2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
33 #include "hw/fw-path-provider.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
66 #include "hw/intc/intc.h"
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
75 /* SLOF memory layout:
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
83 * We load our kernel at 4M, leaving space for SLOF initial image
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
93 #define MIN_RMA_SLOF 128UL
95 #define PHANDLE_XICP 0x00001111
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99 static int try_create_xics(sPAPRMachineState
*spapr
, const char *type_ics
,
100 const char *type_icp
, int nr_servers
,
101 int nr_irqs
, Error
**errp
)
103 XICSFabric
*xi
= XICS_FABRIC(spapr
);
104 Error
*err
= NULL
, *local_err
= NULL
;
105 ICSState
*ics
= NULL
;
108 ics
= ICS_SIMPLE(object_new(type_ics
));
109 qdev_set_parent_bus(DEVICE(ics
), sysbus_get_default());
110 object_property_add_child(OBJECT(spapr
), "ics", OBJECT(ics
), NULL
);
111 object_property_set_int(OBJECT(ics
), nr_irqs
, "nr-irqs", &err
);
112 object_property_add_const_link(OBJECT(ics
), "xics", OBJECT(xi
), NULL
);
113 object_property_set_bool(OBJECT(ics
), true, "realized", &local_err
);
114 error_propagate(&err
, local_err
);
119 spapr
->icps
= g_malloc0(nr_servers
* sizeof(ICPState
));
120 spapr
->nr_servers
= nr_servers
;
122 for (i
= 0; i
< nr_servers
; i
++) {
123 ICPState
*icp
= &spapr
->icps
[i
];
125 object_initialize(icp
, sizeof(*icp
), type_icp
);
126 qdev_set_parent_bus(DEVICE(icp
), sysbus_get_default());
127 object_property_add_child(OBJECT(spapr
), "icp[*]", OBJECT(icp
), NULL
);
128 object_property_add_const_link(OBJECT(icp
), "xics", OBJECT(xi
), NULL
);
129 object_property_set_bool(OBJECT(icp
), true, "realized", &err
);
133 object_unref(OBJECT(icp
));
140 error_propagate(errp
, err
);
142 object_unparent(OBJECT(ics
));
147 static int xics_system_init(MachineState
*machine
,
148 int nr_servers
, int nr_irqs
, Error
**errp
)
155 if (machine_kernel_irqchip_allowed(machine
) &&
156 !xics_kvm_init(SPAPR_MACHINE(machine
), errp
)) {
157 rc
= try_create_xics(SPAPR_MACHINE(machine
), TYPE_ICS_KVM
,
158 TYPE_KVM_ICP
, nr_servers
, nr_irqs
, &err
);
160 if (machine_kernel_irqchip_required(machine
) && rc
< 0) {
161 error_reportf_err(err
,
162 "kernel_irqchip requested but unavailable: ");
169 xics_spapr_init(SPAPR_MACHINE(machine
), errp
);
170 rc
= try_create_xics(SPAPR_MACHINE(machine
), TYPE_ICS_SIMPLE
,
171 TYPE_ICP
, nr_servers
, nr_irqs
, errp
);
177 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
181 uint32_t servers_prop
[smt_threads
];
182 uint32_t gservers_prop
[smt_threads
* 2];
183 int index
= ppc_get_vcpu_dt_id(cpu
);
185 if (cpu
->compat_pvr
) {
186 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
192 /* Build interrupt servers and gservers properties */
193 for (i
= 0; i
< smt_threads
; i
++) {
194 servers_prop
[i
] = cpu_to_be32(index
+ i
);
195 /* Hack, direct the group queues back to cpu 0 */
196 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
197 gservers_prop
[i
*2 + 1] = 0;
199 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
200 servers_prop
, sizeof(servers_prop
));
204 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
205 gservers_prop
, sizeof(gservers_prop
));
210 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, CPUState
*cs
)
213 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
214 int index
= ppc_get_vcpu_dt_id(cpu
);
215 uint32_t associativity
[] = {cpu_to_be32(0x5),
219 cpu_to_be32(cs
->numa_node
),
222 /* Advertise NUMA via ibm,associativity */
223 if (nb_numa_nodes
> 1) {
224 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
225 sizeof(associativity
));
231 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
233 int ret
= 0, offset
, cpus_offset
;
236 int smt
= kvmppc_smt_threads();
237 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
240 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
241 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
242 int index
= ppc_get_vcpu_dt_id(cpu
);
243 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
245 if ((index
% smt
) != 0) {
249 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
251 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
252 if (cpus_offset
< 0) {
253 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
255 if (cpus_offset
< 0) {
259 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
261 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
267 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
268 pft_size_prop
, sizeof(pft_size_prop
));
273 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
);
278 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
286 static hwaddr
spapr_node0_size(void)
288 MachineState
*machine
= MACHINE(qdev_get_machine());
292 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
293 if (numa_info
[i
].node_mem
) {
294 return MIN(pow2floor(numa_info
[i
].node_mem
),
299 return machine
->ram_size
;
302 static void add_str(GString
*s
, const gchar
*s1
)
304 g_string_append_len(s
, s1
, strlen(s1
) + 1);
307 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
310 uint32_t associativity
[] = {
311 cpu_to_be32(0x4), /* length */
312 cpu_to_be32(0x0), cpu_to_be32(0x0),
313 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
316 uint64_t mem_reg_property
[2];
319 mem_reg_property
[0] = cpu_to_be64(start
);
320 mem_reg_property
[1] = cpu_to_be64(size
);
322 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
323 off
= fdt_add_subnode(fdt
, 0, mem_name
);
325 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
326 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
327 sizeof(mem_reg_property
))));
328 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
329 sizeof(associativity
))));
333 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
335 MachineState
*machine
= MACHINE(spapr
);
336 hwaddr mem_start
, node_size
;
337 int i
, nb_nodes
= nb_numa_nodes
;
338 NodeInfo
*nodes
= numa_info
;
341 /* No NUMA nodes, assume there is just one node with whole RAM */
342 if (!nb_numa_nodes
) {
344 ramnode
.node_mem
= machine
->ram_size
;
348 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
349 if (!nodes
[i
].node_mem
) {
352 if (mem_start
>= machine
->ram_size
) {
355 node_size
= nodes
[i
].node_mem
;
356 if (node_size
> machine
->ram_size
- mem_start
) {
357 node_size
= machine
->ram_size
- mem_start
;
361 /* ppc_spapr_init() checks for rma_size <= node0_size already */
362 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
363 mem_start
+= spapr
->rma_size
;
364 node_size
-= spapr
->rma_size
;
366 for ( ; node_size
; ) {
367 hwaddr sizetmp
= pow2floor(node_size
);
369 /* mem_start != 0 here */
370 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
371 sizetmp
= 1ULL << ctzl(mem_start
);
374 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
375 node_size
-= sizetmp
;
376 mem_start
+= sizetmp
;
383 /* Populate the "ibm,pa-features" property */
384 static void spapr_populate_pa_features(CPUPPCState
*env
, void *fdt
, int offset
)
386 uint8_t pa_features_206
[] = { 6, 0,
387 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
388 uint8_t pa_features_207
[] = { 24, 0,
389 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
390 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
391 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
392 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
393 /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
394 uint8_t pa_features_300
[] = { 64, 0,
395 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
396 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
397 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
398 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
399 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
400 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
401 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
402 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
403 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
404 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
405 0x00, 0x00, 0x00, 0x00 }; /* 60 - 63 */
407 uint8_t *pa_features
;
410 switch (POWERPC_MMU_VER(env
->mmu_model
)) {
411 case POWERPC_MMU_VER_2_06
:
412 pa_features
= pa_features_206
;
413 pa_size
= sizeof(pa_features_206
);
415 case POWERPC_MMU_VER_2_07
:
416 pa_features
= pa_features_207
;
417 pa_size
= sizeof(pa_features_207
);
419 case POWERPC_MMU_VER_3_00
:
420 pa_features
= pa_features_300
;
421 pa_size
= sizeof(pa_features_300
);
427 if (env
->ci_large_pages
) {
429 * Note: we keep CI large pages off by default because a 64K capable
430 * guest provisioned with large pages might otherwise try to map a qemu
431 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
432 * even if that qemu runs on a 4k host.
433 * We dd this bit back here if we are confident this is not an issue
435 pa_features
[3] |= 0x20;
437 if (kvmppc_has_cap_htm() && pa_size
> 24) {
438 pa_features
[24] |= 0x80; /* Transactional memory support */
441 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
444 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
445 sPAPRMachineState
*spapr
)
447 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
448 CPUPPCState
*env
= &cpu
->env
;
449 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
450 int index
= ppc_get_vcpu_dt_id(cpu
);
451 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
452 0xffffffff, 0xffffffff};
453 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
454 : SPAPR_TIMEBASE_FREQ
;
455 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
456 uint32_t page_sizes_prop
[64];
457 size_t page_sizes_prop_size
;
458 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
459 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
460 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
461 sPAPRDRConnector
*drc
;
462 sPAPRDRConnectorClass
*drck
;
465 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
);
467 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
468 drc_index
= drck
->get_index(drc
);
469 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
472 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
473 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
475 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
476 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
477 env
->dcache_line_size
)));
478 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
479 env
->dcache_line_size
)));
480 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
481 env
->icache_line_size
)));
482 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
483 env
->icache_line_size
)));
485 if (pcc
->l1_dcache_size
) {
486 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
487 pcc
->l1_dcache_size
)));
489 error_report("Warning: Unknown L1 dcache size for cpu");
491 if (pcc
->l1_icache_size
) {
492 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
493 pcc
->l1_icache_size
)));
495 error_report("Warning: Unknown L1 icache size for cpu");
498 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
499 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
500 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
501 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
502 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
503 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
505 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
506 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
509 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
510 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
511 segs
, sizeof(segs
))));
514 /* Advertise VMX/VSX (vector extensions) if available
515 * 0 / no property == no vector extensions
516 * 1 == VMX / Altivec available
517 * 2 == VSX available */
518 if (env
->insns_flags
& PPC_ALTIVEC
) {
519 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
521 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
524 /* Advertise DFP (Decimal Floating Point) if available
525 * 0 / no property == no DFP
526 * 1 == DFP available */
527 if (env
->insns_flags2
& PPC2_DFP
) {
528 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
531 page_sizes_prop_size
= ppc_create_page_sizes_prop(env
, page_sizes_prop
,
532 sizeof(page_sizes_prop
));
533 if (page_sizes_prop_size
) {
534 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
535 page_sizes_prop
, page_sizes_prop_size
)));
538 spapr_populate_pa_features(env
, fdt
, offset
);
540 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
541 cs
->cpu_index
/ vcpus_per_socket
)));
543 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
544 pft_size_prop
, sizeof(pft_size_prop
))));
546 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
));
548 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
551 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
556 int smt
= kvmppc_smt_threads();
558 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
560 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
561 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
564 * We walk the CPUs in reverse order to ensure that CPU DT nodes
565 * created by fdt_add_subnode() end up in the right order in FDT
566 * for the guest kernel the enumerate the CPUs correctly.
568 CPU_FOREACH_REVERSE(cs
) {
569 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
570 int index
= ppc_get_vcpu_dt_id(cpu
);
571 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
574 if ((index
% smt
) != 0) {
578 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
579 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
582 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
588 * Adds ibm,dynamic-reconfiguration-memory node.
589 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
590 * of this device tree node.
592 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
594 MachineState
*machine
= MACHINE(spapr
);
596 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
597 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
598 uint32_t hotplug_lmb_start
= spapr
->hotplug_memory
.base
/ lmb_size
;
599 uint32_t nr_lmbs
= (spapr
->hotplug_memory
.base
+
600 memory_region_size(&spapr
->hotplug_memory
.mr
)) /
602 uint32_t *int_buf
, *cur_index
, buf_len
;
603 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
606 * Don't create the node if there is no hotpluggable memory
608 if (machine
->ram_size
== machine
->maxram_size
) {
613 * Allocate enough buffer size to fit in ibm,dynamic-memory
614 * or ibm,associativity-lookup-arrays
616 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
618 cur_index
= int_buf
= g_malloc0(buf_len
);
620 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
622 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
623 sizeof(prop_lmb_size
));
628 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
633 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
638 /* ibm,dynamic-memory */
639 int_buf
[0] = cpu_to_be32(nr_lmbs
);
641 for (i
= 0; i
< nr_lmbs
; i
++) {
642 uint64_t addr
= i
* lmb_size
;
643 uint32_t *dynamic_memory
= cur_index
;
645 if (i
>= hotplug_lmb_start
) {
646 sPAPRDRConnector
*drc
;
647 sPAPRDRConnectorClass
*drck
;
649 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
, i
);
651 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
653 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
654 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
655 dynamic_memory
[2] = cpu_to_be32(drck
->get_index(drc
));
656 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
657 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
658 if (memory_region_present(get_system_memory(), addr
)) {
659 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
661 dynamic_memory
[5] = cpu_to_be32(0);
665 * LMB information for RMA, boot time RAM and gap b/n RAM and
666 * hotplug memory region -- all these are marked as reserved
667 * and as having no valid DRC.
669 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
670 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
671 dynamic_memory
[2] = cpu_to_be32(0);
672 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
673 dynamic_memory
[4] = cpu_to_be32(-1);
674 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
675 SPAPR_LMB_FLAGS_DRC_INVALID
);
678 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
680 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
685 /* ibm,associativity-lookup-arrays */
687 int_buf
[0] = cpu_to_be32(nr_nodes
);
688 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
690 for (i
= 0; i
< nr_nodes
; i
++) {
691 uint32_t associativity
[] = {
697 memcpy(cur_index
, associativity
, sizeof(associativity
));
700 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
701 (cur_index
- int_buf
) * sizeof(uint32_t));
707 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
708 sPAPROptionVector
*ov5_updates
)
710 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
713 /* Generate ibm,dynamic-reconfiguration-memory node if required */
714 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
715 g_assert(smc
->dr_lmb_enabled
);
716 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
722 offset
= fdt_path_offset(fdt
, "/chosen");
724 offset
= fdt_add_subnode(fdt
, 0, "chosen");
729 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
730 "ibm,architecture-vec-5");
736 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
737 target_ulong addr
, target_ulong size
,
738 sPAPROptionVector
*ov5_updates
)
740 void *fdt
, *fdt_skel
;
741 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
745 /* Create sceleton */
746 fdt_skel
= g_malloc0(size
);
747 _FDT((fdt_create(fdt_skel
, size
)));
748 _FDT((fdt_begin_node(fdt_skel
, "")));
749 _FDT((fdt_end_node(fdt_skel
)));
750 _FDT((fdt_finish(fdt_skel
)));
751 fdt
= g_malloc0(size
);
752 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
755 /* Fixup cpu nodes */
756 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
758 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
762 /* Pack resulting tree */
763 _FDT((fdt_pack(fdt
)));
765 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
766 trace_spapr_cas_failed(size
);
770 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
771 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
772 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
778 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
781 GString
*hypertas
= g_string_sized_new(256);
782 GString
*qemu_hypertas
= g_string_sized_new(256);
783 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
784 uint64_t max_hotplug_addr
= spapr
->hotplug_memory
.base
+
785 memory_region_size(&spapr
->hotplug_memory
.mr
);
786 uint32_t lrdr_capacity
[] = {
787 cpu_to_be32(max_hotplug_addr
>> 32),
788 cpu_to_be32(max_hotplug_addr
& 0xffffffff),
789 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
790 cpu_to_be32(max_cpus
/ smp_threads
),
793 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
796 add_str(hypertas
, "hcall-pft");
797 add_str(hypertas
, "hcall-term");
798 add_str(hypertas
, "hcall-dabr");
799 add_str(hypertas
, "hcall-interrupt");
800 add_str(hypertas
, "hcall-tce");
801 add_str(hypertas
, "hcall-vio");
802 add_str(hypertas
, "hcall-splpar");
803 add_str(hypertas
, "hcall-bulk");
804 add_str(hypertas
, "hcall-set-mode");
805 add_str(hypertas
, "hcall-sprg0");
806 add_str(hypertas
, "hcall-copy");
807 add_str(hypertas
, "hcall-debug");
808 add_str(qemu_hypertas
, "hcall-memop1");
810 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
811 add_str(hypertas
, "hcall-multi-tce");
813 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
814 hypertas
->str
, hypertas
->len
));
815 g_string_free(hypertas
, TRUE
);
816 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
817 qemu_hypertas
->str
, qemu_hypertas
->len
));
818 g_string_free(qemu_hypertas
, TRUE
);
820 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
821 refpoints
, sizeof(refpoints
)));
823 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
824 RTAS_ERROR_LOG_MAX
));
825 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
826 RTAS_EVENT_SCAN_RATE
));
829 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
833 * According to PAPR, rtas ibm,os-term does not guarantee a return
834 * back to the guest cpu.
836 * While an additional ibm,extended-os-term property indicates
837 * that rtas call return will always occur. Set this property.
839 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
841 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
842 lrdr_capacity
, sizeof(lrdr_capacity
)));
844 spapr_dt_rtas_tokens(fdt
, rtas
);
847 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
849 MachineState
*machine
= MACHINE(spapr
);
851 const char *boot_device
= machine
->boot_order
;
852 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
854 char *bootlist
= get_boot_devices_list(&cb
, true);
856 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
858 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
859 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
860 spapr
->initrd_base
));
861 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
862 spapr
->initrd_base
+ spapr
->initrd_size
));
864 if (spapr
->kernel_size
) {
865 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
866 cpu_to_be64(spapr
->kernel_size
) };
868 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
869 &kprop
, sizeof(kprop
)));
870 if (spapr
->kernel_le
) {
871 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
875 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
877 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
878 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
879 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
881 if (cb
&& bootlist
) {
884 for (i
= 0; i
< cb
; i
++) {
885 if (bootlist
[i
] == '\n') {
889 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
892 if (boot_device
&& strlen(boot_device
)) {
893 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
896 if (!spapr
->has_graphics
&& stdout_path
) {
897 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
904 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
906 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
907 * KVM to work under pHyp with some guest co-operation */
909 uint8_t hypercall
[16];
911 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
912 /* indicate KVM hypercall interface */
913 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
914 if (kvmppc_has_cap_fixup_hcalls()) {
916 * Older KVM versions with older guest kernels were broken
917 * with the magic page, don't allow the guest to map it.
919 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
920 sizeof(hypercall
))) {
921 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
922 hypercall
, sizeof(hypercall
)));
927 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
931 MachineState
*machine
= MACHINE(qdev_get_machine());
932 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
933 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
939 fdt
= g_malloc0(FDT_MAX_SIZE
);
940 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
943 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
944 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
945 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
948 * Add info to guest to indentify which host is it being run on
949 * and what is the uuid of the guest
951 if (kvmppc_get_host_model(&buf
)) {
952 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
955 if (kvmppc_get_host_serial(&buf
)) {
956 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
960 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
962 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
964 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
968 if (qemu_get_vm_name()) {
969 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
970 qemu_get_vm_name()));
973 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
974 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
976 /* /interrupt controller */
977 spapr_dt_xics(spapr
->nr_servers
, fdt
, PHANDLE_XICP
);
979 ret
= spapr_populate_memory(spapr
, fdt
);
981 error_report("couldn't setup memory nodes in fdt");
986 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
988 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
989 ret
= spapr_rng_populate_dt(fdt
);
991 error_report("could not set up rng device in the fdt");
996 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
997 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
999 error_report("couldn't setup PCI devices in fdt");
1005 spapr_populate_cpus_dt_node(fdt
, spapr
);
1007 if (smc
->dr_lmb_enabled
) {
1008 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1011 if (mc
->has_hotpluggable_cpus
) {
1012 int offset
= fdt_path_offset(fdt
, "/cpus");
1013 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1014 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1016 error_report("Couldn't set up CPU DR device tree properties");
1021 /* /event-sources */
1022 spapr_dt_events(spapr
, fdt
);
1025 spapr_dt_rtas(spapr
, fdt
);
1028 spapr_dt_chosen(spapr
, fdt
);
1031 if (kvm_enabled()) {
1032 spapr_dt_hypervisor(spapr
, fdt
);
1035 /* Build memory reserve map */
1036 if (spapr
->kernel_size
) {
1037 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1039 if (spapr
->initrd_size
) {
1040 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1043 /* ibm,client-architecture-support updates */
1044 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1046 error_report("couldn't setup CAS properties fdt");
1053 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1055 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1058 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1061 CPUPPCState
*env
= &cpu
->env
;
1063 /* The TCG path should also be holding the BQL at this point */
1064 g_assert(qemu_mutex_iothread_locked());
1067 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1068 env
->gpr
[3] = H_PRIVILEGE
;
1070 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1074 static uint64_t spapr_get_patbe(PPCVirtualHypervisor
*vhyp
)
1076 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1078 return spapr
->patb_entry
;
1081 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1082 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1083 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1084 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1085 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1088 * Get the fd to access the kernel htab, re-opening it if necessary
1090 static int get_htab_fd(sPAPRMachineState
*spapr
)
1092 if (spapr
->htab_fd
>= 0) {
1093 return spapr
->htab_fd
;
1096 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1097 if (spapr
->htab_fd
< 0) {
1098 error_report("Unable to open fd for reading hash table from KVM: %s",
1102 return spapr
->htab_fd
;
1105 static void close_htab_fd(sPAPRMachineState
*spapr
)
1107 if (spapr
->htab_fd
>= 0) {
1108 close(spapr
->htab_fd
);
1110 spapr
->htab_fd
= -1;
1113 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1115 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1117 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1120 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1123 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1124 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1128 * HTAB is controlled by KVM. Fetch into temporary buffer
1130 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1131 kvmppc_read_hptes(hptes
, ptex
, n
);
1136 * HTAB is controlled by QEMU. Just point to the internally
1139 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1142 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1143 const ppc_hash_pte64_t
*hptes
,
1146 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1149 g_free((void *)hptes
);
1152 /* Nothing to do for qemu managed HPT */
1155 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1156 uint64_t pte0
, uint64_t pte1
)
1158 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1159 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1162 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1164 stq_p(spapr
->htab
+ offset
, pte0
);
1165 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1169 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1173 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1174 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1175 * that's much more than is needed for Linux guests */
1176 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1177 shift
= MAX(shift
, 18); /* Minimum architected size */
1178 shift
= MIN(shift
, 46); /* Maximum architected size */
1182 static void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1187 /* Clean up any HPT info from a previous boot */
1188 g_free(spapr
->htab
);
1190 spapr
->htab_shift
= 0;
1191 close_htab_fd(spapr
);
1193 rc
= kvmppc_reset_htab(shift
);
1195 /* kernel-side HPT needed, but couldn't allocate one */
1196 error_setg_errno(errp
, errno
,
1197 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1199 /* This is almost certainly fatal, but if the caller really
1200 * wants to carry on with shift == 0, it's welcome to try */
1201 } else if (rc
> 0) {
1202 /* kernel-side HPT allocated */
1205 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1209 spapr
->htab_shift
= shift
;
1212 /* kernel-side HPT not needed, allocate in userspace instead */
1213 size_t size
= 1ULL << shift
;
1216 spapr
->htab
= qemu_memalign(size
, size
);
1218 error_setg_errno(errp
, errno
,
1219 "Could not allocate HPT of order %d", shift
);
1223 memset(spapr
->htab
, 0, size
);
1224 spapr
->htab_shift
= shift
;
1226 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1227 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1232 static void find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1234 bool matched
= false;
1236 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1241 error_report("Device %s is not supported by this machine yet.",
1242 qdev_fw_name(DEVICE(sbdev
)));
1247 static void ppc_spapr_reset(void)
1249 MachineState
*machine
= MACHINE(qdev_get_machine());
1250 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1251 PowerPCCPU
*first_ppc_cpu
;
1252 uint32_t rtas_limit
;
1253 hwaddr rtas_addr
, fdt_addr
;
1257 /* Check for unknown sysbus devices */
1258 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1260 spapr
->patb_entry
= 0;
1262 /* Allocate and/or reset the hash page table */
1263 spapr_reallocate_hpt(spapr
,
1264 spapr_hpt_shift_for_ramsize(machine
->maxram_size
),
1267 /* Update the RMA size if necessary */
1268 if (spapr
->vrma_adjust
) {
1269 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1273 qemu_devices_reset();
1276 * We place the device tree and RTAS just below either the top of the RMA,
1277 * or just below 2GB, whichever is lowere, so that it can be
1278 * processed with 32-bit real mode code if necessary
1280 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1281 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1282 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1284 /* if this reset wasn't generated by CAS, we should reset our
1285 * negotiated options and start from scratch */
1286 if (!spapr
->cas_reboot
) {
1287 spapr_ovec_cleanup(spapr
->ov5_cas
);
1288 spapr
->ov5_cas
= spapr_ovec_new();
1291 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1293 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1297 /* Should only fail if we've built a corrupted tree */
1300 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1301 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1302 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1307 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1308 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1311 /* Set up the entry state */
1312 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1313 first_ppc_cpu
->env
.gpr
[3] = fdt_addr
;
1314 first_ppc_cpu
->env
.gpr
[5] = 0;
1315 first_cpu
->halted
= 0;
1316 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1318 spapr
->cas_reboot
= false;
1321 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1323 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1324 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1327 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1331 qdev_init_nofail(dev
);
1333 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1336 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1338 DeviceState
*dev
= qdev_create(NULL
, TYPE_SPAPR_RTC
);
1340 qdev_init_nofail(dev
);
1343 object_property_add_alias(qdev_get_machine(), "rtc-time",
1344 OBJECT(spapr
->rtc
), "date", NULL
);
1347 /* Returns whether we want to use VGA or not */
1348 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1350 switch (vga_interface_type
) {
1357 return pci_vga_init(pci_bus
) != NULL
;
1360 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1365 static int spapr_post_load(void *opaque
, int version_id
)
1367 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1370 if (!object_dynamic_cast(OBJECT(spapr
->ics
), TYPE_ICS_KVM
)) {
1372 for (i
= 0; i
< spapr
->nr_servers
; i
++) {
1373 icp_resend(&spapr
->icps
[i
]);
1377 /* In earlier versions, there was no separate qdev for the PAPR
1378 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1379 * So when migrating from those versions, poke the incoming offset
1380 * value into the RTC device */
1381 if (version_id
< 3) {
1382 err
= spapr_rtc_import_offset(spapr
->rtc
, spapr
->rtc_offset
);
1388 static bool version_before_3(void *opaque
, int version_id
)
1390 return version_id
< 3;
1393 static bool spapr_ov5_cas_needed(void *opaque
)
1395 sPAPRMachineState
*spapr
= opaque
;
1396 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1397 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1398 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1401 /* Prior to the introduction of sPAPROptionVector, we had two option
1402 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1403 * Both of these options encode machine topology into the device-tree
1404 * in such a way that the now-booted OS should still be able to interact
1405 * appropriately with QEMU regardless of what options were actually
1406 * negotiatied on the source side.
1408 * As such, we can avoid migrating the CAS-negotiated options if these
1409 * are the only options available on the current machine/platform.
1410 * Since these are the only options available for pseries-2.7 and
1411 * earlier, this allows us to maintain old->new/new->old migration
1414 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1415 * via default pseries-2.8 machines and explicit command-line parameters.
1416 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1417 * of the actual CAS-negotiated values to continue working properly. For
1418 * example, availability of memory unplug depends on knowing whether
1419 * OV5_HP_EVT was negotiated via CAS.
1421 * Thus, for any cases where the set of available CAS-negotiatable
1422 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1423 * include the CAS-negotiated options in the migration stream.
1425 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1426 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1428 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1429 * the mask itself since in the future it's possible "legacy" bits may be
1430 * removed via machine options, which could generate a false positive
1431 * that breaks migration.
1433 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1434 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1436 spapr_ovec_cleanup(ov5_mask
);
1437 spapr_ovec_cleanup(ov5_legacy
);
1438 spapr_ovec_cleanup(ov5_removed
);
1443 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1444 .name
= "spapr_option_vector_ov5_cas",
1446 .minimum_version_id
= 1,
1447 .needed
= spapr_ov5_cas_needed
,
1448 .fields
= (VMStateField
[]) {
1449 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1450 vmstate_spapr_ovec
, sPAPROptionVector
),
1451 VMSTATE_END_OF_LIST()
1455 static bool spapr_patb_entry_needed(void *opaque
)
1457 sPAPRMachineState
*spapr
= opaque
;
1459 return !!spapr
->patb_entry
;
1462 static const VMStateDescription vmstate_spapr_patb_entry
= {
1463 .name
= "spapr_patb_entry",
1465 .minimum_version_id
= 1,
1466 .needed
= spapr_patb_entry_needed
,
1467 .fields
= (VMStateField
[]) {
1468 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
1469 VMSTATE_END_OF_LIST()
1473 static const VMStateDescription vmstate_spapr
= {
1476 .minimum_version_id
= 1,
1477 .post_load
= spapr_post_load
,
1478 .fields
= (VMStateField
[]) {
1479 /* used to be @next_irq */
1480 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1483 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1485 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1486 VMSTATE_END_OF_LIST()
1488 .subsections
= (const VMStateDescription
*[]) {
1489 &vmstate_spapr_ov5_cas
,
1490 &vmstate_spapr_patb_entry
,
1495 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1497 sPAPRMachineState
*spapr
= opaque
;
1499 /* "Iteration" header */
1500 qemu_put_be32(f
, spapr
->htab_shift
);
1503 spapr
->htab_save_index
= 0;
1504 spapr
->htab_first_pass
= true;
1506 assert(kvm_enabled());
1513 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1516 bool has_timeout
= max_ns
!= -1;
1517 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1518 int index
= spapr
->htab_save_index
;
1519 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1521 assert(spapr
->htab_first_pass
);
1526 /* Consume invalid HPTEs */
1527 while ((index
< htabslots
)
1528 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1530 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1533 /* Consume valid HPTEs */
1535 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1536 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1538 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1541 if (index
> chunkstart
) {
1542 int n_valid
= index
- chunkstart
;
1544 qemu_put_be32(f
, chunkstart
);
1545 qemu_put_be16(f
, n_valid
);
1546 qemu_put_be16(f
, 0);
1547 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1548 HASH_PTE_SIZE_64
* n_valid
);
1551 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1555 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1557 if (index
>= htabslots
) {
1558 assert(index
== htabslots
);
1560 spapr
->htab_first_pass
= false;
1562 spapr
->htab_save_index
= index
;
1565 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1568 bool final
= max_ns
< 0;
1569 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1570 int examined
= 0, sent
= 0;
1571 int index
= spapr
->htab_save_index
;
1572 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1574 assert(!spapr
->htab_first_pass
);
1577 int chunkstart
, invalidstart
;
1579 /* Consume non-dirty HPTEs */
1580 while ((index
< htabslots
)
1581 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1587 /* Consume valid dirty HPTEs */
1588 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1589 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1590 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1591 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1596 invalidstart
= index
;
1597 /* Consume invalid dirty HPTEs */
1598 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1599 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1600 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1601 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1606 if (index
> chunkstart
) {
1607 int n_valid
= invalidstart
- chunkstart
;
1608 int n_invalid
= index
- invalidstart
;
1610 qemu_put_be32(f
, chunkstart
);
1611 qemu_put_be16(f
, n_valid
);
1612 qemu_put_be16(f
, n_invalid
);
1613 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1614 HASH_PTE_SIZE_64
* n_valid
);
1615 sent
+= index
- chunkstart
;
1617 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1622 if (examined
>= htabslots
) {
1626 if (index
>= htabslots
) {
1627 assert(index
== htabslots
);
1630 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1632 if (index
>= htabslots
) {
1633 assert(index
== htabslots
);
1637 spapr
->htab_save_index
= index
;
1639 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1642 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1643 #define MAX_KVM_BUF_SIZE 2048
1645 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1647 sPAPRMachineState
*spapr
= opaque
;
1651 /* Iteration header */
1652 qemu_put_be32(f
, 0);
1655 assert(kvm_enabled());
1657 fd
= get_htab_fd(spapr
);
1662 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1666 } else if (spapr
->htab_first_pass
) {
1667 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1669 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1673 qemu_put_be32(f
, 0);
1674 qemu_put_be16(f
, 0);
1675 qemu_put_be16(f
, 0);
1680 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1682 sPAPRMachineState
*spapr
= opaque
;
1685 /* Iteration header */
1686 qemu_put_be32(f
, 0);
1691 assert(kvm_enabled());
1693 fd
= get_htab_fd(spapr
);
1698 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
1703 if (spapr
->htab_first_pass
) {
1704 htab_save_first_pass(f
, spapr
, -1);
1706 htab_save_later_pass(f
, spapr
, -1);
1710 qemu_put_be32(f
, 0);
1711 qemu_put_be16(f
, 0);
1712 qemu_put_be16(f
, 0);
1717 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1719 sPAPRMachineState
*spapr
= opaque
;
1720 uint32_t section_hdr
;
1723 if (version_id
< 1 || version_id
> 1) {
1724 error_report("htab_load() bad version");
1728 section_hdr
= qemu_get_be32(f
);
1731 Error
*local_err
= NULL
;
1733 /* First section gives the htab size */
1734 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
1736 error_report_err(local_err
);
1743 assert(kvm_enabled());
1745 fd
= kvmppc_get_htab_fd(true);
1747 error_report("Unable to open fd to restore KVM hash table: %s",
1754 uint16_t n_valid
, n_invalid
;
1756 index
= qemu_get_be32(f
);
1757 n_valid
= qemu_get_be16(f
);
1758 n_invalid
= qemu_get_be16(f
);
1760 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1765 if ((index
+ n_valid
+ n_invalid
) >
1766 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1767 /* Bad index in stream */
1769 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1770 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
1776 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1777 HASH_PTE_SIZE_64
* n_valid
);
1780 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1781 HASH_PTE_SIZE_64
* n_invalid
);
1788 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1803 static void htab_cleanup(void *opaque
)
1805 sPAPRMachineState
*spapr
= opaque
;
1807 close_htab_fd(spapr
);
1810 static SaveVMHandlers savevm_htab_handlers
= {
1811 .save_live_setup
= htab_save_setup
,
1812 .save_live_iterate
= htab_save_iterate
,
1813 .save_live_complete_precopy
= htab_save_complete
,
1814 .cleanup
= htab_cleanup
,
1815 .load_state
= htab_load
,
1818 static void spapr_boot_set(void *opaque
, const char *boot_device
,
1821 MachineState
*machine
= MACHINE(qdev_get_machine());
1822 machine
->boot_order
= g_strdup(boot_device
);
1826 * Reset routine for LMB DR devices.
1828 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1829 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1830 * when it walks all its children devices. LMB devices reset occurs
1831 * as part of spapr_ppc_reset().
1833 static void spapr_drc_reset(void *opaque
)
1835 sPAPRDRConnector
*drc
= opaque
;
1836 DeviceState
*d
= DEVICE(drc
);
1843 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
1845 MachineState
*machine
= MACHINE(spapr
);
1846 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
1847 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
1850 for (i
= 0; i
< nr_lmbs
; i
++) {
1851 sPAPRDRConnector
*drc
;
1854 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
1855 drc
= spapr_dr_connector_new(OBJECT(spapr
), SPAPR_DR_CONNECTOR_TYPE_LMB
,
1857 qemu_register_reset(spapr_drc_reset
, drc
);
1862 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1863 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1864 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1866 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
1870 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1871 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
1872 " is not aligned to %llu MiB",
1874 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1878 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1879 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
1880 " is not aligned to %llu MiB",
1882 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1886 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1887 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
1889 "Node %d memory size 0x%" PRIx64
1890 " is not aligned to %llu MiB",
1891 i
, numa_info
[i
].node_mem
,
1892 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
1898 /* find cpu slot in machine->possible_cpus by core_id */
1899 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
1901 int index
= id
/ smp_threads
;
1903 if (index
>= ms
->possible_cpus
->len
) {
1909 return &ms
->possible_cpus
->cpus
[index
];
1912 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
1914 MachineState
*machine
= MACHINE(spapr
);
1915 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1916 char *type
= spapr_get_cpu_core_type(machine
->cpu_model
);
1917 int smt
= kvmppc_smt_threads();
1918 const CPUArchIdList
*possible_cpus
;
1919 int boot_cores_nr
= smp_cpus
/ smp_threads
;
1923 error_report("Unable to find sPAPR CPU Core definition");
1927 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1928 if (mc
->has_hotpluggable_cpus
) {
1929 if (smp_cpus
% smp_threads
) {
1930 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1931 smp_cpus
, smp_threads
);
1934 if (max_cpus
% smp_threads
) {
1935 error_report("max_cpus (%u) must be multiple of threads (%u)",
1936 max_cpus
, smp_threads
);
1940 if (max_cpus
!= smp_cpus
) {
1941 error_report("This machine version does not support CPU hotplug");
1944 boot_cores_nr
= possible_cpus
->len
;
1947 for (i
= 0; i
< possible_cpus
->len
; i
++) {
1948 int core_id
= i
* smp_threads
;
1950 if (mc
->has_hotpluggable_cpus
) {
1951 sPAPRDRConnector
*drc
=
1952 spapr_dr_connector_new(OBJECT(spapr
),
1953 SPAPR_DR_CONNECTOR_TYPE_CPU
,
1954 (core_id
/ smp_threads
) * smt
);
1956 qemu_register_reset(spapr_drc_reset
, drc
);
1959 if (i
< boot_cores_nr
) {
1960 Object
*core
= object_new(type
);
1961 int nr_threads
= smp_threads
;
1963 /* Handle the partially filled core for older machine types */
1964 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
1965 nr_threads
= smp_cpus
- i
* smp_threads
;
1968 object_property_set_int(core
, nr_threads
, "nr-threads",
1970 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
1972 object_property_set_bool(core
, true, "realized", &error_fatal
);
1978 /* pSeries LPAR / sPAPR hardware init */
1979 static void ppc_spapr_init(MachineState
*machine
)
1981 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1982 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1983 const char *kernel_filename
= machine
->kernel_filename
;
1984 const char *initrd_filename
= machine
->initrd_filename
;
1987 MemoryRegion
*sysmem
= get_system_memory();
1988 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1989 MemoryRegion
*rma_region
;
1991 hwaddr rma_alloc_size
;
1992 hwaddr node0_size
= spapr_node0_size();
1993 long load_limit
, fw_size
;
1995 int smt
= kvmppc_smt_threads();
1997 msi_nonbroken
= true;
1999 QLIST_INIT(&spapr
->phbs
);
2001 /* Allocate RMA if necessary */
2002 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
2004 if (rma_alloc_size
== -1) {
2005 error_report("Unable to create RMA");
2009 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
2010 spapr
->rma_size
= rma_alloc_size
;
2012 spapr
->rma_size
= node0_size
;
2014 /* With KVM, we don't actually know whether KVM supports an
2015 * unbounded RMA (PR KVM) or is limited by the hash table size
2016 * (HV KVM using VRMA), so we always assume the latter
2018 * In that case, we also limit the initial allocations for RTAS
2019 * etc... to 256M since we have no way to know what the VRMA size
2020 * is going to be as it depends on the size of the hash table
2021 * isn't determined yet.
2023 if (kvm_enabled()) {
2024 spapr
->vrma_adjust
= 1;
2025 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2028 /* Actually we don't support unbounded RMA anymore since we
2029 * added proper emulation of HV mode. The max we can get is
2030 * 16G which also happens to be what we configure for PAPR
2031 * mode so make sure we don't do anything bigger than that
2033 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2036 if (spapr
->rma_size
> node0_size
) {
2037 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2042 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2043 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2045 /* Set up Interrupt Controller before we create the VCPUs */
2046 xics_system_init(machine
, DIV_ROUND_UP(max_cpus
* smt
, smp_threads
),
2047 XICS_IRQS_SPAPR
, &error_fatal
);
2049 /* Set up containers for ibm,client-set-architecture negotiated options */
2050 spapr
->ov5
= spapr_ovec_new();
2051 spapr
->ov5_cas
= spapr_ovec_new();
2053 if (smc
->dr_lmb_enabled
) {
2054 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2055 spapr_validate_node_memory(machine
, &error_fatal
);
2058 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2060 /* advertise support for dedicated HP event source to guests */
2061 if (spapr
->use_hotplug_event_source
) {
2062 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2066 if (machine
->cpu_model
== NULL
) {
2067 machine
->cpu_model
= kvm_enabled() ? "host" : smc
->tcg_default_cpu
;
2070 ppc_cpu_parse_features(machine
->cpu_model
);
2072 spapr_init_cpus(spapr
);
2074 if (kvm_enabled()) {
2075 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2076 kvmppc_enable_logical_ci_hcalls();
2077 kvmppc_enable_set_mode_hcall();
2079 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2080 kvmppc_enable_clear_ref_mod_hcalls();
2084 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2086 memory_region_add_subregion(sysmem
, 0, ram
);
2088 if (rma_alloc_size
&& rma
) {
2089 rma_region
= g_new(MemoryRegion
, 1);
2090 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
2091 rma_alloc_size
, rma
);
2092 vmstate_register_ram_global(rma_region
);
2093 memory_region_add_subregion(sysmem
, 0, rma_region
);
2096 /* initialize hotplug memory address space */
2097 if (machine
->ram_size
< machine
->maxram_size
) {
2098 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2100 * Limit the number of hotpluggable memory slots to half the number
2101 * slots that KVM supports, leaving the other half for PCI and other
2102 * devices. However ensure that number of slots doesn't drop below 32.
2104 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2105 SPAPR_MAX_RAM_SLOTS
;
2107 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2108 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2110 if (machine
->ram_slots
> max_memslots
) {
2111 error_report("Specified number of memory slots %"
2112 PRIu64
" exceeds max supported %d",
2113 machine
->ram_slots
, max_memslots
);
2117 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
2118 SPAPR_HOTPLUG_MEM_ALIGN
);
2119 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
2120 "hotplug-memory", hotplug_mem_size
);
2121 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
2122 &spapr
->hotplug_memory
.mr
);
2125 if (smc
->dr_lmb_enabled
) {
2126 spapr_create_lmb_dr_connectors(spapr
);
2129 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2131 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2134 spapr
->rtas_size
= get_image_size(filename
);
2135 if (spapr
->rtas_size
< 0) {
2136 error_report("Could not get size of LPAR rtas '%s'", filename
);
2139 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2140 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2141 error_report("Could not load LPAR rtas '%s'", filename
);
2144 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2145 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2146 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2151 /* Set up RTAS event infrastructure */
2152 spapr_events_init(spapr
);
2154 /* Set up the RTC RTAS interfaces */
2155 spapr_rtc_create(spapr
);
2157 /* Set up VIO bus */
2158 spapr
->vio_bus
= spapr_vio_bus_init();
2160 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
2161 if (serial_hds
[i
]) {
2162 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
2166 /* We always have at least the nvram device on VIO */
2167 spapr_create_nvram(spapr
);
2170 spapr_pci_rtas_init();
2172 phb
= spapr_create_phb(spapr
, 0);
2174 for (i
= 0; i
< nb_nics
; i
++) {
2175 NICInfo
*nd
= &nd_table
[i
];
2178 nd
->model
= g_strdup("ibmveth");
2181 if (strcmp(nd
->model
, "ibmveth") == 0) {
2182 spapr_vlan_create(spapr
->vio_bus
, nd
);
2184 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2188 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2189 spapr_vscsi_create(spapr
->vio_bus
);
2193 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2194 spapr
->has_graphics
= true;
2195 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2199 if (smc
->use_ohci_by_default
) {
2200 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2202 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2205 if (spapr
->has_graphics
) {
2206 USBBus
*usb_bus
= usb_bus_find(-1);
2208 usb_create_simple(usb_bus
, "usb-kbd");
2209 usb_create_simple(usb_bus
, "usb-mouse");
2213 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
2215 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2220 if (kernel_filename
) {
2221 uint64_t lowaddr
= 0;
2223 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2224 NULL
, NULL
, &lowaddr
, NULL
, 1,
2225 PPC_ELF_MACHINE
, 0, 0);
2226 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2227 spapr
->kernel_size
= load_elf(kernel_filename
,
2228 translate_kernel_address
, NULL
, NULL
,
2229 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2231 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2233 if (spapr
->kernel_size
< 0) {
2234 error_report("error loading %s: %s", kernel_filename
,
2235 load_elf_strerror(spapr
->kernel_size
));
2240 if (initrd_filename
) {
2241 /* Try to locate the initrd in the gap between the kernel
2242 * and the firmware. Add a bit of space just in case
2244 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2245 + 0x1ffff) & ~0xffff;
2246 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2249 - spapr
->initrd_base
);
2250 if (spapr
->initrd_size
< 0) {
2251 error_report("could not load initial ram disk '%s'",
2258 if (bios_name
== NULL
) {
2259 bios_name
= FW_FILE_NAME
;
2261 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2263 error_report("Could not find LPAR firmware '%s'", bios_name
);
2266 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2268 error_report("Could not load LPAR firmware '%s'", filename
);
2273 /* FIXME: Should register things through the MachineState's qdev
2274 * interface, this is a legacy from the sPAPREnvironment structure
2275 * which predated MachineState but had a similar function */
2276 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2277 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2278 &savevm_htab_handlers
, spapr
);
2281 QTAILQ_INIT(&spapr
->ccs_list
);
2282 qemu_register_reset(spapr_ccs_reset_hook
, spapr
);
2284 qemu_register_boot_set(spapr_boot_set
, spapr
);
2286 /* to stop and start vmclock */
2287 if (kvm_enabled()) {
2288 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2293 static int spapr_kvm_type(const char *vm_type
)
2299 if (!strcmp(vm_type
, "HV")) {
2303 if (!strcmp(vm_type
, "PR")) {
2307 error_report("Unknown kvm-type specified '%s'", vm_type
);
2312 * Implementation of an interface to adjust firmware path
2313 * for the bootindex property handling.
2315 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2318 #define CAST(type, obj, name) \
2319 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2320 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2321 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2324 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2325 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2326 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2330 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2331 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2332 * in the top 16 bits of the 64-bit LUN
2334 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2335 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2336 (uint64_t)id
<< 48);
2337 } else if (virtio
) {
2339 * We use SRP luns of the form 01000000 | (target << 8) | lun
2340 * in the top 32 bits of the 64-bit LUN
2341 * Note: the quote above is from SLOF and it is wrong,
2342 * the actual binding is:
2343 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2345 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2346 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2347 (uint64_t)id
<< 32);
2350 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2351 * in the top 32 bits of the 64-bit LUN
2353 unsigned usb_port
= atoi(usb
->port
->path
);
2354 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2355 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2356 (uint64_t)id
<< 32);
2361 * SLOF probes the USB devices, and if it recognizes that the device is a
2362 * storage device, it changes its name to "storage" instead of "usb-host",
2363 * and additionally adds a child node for the SCSI LUN, so the correct
2364 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2366 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2367 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2368 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2369 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2374 /* Replace "pci" with "pci@800000020000000" */
2375 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2381 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2383 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2385 return g_strdup(spapr
->kvm_type
);
2388 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2390 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2392 g_free(spapr
->kvm_type
);
2393 spapr
->kvm_type
= g_strdup(value
);
2396 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2398 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2400 return spapr
->use_hotplug_event_source
;
2403 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2406 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2408 spapr
->use_hotplug_event_source
= value
;
2411 static void spapr_machine_initfn(Object
*obj
)
2413 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2415 spapr
->htab_fd
= -1;
2416 spapr
->use_hotplug_event_source
= true;
2417 object_property_add_str(obj
, "kvm-type",
2418 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2419 object_property_set_description(obj
, "kvm-type",
2420 "Specifies the KVM virtualization mode (HV, PR)",
2422 object_property_add_bool(obj
, "modern-hotplug-events",
2423 spapr_get_modern_hotplug_events
,
2424 spapr_set_modern_hotplug_events
,
2426 object_property_set_description(obj
, "modern-hotplug-events",
2427 "Use dedicated hotplug event mechanism in"
2428 " place of standard EPOW events when possible"
2429 " (required for memory hot-unplug support)",
2433 static void spapr_machine_finalizefn(Object
*obj
)
2435 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2437 g_free(spapr
->kvm_type
);
2440 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
2442 cpu_synchronize_state(cs
);
2443 ppc_cpu_do_system_reset(cs
);
2446 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2451 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
2455 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2456 uint32_t node
, bool dedicated_hp_event_source
,
2459 sPAPRDRConnector
*drc
;
2460 sPAPRDRConnectorClass
*drck
;
2461 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2462 int i
, fdt_offset
, fdt_size
;
2464 uint64_t addr
= addr_start
;
2466 for (i
= 0; i
< nr_lmbs
; i
++) {
2467 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2468 addr
/SPAPR_MEMORY_BLOCK_SIZE
);
2471 fdt
= create_device_tree(&fdt_size
);
2472 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2473 SPAPR_MEMORY_BLOCK_SIZE
);
2475 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2476 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, errp
);
2477 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2478 if (!dev
->hotplugged
) {
2479 /* guests expect coldplugged LMBs to be pre-allocated */
2480 drck
->set_allocation_state(drc
, SPAPR_DR_ALLOCATION_STATE_USABLE
);
2481 drck
->set_isolation_state(drc
, SPAPR_DR_ISOLATION_STATE_UNISOLATED
);
2484 /* send hotplug notification to the
2485 * guest only in case of hotplugged memory
2487 if (dev
->hotplugged
) {
2488 if (dedicated_hp_event_source
) {
2489 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2490 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2491 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2492 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2494 drck
->get_index(drc
));
2496 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2502 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2503 uint32_t node
, Error
**errp
)
2505 Error
*local_err
= NULL
;
2506 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2507 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2508 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2509 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2510 uint64_t align
= memory_region_get_alignment(mr
);
2511 uint64_t size
= memory_region_size(mr
);
2515 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2516 error_setg(&local_err
, "Hotplugged memory size must be a multiple of "
2517 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
2521 mem_dev
= object_property_get_str(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
, NULL
);
2522 if (mem_dev
&& !kvmppc_is_mem_backend_page_size_ok(mem_dev
)) {
2523 error_setg(&local_err
, "Memory backend has bad page size. "
2524 "Use 'memory-backend-file' with correct mem-path.");
2528 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2533 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2535 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2539 spapr_add_lmbs(dev
, addr
, size
, node
,
2540 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
2544 error_propagate(errp
, local_err
);
2547 typedef struct sPAPRDIMMState
{
2551 static void spapr_lmb_release(DeviceState
*dev
, void *opaque
)
2553 sPAPRDIMMState
*ds
= (sPAPRDIMMState
*)opaque
;
2554 HotplugHandler
*hotplug_ctrl
;
2556 if (--ds
->nr_lmbs
) {
2563 * Now that all the LMBs have been removed by the guest, call the
2564 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2566 hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
2567 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
2570 static void spapr_del_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2573 sPAPRDRConnector
*drc
;
2574 sPAPRDRConnectorClass
*drck
;
2575 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
2577 sPAPRDIMMState
*ds
= g_malloc0(sizeof(sPAPRDIMMState
));
2578 uint64_t addr
= addr_start
;
2580 ds
->nr_lmbs
= nr_lmbs
;
2581 for (i
= 0; i
< nr_lmbs
; i
++) {
2582 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2583 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2586 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2587 drck
->detach(drc
, dev
, spapr_lmb_release
, ds
, errp
);
2588 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2591 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2592 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2593 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2594 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2596 drck
->get_index(drc
));
2599 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2602 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2603 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2604 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2605 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2607 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2608 object_unparent(OBJECT(dev
));
2611 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
2612 DeviceState
*dev
, Error
**errp
)
2614 Error
*local_err
= NULL
;
2615 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2616 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2617 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2618 uint64_t size
= memory_region_size(mr
);
2621 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2626 spapr_del_lmbs(dev
, addr
, size
, &error_abort
);
2628 error_propagate(errp
, local_err
);
2631 void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
2632 sPAPRMachineState
*spapr
)
2634 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2635 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
2636 int id
= ppc_get_vcpu_dt_id(cpu
);
2638 int offset
, fdt_size
;
2641 fdt
= create_device_tree(&fdt_size
);
2642 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
2643 offset
= fdt_add_subnode(fdt
, 0, nodename
);
2645 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
2648 *fdt_offset
= offset
;
2652 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2655 MachineState
*ms
= MACHINE(qdev_get_machine());
2656 CPUCore
*cc
= CPU_CORE(dev
);
2657 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
2659 core_slot
->cpu
= NULL
;
2660 object_unparent(OBJECT(dev
));
2663 static void spapr_core_release(DeviceState
*dev
, void *opaque
)
2665 HotplugHandler
*hotplug_ctrl
;
2667 hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
2668 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
2672 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2676 sPAPRDRConnector
*drc
;
2677 sPAPRDRConnectorClass
*drck
;
2678 Error
*local_err
= NULL
;
2679 CPUCore
*cc
= CPU_CORE(dev
);
2680 int smt
= kvmppc_smt_threads();
2682 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
2683 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2688 error_setg(errp
, "Boot CPU core may not be unplugged");
2692 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
* smt
);
2695 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2696 drck
->detach(drc
, dev
, spapr_core_release
, NULL
, &local_err
);
2698 error_propagate(errp
, local_err
);
2702 spapr_hotplug_req_remove_by_index(drc
);
2705 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2708 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
2709 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
2710 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
2711 CPUCore
*cc
= CPU_CORE(dev
);
2712 CPUState
*cs
= CPU(core
->threads
);
2713 sPAPRDRConnector
*drc
;
2714 Error
*local_err
= NULL
;
2717 int smt
= kvmppc_smt_threads();
2718 CPUArchId
*core_slot
;
2721 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
2723 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2727 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU
, index
* smt
);
2729 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
2732 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2733 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2735 if (dev
->hotplugged
) {
2736 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
2740 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2741 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, &local_err
);
2744 error_propagate(errp
, local_err
);
2749 if (dev
->hotplugged
) {
2751 * Send hotplug notification interrupt to the guest only in case
2752 * of hotplugged CPUs.
2754 spapr_hotplug_req_add_by_index(drc
);
2757 * Set the right DRC states for cold plugged CPU.
2760 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2761 drck
->set_allocation_state(drc
, SPAPR_DR_ALLOCATION_STATE_USABLE
);
2762 drck
->set_isolation_state(drc
, SPAPR_DR_ISOLATION_STATE_UNISOLATED
);
2765 core_slot
->cpu
= OBJECT(dev
);
2768 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2771 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
2772 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
2773 Error
*local_err
= NULL
;
2774 CPUCore
*cc
= CPU_CORE(dev
);
2775 char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_model
);
2776 const char *type
= object_get_typename(OBJECT(dev
));
2777 CPUArchId
*core_slot
;
2780 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
2781 error_setg(&local_err
, "CPU hotplug not supported for this machine");
2785 if (strcmp(base_core_type
, type
)) {
2786 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
2790 if (cc
->core_id
% smp_threads
) {
2791 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
2795 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
2797 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
2801 if (core_slot
->cpu
) {
2802 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
2807 g_free(base_core_type
);
2808 error_propagate(errp
, local_err
);
2811 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
2812 DeviceState
*dev
, Error
**errp
)
2814 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2816 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2819 if (!smc
->dr_lmb_enabled
) {
2820 error_setg(errp
, "Memory hotplug not supported for this machine");
2823 node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
2827 if (node
< 0 || node
>= MAX_NODES
) {
2828 error_setg(errp
, "Invaild node %d", node
);
2833 * Currently PowerPC kernel doesn't allow hot-adding memory to
2834 * memory-less node, but instead will silently add the memory
2835 * to the first node that has some memory. This causes two
2836 * unexpected behaviours for the user.
2838 * - Memory gets hotplugged to a different node than what the user
2840 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2841 * to memory-less node, a reboot will set things accordingly
2842 * and the previously hotplugged memory now ends in the right node.
2843 * This appears as if some memory moved from one node to another.
2845 * So until kernel starts supporting memory hotplug to memory-less
2846 * nodes, just prevent such attempts upfront in QEMU.
2848 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
2849 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
2854 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
2855 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2856 spapr_core_plug(hotplug_dev
, dev
, errp
);
2860 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
2861 DeviceState
*dev
, Error
**errp
)
2863 sPAPRMachineState
*sms
= SPAPR_MACHINE(qdev_get_machine());
2864 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
2866 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2867 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
2868 spapr_memory_unplug(hotplug_dev
, dev
, errp
);
2870 error_setg(errp
, "Memory hot unplug not supported for this guest");
2872 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2873 if (!mc
->has_hotpluggable_cpus
) {
2874 error_setg(errp
, "CPU hot unplug not supported on this machine");
2877 spapr_core_unplug(hotplug_dev
, dev
, errp
);
2881 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
2882 DeviceState
*dev
, Error
**errp
)
2884 sPAPRMachineState
*sms
= SPAPR_MACHINE(qdev_get_machine());
2885 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
2887 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2888 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
2889 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
2891 /* NOTE: this means there is a window after guest reset, prior to
2892 * CAS negotiation, where unplug requests will fail due to the
2893 * capability not being detected yet. This is a bit different than
2894 * the case with PCI unplug, where the events will be queued and
2895 * eventually handled by the guest after boot
2897 error_setg(errp
, "Memory hot unplug not supported for this guest");
2899 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2900 if (!mc
->has_hotpluggable_cpus
) {
2901 error_setg(errp
, "CPU hot unplug not supported on this machine");
2904 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
2908 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
2909 DeviceState
*dev
, Error
**errp
)
2911 if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2912 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
2916 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
2919 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
2920 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
2921 return HOTPLUG_HANDLER(machine
);
2926 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index
)
2928 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2929 * socket means much for the paravirtualized PAPR platform) */
2930 return cpu_index
/ smp_threads
/ smp_cores
;
2933 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
2936 int spapr_max_cores
= max_cpus
/ smp_threads
;
2937 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2939 if (!mc
->has_hotpluggable_cpus
) {
2940 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
2942 if (machine
->possible_cpus
) {
2943 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
2944 return machine
->possible_cpus
;
2947 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2948 sizeof(CPUArchId
) * spapr_max_cores
);
2949 machine
->possible_cpus
->len
= spapr_max_cores
;
2950 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
2951 int core_id
= i
* smp_threads
;
2953 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
2954 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
2955 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
2956 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
2957 /* TODO: add 'has_node/node' here to describe
2958 to which node core belongs */
2960 return machine
->possible_cpus
;
2963 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
2964 uint64_t *buid
, hwaddr
*pio
,
2965 hwaddr
*mmio32
, hwaddr
*mmio64
,
2966 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
2969 * New-style PHB window placement.
2971 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2972 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2975 * Some guest kernels can't work with MMIO windows above 1<<46
2976 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2978 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2979 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2980 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2981 * 1TiB 64-bit MMIO windows for each PHB.
2983 const uint64_t base_buid
= 0x800000020000000ULL
;
2984 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2985 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2988 /* Sanity check natural alignments */
2989 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
2990 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
2991 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
2992 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
2993 /* Sanity check bounds */
2994 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
2995 SPAPR_PCI_MEM32_WIN_SIZE
);
2996 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
2997 SPAPR_PCI_MEM64_WIN_SIZE
);
2999 if (index
>= SPAPR_MAX_PHBS
) {
3000 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
3001 SPAPR_MAX_PHBS
- 1);
3005 *buid
= base_buid
+ index
;
3006 for (i
= 0; i
< n_dma
; ++i
) {
3007 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3010 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
3011 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
3012 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
3015 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
3017 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3019 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
3022 static void spapr_ics_resend(XICSFabric
*dev
)
3024 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3026 ics_resend(spapr
->ics
);
3029 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int server
)
3031 sPAPRMachineState
*spapr
= SPAPR_MACHINE(xi
);
3033 return (server
< spapr
->nr_servers
) ? &spapr
->icps
[server
] : NULL
;
3036 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
3039 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3042 for (i
= 0; i
< spapr
->nr_servers
; i
++) {
3043 icp_pic_print_info(&spapr
->icps
[i
], mon
);
3046 ics_pic_print_info(spapr
->ics
, mon
);
3049 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
3051 MachineClass
*mc
= MACHINE_CLASS(oc
);
3052 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
3053 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
3054 NMIClass
*nc
= NMI_CLASS(oc
);
3055 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
3056 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
3057 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
3058 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
3060 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
3063 * We set up the default / latest behaviour here. The class_init
3064 * functions for the specific versioned machine types can override
3065 * these details for backwards compatibility
3067 mc
->init
= ppc_spapr_init
;
3068 mc
->reset
= ppc_spapr_reset
;
3069 mc
->block_default_type
= IF_SCSI
;
3070 mc
->max_cpus
= 1024;
3071 mc
->no_parallel
= 1;
3072 mc
->default_boot_order
= "";
3073 mc
->default_ram_size
= 512 * M_BYTE
;
3074 mc
->kvm_type
= spapr_kvm_type
;
3075 mc
->has_dynamic_sysbus
= true;
3076 mc
->pci_allow_0_address
= true;
3077 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
3078 hc
->pre_plug
= spapr_machine_device_pre_plug
;
3079 hc
->plug
= spapr_machine_device_plug
;
3080 hc
->unplug
= spapr_machine_device_unplug
;
3081 mc
->cpu_index_to_socket_id
= spapr_cpu_index_to_socket_id
;
3082 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
3083 hc
->unplug_request
= spapr_machine_device_unplug_request
;
3085 smc
->dr_lmb_enabled
= true;
3086 smc
->tcg_default_cpu
= "POWER8";
3087 mc
->has_hotpluggable_cpus
= true;
3088 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
3089 nc
->nmi_monitor_handler
= spapr_nmi
;
3090 smc
->phb_placement
= spapr_phb_placement
;
3091 vhc
->hypercall
= emulate_spapr_hypercall
;
3092 vhc
->hpt_mask
= spapr_hpt_mask
;
3093 vhc
->map_hptes
= spapr_map_hptes
;
3094 vhc
->unmap_hptes
= spapr_unmap_hptes
;
3095 vhc
->store_hpte
= spapr_store_hpte
;
3096 vhc
->get_patbe
= spapr_get_patbe
;
3097 xic
->ics_get
= spapr_ics_get
;
3098 xic
->ics_resend
= spapr_ics_resend
;
3099 xic
->icp_get
= spapr_icp_get
;
3100 ispc
->print_info
= spapr_pic_print_info
;
3103 static const TypeInfo spapr_machine_info
= {
3104 .name
= TYPE_SPAPR_MACHINE
,
3105 .parent
= TYPE_MACHINE
,
3107 .instance_size
= sizeof(sPAPRMachineState
),
3108 .instance_init
= spapr_machine_initfn
,
3109 .instance_finalize
= spapr_machine_finalizefn
,
3110 .class_size
= sizeof(sPAPRMachineClass
),
3111 .class_init
= spapr_machine_class_init
,
3112 .interfaces
= (InterfaceInfo
[]) {
3113 { TYPE_FW_PATH_PROVIDER
},
3115 { TYPE_HOTPLUG_HANDLER
},
3116 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
3117 { TYPE_XICS_FABRIC
},
3118 { TYPE_INTERRUPT_STATS_PROVIDER
},
3123 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3124 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3127 MachineClass *mc = MACHINE_CLASS(oc); \
3128 spapr_machine_##suffix##_class_options(mc); \
3130 mc->alias = "pseries"; \
3131 mc->is_default = 1; \
3134 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3136 MachineState *machine = MACHINE(obj); \
3137 spapr_machine_##suffix##_instance_options(machine); \
3139 static const TypeInfo spapr_machine_##suffix##_info = { \
3140 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3141 .parent = TYPE_SPAPR_MACHINE, \
3142 .class_init = spapr_machine_##suffix##_class_init, \
3143 .instance_init = spapr_machine_##suffix##_instance_init, \
3145 static void spapr_machine_register_##suffix(void) \
3147 type_register(&spapr_machine_##suffix##_info); \
3149 type_init(spapr_machine_register_##suffix)
3154 static void spapr_machine_2_9_instance_options(MachineState
*machine
)
3158 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
3160 /* Defaults for the latest behaviour inherited from the base class */
3163 DEFINE_SPAPR_MACHINE(2_9
, "2.9", true);
3168 #define SPAPR_COMPAT_2_8 \
3171 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
3173 spapr_machine_2_9_instance_options(machine
);
3176 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
3178 spapr_machine_2_9_class_options(mc
);
3179 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
3182 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
3187 #define SPAPR_COMPAT_2_7 \
3190 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3191 .property = "mem_win_size", \
3192 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3195 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3196 .property = "mem64_win_size", \
3200 .driver = TYPE_POWERPC_CPU, \
3201 .property = "pre-2.8-migration", \
3205 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3206 .property = "pre-2.8-migration", \
3210 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
3211 uint64_t *buid
, hwaddr
*pio
,
3212 hwaddr
*mmio32
, hwaddr
*mmio64
,
3213 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3215 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3216 const uint64_t base_buid
= 0x800000020000000ULL
;
3217 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
3218 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
3219 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
3220 const uint32_t max_index
= 255;
3221 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
3223 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
3224 hwaddr phb0_base
, phb_base
;
3227 /* Do we have hotpluggable memory? */
3228 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
3229 /* Can't just use maxram_size, because there may be an
3230 * alignment gap between normal and hotpluggable memory
3232 ram_top
= spapr
->hotplug_memory
.base
+
3233 memory_region_size(&spapr
->hotplug_memory
.mr
);
3236 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
3238 if (index
> max_index
) {
3239 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
3244 *buid
= base_buid
+ index
;
3245 for (i
= 0; i
< n_dma
; ++i
) {
3246 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3249 phb_base
= phb0_base
+ index
* phb_spacing
;
3250 *pio
= phb_base
+ pio_offset
;
3251 *mmio32
= phb_base
+ mmio_offset
;
3253 * We don't set the 64-bit MMIO window, relying on the PHB's
3254 * fallback behaviour of automatically splitting a large "32-bit"
3255 * window into contiguous 32-bit and 64-bit windows
3259 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
3261 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
3263 spapr_machine_2_8_instance_options(machine
);
3264 spapr
->use_hotplug_event_source
= false;
3267 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
3269 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3271 spapr_machine_2_8_class_options(mc
);
3272 smc
->tcg_default_cpu
= "POWER7";
3273 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
3274 smc
->phb_placement
= phb_placement_2_7
;
3277 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
3282 #define SPAPR_COMPAT_2_6 \
3285 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3287 .value = stringify(off),\
3290 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
3292 spapr_machine_2_7_instance_options(machine
);
3295 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
3297 spapr_machine_2_7_class_options(mc
);
3298 mc
->has_hotpluggable_cpus
= false;
3299 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
3302 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
3307 #define SPAPR_COMPAT_2_5 \
3310 .driver = "spapr-vlan", \
3311 .property = "use-rx-buffer-pools", \
3315 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
3317 spapr_machine_2_6_instance_options(machine
);
3320 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
3322 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3324 spapr_machine_2_6_class_options(mc
);
3325 smc
->use_ohci_by_default
= true;
3326 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
3329 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
3334 #define SPAPR_COMPAT_2_4 \
3337 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
3339 spapr_machine_2_5_instance_options(machine
);
3342 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
3344 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3346 spapr_machine_2_5_class_options(mc
);
3347 smc
->dr_lmb_enabled
= false;
3348 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
3351 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
3356 #define SPAPR_COMPAT_2_3 \
3359 .driver = "spapr-pci-host-bridge",\
3360 .property = "dynamic-reconfiguration",\
3364 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
3366 spapr_machine_2_4_instance_options(machine
);
3367 savevm_skip_section_footers();
3368 global_state_set_optional();
3369 savevm_skip_configuration();
3372 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
3374 spapr_machine_2_4_class_options(mc
);
3375 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
3377 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
3383 #define SPAPR_COMPAT_2_2 \
3386 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3387 .property = "mem_win_size",\
3388 .value = "0x20000000",\
3391 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
3393 spapr_machine_2_3_instance_options(machine
);
3394 machine
->suppress_vmdesc
= true;
3397 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
3399 spapr_machine_2_3_class_options(mc
);
3400 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
3402 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
3407 #define SPAPR_COMPAT_2_1 \
3410 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
3412 spapr_machine_2_2_instance_options(machine
);
3415 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
3417 spapr_machine_2_2_class_options(mc
);
3418 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
3420 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
3422 static void spapr_machine_register_types(void)
3424 type_register_static(&spapr_machine_info
);
3427 type_init(spapr_machine_register_types
)