = X86_CPU(cpu);
569 CPUArchState *env = &x86_cpu->env;
570 replay_interrupt();
571 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
572 do_cpu_init(x86_cpu);
573 cpu->exception_index = EXCP_HALTED;
574 qemu_mutex_unlock_iothread();
575 return true;
577 #else
578 else if (interrupt_request & CPU_INTERRUPT_RESET) {
579 replay_interrupt();
580 cpu_reset(cpu);
581 qemu_mutex_unlock_iothread();
582 return true;
584 #endif
585 /* The target hook has 3 exit conditions:
586 False when the interrupt isn't processed,
587 True when it is, and we should restart on a new TB,
588 and via longjmp via cpu_loop_exit. */
589 else {
590 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
591 replay_interrupt();
592 *last_tb = NULL;
594 /* The target hook may have updated the 'cpu->interrupt_request';
595 * reload the 'interrupt_request' value */
596 interrupt_request = cpu->interrupt_request;
598 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
599 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
600 /* ensure that no TB jump will be modified as
601 the program flow was changed */
602 *last_tb = NULL;
605 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
606 qemu_mutex_unlock_iothread();
609 /* Finally, check if we need to exit to the main loop. */
610 if (unlikely(atomic_read(&cpu->exit_request)
611 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
612 atomic_set(&cpu->exit_request, 0);
613 if (cpu->exception_index == -1) {
614 cpu->exception_index = EXCP_INTERRUPT;
616 return true;
619 return false;
622 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
623 TranslationBlock **last_tb, int *tb_exit)
625 uintptr_t ret;
626 int32_t insns_left;
628 trace_exec_tb(tb, tb->pc);
629 ret = cpu_tb_exec(cpu, tb);
630 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
631 *tb_exit = ret & TB_EXIT_MASK;
632 if (*tb_exit != TB_EXIT_REQUESTED) {
633 *last_tb = tb;
634 return;
637 *last_tb = NULL;
638 insns_left = atomic_read(&cpu->icount_decr.u32);
639 if (insns_left < 0) {
640 /* Something asked us to stop executing chained TBs; just
641 * continue round the main loop. Whatever requested the exit
642 * will also have set something else (eg exit_request or
643 * interrupt_request) which will be handled by
644 * cpu_handle_interrupt. cpu_handle_interrupt will also
645 * clear cpu->icount_decr.u16.high.
647 return;
650 /* Instruction counter expired. */
651 assert(use_icount);
652 #ifndef CONFIG_USER_ONLY
653 /* Ensure global icount has gone forward */
654 cpu_update_icount(cpu);
655 /* Refill decrementer and continue execution. */
656 insns_left = MIN(0xffff, cpu->icount_budget);
657 cpu->icount_decr.u16.low = insns_left;
658 cpu->icount_extra = cpu->icount_budget - insns_left;
659 if (!cpu->icount_extra) {
660 /* Execute any remaining instructions, then let the main loop
661 * handle the next event.
663 if (insns_left > 0) {
664 cpu_exec_nocache(cpu, insns_left, tb, false);
667 #endif
670 /* main execution loop */
672 int cpu_exec(CPUState *cpu)
674 CPUClass *cc = CPU_GET_CLASS(cpu);
675 int ret;
676 SyncClocks sc = { 0 };
678 /* replay_interrupt may need current_cpu */
679 current_cpu = cpu;
681 if (cpu_handle_halt(cpu)) {
682 return EXCP_HALTED;
685 rcu_read_lock();
687 cc->cpu_exec_enter(cpu);
689 /* Calculate difference between guest clock and host clock.
690 * This delay includes the delay of the last cycle, so
691 * what we have to do is sleep until it is 0. As for the
692 * advance/delay we gain here, we try to fix it next time.
694 init_delay_params(&sc, cpu);
696 /* prepare setjmp context for exception handling */
697 if (sigsetjmp(cpu->jmp_env, 0) != 0) {
698 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
699 /* Some compilers wrongly smash all local variables after
700 * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
701 * Reload essential local variables here for those compilers.
702 * Newer versions of gcc would complain about this code (-Wclobbered). */
703 cpu = current_cpu;
704 cc = CPU_GET_CLASS(cpu);
705 #else /* buggy compiler */
706 /* Assert that the compiler does not smash local variables. */
707 g_assert(cpu == current_cpu);
708 g_assert(cc == CPU_GET_CLASS(cpu));
709 #endif /* buggy compiler */
710 cpu->can_do_io = 1;
711 tb_lock_reset();
712 if (qemu_mutex_iothread_locked()) {
713 qemu_mutex_unlock_iothread();
717 /* if an exception is pending, we execute it here */
718 while (!cpu_handle_exception(cpu, &ret)) {
719 TranslationBlock *last_tb = NULL;
720 int tb_exit = 0;
722 while (!cpu_handle_interrupt(cpu, &last_tb)) {
723 uint32_t cflags = cpu->cflags_next_tb;
724 TranslationBlock *tb;
726 /* When requested, use an exact setting for cflags for the next
727 execution. This is used for icount, precise smc, and stop-
728 after-access watchpoints. Since this request should never
729 have CF_INVALID set, -1 is a convenient invalid value that
730 does not require tcg headers for cpu_common_reset. */
731 if (cflags == -1) {
732 cflags = curr_cflags();
733 } else {
734 cpu->cflags_next_tb = -1;
737 tb = tb_find(cpu, last_tb, tb_exit, cflags);
738 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
739 /* Try to align the host and virtual clocks
740 if the guest is in advance */
741 align_clocks(&sc, cpu);
745 cc->cpu_exec_exit(cpu);
746 rcu_read_unlock();
748 return ret;