hw/vmware_vga.c: fix screen resize bug introduced after console revamp
[qemu/ar7.git] / target-arm / helper.c
blobfd055e89f264ed55396d6cfef432d153b554744f
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
17 int nregs;
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
39 return 0;
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
44 int nregs;
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
64 return 0;
67 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
69 env->cp15.c3 = value;
70 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
71 return 0;
74 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
76 if (env->cp15.c13_fcse != value) {
77 /* Unlike real hardware the qemu TLB uses virtual addresses,
78 * not modified virtual addresses, so this causes a TLB flush.
80 tlb_flush(env, 1);
81 env->cp15.c13_fcse = value;
83 return 0;
85 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
86 uint64_t value)
88 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
89 /* For VMSA (when not using the LPAE long descriptor page table
90 * format) this register includes the ASID, so do a TLB flush.
91 * For PMSA it is purely a process ID and no action is needed.
93 tlb_flush(env, 1);
95 env->cp15.c13_context = value;
96 return 0;
99 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
100 uint64_t value)
102 /* Invalidate all (TLBIALL) */
103 tlb_flush(env, 1);
104 return 0;
107 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
108 uint64_t value)
110 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
111 tlb_flush_page(env, value & TARGET_PAGE_MASK);
112 return 0;
115 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
116 uint64_t value)
118 /* Invalidate by ASID (TLBIASID) */
119 tlb_flush(env, value == 0);
120 return 0;
123 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
124 uint64_t value)
126 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
127 tlb_flush_page(env, value & TARGET_PAGE_MASK);
128 return 0;
131 static const ARMCPRegInfo cp_reginfo[] = {
132 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
133 * version" bits will read as a reserved value, which should cause
134 * Linux to not try to use the debug hardware.
136 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
137 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
138 /* MMU Domain access control / MPU write buffer control */
139 { .name = "DACR", .cp = 15,
140 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
141 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
142 .resetvalue = 0, .writefn = dacr_write },
143 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
144 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
145 .resetvalue = 0, .writefn = fcse_write },
146 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
147 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
148 .resetvalue = 0, .writefn = contextidr_write },
149 /* ??? This covers not just the impdef TLB lockdown registers but also
150 * some v7VMSA registers relating to TEX remap, so it is overly broad.
152 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
153 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
154 /* MMU TLB control. Note that the wildcarding means we cover not just
155 * the unified TLB ops but also the dside/iside/inner-shareable variants.
157 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
158 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
159 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
160 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
161 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
162 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
163 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
164 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
165 /* Cache maintenance ops; some of this space may be overridden later. */
166 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
167 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
168 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
169 REGINFO_SENTINEL
172 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
173 /* Not all pre-v6 cores implemented this WFI, so this is slightly
174 * over-broad.
176 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
177 .access = PL1_W, .type = ARM_CP_WFI },
178 REGINFO_SENTINEL
181 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
182 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
183 * is UNPREDICTABLE; we choose to NOP as most implementations do).
185 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
186 .access = PL1_W, .type = ARM_CP_WFI },
187 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
188 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
189 * OMAPCP will override this space.
191 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
192 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
193 .resetvalue = 0 },
194 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
195 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
196 .resetvalue = 0 },
197 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
198 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
200 REGINFO_SENTINEL
203 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
205 if (env->cp15.c1_coproc != value) {
206 env->cp15.c1_coproc = value;
207 /* ??? Is this safe when called from within a TB? */
208 tb_flush(env);
210 return 0;
213 static const ARMCPRegInfo v6_cp_reginfo[] = {
214 /* prefetch by MVA in v6, NOP in v7 */
215 { .name = "MVA_prefetch",
216 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
217 .access = PL1_W, .type = ARM_CP_NOP },
218 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
219 .access = PL0_W, .type = ARM_CP_NOP },
220 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
221 .access = PL0_W, .type = ARM_CP_NOP },
222 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
223 .access = PL0_W, .type = ARM_CP_NOP },
224 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
226 .resetvalue = 0, },
227 /* Watchpoint Fault Address Register : should actually only be present
228 * for 1136, 1176, 11MPCore.
230 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
231 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
232 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
233 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
234 .resetvalue = 0, .writefn = cpacr_write },
235 REGINFO_SENTINEL
238 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
239 uint64_t *value)
241 /* Generic performance monitor register read function for where
242 * user access may be allowed by PMUSERENR.
244 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
245 return EXCP_UDEF;
247 *value = CPREG_FIELD32(env, ri);
248 return 0;
251 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
252 uint64_t value)
254 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
255 return EXCP_UDEF;
257 /* only the DP, X, D and E bits are writable */
258 env->cp15.c9_pmcr &= ~0x39;
259 env->cp15.c9_pmcr |= (value & 0x39);
260 return 0;
263 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
264 uint64_t value)
266 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
267 return EXCP_UDEF;
269 value &= (1 << 31);
270 env->cp15.c9_pmcnten |= value;
271 return 0;
274 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
275 uint64_t value)
277 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
278 return EXCP_UDEF;
280 value &= (1 << 31);
281 env->cp15.c9_pmcnten &= ~value;
282 return 0;
285 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
286 uint64_t value)
288 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
289 return EXCP_UDEF;
291 env->cp15.c9_pmovsr &= ~value;
292 return 0;
295 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
298 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
299 return EXCP_UDEF;
301 env->cp15.c9_pmxevtyper = value & 0xff;
302 return 0;
305 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 uint64_t value)
308 env->cp15.c9_pmuserenr = value & 1;
309 return 0;
312 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
313 uint64_t value)
315 /* We have no event counters so only the C bit can be changed */
316 value &= (1 << 31);
317 env->cp15.c9_pminten |= value;
318 return 0;
321 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
324 value &= (1 << 31);
325 env->cp15.c9_pminten &= ~value;
326 return 0;
329 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
330 uint64_t *value)
332 ARMCPU *cpu = arm_env_get_cpu(env);
333 *value = cpu->ccsidr[env->cp15.c0_cssel];
334 return 0;
337 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
338 uint64_t value)
340 env->cp15.c0_cssel = value & 0xf;
341 return 0;
344 static const ARMCPRegInfo v7_cp_reginfo[] = {
345 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
346 * debug components
348 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
349 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
350 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
351 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
352 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
353 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
354 .access = PL1_W, .type = ARM_CP_NOP },
355 /* Performance monitors are implementation defined in v7,
356 * but with an ARM recommended set of registers, which we
357 * follow (although we don't actually implement any counters)
359 * Performance registers fall into three categories:
360 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
361 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
362 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
363 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
364 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
366 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
367 .access = PL0_RW, .resetvalue = 0,
368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
369 .readfn = pmreg_read, .writefn = pmcntenset_write },
370 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
371 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
372 .readfn = pmreg_read, .writefn = pmcntenclr_write },
373 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
374 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
375 .readfn = pmreg_read, .writefn = pmovsr_write },
376 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
377 * respect PMUSERENR.
379 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
380 .access = PL0_W, .type = ARM_CP_NOP },
381 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
382 * We choose to RAZ/WI. XXX should respect PMUSERENR.
384 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
385 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
386 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
387 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
388 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
389 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
390 .access = PL0_RW,
391 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
392 .readfn = pmreg_read, .writefn = pmxevtyper_write },
393 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
394 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
395 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
396 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R | PL1_RW,
398 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
399 .resetvalue = 0,
400 .writefn = pmuserenr_write },
401 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
402 .access = PL1_RW,
403 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
404 .resetvalue = 0,
405 .writefn = pmintenset_write },
406 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
407 .access = PL1_RW,
408 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
409 .resetvalue = 0,
410 .writefn = pmintenclr_write },
411 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
413 .resetvalue = 0, },
414 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
415 .access = PL1_R, .readfn = ccsidr_read },
416 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
418 .writefn = csselr_write, .resetvalue = 0 },
419 /* Auxiliary ID register: this actually has an IMPDEF value but for now
420 * just RAZ for all cores:
422 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
424 REGINFO_SENTINEL
427 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
429 value &= 1;
430 env->teecr = value;
431 return 0;
434 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
435 uint64_t *value)
437 /* This is a helper function because the user access rights
438 * depend on the value of the TEECR.
440 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
441 return EXCP_UDEF;
443 *value = env->teehbr;
444 return 0;
447 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 uint64_t value)
450 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
451 return EXCP_UDEF;
453 env->teehbr = value;
454 return 0;
457 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
458 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
459 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
460 .resetvalue = 0,
461 .writefn = teecr_write },
462 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
463 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
464 .resetvalue = 0,
465 .readfn = teehbr_read, .writefn = teehbr_write },
466 REGINFO_SENTINEL
469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
470 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
471 .access = PL0_RW,
472 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
473 .resetvalue = 0 },
474 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
475 .access = PL0_R|PL1_W,
476 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
477 .resetvalue = 0 },
478 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
479 .access = PL1_RW,
480 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
481 .resetvalue = 0 },
482 REGINFO_SENTINEL
485 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
486 /* Dummy implementation: RAZ/WI the whole crn=14 space */
487 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
488 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
489 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
490 REGINFO_SENTINEL
493 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
495 if (arm_feature(env, ARM_FEATURE_LPAE)) {
496 env->cp15.c7_par = value;
497 } else if (arm_feature(env, ARM_FEATURE_V7)) {
498 env->cp15.c7_par = value & 0xfffff6ff;
499 } else {
500 env->cp15.c7_par = value & 0xfffff1ff;
502 return 0;
505 #ifndef CONFIG_USER_ONLY
506 /* get_phys_addr() isn't present for user-mode-only targets */
508 /* Return true if extended addresses are enabled, ie this is an
509 * LPAE implementation and we are using the long-descriptor translation
510 * table format because the TTBCR EAE bit is set.
512 static inline bool extended_addresses_enabled(CPUARMState *env)
514 return arm_feature(env, ARM_FEATURE_LPAE)
515 && (env->cp15.c2_control & (1 << 31));
518 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
520 hwaddr phys_addr;
521 target_ulong page_size;
522 int prot;
523 int ret, is_user = ri->opc2 & 2;
524 int access_type = ri->opc2 & 1;
526 if (ri->opc2 & 4) {
527 /* Other states are only available with TrustZone */
528 return EXCP_UDEF;
530 ret = get_phys_addr(env, value, access_type, is_user,
531 &phys_addr, &prot, &page_size);
532 if (extended_addresses_enabled(env)) {
533 /* ret is a DFSR/IFSR value for the long descriptor
534 * translation table format, but with WnR always clear.
535 * Convert it to a 64-bit PAR.
537 uint64_t par64 = (1 << 11); /* LPAE bit always set */
538 if (ret == 0) {
539 par64 |= phys_addr & ~0xfffULL;
540 /* We don't set the ATTR or SH fields in the PAR. */
541 } else {
542 par64 |= 1; /* F */
543 par64 |= (ret & 0x3f) << 1; /* FS */
544 /* Note that S2WLK and FSTAGE are always zero, because we don't
545 * implement virtualization and therefore there can't be a stage 2
546 * fault.
549 env->cp15.c7_par = par64;
550 env->cp15.c7_par_hi = par64 >> 32;
551 } else {
552 /* ret is a DFSR/IFSR value for the short descriptor
553 * translation table format (with WnR always clear).
554 * Convert it to a 32-bit PAR.
556 if (ret == 0) {
557 /* We do not set any attribute bits in the PAR */
558 if (page_size == (1 << 24)
559 && arm_feature(env, ARM_FEATURE_V7)) {
560 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
561 } else {
562 env->cp15.c7_par = phys_addr & 0xfffff000;
564 } else {
565 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
566 ((ret & (12 << 1)) >> 6) |
567 ((ret & 0xf) << 1) | 1;
569 env->cp15.c7_par_hi = 0;
571 return 0;
573 #endif
575 static const ARMCPRegInfo vapa_cp_reginfo[] = {
576 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
577 .access = PL1_RW, .resetvalue = 0,
578 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
579 .writefn = par_write },
580 #ifndef CONFIG_USER_ONLY
581 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
582 .access = PL1_W, .writefn = ats_write },
583 #endif
584 REGINFO_SENTINEL
587 /* Return basic MPU access permission bits. */
588 static uint32_t simple_mpu_ap_bits(uint32_t val)
590 uint32_t ret;
591 uint32_t mask;
592 int i;
593 ret = 0;
594 mask = 3;
595 for (i = 0; i < 16; i += 2) {
596 ret |= (val >> i) & mask;
597 mask <<= 2;
599 return ret;
602 /* Pad basic MPU access permission bits to extended format. */
603 static uint32_t extended_mpu_ap_bits(uint32_t val)
605 uint32_t ret;
606 uint32_t mask;
607 int i;
608 ret = 0;
609 mask = 3;
610 for (i = 0; i < 16; i += 2) {
611 ret |= (val & mask) << i;
612 mask <<= 2;
614 return ret;
617 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
620 env->cp15.c5_data = extended_mpu_ap_bits(value);
621 return 0;
624 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t *value)
627 *value = simple_mpu_ap_bits(env->cp15.c5_data);
628 return 0;
631 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
634 env->cp15.c5_insn = extended_mpu_ap_bits(value);
635 return 0;
638 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
639 uint64_t *value)
641 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
642 return 0;
645 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t *value)
648 if (ri->crm >= 8) {
649 return EXCP_UDEF;
651 *value = env->cp15.c6_region[ri->crm];
652 return 0;
655 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
658 if (ri->crm >= 8) {
659 return EXCP_UDEF;
661 env->cp15.c6_region[ri->crm] = value;
662 return 0;
665 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
666 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
667 .access = PL1_RW,
668 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
669 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
670 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
671 .access = PL1_RW,
672 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
673 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
674 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
677 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
680 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
683 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
686 /* Protection region base and size registers */
687 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
688 .opc2 = CP_ANY, .access = PL1_RW,
689 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
690 REGINFO_SENTINEL
693 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 if (arm_feature(env, ARM_FEATURE_LPAE)) {
697 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
698 /* With LPAE the TTBCR could result in a change of ASID
699 * via the TTBCR.A1 bit, so do a TLB flush.
701 tlb_flush(env, 1);
702 } else {
703 value &= 7;
705 /* Note that we always calculate c2_mask and c2_base_mask, but
706 * they are only used for short-descriptor tables (ie if EAE is 0);
707 * for long-descriptor tables the TTBCR fields are used differently
708 * and the c2_mask and c2_base_mask values are meaningless.
710 env->cp15.c2_control = value;
711 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
712 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
713 return 0;
716 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
718 env->cp15.c2_base_mask = 0xffffc000u;
719 env->cp15.c2_control = 0;
720 env->cp15.c2_mask = 0;
723 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
724 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
725 .access = PL1_RW,
726 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
727 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
728 .access = PL1_RW,
729 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
730 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL1_RW,
732 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
733 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
734 .access = PL1_RW,
735 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
736 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
737 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
738 .resetfn = vmsa_ttbcr_reset,
739 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
740 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
741 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
742 .resetvalue = 0, },
743 REGINFO_SENTINEL
746 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
747 uint64_t value)
749 env->cp15.c15_ticonfig = value & 0xe7;
750 /* The OS_TYPE bit in this register changes the reported CPUID! */
751 env->cp15.c0_cpuid = (value & (1 << 5)) ?
752 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
753 return 0;
756 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
759 env->cp15.c15_threadid = value & 0xffff;
760 return 0;
763 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t value)
766 /* Wait-for-interrupt (deprecated) */
767 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
768 return 0;
771 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
774 /* On OMAP there are registers indicating the max/min index of dcache lines
775 * containing a dirty line; cache flush operations have to reset these.
777 env->cp15.c15_i_max = 0x000;
778 env->cp15.c15_i_min = 0xff0;
779 return 0;
782 static const ARMCPRegInfo omap_cp_reginfo[] = {
783 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
785 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
786 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
787 .access = PL1_RW, .type = ARM_CP_NOP },
788 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
789 .access = PL1_RW,
790 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
791 .writefn = omap_ticonfig_write },
792 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
793 .access = PL1_RW,
794 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
795 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .resetvalue = 0xff0,
797 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
798 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
799 .access = PL1_RW,
800 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
801 .writefn = omap_threadid_write },
802 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
803 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
804 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
805 /* TODO: Peripheral port remap register:
806 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
807 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
808 * when MMU is off.
810 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
812 .writefn = omap_cachemaint_write },
813 { .name = "C9", .cp = 15, .crn = 9,
814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
815 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
816 REGINFO_SENTINEL
819 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
822 value &= 0x3fff;
823 if (env->cp15.c15_cpar != value) {
824 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
825 tb_flush(env);
826 env->cp15.c15_cpar = value;
828 return 0;
831 static const ARMCPRegInfo xscale_cp_reginfo[] = {
832 { .name = "XSCALE_CPAR",
833 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
835 .writefn = xscale_cpar_write, },
836 { .name = "XSCALE_AUXCR",
837 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
839 .resetvalue = 0, },
840 REGINFO_SENTINEL
843 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
844 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
845 * implementation of this implementation-defined space.
846 * Ideally this should eventually disappear in favour of actually
847 * implementing the correct behaviour for all cores.
849 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
850 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
852 REGINFO_SENTINEL
855 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
856 /* Cache status: RAZ because we have no cache so it's always clean */
857 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
859 REGINFO_SENTINEL
862 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
863 /* We never have a a block transfer operation in progress */
864 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
865 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
866 /* The cache ops themselves: these all NOP for QEMU */
867 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
868 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
869 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
870 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
871 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
872 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
873 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
874 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
875 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
876 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
877 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
878 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
879 REGINFO_SENTINEL
882 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
883 /* The cache test-and-clean instructions always return (1 << 30)
884 * to indicate that there are no dirty cache lines.
886 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
887 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
888 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
889 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
890 REGINFO_SENTINEL
893 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
894 /* Ignore ReadBuffer accesses */
895 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
897 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
898 .resetvalue = 0 },
899 REGINFO_SENTINEL
902 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t *value)
905 CPUState *cs = CPU(arm_env_get_cpu(env));
906 uint32_t mpidr = cs->cpu_index;
907 /* We don't support setting cluster ID ([8..11])
908 * so these bits always RAZ.
910 if (arm_feature(env, ARM_FEATURE_V7MP)) {
911 mpidr |= (1 << 31);
912 /* Cores which are uniprocessor (non-coherent)
913 * but still implement the MP extensions set
914 * bit 30. (For instance, A9UP.) However we do
915 * not currently model any of those cores.
918 *value = mpidr;
919 return 0;
922 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
923 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
924 .access = PL1_R, .readfn = mpidr_read },
925 REGINFO_SENTINEL
928 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
930 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
931 return 0;
934 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
936 env->cp15.c7_par_hi = value >> 32;
937 env->cp15.c7_par = value;
938 return 0;
941 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
943 env->cp15.c7_par_hi = 0;
944 env->cp15.c7_par = 0;
947 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
948 uint64_t *value)
950 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
951 return 0;
954 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
955 uint64_t value)
957 env->cp15.c2_base0_hi = value >> 32;
958 env->cp15.c2_base0 = value;
959 /* Writes to the 64 bit format TTBRs may change the ASID */
960 tlb_flush(env, 1);
961 return 0;
964 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
966 env->cp15.c2_base0_hi = 0;
967 env->cp15.c2_base0 = 0;
970 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
971 uint64_t *value)
973 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
974 return 0;
977 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
980 env->cp15.c2_base1_hi = value >> 32;
981 env->cp15.c2_base1 = value;
982 return 0;
985 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
987 env->cp15.c2_base1_hi = 0;
988 env->cp15.c2_base1 = 0;
991 static const ARMCPRegInfo lpae_cp_reginfo[] = {
992 /* NOP AMAIR0/1: the override is because these clash with the rather
993 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
995 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
996 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
997 .resetvalue = 0 },
998 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
999 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1000 .resetvalue = 0 },
1001 /* 64 bit access versions of the (dummy) debug registers */
1002 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1003 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1004 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1005 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1006 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1007 .access = PL1_RW, .type = ARM_CP_64BIT,
1008 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1009 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1010 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1011 .writefn = ttbr064_write, .resetfn = ttbr064_reset },
1012 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1013 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1014 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1015 REGINFO_SENTINEL
1018 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1020 env->cp15.c1_sys = value;
1021 /* ??? Lots of these bits are not implemented. */
1022 /* This may enable/disable the MMU, so do a TLB flush. */
1023 tlb_flush(env, 1);
1024 return 0;
1027 void register_cp_regs_for_features(ARMCPU *cpu)
1029 /* Register all the coprocessor registers based on feature bits */
1030 CPUARMState *env = &cpu->env;
1031 if (arm_feature(env, ARM_FEATURE_M)) {
1032 /* M profile has no coprocessor registers */
1033 return;
1036 define_arm_cp_regs(cpu, cp_reginfo);
1037 if (arm_feature(env, ARM_FEATURE_V6)) {
1038 /* The ID registers all have impdef reset values */
1039 ARMCPRegInfo v6_idregs[] = {
1040 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1041 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1042 .resetvalue = cpu->id_pfr0 },
1043 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1044 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1045 .resetvalue = cpu->id_pfr1 },
1046 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1047 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1048 .resetvalue = cpu->id_dfr0 },
1049 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1050 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1051 .resetvalue = cpu->id_afr0 },
1052 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1053 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1054 .resetvalue = cpu->id_mmfr0 },
1055 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1056 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1057 .resetvalue = cpu->id_mmfr1 },
1058 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1059 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1060 .resetvalue = cpu->id_mmfr2 },
1061 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1062 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1063 .resetvalue = cpu->id_mmfr3 },
1064 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1065 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1066 .resetvalue = cpu->id_isar0 },
1067 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1068 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1069 .resetvalue = cpu->id_isar1 },
1070 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1071 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1072 .resetvalue = cpu->id_isar2 },
1073 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1074 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1075 .resetvalue = cpu->id_isar3 },
1076 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1077 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1078 .resetvalue = cpu->id_isar4 },
1079 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1080 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1081 .resetvalue = cpu->id_isar5 },
1082 /* 6..7 are as yet unallocated and must RAZ */
1083 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1084 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1085 .resetvalue = 0 },
1086 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1087 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1088 .resetvalue = 0 },
1089 REGINFO_SENTINEL
1091 define_arm_cp_regs(cpu, v6_idregs);
1092 define_arm_cp_regs(cpu, v6_cp_reginfo);
1093 } else {
1094 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1096 if (arm_feature(env, ARM_FEATURE_V6K)) {
1097 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1099 if (arm_feature(env, ARM_FEATURE_V7)) {
1100 /* v7 performance monitor control register: same implementor
1101 * field as main ID register, and we implement no event counters.
1103 ARMCPRegInfo pmcr = {
1104 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1105 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1107 .readfn = pmreg_read, .writefn = pmcr_write
1109 ARMCPRegInfo clidr = {
1110 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1113 define_one_arm_cp_reg(cpu, &pmcr);
1114 define_one_arm_cp_reg(cpu, &clidr);
1115 define_arm_cp_regs(cpu, v7_cp_reginfo);
1116 } else {
1117 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1119 if (arm_feature(env, ARM_FEATURE_MPU)) {
1120 /* These are the MPU registers prior to PMSAv6. Any new
1121 * PMSA core later than the ARM946 will require that we
1122 * implement the PMSAv6 or PMSAv7 registers, which are
1123 * completely different.
1125 assert(!arm_feature(env, ARM_FEATURE_V6));
1126 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1127 } else {
1128 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1130 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1131 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1133 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1134 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1136 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1137 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1139 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1140 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1142 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1143 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1145 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1146 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1148 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1149 define_arm_cp_regs(cpu, omap_cp_reginfo);
1151 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1152 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1154 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1155 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1157 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1158 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1160 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1161 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1163 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1164 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1166 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1167 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1168 * be read-only (ie write causes UNDEF exception).
1171 ARMCPRegInfo id_cp_reginfo[] = {
1172 /* Note that the MIDR isn't a simple constant register because
1173 * of the TI925 behaviour where writes to another register can
1174 * cause the MIDR value to change.
1176 { .name = "MIDR",
1177 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1178 .access = PL1_R, .resetvalue = cpu->midr,
1179 .writefn = arm_cp_write_ignore,
1180 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1181 { .name = "CTR",
1182 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1184 { .name = "TCMTR",
1185 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1187 { .name = "TLBTR",
1188 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1190 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1191 { .name = "DUMMY",
1192 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1193 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1194 { .name = "DUMMY",
1195 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1196 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1197 { .name = "DUMMY",
1198 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1200 { .name = "DUMMY",
1201 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1202 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1203 { .name = "DUMMY",
1204 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1205 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1206 REGINFO_SENTINEL
1208 ARMCPRegInfo crn0_wi_reginfo = {
1209 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1210 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1211 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1213 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1214 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1215 ARMCPRegInfo *r;
1216 /* Register the blanket "writes ignored" value first to cover the
1217 * whole space. Then define the specific ID registers, but update
1218 * their access field to allow write access, so that they ignore
1219 * writes rather than causing them to UNDEF.
1221 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1222 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1223 r->access = PL1_RW;
1224 define_one_arm_cp_reg(cpu, r);
1226 } else {
1227 /* Just register the standard ID registers (read-only, meaning
1228 * that writes will UNDEF).
1230 define_arm_cp_regs(cpu, id_cp_reginfo);
1234 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1235 ARMCPRegInfo auxcr = {
1236 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1237 .access = PL1_RW, .type = ARM_CP_CONST,
1238 .resetvalue = cpu->reset_auxcr
1240 define_one_arm_cp_reg(cpu, &auxcr);
1243 /* Generic registers whose values depend on the implementation */
1245 ARMCPRegInfo sctlr = {
1246 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1247 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1248 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1250 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1251 /* Normally we would always end the TB on an SCTLR write, but Linux
1252 * arch/arm/mach-pxa/sleep.S expects two instructions following
1253 * an MMU enable to execute from cache. Imitate this behaviour.
1255 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1257 define_one_arm_cp_reg(cpu, &sctlr);
1261 ARMCPU *cpu_arm_init(const char *cpu_model)
1263 ARMCPU *cpu;
1264 CPUARMState *env;
1265 ObjectClass *oc;
1267 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1268 if (!oc) {
1269 return NULL;
1271 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1272 env = &cpu->env;
1273 env->cpu_model_str = cpu_model;
1275 /* TODO this should be set centrally, once possible */
1276 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1278 return cpu;
1281 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1283 CPUARMState *env = &cpu->env;
1285 if (arm_feature(env, ARM_FEATURE_NEON)) {
1286 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1287 51, "arm-neon.xml", 0);
1288 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1289 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1290 35, "arm-vfp3.xml", 0);
1291 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1292 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1293 19, "arm-vfp.xml", 0);
1297 /* Sort alphabetically by type name, except for "any". */
1298 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1300 ObjectClass *class_a = (ObjectClass *)a;
1301 ObjectClass *class_b = (ObjectClass *)b;
1302 const char *name_a, *name_b;
1304 name_a = object_class_get_name(class_a);
1305 name_b = object_class_get_name(class_b);
1306 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1307 return 1;
1308 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1309 return -1;
1310 } else {
1311 return strcmp(name_a, name_b);
1315 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1317 ObjectClass *oc = data;
1318 CPUListState *s = user_data;
1319 const char *typename;
1320 char *name;
1322 typename = object_class_get_name(oc);
1323 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1324 (*s->cpu_fprintf)(s->file, " %s\n",
1325 name);
1326 g_free(name);
1329 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1331 CPUListState s = {
1332 .file = f,
1333 .cpu_fprintf = cpu_fprintf,
1335 GSList *list;
1337 list = object_class_get_list(TYPE_ARM_CPU, false);
1338 list = g_slist_sort(list, arm_cpu_list_compare);
1339 (*cpu_fprintf)(f, "Available CPUs:\n");
1340 g_slist_foreach(list, arm_cpu_list_entry, &s);
1341 g_slist_free(list);
1344 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1345 const ARMCPRegInfo *r, void *opaque)
1347 /* Define implementations of coprocessor registers.
1348 * We store these in a hashtable because typically
1349 * there are less than 150 registers in a space which
1350 * is 16*16*16*8*8 = 262144 in size.
1351 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1352 * If a register is defined twice then the second definition is
1353 * used, so this can be used to define some generic registers and
1354 * then override them with implementation specific variations.
1355 * At least one of the original and the second definition should
1356 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1357 * against accidental use.
1359 int crm, opc1, opc2;
1360 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1361 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1362 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1363 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1364 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1365 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1366 /* 64 bit registers have only CRm and Opc1 fields */
1367 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1368 /* Check that the register definition has enough info to handle
1369 * reads and writes if they are permitted.
1371 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1372 if (r->access & PL3_R) {
1373 assert(r->fieldoffset || r->readfn);
1375 if (r->access & PL3_W) {
1376 assert(r->fieldoffset || r->writefn);
1379 /* Bad type field probably means missing sentinel at end of reg list */
1380 assert(cptype_valid(r->type));
1381 for (crm = crmmin; crm <= crmmax; crm++) {
1382 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1383 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1384 uint32_t *key = g_new(uint32_t, 1);
1385 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1386 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1387 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1388 r2->opaque = opaque;
1389 /* Make sure reginfo passed to helpers for wildcarded regs
1390 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1392 r2->crm = crm;
1393 r2->opc1 = opc1;
1394 r2->opc2 = opc2;
1395 /* Overriding of an existing definition must be explicitly
1396 * requested.
1398 if (!(r->type & ARM_CP_OVERRIDE)) {
1399 ARMCPRegInfo *oldreg;
1400 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1401 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1402 fprintf(stderr, "Register redefined: cp=%d %d bit "
1403 "crn=%d crm=%d opc1=%d opc2=%d, "
1404 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1405 r2->crn, r2->crm, r2->opc1, r2->opc2,
1406 oldreg->name, r2->name);
1407 assert(0);
1410 g_hash_table_insert(cpu->cp_regs, key, r2);
1416 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1417 const ARMCPRegInfo *regs, void *opaque)
1419 /* Define a whole list of registers */
1420 const ARMCPRegInfo *r;
1421 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1422 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1426 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1428 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1431 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1432 uint64_t value)
1434 /* Helper coprocessor write function for write-ignore registers */
1435 return 0;
1438 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1440 /* Helper coprocessor write function for read-as-zero registers */
1441 *value = 0;
1442 return 0;
1445 static int bad_mode_switch(CPUARMState *env, int mode)
1447 /* Return true if it is not valid for us to switch to
1448 * this CPU mode (ie all the UNPREDICTABLE cases in
1449 * the ARM ARM CPSRWriteByInstr pseudocode).
1451 switch (mode) {
1452 case ARM_CPU_MODE_USR:
1453 case ARM_CPU_MODE_SYS:
1454 case ARM_CPU_MODE_SVC:
1455 case ARM_CPU_MODE_ABT:
1456 case ARM_CPU_MODE_UND:
1457 case ARM_CPU_MODE_IRQ:
1458 case ARM_CPU_MODE_FIQ:
1459 return 0;
1460 default:
1461 return 1;
1465 uint32_t cpsr_read(CPUARMState *env)
1467 int ZF;
1468 ZF = (env->ZF == 0);
1469 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1470 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1471 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1472 | ((env->condexec_bits & 0xfc) << 8)
1473 | (env->GE << 16);
1476 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1478 if (mask & CPSR_NZCV) {
1479 env->ZF = (~val) & CPSR_Z;
1480 env->NF = val;
1481 env->CF = (val >> 29) & 1;
1482 env->VF = (val << 3) & 0x80000000;
1484 if (mask & CPSR_Q)
1485 env->QF = ((val & CPSR_Q) != 0);
1486 if (mask & CPSR_T)
1487 env->thumb = ((val & CPSR_T) != 0);
1488 if (mask & CPSR_IT_0_1) {
1489 env->condexec_bits &= ~3;
1490 env->condexec_bits |= (val >> 25) & 3;
1492 if (mask & CPSR_IT_2_7) {
1493 env->condexec_bits &= 3;
1494 env->condexec_bits |= (val >> 8) & 0xfc;
1496 if (mask & CPSR_GE) {
1497 env->GE = (val >> 16) & 0xf;
1500 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1501 if (bad_mode_switch(env, val & CPSR_M)) {
1502 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1503 * We choose to ignore the attempt and leave the CPSR M field
1504 * untouched.
1506 mask &= ~CPSR_M;
1507 } else {
1508 switch_mode(env, val & CPSR_M);
1511 mask &= ~CACHED_CPSR_BITS;
1512 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1515 /* Sign/zero extend */
1516 uint32_t HELPER(sxtb16)(uint32_t x)
1518 uint32_t res;
1519 res = (uint16_t)(int8_t)x;
1520 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1521 return res;
1524 uint32_t HELPER(uxtb16)(uint32_t x)
1526 uint32_t res;
1527 res = (uint16_t)(uint8_t)x;
1528 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1529 return res;
1532 uint32_t HELPER(clz)(uint32_t x)
1534 return clz32(x);
1537 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1539 if (den == 0)
1540 return 0;
1541 if (num == INT_MIN && den == -1)
1542 return INT_MIN;
1543 return num / den;
1546 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1548 if (den == 0)
1549 return 0;
1550 return num / den;
1553 uint32_t HELPER(rbit)(uint32_t x)
1555 x = ((x & 0xff000000) >> 24)
1556 | ((x & 0x00ff0000) >> 8)
1557 | ((x & 0x0000ff00) << 8)
1558 | ((x & 0x000000ff) << 24);
1559 x = ((x & 0xf0f0f0f0) >> 4)
1560 | ((x & 0x0f0f0f0f) << 4);
1561 x = ((x & 0x88888888) >> 3)
1562 | ((x & 0x44444444) >> 1)
1563 | ((x & 0x22222222) << 1)
1564 | ((x & 0x11111111) << 3);
1565 return x;
1568 #if defined(CONFIG_USER_ONLY)
1570 void arm_cpu_do_interrupt(CPUState *cs)
1572 ARMCPU *cpu = ARM_CPU(cs);
1573 CPUARMState *env = &cpu->env;
1575 env->exception_index = -1;
1578 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1579 int mmu_idx)
1581 if (rw == 2) {
1582 env->exception_index = EXCP_PREFETCH_ABORT;
1583 env->cp15.c6_insn = address;
1584 } else {
1585 env->exception_index = EXCP_DATA_ABORT;
1586 env->cp15.c6_data = address;
1588 return 1;
1591 /* These should probably raise undefined insn exceptions. */
1592 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1594 cpu_abort(env, "v7m_mrs %d\n", reg);
1597 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1599 cpu_abort(env, "v7m_mrs %d\n", reg);
1600 return 0;
1603 void switch_mode(CPUARMState *env, int mode)
1605 if (mode != ARM_CPU_MODE_USR)
1606 cpu_abort(env, "Tried to switch out of user mode\n");
1609 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1611 cpu_abort(env, "banked r13 write\n");
1614 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1616 cpu_abort(env, "banked r13 read\n");
1617 return 0;
1620 #else
1622 /* Map CPU modes onto saved register banks. */
1623 int bank_number(int mode)
1625 switch (mode) {
1626 case ARM_CPU_MODE_USR:
1627 case ARM_CPU_MODE_SYS:
1628 return 0;
1629 case ARM_CPU_MODE_SVC:
1630 return 1;
1631 case ARM_CPU_MODE_ABT:
1632 return 2;
1633 case ARM_CPU_MODE_UND:
1634 return 3;
1635 case ARM_CPU_MODE_IRQ:
1636 return 4;
1637 case ARM_CPU_MODE_FIQ:
1638 return 5;
1640 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
1643 void switch_mode(CPUARMState *env, int mode)
1645 int old_mode;
1646 int i;
1648 old_mode = env->uncached_cpsr & CPSR_M;
1649 if (mode == old_mode)
1650 return;
1652 if (old_mode == ARM_CPU_MODE_FIQ) {
1653 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1654 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1655 } else if (mode == ARM_CPU_MODE_FIQ) {
1656 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1657 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1660 i = bank_number(old_mode);
1661 env->banked_r13[i] = env->regs[13];
1662 env->banked_r14[i] = env->regs[14];
1663 env->banked_spsr[i] = env->spsr;
1665 i = bank_number(mode);
1666 env->regs[13] = env->banked_r13[i];
1667 env->regs[14] = env->banked_r14[i];
1668 env->spsr = env->banked_spsr[i];
1671 static void v7m_push(CPUARMState *env, uint32_t val)
1673 env->regs[13] -= 4;
1674 stl_phys(env->regs[13], val);
1677 static uint32_t v7m_pop(CPUARMState *env)
1679 uint32_t val;
1680 val = ldl_phys(env->regs[13]);
1681 env->regs[13] += 4;
1682 return val;
1685 /* Switch to V7M main or process stack pointer. */
1686 static void switch_v7m_sp(CPUARMState *env, int process)
1688 uint32_t tmp;
1689 if (env->v7m.current_sp != process) {
1690 tmp = env->v7m.other_sp;
1691 env->v7m.other_sp = env->regs[13];
1692 env->regs[13] = tmp;
1693 env->v7m.current_sp = process;
1697 static void do_v7m_exception_exit(CPUARMState *env)
1699 uint32_t type;
1700 uint32_t xpsr;
1702 type = env->regs[15];
1703 if (env->v7m.exception != 0)
1704 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1706 /* Switch to the target stack. */
1707 switch_v7m_sp(env, (type & 4) != 0);
1708 /* Pop registers. */
1709 env->regs[0] = v7m_pop(env);
1710 env->regs[1] = v7m_pop(env);
1711 env->regs[2] = v7m_pop(env);
1712 env->regs[3] = v7m_pop(env);
1713 env->regs[12] = v7m_pop(env);
1714 env->regs[14] = v7m_pop(env);
1715 env->regs[15] = v7m_pop(env);
1716 xpsr = v7m_pop(env);
1717 xpsr_write(env, xpsr, 0xfffffdff);
1718 /* Undo stack alignment. */
1719 if (xpsr & 0x200)
1720 env->regs[13] |= 4;
1721 /* ??? The exception return type specifies Thread/Handler mode. However
1722 this is also implied by the xPSR value. Not sure what to do
1723 if there is a mismatch. */
1724 /* ??? Likewise for mismatches between the CONTROL register and the stack
1725 pointer. */
1728 void arm_v7m_cpu_do_interrupt(CPUState *cs)
1730 ARMCPU *cpu = ARM_CPU(cs);
1731 CPUARMState *env = &cpu->env;
1732 uint32_t xpsr = xpsr_read(env);
1733 uint32_t lr;
1734 uint32_t addr;
1736 lr = 0xfffffff1;
1737 if (env->v7m.current_sp)
1738 lr |= 4;
1739 if (env->v7m.exception == 0)
1740 lr |= 8;
1742 /* For exceptions we just mark as pending on the NVIC, and let that
1743 handle it. */
1744 /* TODO: Need to escalate if the current priority is higher than the
1745 one we're raising. */
1746 switch (env->exception_index) {
1747 case EXCP_UDEF:
1748 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1749 return;
1750 case EXCP_SWI:
1751 /* The PC already points to the next instruction. */
1752 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1753 return;
1754 case EXCP_PREFETCH_ABORT:
1755 case EXCP_DATA_ABORT:
1756 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1757 return;
1758 case EXCP_BKPT:
1759 if (semihosting_enabled) {
1760 int nr;
1761 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1762 if (nr == 0xab) {
1763 env->regs[15] += 2;
1764 env->regs[0] = do_arm_semihosting(env);
1765 return;
1768 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1769 return;
1770 case EXCP_IRQ:
1771 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1772 break;
1773 case EXCP_EXCEPTION_EXIT:
1774 do_v7m_exception_exit(env);
1775 return;
1776 default:
1777 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1778 return; /* Never happens. Keep compiler happy. */
1781 /* Align stack pointer. */
1782 /* ??? Should only do this if Configuration Control Register
1783 STACKALIGN bit is set. */
1784 if (env->regs[13] & 4) {
1785 env->regs[13] -= 4;
1786 xpsr |= 0x200;
1788 /* Switch to the handler mode. */
1789 v7m_push(env, xpsr);
1790 v7m_push(env, env->regs[15]);
1791 v7m_push(env, env->regs[14]);
1792 v7m_push(env, env->regs[12]);
1793 v7m_push(env, env->regs[3]);
1794 v7m_push(env, env->regs[2]);
1795 v7m_push(env, env->regs[1]);
1796 v7m_push(env, env->regs[0]);
1797 switch_v7m_sp(env, 0);
1798 /* Clear IT bits */
1799 env->condexec_bits = 0;
1800 env->regs[14] = lr;
1801 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1802 env->regs[15] = addr & 0xfffffffe;
1803 env->thumb = addr & 1;
1806 /* Handle a CPU exception. */
1807 void arm_cpu_do_interrupt(CPUState *cs)
1809 ARMCPU *cpu = ARM_CPU(cs);
1810 CPUARMState *env = &cpu->env;
1811 uint32_t addr;
1812 uint32_t mask;
1813 int new_mode;
1814 uint32_t offset;
1816 assert(!IS_M(env));
1818 /* TODO: Vectored interrupt controller. */
1819 switch (env->exception_index) {
1820 case EXCP_UDEF:
1821 new_mode = ARM_CPU_MODE_UND;
1822 addr = 0x04;
1823 mask = CPSR_I;
1824 if (env->thumb)
1825 offset = 2;
1826 else
1827 offset = 4;
1828 break;
1829 case EXCP_SWI:
1830 if (semihosting_enabled) {
1831 /* Check for semihosting interrupt. */
1832 if (env->thumb) {
1833 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
1834 & 0xff;
1835 } else {
1836 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
1837 & 0xffffff;
1839 /* Only intercept calls from privileged modes, to provide some
1840 semblance of security. */
1841 if (((mask == 0x123456 && !env->thumb)
1842 || (mask == 0xab && env->thumb))
1843 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1844 env->regs[0] = do_arm_semihosting(env);
1845 return;
1848 new_mode = ARM_CPU_MODE_SVC;
1849 addr = 0x08;
1850 mask = CPSR_I;
1851 /* The PC already points to the next instruction. */
1852 offset = 0;
1853 break;
1854 case EXCP_BKPT:
1855 /* See if this is a semihosting syscall. */
1856 if (env->thumb && semihosting_enabled) {
1857 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1858 if (mask == 0xab
1859 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1860 env->regs[15] += 2;
1861 env->regs[0] = do_arm_semihosting(env);
1862 return;
1865 env->cp15.c5_insn = 2;
1866 /* Fall through to prefetch abort. */
1867 case EXCP_PREFETCH_ABORT:
1868 new_mode = ARM_CPU_MODE_ABT;
1869 addr = 0x0c;
1870 mask = CPSR_A | CPSR_I;
1871 offset = 4;
1872 break;
1873 case EXCP_DATA_ABORT:
1874 new_mode = ARM_CPU_MODE_ABT;
1875 addr = 0x10;
1876 mask = CPSR_A | CPSR_I;
1877 offset = 8;
1878 break;
1879 case EXCP_IRQ:
1880 new_mode = ARM_CPU_MODE_IRQ;
1881 addr = 0x18;
1882 /* Disable IRQ and imprecise data aborts. */
1883 mask = CPSR_A | CPSR_I;
1884 offset = 4;
1885 break;
1886 case EXCP_FIQ:
1887 new_mode = ARM_CPU_MODE_FIQ;
1888 addr = 0x1c;
1889 /* Disable FIQ, IRQ and imprecise data aborts. */
1890 mask = CPSR_A | CPSR_I | CPSR_F;
1891 offset = 4;
1892 break;
1893 default:
1894 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1895 return; /* Never happens. Keep compiler happy. */
1897 /* High vectors. */
1898 if (env->cp15.c1_sys & (1 << 13)) {
1899 addr += 0xffff0000;
1901 switch_mode (env, new_mode);
1902 env->spsr = cpsr_read(env);
1903 /* Clear IT bits. */
1904 env->condexec_bits = 0;
1905 /* Switch to the new mode, and to the correct instruction set. */
1906 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1907 env->uncached_cpsr |= mask;
1908 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1909 * and we should just guard the thumb mode on V4 */
1910 if (arm_feature(env, ARM_FEATURE_V4T)) {
1911 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1913 env->regs[14] = env->regs[15] + offset;
1914 env->regs[15] = addr;
1915 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
1918 /* Check section/page access permissions.
1919 Returns the page protection flags, or zero if the access is not
1920 permitted. */
1921 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1922 int access_type, int is_user)
1924 int prot_ro;
1926 if (domain_prot == 3) {
1927 return PAGE_READ | PAGE_WRITE;
1930 if (access_type == 1)
1931 prot_ro = 0;
1932 else
1933 prot_ro = PAGE_READ;
1935 switch (ap) {
1936 case 0:
1937 if (access_type == 1)
1938 return 0;
1939 switch ((env->cp15.c1_sys >> 8) & 3) {
1940 case 1:
1941 return is_user ? 0 : PAGE_READ;
1942 case 2:
1943 return PAGE_READ;
1944 default:
1945 return 0;
1947 case 1:
1948 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1949 case 2:
1950 if (is_user)
1951 return prot_ro;
1952 else
1953 return PAGE_READ | PAGE_WRITE;
1954 case 3:
1955 return PAGE_READ | PAGE_WRITE;
1956 case 4: /* Reserved. */
1957 return 0;
1958 case 5:
1959 return is_user ? 0 : prot_ro;
1960 case 6:
1961 return prot_ro;
1962 case 7:
1963 if (!arm_feature (env, ARM_FEATURE_V6K))
1964 return 0;
1965 return prot_ro;
1966 default:
1967 abort();
1971 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1973 uint32_t table;
1975 if (address & env->cp15.c2_mask)
1976 table = env->cp15.c2_base1 & 0xffffc000;
1977 else
1978 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1980 table |= (address >> 18) & 0x3ffc;
1981 return table;
1984 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1985 int is_user, hwaddr *phys_ptr,
1986 int *prot, target_ulong *page_size)
1988 int code;
1989 uint32_t table;
1990 uint32_t desc;
1991 int type;
1992 int ap;
1993 int domain;
1994 int domain_prot;
1995 hwaddr phys_addr;
1997 /* Pagetable walk. */
1998 /* Lookup l1 descriptor. */
1999 table = get_level1_table_address(env, address);
2000 desc = ldl_phys(table);
2001 type = (desc & 3);
2002 domain = (desc >> 5) & 0x0f;
2003 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2004 if (type == 0) {
2005 /* Section translation fault. */
2006 code = 5;
2007 goto do_fault;
2009 if (domain_prot == 0 || domain_prot == 2) {
2010 if (type == 2)
2011 code = 9; /* Section domain fault. */
2012 else
2013 code = 11; /* Page domain fault. */
2014 goto do_fault;
2016 if (type == 2) {
2017 /* 1Mb section. */
2018 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2019 ap = (desc >> 10) & 3;
2020 code = 13;
2021 *page_size = 1024 * 1024;
2022 } else {
2023 /* Lookup l2 entry. */
2024 if (type == 1) {
2025 /* Coarse pagetable. */
2026 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2027 } else {
2028 /* Fine pagetable. */
2029 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2031 desc = ldl_phys(table);
2032 switch (desc & 3) {
2033 case 0: /* Page translation fault. */
2034 code = 7;
2035 goto do_fault;
2036 case 1: /* 64k page. */
2037 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2038 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2039 *page_size = 0x10000;
2040 break;
2041 case 2: /* 4k page. */
2042 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2043 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2044 *page_size = 0x1000;
2045 break;
2046 case 3: /* 1k page. */
2047 if (type == 1) {
2048 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2049 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2050 } else {
2051 /* Page translation fault. */
2052 code = 7;
2053 goto do_fault;
2055 } else {
2056 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2058 ap = (desc >> 4) & 3;
2059 *page_size = 0x400;
2060 break;
2061 default:
2062 /* Never happens, but compiler isn't smart enough to tell. */
2063 abort();
2065 code = 15;
2067 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2068 if (!*prot) {
2069 /* Access permission fault. */
2070 goto do_fault;
2072 *prot |= PAGE_EXEC;
2073 *phys_ptr = phys_addr;
2074 return 0;
2075 do_fault:
2076 return code | (domain << 4);
2079 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2080 int is_user, hwaddr *phys_ptr,
2081 int *prot, target_ulong *page_size)
2083 int code;
2084 uint32_t table;
2085 uint32_t desc;
2086 uint32_t xn;
2087 uint32_t pxn = 0;
2088 int type;
2089 int ap;
2090 int domain = 0;
2091 int domain_prot;
2092 hwaddr phys_addr;
2094 /* Pagetable walk. */
2095 /* Lookup l1 descriptor. */
2096 table = get_level1_table_address(env, address);
2097 desc = ldl_phys(table);
2098 type = (desc & 3);
2099 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2100 /* Section translation fault, or attempt to use the encoding
2101 * which is Reserved on implementations without PXN.
2103 code = 5;
2104 goto do_fault;
2106 if ((type == 1) || !(desc & (1 << 18))) {
2107 /* Page or Section. */
2108 domain = (desc >> 5) & 0x0f;
2110 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2111 if (domain_prot == 0 || domain_prot == 2) {
2112 if (type != 1) {
2113 code = 9; /* Section domain fault. */
2114 } else {
2115 code = 11; /* Page domain fault. */
2117 goto do_fault;
2119 if (type != 1) {
2120 if (desc & (1 << 18)) {
2121 /* Supersection. */
2122 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2123 *page_size = 0x1000000;
2124 } else {
2125 /* Section. */
2126 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2127 *page_size = 0x100000;
2129 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2130 xn = desc & (1 << 4);
2131 pxn = desc & 1;
2132 code = 13;
2133 } else {
2134 if (arm_feature(env, ARM_FEATURE_PXN)) {
2135 pxn = (desc >> 2) & 1;
2137 /* Lookup l2 entry. */
2138 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2139 desc = ldl_phys(table);
2140 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2141 switch (desc & 3) {
2142 case 0: /* Page translation fault. */
2143 code = 7;
2144 goto do_fault;
2145 case 1: /* 64k page. */
2146 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2147 xn = desc & (1 << 15);
2148 *page_size = 0x10000;
2149 break;
2150 case 2: case 3: /* 4k page. */
2151 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2152 xn = desc & 1;
2153 *page_size = 0x1000;
2154 break;
2155 default:
2156 /* Never happens, but compiler isn't smart enough to tell. */
2157 abort();
2159 code = 15;
2161 if (domain_prot == 3) {
2162 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2163 } else {
2164 if (pxn && !is_user) {
2165 xn = 1;
2167 if (xn && access_type == 2)
2168 goto do_fault;
2170 /* The simplified model uses AP[0] as an access control bit. */
2171 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2172 /* Access flag fault. */
2173 code = (code == 15) ? 6 : 3;
2174 goto do_fault;
2176 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2177 if (!*prot) {
2178 /* Access permission fault. */
2179 goto do_fault;
2181 if (!xn) {
2182 *prot |= PAGE_EXEC;
2185 *phys_ptr = phys_addr;
2186 return 0;
2187 do_fault:
2188 return code | (domain << 4);
2191 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2192 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2194 typedef enum {
2195 translation_fault = 1,
2196 access_fault = 2,
2197 permission_fault = 3,
2198 } MMUFaultType;
2200 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2201 int access_type, int is_user,
2202 hwaddr *phys_ptr, int *prot,
2203 target_ulong *page_size_ptr)
2205 /* Read an LPAE long-descriptor translation table. */
2206 MMUFaultType fault_type = translation_fault;
2207 uint32_t level = 1;
2208 uint32_t epd;
2209 uint32_t tsz;
2210 uint64_t ttbr;
2211 int ttbr_select;
2212 int n;
2213 hwaddr descaddr;
2214 uint32_t tableattrs;
2215 target_ulong page_size;
2216 uint32_t attrs;
2218 /* Determine whether this address is in the region controlled by
2219 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2220 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2221 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2223 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2224 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2225 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2226 /* there is a ttbr0 region and we are in it (high bits all zero) */
2227 ttbr_select = 0;
2228 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2229 /* there is a ttbr1 region and we are in it (high bits all one) */
2230 ttbr_select = 1;
2231 } else if (!t0sz) {
2232 /* ttbr0 region is "everything not in the ttbr1 region" */
2233 ttbr_select = 0;
2234 } else if (!t1sz) {
2235 /* ttbr1 region is "everything not in the ttbr0 region" */
2236 ttbr_select = 1;
2237 } else {
2238 /* in the gap between the two regions, this is a Translation fault */
2239 fault_type = translation_fault;
2240 goto do_fault;
2243 /* Note that QEMU ignores shareability and cacheability attributes,
2244 * so we don't need to do anything with the SH, ORGN, IRGN fields
2245 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2246 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2247 * implement any ASID-like capability so we can ignore it (instead
2248 * we will always flush the TLB any time the ASID is changed).
2250 if (ttbr_select == 0) {
2251 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2252 epd = extract32(env->cp15.c2_control, 7, 1);
2253 tsz = t0sz;
2254 } else {
2255 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2256 epd = extract32(env->cp15.c2_control, 23, 1);
2257 tsz = t1sz;
2260 if (epd) {
2261 /* Translation table walk disabled => Translation fault on TLB miss */
2262 goto do_fault;
2265 /* If the region is small enough we will skip straight to a 2nd level
2266 * lookup. This affects the number of bits of the address used in
2267 * combination with the TTBR to find the first descriptor. ('n' here
2268 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2269 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2271 if (tsz > 1) {
2272 level = 2;
2273 n = 14 - tsz;
2274 } else {
2275 n = 5 - tsz;
2278 /* Clear the vaddr bits which aren't part of the within-region address,
2279 * so that we don't have to special case things when calculating the
2280 * first descriptor address.
2282 address &= (0xffffffffU >> tsz);
2284 /* Now we can extract the actual base address from the TTBR */
2285 descaddr = extract64(ttbr, 0, 40);
2286 descaddr &= ~((1ULL << n) - 1);
2288 tableattrs = 0;
2289 for (;;) {
2290 uint64_t descriptor;
2292 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2293 descriptor = ldq_phys(descaddr);
2294 if (!(descriptor & 1) ||
2295 (!(descriptor & 2) && (level == 3))) {
2296 /* Invalid, or the Reserved level 3 encoding */
2297 goto do_fault;
2299 descaddr = descriptor & 0xfffffff000ULL;
2301 if ((descriptor & 2) && (level < 3)) {
2302 /* Table entry. The top five bits are attributes which may
2303 * propagate down through lower levels of the table (and
2304 * which are all arranged so that 0 means "no effect", so
2305 * we can gather them up by ORing in the bits at each level).
2307 tableattrs |= extract64(descriptor, 59, 5);
2308 level++;
2309 continue;
2311 /* Block entry at level 1 or 2, or page entry at level 3.
2312 * These are basically the same thing, although the number
2313 * of bits we pull in from the vaddr varies.
2315 page_size = (1 << (39 - (9 * level)));
2316 descaddr |= (address & (page_size - 1));
2317 /* Extract attributes from the descriptor and merge with table attrs */
2318 attrs = extract64(descriptor, 2, 10)
2319 | (extract64(descriptor, 52, 12) << 10);
2320 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2321 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2322 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2323 * means "force PL1 access only", which means forcing AP[1] to 0.
2325 if (extract32(tableattrs, 2, 1)) {
2326 attrs &= ~(1 << 4);
2328 /* Since we're always in the Non-secure state, NSTable is ignored. */
2329 break;
2331 /* Here descaddr is the final physical address, and attributes
2332 * are all in attrs.
2334 fault_type = access_fault;
2335 if ((attrs & (1 << 8)) == 0) {
2336 /* Access flag */
2337 goto do_fault;
2339 fault_type = permission_fault;
2340 if (is_user && !(attrs & (1 << 4))) {
2341 /* Unprivileged access not enabled */
2342 goto do_fault;
2344 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2345 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2346 /* XN or PXN */
2347 if (access_type == 2) {
2348 goto do_fault;
2350 *prot &= ~PAGE_EXEC;
2352 if (attrs & (1 << 5)) {
2353 /* Write access forbidden */
2354 if (access_type == 1) {
2355 goto do_fault;
2357 *prot &= ~PAGE_WRITE;
2360 *phys_ptr = descaddr;
2361 *page_size_ptr = page_size;
2362 return 0;
2364 do_fault:
2365 /* Long-descriptor format IFSR/DFSR value */
2366 return (1 << 9) | (fault_type << 2) | level;
2369 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2370 int access_type, int is_user,
2371 hwaddr *phys_ptr, int *prot)
2373 int n;
2374 uint32_t mask;
2375 uint32_t base;
2377 *phys_ptr = address;
2378 for (n = 7; n >= 0; n--) {
2379 base = env->cp15.c6_region[n];
2380 if ((base & 1) == 0)
2381 continue;
2382 mask = 1 << ((base >> 1) & 0x1f);
2383 /* Keep this shift separate from the above to avoid an
2384 (undefined) << 32. */
2385 mask = (mask << 1) - 1;
2386 if (((base ^ address) & ~mask) == 0)
2387 break;
2389 if (n < 0)
2390 return 2;
2392 if (access_type == 2) {
2393 mask = env->cp15.c5_insn;
2394 } else {
2395 mask = env->cp15.c5_data;
2397 mask = (mask >> (n * 4)) & 0xf;
2398 switch (mask) {
2399 case 0:
2400 return 1;
2401 case 1:
2402 if (is_user)
2403 return 1;
2404 *prot = PAGE_READ | PAGE_WRITE;
2405 break;
2406 case 2:
2407 *prot = PAGE_READ;
2408 if (!is_user)
2409 *prot |= PAGE_WRITE;
2410 break;
2411 case 3:
2412 *prot = PAGE_READ | PAGE_WRITE;
2413 break;
2414 case 5:
2415 if (is_user)
2416 return 1;
2417 *prot = PAGE_READ;
2418 break;
2419 case 6:
2420 *prot = PAGE_READ;
2421 break;
2422 default:
2423 /* Bad permission. */
2424 return 1;
2426 *prot |= PAGE_EXEC;
2427 return 0;
2430 /* get_phys_addr - get the physical address for this virtual address
2432 * Find the physical address corresponding to the given virtual address,
2433 * by doing a translation table walk on MMU based systems or using the
2434 * MPU state on MPU based systems.
2436 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2437 * prot and page_size are not filled in, and the return value provides
2438 * information on why the translation aborted, in the format of a
2439 * DFSR/IFSR fault register, with the following caveats:
2440 * * we honour the short vs long DFSR format differences.
2441 * * the WnR bit is never set (the caller must do this).
2442 * * for MPU based systems we don't bother to return a full FSR format
2443 * value.
2445 * @env: CPUARMState
2446 * @address: virtual address to get physical address for
2447 * @access_type: 0 for read, 1 for write, 2 for execute
2448 * @is_user: 0 for privileged access, 1 for user
2449 * @phys_ptr: set to the physical address corresponding to the virtual address
2450 * @prot: set to the permissions for the page containing phys_ptr
2451 * @page_size: set to the size of the page containing phys_ptr
2453 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2454 int access_type, int is_user,
2455 hwaddr *phys_ptr, int *prot,
2456 target_ulong *page_size)
2458 /* Fast Context Switch Extension. */
2459 if (address < 0x02000000)
2460 address += env->cp15.c13_fcse;
2462 if ((env->cp15.c1_sys & 1) == 0) {
2463 /* MMU/MPU disabled. */
2464 *phys_ptr = address;
2465 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2466 *page_size = TARGET_PAGE_SIZE;
2467 return 0;
2468 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2469 *page_size = TARGET_PAGE_SIZE;
2470 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2471 prot);
2472 } else if (extended_addresses_enabled(env)) {
2473 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2474 prot, page_size);
2475 } else if (env->cp15.c1_sys & (1 << 23)) {
2476 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2477 prot, page_size);
2478 } else {
2479 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2480 prot, page_size);
2484 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2485 int access_type, int mmu_idx)
2487 hwaddr phys_addr;
2488 target_ulong page_size;
2489 int prot;
2490 int ret, is_user;
2492 is_user = mmu_idx == MMU_USER_IDX;
2493 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2494 &page_size);
2495 if (ret == 0) {
2496 /* Map a single [sub]page. */
2497 phys_addr &= ~(hwaddr)0x3ff;
2498 address &= ~(uint32_t)0x3ff;
2499 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2500 return 0;
2503 if (access_type == 2) {
2504 env->cp15.c5_insn = ret;
2505 env->cp15.c6_insn = address;
2506 env->exception_index = EXCP_PREFETCH_ABORT;
2507 } else {
2508 env->cp15.c5_data = ret;
2509 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2510 env->cp15.c5_data |= (1 << 11);
2511 env->cp15.c6_data = address;
2512 env->exception_index = EXCP_DATA_ABORT;
2514 return 1;
2517 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2519 hwaddr phys_addr;
2520 target_ulong page_size;
2521 int prot;
2522 int ret;
2524 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2526 if (ret != 0)
2527 return -1;
2529 return phys_addr;
2532 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2534 if ((env->uncached_cpsr & CPSR_M) == mode) {
2535 env->regs[13] = val;
2536 } else {
2537 env->banked_r13[bank_number(mode)] = val;
2541 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2543 if ((env->uncached_cpsr & CPSR_M) == mode) {
2544 return env->regs[13];
2545 } else {
2546 return env->banked_r13[bank_number(mode)];
2550 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2552 switch (reg) {
2553 case 0: /* APSR */
2554 return xpsr_read(env) & 0xf8000000;
2555 case 1: /* IAPSR */
2556 return xpsr_read(env) & 0xf80001ff;
2557 case 2: /* EAPSR */
2558 return xpsr_read(env) & 0xff00fc00;
2559 case 3: /* xPSR */
2560 return xpsr_read(env) & 0xff00fdff;
2561 case 5: /* IPSR */
2562 return xpsr_read(env) & 0x000001ff;
2563 case 6: /* EPSR */
2564 return xpsr_read(env) & 0x0700fc00;
2565 case 7: /* IEPSR */
2566 return xpsr_read(env) & 0x0700edff;
2567 case 8: /* MSP */
2568 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2569 case 9: /* PSP */
2570 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2571 case 16: /* PRIMASK */
2572 return (env->uncached_cpsr & CPSR_I) != 0;
2573 case 17: /* BASEPRI */
2574 case 18: /* BASEPRI_MAX */
2575 return env->v7m.basepri;
2576 case 19: /* FAULTMASK */
2577 return (env->uncached_cpsr & CPSR_F) != 0;
2578 case 20: /* CONTROL */
2579 return env->v7m.control;
2580 default:
2581 /* ??? For debugging only. */
2582 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2583 return 0;
2587 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2589 switch (reg) {
2590 case 0: /* APSR */
2591 xpsr_write(env, val, 0xf8000000);
2592 break;
2593 case 1: /* IAPSR */
2594 xpsr_write(env, val, 0xf8000000);
2595 break;
2596 case 2: /* EAPSR */
2597 xpsr_write(env, val, 0xfe00fc00);
2598 break;
2599 case 3: /* xPSR */
2600 xpsr_write(env, val, 0xfe00fc00);
2601 break;
2602 case 5: /* IPSR */
2603 /* IPSR bits are readonly. */
2604 break;
2605 case 6: /* EPSR */
2606 xpsr_write(env, val, 0x0600fc00);
2607 break;
2608 case 7: /* IEPSR */
2609 xpsr_write(env, val, 0x0600fc00);
2610 break;
2611 case 8: /* MSP */
2612 if (env->v7m.current_sp)
2613 env->v7m.other_sp = val;
2614 else
2615 env->regs[13] = val;
2616 break;
2617 case 9: /* PSP */
2618 if (env->v7m.current_sp)
2619 env->regs[13] = val;
2620 else
2621 env->v7m.other_sp = val;
2622 break;
2623 case 16: /* PRIMASK */
2624 if (val & 1)
2625 env->uncached_cpsr |= CPSR_I;
2626 else
2627 env->uncached_cpsr &= ~CPSR_I;
2628 break;
2629 case 17: /* BASEPRI */
2630 env->v7m.basepri = val & 0xff;
2631 break;
2632 case 18: /* BASEPRI_MAX */
2633 val &= 0xff;
2634 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2635 env->v7m.basepri = val;
2636 break;
2637 case 19: /* FAULTMASK */
2638 if (val & 1)
2639 env->uncached_cpsr |= CPSR_F;
2640 else
2641 env->uncached_cpsr &= ~CPSR_F;
2642 break;
2643 case 20: /* CONTROL */
2644 env->v7m.control = val & 3;
2645 switch_v7m_sp(env, (val & 2) != 0);
2646 break;
2647 default:
2648 /* ??? For debugging only. */
2649 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2650 return;
2654 #endif
2656 /* Note that signed overflow is undefined in C. The following routines are
2657 careful to use unsigned types where modulo arithmetic is required.
2658 Failure to do so _will_ break on newer gcc. */
2660 /* Signed saturating arithmetic. */
2662 /* Perform 16-bit signed saturating addition. */
2663 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2665 uint16_t res;
2667 res = a + b;
2668 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2669 if (a & 0x8000)
2670 res = 0x8000;
2671 else
2672 res = 0x7fff;
2674 return res;
2677 /* Perform 8-bit signed saturating addition. */
2678 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2680 uint8_t res;
2682 res = a + b;
2683 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2684 if (a & 0x80)
2685 res = 0x80;
2686 else
2687 res = 0x7f;
2689 return res;
2692 /* Perform 16-bit signed saturating subtraction. */
2693 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2695 uint16_t res;
2697 res = a - b;
2698 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2699 if (a & 0x8000)
2700 res = 0x8000;
2701 else
2702 res = 0x7fff;
2704 return res;
2707 /* Perform 8-bit signed saturating subtraction. */
2708 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2710 uint8_t res;
2712 res = a - b;
2713 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2714 if (a & 0x80)
2715 res = 0x80;
2716 else
2717 res = 0x7f;
2719 return res;
2722 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2723 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2724 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2725 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2726 #define PFX q
2728 #include "op_addsub.h"
2730 /* Unsigned saturating arithmetic. */
2731 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2733 uint16_t res;
2734 res = a + b;
2735 if (res < a)
2736 res = 0xffff;
2737 return res;
2740 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2742 if (a > b)
2743 return a - b;
2744 else
2745 return 0;
2748 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2750 uint8_t res;
2751 res = a + b;
2752 if (res < a)
2753 res = 0xff;
2754 return res;
2757 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2759 if (a > b)
2760 return a - b;
2761 else
2762 return 0;
2765 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2766 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2767 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2768 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2769 #define PFX uq
2771 #include "op_addsub.h"
2773 /* Signed modulo arithmetic. */
2774 #define SARITH16(a, b, n, op) do { \
2775 int32_t sum; \
2776 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2777 RESULT(sum, n, 16); \
2778 if (sum >= 0) \
2779 ge |= 3 << (n * 2); \
2780 } while(0)
2782 #define SARITH8(a, b, n, op) do { \
2783 int32_t sum; \
2784 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2785 RESULT(sum, n, 8); \
2786 if (sum >= 0) \
2787 ge |= 1 << n; \
2788 } while(0)
2791 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2792 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2793 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2794 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2795 #define PFX s
2796 #define ARITH_GE
2798 #include "op_addsub.h"
2800 /* Unsigned modulo arithmetic. */
2801 #define ADD16(a, b, n) do { \
2802 uint32_t sum; \
2803 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2804 RESULT(sum, n, 16); \
2805 if ((sum >> 16) == 1) \
2806 ge |= 3 << (n * 2); \
2807 } while(0)
2809 #define ADD8(a, b, n) do { \
2810 uint32_t sum; \
2811 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2812 RESULT(sum, n, 8); \
2813 if ((sum >> 8) == 1) \
2814 ge |= 1 << n; \
2815 } while(0)
2817 #define SUB16(a, b, n) do { \
2818 uint32_t sum; \
2819 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2820 RESULT(sum, n, 16); \
2821 if ((sum >> 16) == 0) \
2822 ge |= 3 << (n * 2); \
2823 } while(0)
2825 #define SUB8(a, b, n) do { \
2826 uint32_t sum; \
2827 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2828 RESULT(sum, n, 8); \
2829 if ((sum >> 8) == 0) \
2830 ge |= 1 << n; \
2831 } while(0)
2833 #define PFX u
2834 #define ARITH_GE
2836 #include "op_addsub.h"
2838 /* Halved signed arithmetic. */
2839 #define ADD16(a, b, n) \
2840 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2841 #define SUB16(a, b, n) \
2842 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2843 #define ADD8(a, b, n) \
2844 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2845 #define SUB8(a, b, n) \
2846 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2847 #define PFX sh
2849 #include "op_addsub.h"
2851 /* Halved unsigned arithmetic. */
2852 #define ADD16(a, b, n) \
2853 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2854 #define SUB16(a, b, n) \
2855 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2856 #define ADD8(a, b, n) \
2857 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2858 #define SUB8(a, b, n) \
2859 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2860 #define PFX uh
2862 #include "op_addsub.h"
2864 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2866 if (a > b)
2867 return a - b;
2868 else
2869 return b - a;
2872 /* Unsigned sum of absolute byte differences. */
2873 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2875 uint32_t sum;
2876 sum = do_usad(a, b);
2877 sum += do_usad(a >> 8, b >> 8);
2878 sum += do_usad(a >> 16, b >>16);
2879 sum += do_usad(a >> 24, b >> 24);
2880 return sum;
2883 /* For ARMv6 SEL instruction. */
2884 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2886 uint32_t mask;
2888 mask = 0;
2889 if (flags & 1)
2890 mask |= 0xff;
2891 if (flags & 2)
2892 mask |= 0xff00;
2893 if (flags & 4)
2894 mask |= 0xff0000;
2895 if (flags & 8)
2896 mask |= 0xff000000;
2897 return (a & mask) | (b & ~mask);
2900 /* VFP support. We follow the convention used for VFP instructions:
2901 Single precision routines have a "s" suffix, double precision a
2902 "d" suffix. */
2904 /* Convert host exception flags to vfp form. */
2905 static inline int vfp_exceptbits_from_host(int host_bits)
2907 int target_bits = 0;
2909 if (host_bits & float_flag_invalid)
2910 target_bits |= 1;
2911 if (host_bits & float_flag_divbyzero)
2912 target_bits |= 2;
2913 if (host_bits & float_flag_overflow)
2914 target_bits |= 4;
2915 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2916 target_bits |= 8;
2917 if (host_bits & float_flag_inexact)
2918 target_bits |= 0x10;
2919 if (host_bits & float_flag_input_denormal)
2920 target_bits |= 0x80;
2921 return target_bits;
2924 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2926 int i;
2927 uint32_t fpscr;
2929 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2930 | (env->vfp.vec_len << 16)
2931 | (env->vfp.vec_stride << 20);
2932 i = get_float_exception_flags(&env->vfp.fp_status);
2933 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2934 fpscr |= vfp_exceptbits_from_host(i);
2935 return fpscr;
2938 uint32_t vfp_get_fpscr(CPUARMState *env)
2940 return HELPER(vfp_get_fpscr)(env);
2943 /* Convert vfp exception flags to target form. */
2944 static inline int vfp_exceptbits_to_host(int target_bits)
2946 int host_bits = 0;
2948 if (target_bits & 1)
2949 host_bits |= float_flag_invalid;
2950 if (target_bits & 2)
2951 host_bits |= float_flag_divbyzero;
2952 if (target_bits & 4)
2953 host_bits |= float_flag_overflow;
2954 if (target_bits & 8)
2955 host_bits |= float_flag_underflow;
2956 if (target_bits & 0x10)
2957 host_bits |= float_flag_inexact;
2958 if (target_bits & 0x80)
2959 host_bits |= float_flag_input_denormal;
2960 return host_bits;
2963 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2965 int i;
2966 uint32_t changed;
2968 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2969 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2970 env->vfp.vec_len = (val >> 16) & 7;
2971 env->vfp.vec_stride = (val >> 20) & 3;
2973 changed ^= val;
2974 if (changed & (3 << 22)) {
2975 i = (val >> 22) & 3;
2976 switch (i) {
2977 case 0:
2978 i = float_round_nearest_even;
2979 break;
2980 case 1:
2981 i = float_round_up;
2982 break;
2983 case 2:
2984 i = float_round_down;
2985 break;
2986 case 3:
2987 i = float_round_to_zero;
2988 break;
2990 set_float_rounding_mode(i, &env->vfp.fp_status);
2992 if (changed & (1 << 24)) {
2993 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2994 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2996 if (changed & (1 << 25))
2997 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2999 i = vfp_exceptbits_to_host(val);
3000 set_float_exception_flags(i, &env->vfp.fp_status);
3001 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3004 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3006 HELPER(vfp_set_fpscr)(env, val);
3009 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3011 #define VFP_BINOP(name) \
3012 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3014 float_status *fpst = fpstp; \
3015 return float32_ ## name(a, b, fpst); \
3017 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3019 float_status *fpst = fpstp; \
3020 return float64_ ## name(a, b, fpst); \
3022 VFP_BINOP(add)
3023 VFP_BINOP(sub)
3024 VFP_BINOP(mul)
3025 VFP_BINOP(div)
3026 #undef VFP_BINOP
3028 float32 VFP_HELPER(neg, s)(float32 a)
3030 return float32_chs(a);
3033 float64 VFP_HELPER(neg, d)(float64 a)
3035 return float64_chs(a);
3038 float32 VFP_HELPER(abs, s)(float32 a)
3040 return float32_abs(a);
3043 float64 VFP_HELPER(abs, d)(float64 a)
3045 return float64_abs(a);
3048 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3050 return float32_sqrt(a, &env->vfp.fp_status);
3053 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3055 return float64_sqrt(a, &env->vfp.fp_status);
3058 /* XXX: check quiet/signaling case */
3059 #define DO_VFP_cmp(p, type) \
3060 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3062 uint32_t flags; \
3063 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3064 case 0: flags = 0x6; break; \
3065 case -1: flags = 0x8; break; \
3066 case 1: flags = 0x2; break; \
3067 default: case 2: flags = 0x3; break; \
3069 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3070 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3072 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3074 uint32_t flags; \
3075 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3076 case 0: flags = 0x6; break; \
3077 case -1: flags = 0x8; break; \
3078 case 1: flags = 0x2; break; \
3079 default: case 2: flags = 0x3; break; \
3081 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3082 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3084 DO_VFP_cmp(s, float32)
3085 DO_VFP_cmp(d, float64)
3086 #undef DO_VFP_cmp
3088 /* Integer to float and float to integer conversions */
3090 #define CONV_ITOF(name, fsz, sign) \
3091 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3093 float_status *fpst = fpstp; \
3094 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3097 #define CONV_FTOI(name, fsz, sign, round) \
3098 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3100 float_status *fpst = fpstp; \
3101 if (float##fsz##_is_any_nan(x)) { \
3102 float_raise(float_flag_invalid, fpst); \
3103 return 0; \
3105 return float##fsz##_to_##sign##int32##round(x, fpst); \
3108 #define FLOAT_CONVS(name, p, fsz, sign) \
3109 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3110 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3111 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3113 FLOAT_CONVS(si, s, 32, )
3114 FLOAT_CONVS(si, d, 64, )
3115 FLOAT_CONVS(ui, s, 32, u)
3116 FLOAT_CONVS(ui, d, 64, u)
3118 #undef CONV_ITOF
3119 #undef CONV_FTOI
3120 #undef FLOAT_CONVS
3122 /* floating point conversion */
3123 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3125 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3126 /* ARM requires that S<->D conversion of any kind of NaN generates
3127 * a quiet NaN by forcing the most significant frac bit to 1.
3129 return float64_maybe_silence_nan(r);
3132 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3134 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3135 /* ARM requires that S<->D conversion of any kind of NaN generates
3136 * a quiet NaN by forcing the most significant frac bit to 1.
3138 return float32_maybe_silence_nan(r);
3141 /* VFP3 fixed point conversion. */
3142 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3143 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3144 void *fpstp) \
3146 float_status *fpst = fpstp; \
3147 float##fsz tmp; \
3148 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3149 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3151 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3152 void *fpstp) \
3154 float_status *fpst = fpstp; \
3155 float##fsz tmp; \
3156 if (float##fsz##_is_any_nan(x)) { \
3157 float_raise(float_flag_invalid, fpst); \
3158 return 0; \
3160 tmp = float##fsz##_scalbn(x, shift, fpst); \
3161 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3164 VFP_CONV_FIX(sh, d, 64, int16, )
3165 VFP_CONV_FIX(sl, d, 64, int32, )
3166 VFP_CONV_FIX(uh, d, 64, uint16, u)
3167 VFP_CONV_FIX(ul, d, 64, uint32, u)
3168 VFP_CONV_FIX(sh, s, 32, int16, )
3169 VFP_CONV_FIX(sl, s, 32, int32, )
3170 VFP_CONV_FIX(uh, s, 32, uint16, u)
3171 VFP_CONV_FIX(ul, s, 32, uint32, u)
3172 #undef VFP_CONV_FIX
3174 /* Half precision conversions. */
3175 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3177 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3178 float32 r = float16_to_float32(make_float16(a), ieee, s);
3179 if (ieee) {
3180 return float32_maybe_silence_nan(r);
3182 return r;
3185 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3187 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3188 float16 r = float32_to_float16(a, ieee, s);
3189 if (ieee) {
3190 r = float16_maybe_silence_nan(r);
3192 return float16_val(r);
3195 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3197 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3200 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3202 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3205 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3207 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3210 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3212 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3215 #define float32_two make_float32(0x40000000)
3216 #define float32_three make_float32(0x40400000)
3217 #define float32_one_point_five make_float32(0x3fc00000)
3219 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3221 float_status *s = &env->vfp.standard_fp_status;
3222 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3223 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3224 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3225 float_raise(float_flag_input_denormal, s);
3227 return float32_two;
3229 return float32_sub(float32_two, float32_mul(a, b, s), s);
3232 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3234 float_status *s = &env->vfp.standard_fp_status;
3235 float32 product;
3236 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3237 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3238 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3239 float_raise(float_flag_input_denormal, s);
3241 return float32_one_point_five;
3243 product = float32_mul(a, b, s);
3244 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3247 /* NEON helpers. */
3249 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3250 * int->float conversions at run-time. */
3251 #define float64_256 make_float64(0x4070000000000000LL)
3252 #define float64_512 make_float64(0x4080000000000000LL)
3254 /* The algorithm that must be used to calculate the estimate
3255 * is specified by the ARM ARM.
3257 static float64 recip_estimate(float64 a, CPUARMState *env)
3259 /* These calculations mustn't set any fp exception flags,
3260 * so we use a local copy of the fp_status.
3262 float_status dummy_status = env->vfp.standard_fp_status;
3263 float_status *s = &dummy_status;
3264 /* q = (int)(a * 512.0) */
3265 float64 q = float64_mul(float64_512, a, s);
3266 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3268 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3269 q = int64_to_float64(q_int, s);
3270 q = float64_add(q, float64_half, s);
3271 q = float64_div(q, float64_512, s);
3272 q = float64_div(float64_one, q, s);
3274 /* s = (int)(256.0 * r + 0.5) */
3275 q = float64_mul(q, float64_256, s);
3276 q = float64_add(q, float64_half, s);
3277 q_int = float64_to_int64_round_to_zero(q, s);
3279 /* return (double)s / 256.0 */
3280 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3283 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3285 float_status *s = &env->vfp.standard_fp_status;
3286 float64 f64;
3287 uint32_t val32 = float32_val(a);
3289 int result_exp;
3290 int a_exp = (val32 & 0x7f800000) >> 23;
3291 int sign = val32 & 0x80000000;
3293 if (float32_is_any_nan(a)) {
3294 if (float32_is_signaling_nan(a)) {
3295 float_raise(float_flag_invalid, s);
3297 return float32_default_nan;
3298 } else if (float32_is_infinity(a)) {
3299 return float32_set_sign(float32_zero, float32_is_neg(a));
3300 } else if (float32_is_zero_or_denormal(a)) {
3301 if (!float32_is_zero(a)) {
3302 float_raise(float_flag_input_denormal, s);
3304 float_raise(float_flag_divbyzero, s);
3305 return float32_set_sign(float32_infinity, float32_is_neg(a));
3306 } else if (a_exp >= 253) {
3307 float_raise(float_flag_underflow, s);
3308 return float32_set_sign(float32_zero, float32_is_neg(a));
3311 f64 = make_float64((0x3feULL << 52)
3312 | ((int64_t)(val32 & 0x7fffff) << 29));
3314 result_exp = 253 - a_exp;
3316 f64 = recip_estimate(f64, env);
3318 val32 = sign
3319 | ((result_exp & 0xff) << 23)
3320 | ((float64_val(f64) >> 29) & 0x7fffff);
3321 return make_float32(val32);
3324 /* The algorithm that must be used to calculate the estimate
3325 * is specified by the ARM ARM.
3327 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3329 /* These calculations mustn't set any fp exception flags,
3330 * so we use a local copy of the fp_status.
3332 float_status dummy_status = env->vfp.standard_fp_status;
3333 float_status *s = &dummy_status;
3334 float64 q;
3335 int64_t q_int;
3337 if (float64_lt(a, float64_half, s)) {
3338 /* range 0.25 <= a < 0.5 */
3340 /* a in units of 1/512 rounded down */
3341 /* q0 = (int)(a * 512.0); */
3342 q = float64_mul(float64_512, a, s);
3343 q_int = float64_to_int64_round_to_zero(q, s);
3345 /* reciprocal root r */
3346 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3347 q = int64_to_float64(q_int, s);
3348 q = float64_add(q, float64_half, s);
3349 q = float64_div(q, float64_512, s);
3350 q = float64_sqrt(q, s);
3351 q = float64_div(float64_one, q, s);
3352 } else {
3353 /* range 0.5 <= a < 1.0 */
3355 /* a in units of 1/256 rounded down */
3356 /* q1 = (int)(a * 256.0); */
3357 q = float64_mul(float64_256, a, s);
3358 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3360 /* reciprocal root r */
3361 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3362 q = int64_to_float64(q_int, s);
3363 q = float64_add(q, float64_half, s);
3364 q = float64_div(q, float64_256, s);
3365 q = float64_sqrt(q, s);
3366 q = float64_div(float64_one, q, s);
3368 /* r in units of 1/256 rounded to nearest */
3369 /* s = (int)(256.0 * r + 0.5); */
3371 q = float64_mul(q, float64_256,s );
3372 q = float64_add(q, float64_half, s);
3373 q_int = float64_to_int64_round_to_zero(q, s);
3375 /* return (double)s / 256.0;*/
3376 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3379 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3381 float_status *s = &env->vfp.standard_fp_status;
3382 int result_exp;
3383 float64 f64;
3384 uint32_t val;
3385 uint64_t val64;
3387 val = float32_val(a);
3389 if (float32_is_any_nan(a)) {
3390 if (float32_is_signaling_nan(a)) {
3391 float_raise(float_flag_invalid, s);
3393 return float32_default_nan;
3394 } else if (float32_is_zero_or_denormal(a)) {
3395 if (!float32_is_zero(a)) {
3396 float_raise(float_flag_input_denormal, s);
3398 float_raise(float_flag_divbyzero, s);
3399 return float32_set_sign(float32_infinity, float32_is_neg(a));
3400 } else if (float32_is_neg(a)) {
3401 float_raise(float_flag_invalid, s);
3402 return float32_default_nan;
3403 } else if (float32_is_infinity(a)) {
3404 return float32_zero;
3407 /* Normalize to a double-precision value between 0.25 and 1.0,
3408 * preserving the parity of the exponent. */
3409 if ((val & 0x800000) == 0) {
3410 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3411 | (0x3feULL << 52)
3412 | ((uint64_t)(val & 0x7fffff) << 29));
3413 } else {
3414 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3415 | (0x3fdULL << 52)
3416 | ((uint64_t)(val & 0x7fffff) << 29));
3419 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3421 f64 = recip_sqrt_estimate(f64, env);
3423 val64 = float64_val(f64);
3425 val = ((result_exp & 0xff) << 23)
3426 | ((val64 >> 29) & 0x7fffff);
3427 return make_float32(val);
3430 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3432 float64 f64;
3434 if ((a & 0x80000000) == 0) {
3435 return 0xffffffff;
3438 f64 = make_float64((0x3feULL << 52)
3439 | ((int64_t)(a & 0x7fffffff) << 21));
3441 f64 = recip_estimate (f64, env);
3443 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3446 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3448 float64 f64;
3450 if ((a & 0xc0000000) == 0) {
3451 return 0xffffffff;
3454 if (a & 0x80000000) {
3455 f64 = make_float64((0x3feULL << 52)
3456 | ((uint64_t)(a & 0x7fffffff) << 21));
3457 } else { /* bits 31-30 == '01' */
3458 f64 = make_float64((0x3fdULL << 52)
3459 | ((uint64_t)(a & 0x3fffffff) << 22));
3462 f64 = recip_sqrt_estimate(f64, env);
3464 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3467 /* VFPv4 fused multiply-accumulate */
3468 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3470 float_status *fpst = fpstp;
3471 return float32_muladd(a, b, c, 0, fpst);
3474 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3476 float_status *fpst = fpstp;
3477 return float64_muladd(a, b, c, 0, fpst);