Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-2.9-20170303' into staging
[qemu/ar7.git] / hw / ppc / spapr.c
blob14192accf4864b5abf322e57b5240dc42f4ff266
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 #include "hw/intc/intc.h"
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
73 #include <libfdt.h>
75 /* SLOF memory layout:
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
81 * and more
83 * We load our kernel at 4M, leaving space for SLOF initial image
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
93 #define MIN_RMA_SLOF 128UL
95 #define PHANDLE_XICP 0x00001111
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99 static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
100 const char *type_icp, int nr_servers,
101 int nr_irqs, Error **errp)
103 XICSFabric *xi = XICS_FABRIC(spapr);
104 Error *err = NULL, *local_err = NULL;
105 ICSState *ics = NULL;
106 int i;
108 ics = ICS_SIMPLE(object_new(type_ics));
109 qdev_set_parent_bus(DEVICE(ics), sysbus_get_default());
110 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
111 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
112 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
113 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
114 error_propagate(&err, local_err);
115 if (err) {
116 goto error;
119 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
120 spapr->nr_servers = nr_servers;
122 for (i = 0; i < nr_servers; i++) {
123 ICPState *icp = &spapr->icps[i];
125 object_initialize(icp, sizeof(*icp), type_icp);
126 qdev_set_parent_bus(DEVICE(icp), sysbus_get_default());
127 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
128 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
129 object_property_set_bool(OBJECT(icp), true, "realized", &err);
130 if (err) {
131 goto error;
133 object_unref(OBJECT(icp));
136 spapr->ics = ics;
137 return 0;
139 error:
140 error_propagate(errp, err);
141 if (ics) {
142 object_unparent(OBJECT(ics));
144 return -1;
147 static int xics_system_init(MachineState *machine,
148 int nr_servers, int nr_irqs, Error **errp)
150 int rc = -1;
152 if (kvm_enabled()) {
153 Error *err = NULL;
155 if (machine_kernel_irqchip_allowed(machine) &&
156 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
157 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
158 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
160 if (machine_kernel_irqchip_required(machine) && rc < 0) {
161 error_reportf_err(err,
162 "kernel_irqchip requested but unavailable: ");
163 } else {
164 error_free(err);
168 if (rc < 0) {
169 xics_spapr_init(SPAPR_MACHINE(machine), errp);
170 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
171 TYPE_ICP, nr_servers, nr_irqs, errp);
174 return rc;
177 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
178 int smt_threads)
180 int i, ret = 0;
181 uint32_t servers_prop[smt_threads];
182 uint32_t gservers_prop[smt_threads * 2];
183 int index = ppc_get_vcpu_dt_id(cpu);
185 if (cpu->compat_pvr) {
186 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
187 if (ret < 0) {
188 return ret;
192 /* Build interrupt servers and gservers properties */
193 for (i = 0; i < smt_threads; i++) {
194 servers_prop[i] = cpu_to_be32(index + i);
195 /* Hack, direct the group queues back to cpu 0 */
196 gservers_prop[i*2] = cpu_to_be32(index + i);
197 gservers_prop[i*2 + 1] = 0;
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
200 servers_prop, sizeof(servers_prop));
201 if (ret < 0) {
202 return ret;
204 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
205 gservers_prop, sizeof(gservers_prop));
207 return ret;
210 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
212 int ret = 0;
213 PowerPCCPU *cpu = POWERPC_CPU(cs);
214 int index = ppc_get_vcpu_dt_id(cpu);
215 uint32_t associativity[] = {cpu_to_be32(0x5),
216 cpu_to_be32(0x0),
217 cpu_to_be32(0x0),
218 cpu_to_be32(0x0),
219 cpu_to_be32(cs->numa_node),
220 cpu_to_be32(index)};
222 /* Advertise NUMA via ibm,associativity */
223 if (nb_numa_nodes > 1) {
224 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
225 sizeof(associativity));
228 return ret;
231 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
233 int ret = 0, offset, cpus_offset;
234 CPUState *cs;
235 char cpu_model[32];
236 int smt = kvmppc_smt_threads();
237 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
239 CPU_FOREACH(cs) {
240 PowerPCCPU *cpu = POWERPC_CPU(cs);
241 DeviceClass *dc = DEVICE_GET_CLASS(cs);
242 int index = ppc_get_vcpu_dt_id(cpu);
243 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
245 if ((index % smt) != 0) {
246 continue;
249 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
251 cpus_offset = fdt_path_offset(fdt, "/cpus");
252 if (cpus_offset < 0) {
253 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
254 "cpus");
255 if (cpus_offset < 0) {
256 return cpus_offset;
259 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
260 if (offset < 0) {
261 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
262 if (offset < 0) {
263 return offset;
267 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
268 pft_size_prop, sizeof(pft_size_prop));
269 if (ret < 0) {
270 return ret;
273 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
274 if (ret < 0) {
275 return ret;
278 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
279 if (ret < 0) {
280 return ret;
283 return ret;
286 static hwaddr spapr_node0_size(void)
288 MachineState *machine = MACHINE(qdev_get_machine());
290 if (nb_numa_nodes) {
291 int i;
292 for (i = 0; i < nb_numa_nodes; ++i) {
293 if (numa_info[i].node_mem) {
294 return MIN(pow2floor(numa_info[i].node_mem),
295 machine->ram_size);
299 return machine->ram_size;
302 static void add_str(GString *s, const gchar *s1)
304 g_string_append_len(s, s1, strlen(s1) + 1);
307 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
308 hwaddr size)
310 uint32_t associativity[] = {
311 cpu_to_be32(0x4), /* length */
312 cpu_to_be32(0x0), cpu_to_be32(0x0),
313 cpu_to_be32(0x0), cpu_to_be32(nodeid)
315 char mem_name[32];
316 uint64_t mem_reg_property[2];
317 int off;
319 mem_reg_property[0] = cpu_to_be64(start);
320 mem_reg_property[1] = cpu_to_be64(size);
322 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
323 off = fdt_add_subnode(fdt, 0, mem_name);
324 _FDT(off);
325 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
326 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
327 sizeof(mem_reg_property))));
328 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
329 sizeof(associativity))));
330 return off;
333 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
335 MachineState *machine = MACHINE(spapr);
336 hwaddr mem_start, node_size;
337 int i, nb_nodes = nb_numa_nodes;
338 NodeInfo *nodes = numa_info;
339 NodeInfo ramnode;
341 /* No NUMA nodes, assume there is just one node with whole RAM */
342 if (!nb_numa_nodes) {
343 nb_nodes = 1;
344 ramnode.node_mem = machine->ram_size;
345 nodes = &ramnode;
348 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
349 if (!nodes[i].node_mem) {
350 continue;
352 if (mem_start >= machine->ram_size) {
353 node_size = 0;
354 } else {
355 node_size = nodes[i].node_mem;
356 if (node_size > machine->ram_size - mem_start) {
357 node_size = machine->ram_size - mem_start;
360 if (!mem_start) {
361 /* ppc_spapr_init() checks for rma_size <= node0_size already */
362 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
363 mem_start += spapr->rma_size;
364 node_size -= spapr->rma_size;
366 for ( ; node_size; ) {
367 hwaddr sizetmp = pow2floor(node_size);
369 /* mem_start != 0 here */
370 if (ctzl(mem_start) < ctzl(sizetmp)) {
371 sizetmp = 1ULL << ctzl(mem_start);
374 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
375 node_size -= sizetmp;
376 mem_start += sizetmp;
380 return 0;
383 /* Populate the "ibm,pa-features" property */
384 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
386 uint8_t pa_features_206[] = { 6, 0,
387 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
388 uint8_t pa_features_207[] = { 24, 0,
389 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
390 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
391 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
392 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
393 /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
394 uint8_t pa_features_300[] = { 64, 0,
395 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
396 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
397 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
398 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
399 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
400 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
401 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
402 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
403 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
404 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
405 0x00, 0x00, 0x00, 0x00 }; /* 60 - 63 */
407 uint8_t *pa_features;
408 size_t pa_size;
410 switch (POWERPC_MMU_VER(env->mmu_model)) {
411 case POWERPC_MMU_VER_2_06:
412 pa_features = pa_features_206;
413 pa_size = sizeof(pa_features_206);
414 break;
415 case POWERPC_MMU_VER_2_07:
416 pa_features = pa_features_207;
417 pa_size = sizeof(pa_features_207);
418 break;
419 case POWERPC_MMU_VER_3_00:
420 pa_features = pa_features_300;
421 pa_size = sizeof(pa_features_300);
422 break;
423 default:
424 return;
427 if (env->ci_large_pages) {
429 * Note: we keep CI large pages off by default because a 64K capable
430 * guest provisioned with large pages might otherwise try to map a qemu
431 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
432 * even if that qemu runs on a 4k host.
433 * We dd this bit back here if we are confident this is not an issue
435 pa_features[3] |= 0x20;
437 if (kvmppc_has_cap_htm() && pa_size > 24) {
438 pa_features[24] |= 0x80; /* Transactional memory support */
441 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
444 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
445 sPAPRMachineState *spapr)
447 PowerPCCPU *cpu = POWERPC_CPU(cs);
448 CPUPPCState *env = &cpu->env;
449 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
450 int index = ppc_get_vcpu_dt_id(cpu);
451 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
452 0xffffffff, 0xffffffff};
453 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
454 : SPAPR_TIMEBASE_FREQ;
455 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
456 uint32_t page_sizes_prop[64];
457 size_t page_sizes_prop_size;
458 uint32_t vcpus_per_socket = smp_threads * smp_cores;
459 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
460 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
461 sPAPRDRConnector *drc;
462 sPAPRDRConnectorClass *drck;
463 int drc_index;
465 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
466 if (drc) {
467 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
468 drc_index = drck->get_index(drc);
469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
472 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
473 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
475 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
477 env->dcache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
479 env->dcache_line_size)));
480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
481 env->icache_line_size)));
482 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
483 env->icache_line_size)));
485 if (pcc->l1_dcache_size) {
486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
487 pcc->l1_dcache_size)));
488 } else {
489 error_report("Warning: Unknown L1 dcache size for cpu");
491 if (pcc->l1_icache_size) {
492 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
493 pcc->l1_icache_size)));
494 } else {
495 error_report("Warning: Unknown L1 icache size for cpu");
498 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
499 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
500 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
501 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
502 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
503 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
505 if (env->spr_cb[SPR_PURR].oea_read) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
509 if (env->mmu_model & POWERPC_MMU_1TSEG) {
510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
511 segs, sizeof(segs))));
514 /* Advertise VMX/VSX (vector extensions) if available
515 * 0 / no property == no vector extensions
516 * 1 == VMX / Altivec available
517 * 2 == VSX available */
518 if (env->insns_flags & PPC_ALTIVEC) {
519 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
524 /* Advertise DFP (Decimal Floating Point) if available
525 * 0 / no property == no DFP
526 * 1 == DFP available */
527 if (env->insns_flags2 & PPC2_DFP) {
528 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
531 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
532 sizeof(page_sizes_prop));
533 if (page_sizes_prop_size) {
534 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
535 page_sizes_prop, page_sizes_prop_size)));
538 spapr_populate_pa_features(env, fdt, offset);
540 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
541 cs->cpu_index / vcpus_per_socket)));
543 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
544 pft_size_prop, sizeof(pft_size_prop))));
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
551 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
553 CPUState *cs;
554 int cpus_offset;
555 char *nodename;
556 int smt = kvmppc_smt_threads();
558 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
559 _FDT(cpus_offset);
560 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
561 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
564 * We walk the CPUs in reverse order to ensure that CPU DT nodes
565 * created by fdt_add_subnode() end up in the right order in FDT
566 * for the guest kernel the enumerate the CPUs correctly.
568 CPU_FOREACH_REVERSE(cs) {
569 PowerPCCPU *cpu = POWERPC_CPU(cs);
570 int index = ppc_get_vcpu_dt_id(cpu);
571 DeviceClass *dc = DEVICE_GET_CLASS(cs);
572 int offset;
574 if ((index % smt) != 0) {
575 continue;
578 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
579 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
580 g_free(nodename);
581 _FDT(offset);
582 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
588 * Adds ibm,dynamic-reconfiguration-memory node.
589 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
590 * of this device tree node.
592 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
594 MachineState *machine = MACHINE(spapr);
595 int ret, i, offset;
596 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
597 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
598 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
599 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
600 memory_region_size(&spapr->hotplug_memory.mr)) /
601 lmb_size;
602 uint32_t *int_buf, *cur_index, buf_len;
603 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
606 * Don't create the node if there is no hotpluggable memory
608 if (machine->ram_size == machine->maxram_size) {
609 return 0;
613 * Allocate enough buffer size to fit in ibm,dynamic-memory
614 * or ibm,associativity-lookup-arrays
616 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
617 * sizeof(uint32_t);
618 cur_index = int_buf = g_malloc0(buf_len);
620 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
622 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
623 sizeof(prop_lmb_size));
624 if (ret < 0) {
625 goto out;
628 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
629 if (ret < 0) {
630 goto out;
633 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
634 if (ret < 0) {
635 goto out;
638 /* ibm,dynamic-memory */
639 int_buf[0] = cpu_to_be32(nr_lmbs);
640 cur_index++;
641 for (i = 0; i < nr_lmbs; i++) {
642 uint64_t addr = i * lmb_size;
643 uint32_t *dynamic_memory = cur_index;
645 if (i >= hotplug_lmb_start) {
646 sPAPRDRConnector *drc;
647 sPAPRDRConnectorClass *drck;
649 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
650 g_assert(drc);
651 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
653 dynamic_memory[0] = cpu_to_be32(addr >> 32);
654 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
655 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
656 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
657 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
658 if (memory_region_present(get_system_memory(), addr)) {
659 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
660 } else {
661 dynamic_memory[5] = cpu_to_be32(0);
663 } else {
665 * LMB information for RMA, boot time RAM and gap b/n RAM and
666 * hotplug memory region -- all these are marked as reserved
667 * and as having no valid DRC.
669 dynamic_memory[0] = cpu_to_be32(addr >> 32);
670 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
671 dynamic_memory[2] = cpu_to_be32(0);
672 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
673 dynamic_memory[4] = cpu_to_be32(-1);
674 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
675 SPAPR_LMB_FLAGS_DRC_INVALID);
678 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
680 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
681 if (ret < 0) {
682 goto out;
685 /* ibm,associativity-lookup-arrays */
686 cur_index = int_buf;
687 int_buf[0] = cpu_to_be32(nr_nodes);
688 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
689 cur_index += 2;
690 for (i = 0; i < nr_nodes; i++) {
691 uint32_t associativity[] = {
692 cpu_to_be32(0x0),
693 cpu_to_be32(0x0),
694 cpu_to_be32(0x0),
695 cpu_to_be32(i)
697 memcpy(cur_index, associativity, sizeof(associativity));
698 cur_index += 4;
700 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
701 (cur_index - int_buf) * sizeof(uint32_t));
702 out:
703 g_free(int_buf);
704 return ret;
707 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
708 sPAPROptionVector *ov5_updates)
710 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
711 int ret = 0, offset;
713 /* Generate ibm,dynamic-reconfiguration-memory node if required */
714 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
715 g_assert(smc->dr_lmb_enabled);
716 ret = spapr_populate_drconf_memory(spapr, fdt);
717 if (ret) {
718 goto out;
722 offset = fdt_path_offset(fdt, "/chosen");
723 if (offset < 0) {
724 offset = fdt_add_subnode(fdt, 0, "chosen");
725 if (offset < 0) {
726 return offset;
729 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
730 "ibm,architecture-vec-5");
732 out:
733 return ret;
736 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
737 target_ulong addr, target_ulong size,
738 sPAPROptionVector *ov5_updates)
740 void *fdt, *fdt_skel;
741 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
743 size -= sizeof(hdr);
745 /* Create sceleton */
746 fdt_skel = g_malloc0(size);
747 _FDT((fdt_create(fdt_skel, size)));
748 _FDT((fdt_begin_node(fdt_skel, "")));
749 _FDT((fdt_end_node(fdt_skel)));
750 _FDT((fdt_finish(fdt_skel)));
751 fdt = g_malloc0(size);
752 _FDT((fdt_open_into(fdt_skel, fdt, size)));
753 g_free(fdt_skel);
755 /* Fixup cpu nodes */
756 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
758 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
759 return -1;
762 /* Pack resulting tree */
763 _FDT((fdt_pack(fdt)));
765 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
766 trace_spapr_cas_failed(size);
767 return -1;
770 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
771 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
772 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
773 g_free(fdt);
775 return 0;
778 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
780 int rtas;
781 GString *hypertas = g_string_sized_new(256);
782 GString *qemu_hypertas = g_string_sized_new(256);
783 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
784 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
785 memory_region_size(&spapr->hotplug_memory.mr);
786 uint32_t lrdr_capacity[] = {
787 cpu_to_be32(max_hotplug_addr >> 32),
788 cpu_to_be32(max_hotplug_addr & 0xffffffff),
789 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
790 cpu_to_be32(max_cpus / smp_threads),
793 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
795 /* hypertas */
796 add_str(hypertas, "hcall-pft");
797 add_str(hypertas, "hcall-term");
798 add_str(hypertas, "hcall-dabr");
799 add_str(hypertas, "hcall-interrupt");
800 add_str(hypertas, "hcall-tce");
801 add_str(hypertas, "hcall-vio");
802 add_str(hypertas, "hcall-splpar");
803 add_str(hypertas, "hcall-bulk");
804 add_str(hypertas, "hcall-set-mode");
805 add_str(hypertas, "hcall-sprg0");
806 add_str(hypertas, "hcall-copy");
807 add_str(hypertas, "hcall-debug");
808 add_str(qemu_hypertas, "hcall-memop1");
810 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
811 add_str(hypertas, "hcall-multi-tce");
813 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
814 hypertas->str, hypertas->len));
815 g_string_free(hypertas, TRUE);
816 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
817 qemu_hypertas->str, qemu_hypertas->len));
818 g_string_free(qemu_hypertas, TRUE);
820 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
821 refpoints, sizeof(refpoints)));
823 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
824 RTAS_ERROR_LOG_MAX));
825 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
826 RTAS_EVENT_SCAN_RATE));
828 if (msi_nonbroken) {
829 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
833 * According to PAPR, rtas ibm,os-term does not guarantee a return
834 * back to the guest cpu.
836 * While an additional ibm,extended-os-term property indicates
837 * that rtas call return will always occur. Set this property.
839 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
841 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
842 lrdr_capacity, sizeof(lrdr_capacity)));
844 spapr_dt_rtas_tokens(fdt, rtas);
847 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
849 MachineState *machine = MACHINE(spapr);
850 int chosen;
851 const char *boot_device = machine->boot_order;
852 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
853 size_t cb = 0;
854 char *bootlist = get_boot_devices_list(&cb, true);
856 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
858 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
859 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
860 spapr->initrd_base));
861 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
862 spapr->initrd_base + spapr->initrd_size));
864 if (spapr->kernel_size) {
865 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
866 cpu_to_be64(spapr->kernel_size) };
868 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
869 &kprop, sizeof(kprop)));
870 if (spapr->kernel_le) {
871 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
874 if (boot_menu) {
875 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
877 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
878 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
879 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
881 if (cb && bootlist) {
882 int i;
884 for (i = 0; i < cb; i++) {
885 if (bootlist[i] == '\n') {
886 bootlist[i] = ' ';
889 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
892 if (boot_device && strlen(boot_device)) {
893 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
896 if (!spapr->has_graphics && stdout_path) {
897 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
900 g_free(stdout_path);
901 g_free(bootlist);
904 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
906 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
907 * KVM to work under pHyp with some guest co-operation */
908 int hypervisor;
909 uint8_t hypercall[16];
911 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
912 /* indicate KVM hypercall interface */
913 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
914 if (kvmppc_has_cap_fixup_hcalls()) {
916 * Older KVM versions with older guest kernels were broken
917 * with the magic page, don't allow the guest to map it.
919 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
920 sizeof(hypercall))) {
921 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
922 hypercall, sizeof(hypercall)));
927 static void *spapr_build_fdt(sPAPRMachineState *spapr,
928 hwaddr rtas_addr,
929 hwaddr rtas_size)
931 MachineState *machine = MACHINE(qdev_get_machine());
932 MachineClass *mc = MACHINE_GET_CLASS(machine);
933 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
934 int ret;
935 void *fdt;
936 sPAPRPHBState *phb;
937 char *buf;
939 fdt = g_malloc0(FDT_MAX_SIZE);
940 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
942 /* Root node */
943 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
944 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
945 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
948 * Add info to guest to indentify which host is it being run on
949 * and what is the uuid of the guest
951 if (kvmppc_get_host_model(&buf)) {
952 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
953 g_free(buf);
955 if (kvmppc_get_host_serial(&buf)) {
956 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
957 g_free(buf);
960 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
962 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
963 if (qemu_uuid_set) {
964 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
966 g_free(buf);
968 if (qemu_get_vm_name()) {
969 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
970 qemu_get_vm_name()));
973 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
974 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
976 /* /interrupt controller */
977 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
979 ret = spapr_populate_memory(spapr, fdt);
980 if (ret < 0) {
981 error_report("couldn't setup memory nodes in fdt");
982 exit(1);
985 /* /vdevice */
986 spapr_dt_vdevice(spapr->vio_bus, fdt);
988 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
989 ret = spapr_rng_populate_dt(fdt);
990 if (ret < 0) {
991 error_report("could not set up rng device in the fdt");
992 exit(1);
996 QLIST_FOREACH(phb, &spapr->phbs, list) {
997 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
998 if (ret < 0) {
999 error_report("couldn't setup PCI devices in fdt");
1000 exit(1);
1004 /* cpus */
1005 spapr_populate_cpus_dt_node(fdt, spapr);
1007 if (smc->dr_lmb_enabled) {
1008 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1011 if (mc->has_hotpluggable_cpus) {
1012 int offset = fdt_path_offset(fdt, "/cpus");
1013 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1014 SPAPR_DR_CONNECTOR_TYPE_CPU);
1015 if (ret < 0) {
1016 error_report("Couldn't set up CPU DR device tree properties");
1017 exit(1);
1021 /* /event-sources */
1022 spapr_dt_events(spapr, fdt);
1024 /* /rtas */
1025 spapr_dt_rtas(spapr, fdt);
1027 /* /chosen */
1028 spapr_dt_chosen(spapr, fdt);
1030 /* /hypervisor */
1031 if (kvm_enabled()) {
1032 spapr_dt_hypervisor(spapr, fdt);
1035 /* Build memory reserve map */
1036 if (spapr->kernel_size) {
1037 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1039 if (spapr->initrd_size) {
1040 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1043 /* ibm,client-architecture-support updates */
1044 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1045 if (ret < 0) {
1046 error_report("couldn't setup CAS properties fdt");
1047 exit(1);
1050 return fdt;
1053 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1055 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1058 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1059 PowerPCCPU *cpu)
1061 CPUPPCState *env = &cpu->env;
1063 /* The TCG path should also be holding the BQL at this point */
1064 g_assert(qemu_mutex_iothread_locked());
1066 if (msr_pr) {
1067 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1068 env->gpr[3] = H_PRIVILEGE;
1069 } else {
1070 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1074 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1076 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1078 return spapr->patb_entry;
1081 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1082 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1083 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1084 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1085 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1088 * Get the fd to access the kernel htab, re-opening it if necessary
1090 static int get_htab_fd(sPAPRMachineState *spapr)
1092 if (spapr->htab_fd >= 0) {
1093 return spapr->htab_fd;
1096 spapr->htab_fd = kvmppc_get_htab_fd(false);
1097 if (spapr->htab_fd < 0) {
1098 error_report("Unable to open fd for reading hash table from KVM: %s",
1099 strerror(errno));
1102 return spapr->htab_fd;
1105 static void close_htab_fd(sPAPRMachineState *spapr)
1107 if (spapr->htab_fd >= 0) {
1108 close(spapr->htab_fd);
1110 spapr->htab_fd = -1;
1113 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1115 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1117 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1120 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1121 hwaddr ptex, int n)
1123 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1124 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1126 if (!spapr->htab) {
1128 * HTAB is controlled by KVM. Fetch into temporary buffer
1130 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1131 kvmppc_read_hptes(hptes, ptex, n);
1132 return hptes;
1136 * HTAB is controlled by QEMU. Just point to the internally
1137 * accessible PTEG.
1139 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1142 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1143 const ppc_hash_pte64_t *hptes,
1144 hwaddr ptex, int n)
1146 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1148 if (!spapr->htab) {
1149 g_free((void *)hptes);
1152 /* Nothing to do for qemu managed HPT */
1155 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1156 uint64_t pte0, uint64_t pte1)
1158 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1159 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1161 if (!spapr->htab) {
1162 kvmppc_write_hpte(ptex, pte0, pte1);
1163 } else {
1164 stq_p(spapr->htab + offset, pte0);
1165 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1169 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1171 int shift;
1173 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1174 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1175 * that's much more than is needed for Linux guests */
1176 shift = ctz64(pow2ceil(ramsize)) - 7;
1177 shift = MAX(shift, 18); /* Minimum architected size */
1178 shift = MIN(shift, 46); /* Maximum architected size */
1179 return shift;
1182 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1183 Error **errp)
1185 long rc;
1187 /* Clean up any HPT info from a previous boot */
1188 g_free(spapr->htab);
1189 spapr->htab = NULL;
1190 spapr->htab_shift = 0;
1191 close_htab_fd(spapr);
1193 rc = kvmppc_reset_htab(shift);
1194 if (rc < 0) {
1195 /* kernel-side HPT needed, but couldn't allocate one */
1196 error_setg_errno(errp, errno,
1197 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1198 shift);
1199 /* This is almost certainly fatal, but if the caller really
1200 * wants to carry on with shift == 0, it's welcome to try */
1201 } else if (rc > 0) {
1202 /* kernel-side HPT allocated */
1203 if (rc != shift) {
1204 error_setg(errp,
1205 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1206 shift, rc);
1209 spapr->htab_shift = shift;
1210 spapr->htab = NULL;
1211 } else {
1212 /* kernel-side HPT not needed, allocate in userspace instead */
1213 size_t size = 1ULL << shift;
1214 int i;
1216 spapr->htab = qemu_memalign(size, size);
1217 if (!spapr->htab) {
1218 error_setg_errno(errp, errno,
1219 "Could not allocate HPT of order %d", shift);
1220 return;
1223 memset(spapr->htab, 0, size);
1224 spapr->htab_shift = shift;
1226 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1227 DIRTY_HPTE(HPTE(spapr->htab, i));
1232 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1234 bool matched = false;
1236 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1237 matched = true;
1240 if (!matched) {
1241 error_report("Device %s is not supported by this machine yet.",
1242 qdev_fw_name(DEVICE(sbdev)));
1243 exit(1);
1247 static void ppc_spapr_reset(void)
1249 MachineState *machine = MACHINE(qdev_get_machine());
1250 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1251 PowerPCCPU *first_ppc_cpu;
1252 uint32_t rtas_limit;
1253 hwaddr rtas_addr, fdt_addr;
1254 void *fdt;
1255 int rc;
1257 /* Check for unknown sysbus devices */
1258 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1260 spapr->patb_entry = 0;
1262 /* Allocate and/or reset the hash page table */
1263 spapr_reallocate_hpt(spapr,
1264 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1265 &error_fatal);
1267 /* Update the RMA size if necessary */
1268 if (spapr->vrma_adjust) {
1269 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1270 spapr->htab_shift);
1273 qemu_devices_reset();
1276 * We place the device tree and RTAS just below either the top of the RMA,
1277 * or just below 2GB, whichever is lowere, so that it can be
1278 * processed with 32-bit real mode code if necessary
1280 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1281 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1282 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1284 /* if this reset wasn't generated by CAS, we should reset our
1285 * negotiated options and start from scratch */
1286 if (!spapr->cas_reboot) {
1287 spapr_ovec_cleanup(spapr->ov5_cas);
1288 spapr->ov5_cas = spapr_ovec_new();
1291 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1293 spapr_load_rtas(spapr, fdt, rtas_addr);
1295 rc = fdt_pack(fdt);
1297 /* Should only fail if we've built a corrupted tree */
1298 assert(rc == 0);
1300 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1301 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1302 fdt_totalsize(fdt), FDT_MAX_SIZE);
1303 exit(1);
1306 /* Load the fdt */
1307 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1308 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1309 g_free(fdt);
1311 /* Set up the entry state */
1312 first_ppc_cpu = POWERPC_CPU(first_cpu);
1313 first_ppc_cpu->env.gpr[3] = fdt_addr;
1314 first_ppc_cpu->env.gpr[5] = 0;
1315 first_cpu->halted = 0;
1316 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1318 spapr->cas_reboot = false;
1321 static void spapr_create_nvram(sPAPRMachineState *spapr)
1323 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1324 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1326 if (dinfo) {
1327 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1328 &error_fatal);
1331 qdev_init_nofail(dev);
1333 spapr->nvram = (struct sPAPRNVRAM *)dev;
1336 static void spapr_rtc_create(sPAPRMachineState *spapr)
1338 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1340 qdev_init_nofail(dev);
1341 spapr->rtc = dev;
1343 object_property_add_alias(qdev_get_machine(), "rtc-time",
1344 OBJECT(spapr->rtc), "date", NULL);
1347 /* Returns whether we want to use VGA or not */
1348 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1350 switch (vga_interface_type) {
1351 case VGA_NONE:
1352 return false;
1353 case VGA_DEVICE:
1354 return true;
1355 case VGA_STD:
1356 case VGA_VIRTIO:
1357 return pci_vga_init(pci_bus) != NULL;
1358 default:
1359 error_setg(errp,
1360 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1361 return false;
1365 static int spapr_post_load(void *opaque, int version_id)
1367 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1368 int err = 0;
1370 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1371 int i;
1372 for (i = 0; i < spapr->nr_servers; i++) {
1373 icp_resend(&spapr->icps[i]);
1377 /* In earlier versions, there was no separate qdev for the PAPR
1378 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1379 * So when migrating from those versions, poke the incoming offset
1380 * value into the RTC device */
1381 if (version_id < 3) {
1382 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1385 return err;
1388 static bool version_before_3(void *opaque, int version_id)
1390 return version_id < 3;
1393 static bool spapr_ov5_cas_needed(void *opaque)
1395 sPAPRMachineState *spapr = opaque;
1396 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1397 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1398 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1399 bool cas_needed;
1401 /* Prior to the introduction of sPAPROptionVector, we had two option
1402 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1403 * Both of these options encode machine topology into the device-tree
1404 * in such a way that the now-booted OS should still be able to interact
1405 * appropriately with QEMU regardless of what options were actually
1406 * negotiatied on the source side.
1408 * As such, we can avoid migrating the CAS-negotiated options if these
1409 * are the only options available on the current machine/platform.
1410 * Since these are the only options available for pseries-2.7 and
1411 * earlier, this allows us to maintain old->new/new->old migration
1412 * compatibility.
1414 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1415 * via default pseries-2.8 machines and explicit command-line parameters.
1416 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1417 * of the actual CAS-negotiated values to continue working properly. For
1418 * example, availability of memory unplug depends on knowing whether
1419 * OV5_HP_EVT was negotiated via CAS.
1421 * Thus, for any cases where the set of available CAS-negotiatable
1422 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1423 * include the CAS-negotiated options in the migration stream.
1425 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1426 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1428 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1429 * the mask itself since in the future it's possible "legacy" bits may be
1430 * removed via machine options, which could generate a false positive
1431 * that breaks migration.
1433 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1434 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1436 spapr_ovec_cleanup(ov5_mask);
1437 spapr_ovec_cleanup(ov5_legacy);
1438 spapr_ovec_cleanup(ov5_removed);
1440 return cas_needed;
1443 static const VMStateDescription vmstate_spapr_ov5_cas = {
1444 .name = "spapr_option_vector_ov5_cas",
1445 .version_id = 1,
1446 .minimum_version_id = 1,
1447 .needed = spapr_ov5_cas_needed,
1448 .fields = (VMStateField[]) {
1449 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1450 vmstate_spapr_ovec, sPAPROptionVector),
1451 VMSTATE_END_OF_LIST()
1455 static bool spapr_patb_entry_needed(void *opaque)
1457 sPAPRMachineState *spapr = opaque;
1459 return !!spapr->patb_entry;
1462 static const VMStateDescription vmstate_spapr_patb_entry = {
1463 .name = "spapr_patb_entry",
1464 .version_id = 1,
1465 .minimum_version_id = 1,
1466 .needed = spapr_patb_entry_needed,
1467 .fields = (VMStateField[]) {
1468 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1469 VMSTATE_END_OF_LIST()
1473 static const VMStateDescription vmstate_spapr = {
1474 .name = "spapr",
1475 .version_id = 3,
1476 .minimum_version_id = 1,
1477 .post_load = spapr_post_load,
1478 .fields = (VMStateField[]) {
1479 /* used to be @next_irq */
1480 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1482 /* RTC offset */
1483 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1485 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1486 VMSTATE_END_OF_LIST()
1488 .subsections = (const VMStateDescription*[]) {
1489 &vmstate_spapr_ov5_cas,
1490 &vmstate_spapr_patb_entry,
1491 NULL
1495 static int htab_save_setup(QEMUFile *f, void *opaque)
1497 sPAPRMachineState *spapr = opaque;
1499 /* "Iteration" header */
1500 qemu_put_be32(f, spapr->htab_shift);
1502 if (spapr->htab) {
1503 spapr->htab_save_index = 0;
1504 spapr->htab_first_pass = true;
1505 } else {
1506 assert(kvm_enabled());
1510 return 0;
1513 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1514 int64_t max_ns)
1516 bool has_timeout = max_ns != -1;
1517 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1518 int index = spapr->htab_save_index;
1519 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1521 assert(spapr->htab_first_pass);
1523 do {
1524 int chunkstart;
1526 /* Consume invalid HPTEs */
1527 while ((index < htabslots)
1528 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1529 index++;
1530 CLEAN_HPTE(HPTE(spapr->htab, index));
1533 /* Consume valid HPTEs */
1534 chunkstart = index;
1535 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1536 && HPTE_VALID(HPTE(spapr->htab, index))) {
1537 index++;
1538 CLEAN_HPTE(HPTE(spapr->htab, index));
1541 if (index > chunkstart) {
1542 int n_valid = index - chunkstart;
1544 qemu_put_be32(f, chunkstart);
1545 qemu_put_be16(f, n_valid);
1546 qemu_put_be16(f, 0);
1547 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1548 HASH_PTE_SIZE_64 * n_valid);
1550 if (has_timeout &&
1551 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1552 break;
1555 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1557 if (index >= htabslots) {
1558 assert(index == htabslots);
1559 index = 0;
1560 spapr->htab_first_pass = false;
1562 spapr->htab_save_index = index;
1565 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1566 int64_t max_ns)
1568 bool final = max_ns < 0;
1569 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1570 int examined = 0, sent = 0;
1571 int index = spapr->htab_save_index;
1572 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1574 assert(!spapr->htab_first_pass);
1576 do {
1577 int chunkstart, invalidstart;
1579 /* Consume non-dirty HPTEs */
1580 while ((index < htabslots)
1581 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1582 index++;
1583 examined++;
1586 chunkstart = index;
1587 /* Consume valid dirty HPTEs */
1588 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1589 && HPTE_DIRTY(HPTE(spapr->htab, index))
1590 && HPTE_VALID(HPTE(spapr->htab, index))) {
1591 CLEAN_HPTE(HPTE(spapr->htab, index));
1592 index++;
1593 examined++;
1596 invalidstart = index;
1597 /* Consume invalid dirty HPTEs */
1598 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1599 && HPTE_DIRTY(HPTE(spapr->htab, index))
1600 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1601 CLEAN_HPTE(HPTE(spapr->htab, index));
1602 index++;
1603 examined++;
1606 if (index > chunkstart) {
1607 int n_valid = invalidstart - chunkstart;
1608 int n_invalid = index - invalidstart;
1610 qemu_put_be32(f, chunkstart);
1611 qemu_put_be16(f, n_valid);
1612 qemu_put_be16(f, n_invalid);
1613 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1614 HASH_PTE_SIZE_64 * n_valid);
1615 sent += index - chunkstart;
1617 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1618 break;
1622 if (examined >= htabslots) {
1623 break;
1626 if (index >= htabslots) {
1627 assert(index == htabslots);
1628 index = 0;
1630 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1632 if (index >= htabslots) {
1633 assert(index == htabslots);
1634 index = 0;
1637 spapr->htab_save_index = index;
1639 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1642 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1643 #define MAX_KVM_BUF_SIZE 2048
1645 static int htab_save_iterate(QEMUFile *f, void *opaque)
1647 sPAPRMachineState *spapr = opaque;
1648 int fd;
1649 int rc = 0;
1651 /* Iteration header */
1652 qemu_put_be32(f, 0);
1654 if (!spapr->htab) {
1655 assert(kvm_enabled());
1657 fd = get_htab_fd(spapr);
1658 if (fd < 0) {
1659 return fd;
1662 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1663 if (rc < 0) {
1664 return rc;
1666 } else if (spapr->htab_first_pass) {
1667 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1668 } else {
1669 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1672 /* End marker */
1673 qemu_put_be32(f, 0);
1674 qemu_put_be16(f, 0);
1675 qemu_put_be16(f, 0);
1677 return rc;
1680 static int htab_save_complete(QEMUFile *f, void *opaque)
1682 sPAPRMachineState *spapr = opaque;
1683 int fd;
1685 /* Iteration header */
1686 qemu_put_be32(f, 0);
1688 if (!spapr->htab) {
1689 int rc;
1691 assert(kvm_enabled());
1693 fd = get_htab_fd(spapr);
1694 if (fd < 0) {
1695 return fd;
1698 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1699 if (rc < 0) {
1700 return rc;
1702 } else {
1703 if (spapr->htab_first_pass) {
1704 htab_save_first_pass(f, spapr, -1);
1706 htab_save_later_pass(f, spapr, -1);
1709 /* End marker */
1710 qemu_put_be32(f, 0);
1711 qemu_put_be16(f, 0);
1712 qemu_put_be16(f, 0);
1714 return 0;
1717 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1719 sPAPRMachineState *spapr = opaque;
1720 uint32_t section_hdr;
1721 int fd = -1;
1723 if (version_id < 1 || version_id > 1) {
1724 error_report("htab_load() bad version");
1725 return -EINVAL;
1728 section_hdr = qemu_get_be32(f);
1730 if (section_hdr) {
1731 Error *local_err = NULL;
1733 /* First section gives the htab size */
1734 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1735 if (local_err) {
1736 error_report_err(local_err);
1737 return -EINVAL;
1739 return 0;
1742 if (!spapr->htab) {
1743 assert(kvm_enabled());
1745 fd = kvmppc_get_htab_fd(true);
1746 if (fd < 0) {
1747 error_report("Unable to open fd to restore KVM hash table: %s",
1748 strerror(errno));
1752 while (true) {
1753 uint32_t index;
1754 uint16_t n_valid, n_invalid;
1756 index = qemu_get_be32(f);
1757 n_valid = qemu_get_be16(f);
1758 n_invalid = qemu_get_be16(f);
1760 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1761 /* End of Stream */
1762 break;
1765 if ((index + n_valid + n_invalid) >
1766 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1767 /* Bad index in stream */
1768 error_report(
1769 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1770 index, n_valid, n_invalid, spapr->htab_shift);
1771 return -EINVAL;
1774 if (spapr->htab) {
1775 if (n_valid) {
1776 qemu_get_buffer(f, HPTE(spapr->htab, index),
1777 HASH_PTE_SIZE_64 * n_valid);
1779 if (n_invalid) {
1780 memset(HPTE(spapr->htab, index + n_valid), 0,
1781 HASH_PTE_SIZE_64 * n_invalid);
1783 } else {
1784 int rc;
1786 assert(fd >= 0);
1788 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1789 if (rc < 0) {
1790 return rc;
1795 if (!spapr->htab) {
1796 assert(fd >= 0);
1797 close(fd);
1800 return 0;
1803 static void htab_cleanup(void *opaque)
1805 sPAPRMachineState *spapr = opaque;
1807 close_htab_fd(spapr);
1810 static SaveVMHandlers savevm_htab_handlers = {
1811 .save_live_setup = htab_save_setup,
1812 .save_live_iterate = htab_save_iterate,
1813 .save_live_complete_precopy = htab_save_complete,
1814 .cleanup = htab_cleanup,
1815 .load_state = htab_load,
1818 static void spapr_boot_set(void *opaque, const char *boot_device,
1819 Error **errp)
1821 MachineState *machine = MACHINE(qdev_get_machine());
1822 machine->boot_order = g_strdup(boot_device);
1826 * Reset routine for LMB DR devices.
1828 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1829 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1830 * when it walks all its children devices. LMB devices reset occurs
1831 * as part of spapr_ppc_reset().
1833 static void spapr_drc_reset(void *opaque)
1835 sPAPRDRConnector *drc = opaque;
1836 DeviceState *d = DEVICE(drc);
1838 if (d) {
1839 device_reset(d);
1843 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1845 MachineState *machine = MACHINE(spapr);
1846 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1847 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1848 int i;
1850 for (i = 0; i < nr_lmbs; i++) {
1851 sPAPRDRConnector *drc;
1852 uint64_t addr;
1854 addr = i * lmb_size + spapr->hotplug_memory.base;
1855 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1856 addr/lmb_size);
1857 qemu_register_reset(spapr_drc_reset, drc);
1862 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1863 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1864 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1866 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1868 int i;
1870 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1871 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1872 " is not aligned to %llu MiB",
1873 machine->ram_size,
1874 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1875 return;
1878 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1879 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1880 " is not aligned to %llu MiB",
1881 machine->ram_size,
1882 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1883 return;
1886 for (i = 0; i < nb_numa_nodes; i++) {
1887 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1888 error_setg(errp,
1889 "Node %d memory size 0x%" PRIx64
1890 " is not aligned to %llu MiB",
1891 i, numa_info[i].node_mem,
1892 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1893 return;
1898 /* find cpu slot in machine->possible_cpus by core_id */
1899 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1901 int index = id / smp_threads;
1903 if (index >= ms->possible_cpus->len) {
1904 return NULL;
1906 if (idx) {
1907 *idx = index;
1909 return &ms->possible_cpus->cpus[index];
1912 static void spapr_init_cpus(sPAPRMachineState *spapr)
1914 MachineState *machine = MACHINE(spapr);
1915 MachineClass *mc = MACHINE_GET_CLASS(machine);
1916 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1917 int smt = kvmppc_smt_threads();
1918 const CPUArchIdList *possible_cpus;
1919 int boot_cores_nr = smp_cpus / smp_threads;
1920 int i;
1922 if (!type) {
1923 error_report("Unable to find sPAPR CPU Core definition");
1924 exit(1);
1927 possible_cpus = mc->possible_cpu_arch_ids(machine);
1928 if (mc->has_hotpluggable_cpus) {
1929 if (smp_cpus % smp_threads) {
1930 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1931 smp_cpus, smp_threads);
1932 exit(1);
1934 if (max_cpus % smp_threads) {
1935 error_report("max_cpus (%u) must be multiple of threads (%u)",
1936 max_cpus, smp_threads);
1937 exit(1);
1939 } else {
1940 if (max_cpus != smp_cpus) {
1941 error_report("This machine version does not support CPU hotplug");
1942 exit(1);
1944 boot_cores_nr = possible_cpus->len;
1947 for (i = 0; i < possible_cpus->len; i++) {
1948 int core_id = i * smp_threads;
1950 if (mc->has_hotpluggable_cpus) {
1951 sPAPRDRConnector *drc =
1952 spapr_dr_connector_new(OBJECT(spapr),
1953 SPAPR_DR_CONNECTOR_TYPE_CPU,
1954 (core_id / smp_threads) * smt);
1956 qemu_register_reset(spapr_drc_reset, drc);
1959 if (i < boot_cores_nr) {
1960 Object *core = object_new(type);
1961 int nr_threads = smp_threads;
1963 /* Handle the partially filled core for older machine types */
1964 if ((i + 1) * smp_threads >= smp_cpus) {
1965 nr_threads = smp_cpus - i * smp_threads;
1968 object_property_set_int(core, nr_threads, "nr-threads",
1969 &error_fatal);
1970 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1971 &error_fatal);
1972 object_property_set_bool(core, true, "realized", &error_fatal);
1975 g_free(type);
1978 /* pSeries LPAR / sPAPR hardware init */
1979 static void ppc_spapr_init(MachineState *machine)
1981 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1982 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1983 const char *kernel_filename = machine->kernel_filename;
1984 const char *initrd_filename = machine->initrd_filename;
1985 PCIHostState *phb;
1986 int i;
1987 MemoryRegion *sysmem = get_system_memory();
1988 MemoryRegion *ram = g_new(MemoryRegion, 1);
1989 MemoryRegion *rma_region;
1990 void *rma = NULL;
1991 hwaddr rma_alloc_size;
1992 hwaddr node0_size = spapr_node0_size();
1993 long load_limit, fw_size;
1994 char *filename;
1995 int smt = kvmppc_smt_threads();
1997 msi_nonbroken = true;
1999 QLIST_INIT(&spapr->phbs);
2001 /* Allocate RMA if necessary */
2002 rma_alloc_size = kvmppc_alloc_rma(&rma);
2004 if (rma_alloc_size == -1) {
2005 error_report("Unable to create RMA");
2006 exit(1);
2009 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2010 spapr->rma_size = rma_alloc_size;
2011 } else {
2012 spapr->rma_size = node0_size;
2014 /* With KVM, we don't actually know whether KVM supports an
2015 * unbounded RMA (PR KVM) or is limited by the hash table size
2016 * (HV KVM using VRMA), so we always assume the latter
2018 * In that case, we also limit the initial allocations for RTAS
2019 * etc... to 256M since we have no way to know what the VRMA size
2020 * is going to be as it depends on the size of the hash table
2021 * isn't determined yet.
2023 if (kvm_enabled()) {
2024 spapr->vrma_adjust = 1;
2025 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2028 /* Actually we don't support unbounded RMA anymore since we
2029 * added proper emulation of HV mode. The max we can get is
2030 * 16G which also happens to be what we configure for PAPR
2031 * mode so make sure we don't do anything bigger than that
2033 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2036 if (spapr->rma_size > node0_size) {
2037 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2038 spapr->rma_size);
2039 exit(1);
2042 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2043 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2045 /* Set up Interrupt Controller before we create the VCPUs */
2046 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2047 XICS_IRQS_SPAPR, &error_fatal);
2049 /* Set up containers for ibm,client-set-architecture negotiated options */
2050 spapr->ov5 = spapr_ovec_new();
2051 spapr->ov5_cas = spapr_ovec_new();
2053 if (smc->dr_lmb_enabled) {
2054 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2055 spapr_validate_node_memory(machine, &error_fatal);
2058 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2060 /* advertise support for dedicated HP event source to guests */
2061 if (spapr->use_hotplug_event_source) {
2062 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2065 /* init CPUs */
2066 if (machine->cpu_model == NULL) {
2067 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2070 ppc_cpu_parse_features(machine->cpu_model);
2072 spapr_init_cpus(spapr);
2074 if (kvm_enabled()) {
2075 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2076 kvmppc_enable_logical_ci_hcalls();
2077 kvmppc_enable_set_mode_hcall();
2079 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2080 kvmppc_enable_clear_ref_mod_hcalls();
2083 /* allocate RAM */
2084 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2085 machine->ram_size);
2086 memory_region_add_subregion(sysmem, 0, ram);
2088 if (rma_alloc_size && rma) {
2089 rma_region = g_new(MemoryRegion, 1);
2090 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2091 rma_alloc_size, rma);
2092 vmstate_register_ram_global(rma_region);
2093 memory_region_add_subregion(sysmem, 0, rma_region);
2096 /* initialize hotplug memory address space */
2097 if (machine->ram_size < machine->maxram_size) {
2098 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2100 * Limit the number of hotpluggable memory slots to half the number
2101 * slots that KVM supports, leaving the other half for PCI and other
2102 * devices. However ensure that number of slots doesn't drop below 32.
2104 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2105 SPAPR_MAX_RAM_SLOTS;
2107 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2108 max_memslots = SPAPR_MAX_RAM_SLOTS;
2110 if (machine->ram_slots > max_memslots) {
2111 error_report("Specified number of memory slots %"
2112 PRIu64" exceeds max supported %d",
2113 machine->ram_slots, max_memslots);
2114 exit(1);
2117 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2118 SPAPR_HOTPLUG_MEM_ALIGN);
2119 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2120 "hotplug-memory", hotplug_mem_size);
2121 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2122 &spapr->hotplug_memory.mr);
2125 if (smc->dr_lmb_enabled) {
2126 spapr_create_lmb_dr_connectors(spapr);
2129 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2130 if (!filename) {
2131 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2132 exit(1);
2134 spapr->rtas_size = get_image_size(filename);
2135 if (spapr->rtas_size < 0) {
2136 error_report("Could not get size of LPAR rtas '%s'", filename);
2137 exit(1);
2139 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2140 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2141 error_report("Could not load LPAR rtas '%s'", filename);
2142 exit(1);
2144 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2145 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2146 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2147 exit(1);
2149 g_free(filename);
2151 /* Set up RTAS event infrastructure */
2152 spapr_events_init(spapr);
2154 /* Set up the RTC RTAS interfaces */
2155 spapr_rtc_create(spapr);
2157 /* Set up VIO bus */
2158 spapr->vio_bus = spapr_vio_bus_init();
2160 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2161 if (serial_hds[i]) {
2162 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2166 /* We always have at least the nvram device on VIO */
2167 spapr_create_nvram(spapr);
2169 /* Set up PCI */
2170 spapr_pci_rtas_init();
2172 phb = spapr_create_phb(spapr, 0);
2174 for (i = 0; i < nb_nics; i++) {
2175 NICInfo *nd = &nd_table[i];
2177 if (!nd->model) {
2178 nd->model = g_strdup("ibmveth");
2181 if (strcmp(nd->model, "ibmveth") == 0) {
2182 spapr_vlan_create(spapr->vio_bus, nd);
2183 } else {
2184 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2188 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2189 spapr_vscsi_create(spapr->vio_bus);
2192 /* Graphics */
2193 if (spapr_vga_init(phb->bus, &error_fatal)) {
2194 spapr->has_graphics = true;
2195 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2198 if (machine->usb) {
2199 if (smc->use_ohci_by_default) {
2200 pci_create_simple(phb->bus, -1, "pci-ohci");
2201 } else {
2202 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2205 if (spapr->has_graphics) {
2206 USBBus *usb_bus = usb_bus_find(-1);
2208 usb_create_simple(usb_bus, "usb-kbd");
2209 usb_create_simple(usb_bus, "usb-mouse");
2213 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2214 error_report(
2215 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2216 MIN_RMA_SLOF);
2217 exit(1);
2220 if (kernel_filename) {
2221 uint64_t lowaddr = 0;
2223 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2224 NULL, NULL, &lowaddr, NULL, 1,
2225 PPC_ELF_MACHINE, 0, 0);
2226 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2227 spapr->kernel_size = load_elf(kernel_filename,
2228 translate_kernel_address, NULL, NULL,
2229 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2230 0, 0);
2231 spapr->kernel_le = spapr->kernel_size > 0;
2233 if (spapr->kernel_size < 0) {
2234 error_report("error loading %s: %s", kernel_filename,
2235 load_elf_strerror(spapr->kernel_size));
2236 exit(1);
2239 /* load initrd */
2240 if (initrd_filename) {
2241 /* Try to locate the initrd in the gap between the kernel
2242 * and the firmware. Add a bit of space just in case
2244 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2245 + 0x1ffff) & ~0xffff;
2246 spapr->initrd_size = load_image_targphys(initrd_filename,
2247 spapr->initrd_base,
2248 load_limit
2249 - spapr->initrd_base);
2250 if (spapr->initrd_size < 0) {
2251 error_report("could not load initial ram disk '%s'",
2252 initrd_filename);
2253 exit(1);
2258 if (bios_name == NULL) {
2259 bios_name = FW_FILE_NAME;
2261 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2262 if (!filename) {
2263 error_report("Could not find LPAR firmware '%s'", bios_name);
2264 exit(1);
2266 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2267 if (fw_size <= 0) {
2268 error_report("Could not load LPAR firmware '%s'", filename);
2269 exit(1);
2271 g_free(filename);
2273 /* FIXME: Should register things through the MachineState's qdev
2274 * interface, this is a legacy from the sPAPREnvironment structure
2275 * which predated MachineState but had a similar function */
2276 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2277 register_savevm_live(NULL, "spapr/htab", -1, 1,
2278 &savevm_htab_handlers, spapr);
2280 /* used by RTAS */
2281 QTAILQ_INIT(&spapr->ccs_list);
2282 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2284 qemu_register_boot_set(spapr_boot_set, spapr);
2286 /* to stop and start vmclock */
2287 if (kvm_enabled()) {
2288 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2289 &spapr->tb);
2293 static int spapr_kvm_type(const char *vm_type)
2295 if (!vm_type) {
2296 return 0;
2299 if (!strcmp(vm_type, "HV")) {
2300 return 1;
2303 if (!strcmp(vm_type, "PR")) {
2304 return 2;
2307 error_report("Unknown kvm-type specified '%s'", vm_type);
2308 exit(1);
2312 * Implementation of an interface to adjust firmware path
2313 * for the bootindex property handling.
2315 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2316 DeviceState *dev)
2318 #define CAST(type, obj, name) \
2319 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2320 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2321 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2323 if (d) {
2324 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2325 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2326 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2328 if (spapr) {
2330 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2331 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2332 * in the top 16 bits of the 64-bit LUN
2334 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2335 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2336 (uint64_t)id << 48);
2337 } else if (virtio) {
2339 * We use SRP luns of the form 01000000 | (target << 8) | lun
2340 * in the top 32 bits of the 64-bit LUN
2341 * Note: the quote above is from SLOF and it is wrong,
2342 * the actual binding is:
2343 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2345 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2346 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2347 (uint64_t)id << 32);
2348 } else if (usb) {
2350 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2351 * in the top 32 bits of the 64-bit LUN
2353 unsigned usb_port = atoi(usb->port->path);
2354 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2355 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2356 (uint64_t)id << 32);
2361 * SLOF probes the USB devices, and if it recognizes that the device is a
2362 * storage device, it changes its name to "storage" instead of "usb-host",
2363 * and additionally adds a child node for the SCSI LUN, so the correct
2364 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2366 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2367 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2368 if (usb_host_dev_is_scsi_storage(usbdev)) {
2369 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2373 if (phb) {
2374 /* Replace "pci" with "pci@800000020000000" */
2375 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2378 return NULL;
2381 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2383 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2385 return g_strdup(spapr->kvm_type);
2388 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2390 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2392 g_free(spapr->kvm_type);
2393 spapr->kvm_type = g_strdup(value);
2396 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2398 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2400 return spapr->use_hotplug_event_source;
2403 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2404 Error **errp)
2406 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2408 spapr->use_hotplug_event_source = value;
2411 static void spapr_machine_initfn(Object *obj)
2413 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2415 spapr->htab_fd = -1;
2416 spapr->use_hotplug_event_source = true;
2417 object_property_add_str(obj, "kvm-type",
2418 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2419 object_property_set_description(obj, "kvm-type",
2420 "Specifies the KVM virtualization mode (HV, PR)",
2421 NULL);
2422 object_property_add_bool(obj, "modern-hotplug-events",
2423 spapr_get_modern_hotplug_events,
2424 spapr_set_modern_hotplug_events,
2425 NULL);
2426 object_property_set_description(obj, "modern-hotplug-events",
2427 "Use dedicated hotplug event mechanism in"
2428 " place of standard EPOW events when possible"
2429 " (required for memory hot-unplug support)",
2430 NULL);
2433 static void spapr_machine_finalizefn(Object *obj)
2435 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2437 g_free(spapr->kvm_type);
2440 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2442 cpu_synchronize_state(cs);
2443 ppc_cpu_do_system_reset(cs);
2446 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2448 CPUState *cs;
2450 CPU_FOREACH(cs) {
2451 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2455 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2456 uint32_t node, bool dedicated_hp_event_source,
2457 Error **errp)
2459 sPAPRDRConnector *drc;
2460 sPAPRDRConnectorClass *drck;
2461 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2462 int i, fdt_offset, fdt_size;
2463 void *fdt;
2464 uint64_t addr = addr_start;
2466 for (i = 0; i < nr_lmbs; i++) {
2467 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2468 addr/SPAPR_MEMORY_BLOCK_SIZE);
2469 g_assert(drc);
2471 fdt = create_device_tree(&fdt_size);
2472 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2473 SPAPR_MEMORY_BLOCK_SIZE);
2475 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2476 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2477 addr += SPAPR_MEMORY_BLOCK_SIZE;
2478 if (!dev->hotplugged) {
2479 /* guests expect coldplugged LMBs to be pre-allocated */
2480 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2481 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2484 /* send hotplug notification to the
2485 * guest only in case of hotplugged memory
2487 if (dev->hotplugged) {
2488 if (dedicated_hp_event_source) {
2489 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2490 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2491 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2492 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2493 nr_lmbs,
2494 drck->get_index(drc));
2495 } else {
2496 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2497 nr_lmbs);
2502 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2503 uint32_t node, Error **errp)
2505 Error *local_err = NULL;
2506 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2507 PCDIMMDevice *dimm = PC_DIMM(dev);
2508 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2509 MemoryRegion *mr = ddc->get_memory_region(dimm);
2510 uint64_t align = memory_region_get_alignment(mr);
2511 uint64_t size = memory_region_size(mr);
2512 uint64_t addr;
2513 char *mem_dev;
2515 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2516 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2517 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2518 goto out;
2521 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2522 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2523 error_setg(&local_err, "Memory backend has bad page size. "
2524 "Use 'memory-backend-file' with correct mem-path.");
2525 goto out;
2528 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2529 if (local_err) {
2530 goto out;
2533 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2534 if (local_err) {
2535 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2536 goto out;
2539 spapr_add_lmbs(dev, addr, size, node,
2540 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2541 &error_abort);
2543 out:
2544 error_propagate(errp, local_err);
2547 typedef struct sPAPRDIMMState {
2548 uint32_t nr_lmbs;
2549 } sPAPRDIMMState;
2551 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2553 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2554 HotplugHandler *hotplug_ctrl;
2556 if (--ds->nr_lmbs) {
2557 return;
2560 g_free(ds);
2563 * Now that all the LMBs have been removed by the guest, call the
2564 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2566 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2567 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2570 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2571 Error **errp)
2573 sPAPRDRConnector *drc;
2574 sPAPRDRConnectorClass *drck;
2575 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2576 int i;
2577 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2578 uint64_t addr = addr_start;
2580 ds->nr_lmbs = nr_lmbs;
2581 for (i = 0; i < nr_lmbs; i++) {
2582 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2583 addr / SPAPR_MEMORY_BLOCK_SIZE);
2584 g_assert(drc);
2586 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2587 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2588 addr += SPAPR_MEMORY_BLOCK_SIZE;
2591 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2592 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2593 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2594 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2595 nr_lmbs,
2596 drck->get_index(drc));
2599 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2600 Error **errp)
2602 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2603 PCDIMMDevice *dimm = PC_DIMM(dev);
2604 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2605 MemoryRegion *mr = ddc->get_memory_region(dimm);
2607 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2608 object_unparent(OBJECT(dev));
2611 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2612 DeviceState *dev, Error **errp)
2614 Error *local_err = NULL;
2615 PCDIMMDevice *dimm = PC_DIMM(dev);
2616 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2617 MemoryRegion *mr = ddc->get_memory_region(dimm);
2618 uint64_t size = memory_region_size(mr);
2619 uint64_t addr;
2621 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2622 if (local_err) {
2623 goto out;
2626 spapr_del_lmbs(dev, addr, size, &error_abort);
2627 out:
2628 error_propagate(errp, local_err);
2631 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2632 sPAPRMachineState *spapr)
2634 PowerPCCPU *cpu = POWERPC_CPU(cs);
2635 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2636 int id = ppc_get_vcpu_dt_id(cpu);
2637 void *fdt;
2638 int offset, fdt_size;
2639 char *nodename;
2641 fdt = create_device_tree(&fdt_size);
2642 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2643 offset = fdt_add_subnode(fdt, 0, nodename);
2645 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2646 g_free(nodename);
2648 *fdt_offset = offset;
2649 return fdt;
2652 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2653 Error **errp)
2655 MachineState *ms = MACHINE(qdev_get_machine());
2656 CPUCore *cc = CPU_CORE(dev);
2657 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2659 core_slot->cpu = NULL;
2660 object_unparent(OBJECT(dev));
2663 static void spapr_core_release(DeviceState *dev, void *opaque)
2665 HotplugHandler *hotplug_ctrl;
2667 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2668 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2671 static
2672 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2673 Error **errp)
2675 int index;
2676 sPAPRDRConnector *drc;
2677 sPAPRDRConnectorClass *drck;
2678 Error *local_err = NULL;
2679 CPUCore *cc = CPU_CORE(dev);
2680 int smt = kvmppc_smt_threads();
2682 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2683 error_setg(errp, "Unable to find CPU core with core-id: %d",
2684 cc->core_id);
2685 return;
2687 if (index == 0) {
2688 error_setg(errp, "Boot CPU core may not be unplugged");
2689 return;
2692 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2693 g_assert(drc);
2695 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2696 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2697 if (local_err) {
2698 error_propagate(errp, local_err);
2699 return;
2702 spapr_hotplug_req_remove_by_index(drc);
2705 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2706 Error **errp)
2708 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2709 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2710 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2711 CPUCore *cc = CPU_CORE(dev);
2712 CPUState *cs = CPU(core->threads);
2713 sPAPRDRConnector *drc;
2714 Error *local_err = NULL;
2715 void *fdt = NULL;
2716 int fdt_offset = 0;
2717 int smt = kvmppc_smt_threads();
2718 CPUArchId *core_slot;
2719 int index;
2721 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2722 if (!core_slot) {
2723 error_setg(errp, "Unable to find CPU core with core-id: %d",
2724 cc->core_id);
2725 return;
2727 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2729 g_assert(drc || !mc->has_hotpluggable_cpus);
2732 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2733 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2735 if (dev->hotplugged) {
2736 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2739 if (drc) {
2740 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2741 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2742 if (local_err) {
2743 g_free(fdt);
2744 error_propagate(errp, local_err);
2745 return;
2749 if (dev->hotplugged) {
2751 * Send hotplug notification interrupt to the guest only in case
2752 * of hotplugged CPUs.
2754 spapr_hotplug_req_add_by_index(drc);
2755 } else {
2757 * Set the right DRC states for cold plugged CPU.
2759 if (drc) {
2760 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2761 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2762 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2765 core_slot->cpu = OBJECT(dev);
2768 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2769 Error **errp)
2771 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2772 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2773 Error *local_err = NULL;
2774 CPUCore *cc = CPU_CORE(dev);
2775 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2776 const char *type = object_get_typename(OBJECT(dev));
2777 CPUArchId *core_slot;
2778 int index;
2780 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2781 error_setg(&local_err, "CPU hotplug not supported for this machine");
2782 goto out;
2785 if (strcmp(base_core_type, type)) {
2786 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2787 goto out;
2790 if (cc->core_id % smp_threads) {
2791 error_setg(&local_err, "invalid core id %d", cc->core_id);
2792 goto out;
2795 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2796 if (!core_slot) {
2797 error_setg(&local_err, "core id %d out of range", cc->core_id);
2798 goto out;
2801 if (core_slot->cpu) {
2802 error_setg(&local_err, "core %d already populated", cc->core_id);
2803 goto out;
2806 out:
2807 g_free(base_core_type);
2808 error_propagate(errp, local_err);
2811 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2812 DeviceState *dev, Error **errp)
2814 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2816 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2817 int node;
2819 if (!smc->dr_lmb_enabled) {
2820 error_setg(errp, "Memory hotplug not supported for this machine");
2821 return;
2823 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2824 if (*errp) {
2825 return;
2827 if (node < 0 || node >= MAX_NODES) {
2828 error_setg(errp, "Invaild node %d", node);
2829 return;
2833 * Currently PowerPC kernel doesn't allow hot-adding memory to
2834 * memory-less node, but instead will silently add the memory
2835 * to the first node that has some memory. This causes two
2836 * unexpected behaviours for the user.
2838 * - Memory gets hotplugged to a different node than what the user
2839 * specified.
2840 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2841 * to memory-less node, a reboot will set things accordingly
2842 * and the previously hotplugged memory now ends in the right node.
2843 * This appears as if some memory moved from one node to another.
2845 * So until kernel starts supporting memory hotplug to memory-less
2846 * nodes, just prevent such attempts upfront in QEMU.
2848 if (nb_numa_nodes && !numa_info[node].node_mem) {
2849 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2850 node);
2851 return;
2854 spapr_memory_plug(hotplug_dev, dev, node, errp);
2855 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2856 spapr_core_plug(hotplug_dev, dev, errp);
2860 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2861 DeviceState *dev, Error **errp)
2863 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2864 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2866 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2867 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2868 spapr_memory_unplug(hotplug_dev, dev, errp);
2869 } else {
2870 error_setg(errp, "Memory hot unplug not supported for this guest");
2872 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2873 if (!mc->has_hotpluggable_cpus) {
2874 error_setg(errp, "CPU hot unplug not supported on this machine");
2875 return;
2877 spapr_core_unplug(hotplug_dev, dev, errp);
2881 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2882 DeviceState *dev, Error **errp)
2884 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2885 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2887 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2888 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2889 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2890 } else {
2891 /* NOTE: this means there is a window after guest reset, prior to
2892 * CAS negotiation, where unplug requests will fail due to the
2893 * capability not being detected yet. This is a bit different than
2894 * the case with PCI unplug, where the events will be queued and
2895 * eventually handled by the guest after boot
2897 error_setg(errp, "Memory hot unplug not supported for this guest");
2899 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2900 if (!mc->has_hotpluggable_cpus) {
2901 error_setg(errp, "CPU hot unplug not supported on this machine");
2902 return;
2904 spapr_core_unplug_request(hotplug_dev, dev, errp);
2908 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2909 DeviceState *dev, Error **errp)
2911 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2912 spapr_core_pre_plug(hotplug_dev, dev, errp);
2916 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2917 DeviceState *dev)
2919 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2920 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2921 return HOTPLUG_HANDLER(machine);
2923 return NULL;
2926 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2928 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2929 * socket means much for the paravirtualized PAPR platform) */
2930 return cpu_index / smp_threads / smp_cores;
2933 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2935 int i;
2936 int spapr_max_cores = max_cpus / smp_threads;
2937 MachineClass *mc = MACHINE_GET_CLASS(machine);
2939 if (!mc->has_hotpluggable_cpus) {
2940 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2942 if (machine->possible_cpus) {
2943 assert(machine->possible_cpus->len == spapr_max_cores);
2944 return machine->possible_cpus;
2947 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2948 sizeof(CPUArchId) * spapr_max_cores);
2949 machine->possible_cpus->len = spapr_max_cores;
2950 for (i = 0; i < machine->possible_cpus->len; i++) {
2951 int core_id = i * smp_threads;
2953 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2954 machine->possible_cpus->cpus[i].arch_id = core_id;
2955 machine->possible_cpus->cpus[i].props.has_core_id = true;
2956 machine->possible_cpus->cpus[i].props.core_id = core_id;
2957 /* TODO: add 'has_node/node' here to describe
2958 to which node core belongs */
2960 return machine->possible_cpus;
2963 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2964 uint64_t *buid, hwaddr *pio,
2965 hwaddr *mmio32, hwaddr *mmio64,
2966 unsigned n_dma, uint32_t *liobns, Error **errp)
2969 * New-style PHB window placement.
2971 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2972 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2973 * windows.
2975 * Some guest kernels can't work with MMIO windows above 1<<46
2976 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2978 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2979 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2980 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2981 * 1TiB 64-bit MMIO windows for each PHB.
2983 const uint64_t base_buid = 0x800000020000000ULL;
2984 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2985 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2986 int i;
2988 /* Sanity check natural alignments */
2989 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2990 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2991 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2992 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2993 /* Sanity check bounds */
2994 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
2995 SPAPR_PCI_MEM32_WIN_SIZE);
2996 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
2997 SPAPR_PCI_MEM64_WIN_SIZE);
2999 if (index >= SPAPR_MAX_PHBS) {
3000 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3001 SPAPR_MAX_PHBS - 1);
3002 return;
3005 *buid = base_buid + index;
3006 for (i = 0; i < n_dma; ++i) {
3007 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3010 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3011 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3012 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3015 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3017 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3019 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3022 static void spapr_ics_resend(XICSFabric *dev)
3024 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3026 ics_resend(spapr->ics);
3029 static ICPState *spapr_icp_get(XICSFabric *xi, int server)
3031 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
3033 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
3036 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3037 Monitor *mon)
3039 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3040 int i;
3042 for (i = 0; i < spapr->nr_servers; i++) {
3043 icp_pic_print_info(&spapr->icps[i], mon);
3046 ics_pic_print_info(spapr->ics, mon);
3049 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3051 MachineClass *mc = MACHINE_CLASS(oc);
3052 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3053 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3054 NMIClass *nc = NMI_CLASS(oc);
3055 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3056 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3057 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3058 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3060 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3063 * We set up the default / latest behaviour here. The class_init
3064 * functions for the specific versioned machine types can override
3065 * these details for backwards compatibility
3067 mc->init = ppc_spapr_init;
3068 mc->reset = ppc_spapr_reset;
3069 mc->block_default_type = IF_SCSI;
3070 mc->max_cpus = 1024;
3071 mc->no_parallel = 1;
3072 mc->default_boot_order = "";
3073 mc->default_ram_size = 512 * M_BYTE;
3074 mc->kvm_type = spapr_kvm_type;
3075 mc->has_dynamic_sysbus = true;
3076 mc->pci_allow_0_address = true;
3077 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3078 hc->pre_plug = spapr_machine_device_pre_plug;
3079 hc->plug = spapr_machine_device_plug;
3080 hc->unplug = spapr_machine_device_unplug;
3081 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3082 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3083 hc->unplug_request = spapr_machine_device_unplug_request;
3085 smc->dr_lmb_enabled = true;
3086 smc->tcg_default_cpu = "POWER8";
3087 mc->has_hotpluggable_cpus = true;
3088 fwc->get_dev_path = spapr_get_fw_dev_path;
3089 nc->nmi_monitor_handler = spapr_nmi;
3090 smc->phb_placement = spapr_phb_placement;
3091 vhc->hypercall = emulate_spapr_hypercall;
3092 vhc->hpt_mask = spapr_hpt_mask;
3093 vhc->map_hptes = spapr_map_hptes;
3094 vhc->unmap_hptes = spapr_unmap_hptes;
3095 vhc->store_hpte = spapr_store_hpte;
3096 vhc->get_patbe = spapr_get_patbe;
3097 xic->ics_get = spapr_ics_get;
3098 xic->ics_resend = spapr_ics_resend;
3099 xic->icp_get = spapr_icp_get;
3100 ispc->print_info = spapr_pic_print_info;
3103 static const TypeInfo spapr_machine_info = {
3104 .name = TYPE_SPAPR_MACHINE,
3105 .parent = TYPE_MACHINE,
3106 .abstract = true,
3107 .instance_size = sizeof(sPAPRMachineState),
3108 .instance_init = spapr_machine_initfn,
3109 .instance_finalize = spapr_machine_finalizefn,
3110 .class_size = sizeof(sPAPRMachineClass),
3111 .class_init = spapr_machine_class_init,
3112 .interfaces = (InterfaceInfo[]) {
3113 { TYPE_FW_PATH_PROVIDER },
3114 { TYPE_NMI },
3115 { TYPE_HOTPLUG_HANDLER },
3116 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3117 { TYPE_XICS_FABRIC },
3118 { TYPE_INTERRUPT_STATS_PROVIDER },
3123 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3124 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3125 void *data) \
3127 MachineClass *mc = MACHINE_CLASS(oc); \
3128 spapr_machine_##suffix##_class_options(mc); \
3129 if (latest) { \
3130 mc->alias = "pseries"; \
3131 mc->is_default = 1; \
3134 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3136 MachineState *machine = MACHINE(obj); \
3137 spapr_machine_##suffix##_instance_options(machine); \
3139 static const TypeInfo spapr_machine_##suffix##_info = { \
3140 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3141 .parent = TYPE_SPAPR_MACHINE, \
3142 .class_init = spapr_machine_##suffix##_class_init, \
3143 .instance_init = spapr_machine_##suffix##_instance_init, \
3144 }; \
3145 static void spapr_machine_register_##suffix(void) \
3147 type_register(&spapr_machine_##suffix##_info); \
3149 type_init(spapr_machine_register_##suffix)
3152 * pseries-2.9
3154 static void spapr_machine_2_9_instance_options(MachineState *machine)
3158 static void spapr_machine_2_9_class_options(MachineClass *mc)
3160 /* Defaults for the latest behaviour inherited from the base class */
3163 DEFINE_SPAPR_MACHINE(2_9, "2.9", true);
3166 * pseries-2.8
3168 #define SPAPR_COMPAT_2_8 \
3169 HW_COMPAT_2_8
3171 static void spapr_machine_2_8_instance_options(MachineState *machine)
3173 spapr_machine_2_9_instance_options(machine);
3176 static void spapr_machine_2_8_class_options(MachineClass *mc)
3178 spapr_machine_2_9_class_options(mc);
3179 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3182 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3185 * pseries-2.7
3187 #define SPAPR_COMPAT_2_7 \
3188 HW_COMPAT_2_7 \
3190 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3191 .property = "mem_win_size", \
3192 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3193 }, \
3195 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3196 .property = "mem64_win_size", \
3197 .value = "0", \
3198 }, \
3200 .driver = TYPE_POWERPC_CPU, \
3201 .property = "pre-2.8-migration", \
3202 .value = "on", \
3203 }, \
3205 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3206 .property = "pre-2.8-migration", \
3207 .value = "on", \
3210 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3211 uint64_t *buid, hwaddr *pio,
3212 hwaddr *mmio32, hwaddr *mmio64,
3213 unsigned n_dma, uint32_t *liobns, Error **errp)
3215 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3216 const uint64_t base_buid = 0x800000020000000ULL;
3217 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3218 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3219 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3220 const uint32_t max_index = 255;
3221 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3223 uint64_t ram_top = MACHINE(spapr)->ram_size;
3224 hwaddr phb0_base, phb_base;
3225 int i;
3227 /* Do we have hotpluggable memory? */
3228 if (MACHINE(spapr)->maxram_size > ram_top) {
3229 /* Can't just use maxram_size, because there may be an
3230 * alignment gap between normal and hotpluggable memory
3231 * regions */
3232 ram_top = spapr->hotplug_memory.base +
3233 memory_region_size(&spapr->hotplug_memory.mr);
3236 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3238 if (index > max_index) {
3239 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3240 max_index);
3241 return;
3244 *buid = base_buid + index;
3245 for (i = 0; i < n_dma; ++i) {
3246 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3249 phb_base = phb0_base + index * phb_spacing;
3250 *pio = phb_base + pio_offset;
3251 *mmio32 = phb_base + mmio_offset;
3253 * We don't set the 64-bit MMIO window, relying on the PHB's
3254 * fallback behaviour of automatically splitting a large "32-bit"
3255 * window into contiguous 32-bit and 64-bit windows
3259 static void spapr_machine_2_7_instance_options(MachineState *machine)
3261 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3263 spapr_machine_2_8_instance_options(machine);
3264 spapr->use_hotplug_event_source = false;
3267 static void spapr_machine_2_7_class_options(MachineClass *mc)
3269 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3271 spapr_machine_2_8_class_options(mc);
3272 smc->tcg_default_cpu = "POWER7";
3273 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3274 smc->phb_placement = phb_placement_2_7;
3277 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3280 * pseries-2.6
3282 #define SPAPR_COMPAT_2_6 \
3283 HW_COMPAT_2_6 \
3285 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3286 .property = "ddw",\
3287 .value = stringify(off),\
3290 static void spapr_machine_2_6_instance_options(MachineState *machine)
3292 spapr_machine_2_7_instance_options(machine);
3295 static void spapr_machine_2_6_class_options(MachineClass *mc)
3297 spapr_machine_2_7_class_options(mc);
3298 mc->has_hotpluggable_cpus = false;
3299 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3302 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3305 * pseries-2.5
3307 #define SPAPR_COMPAT_2_5 \
3308 HW_COMPAT_2_5 \
3310 .driver = "spapr-vlan", \
3311 .property = "use-rx-buffer-pools", \
3312 .value = "off", \
3315 static void spapr_machine_2_5_instance_options(MachineState *machine)
3317 spapr_machine_2_6_instance_options(machine);
3320 static void spapr_machine_2_5_class_options(MachineClass *mc)
3322 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3324 spapr_machine_2_6_class_options(mc);
3325 smc->use_ohci_by_default = true;
3326 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3329 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3332 * pseries-2.4
3334 #define SPAPR_COMPAT_2_4 \
3335 HW_COMPAT_2_4
3337 static void spapr_machine_2_4_instance_options(MachineState *machine)
3339 spapr_machine_2_5_instance_options(machine);
3342 static void spapr_machine_2_4_class_options(MachineClass *mc)
3344 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3346 spapr_machine_2_5_class_options(mc);
3347 smc->dr_lmb_enabled = false;
3348 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3351 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3354 * pseries-2.3
3356 #define SPAPR_COMPAT_2_3 \
3357 HW_COMPAT_2_3 \
3359 .driver = "spapr-pci-host-bridge",\
3360 .property = "dynamic-reconfiguration",\
3361 .value = "off",\
3364 static void spapr_machine_2_3_instance_options(MachineState *machine)
3366 spapr_machine_2_4_instance_options(machine);
3367 savevm_skip_section_footers();
3368 global_state_set_optional();
3369 savevm_skip_configuration();
3372 static void spapr_machine_2_3_class_options(MachineClass *mc)
3374 spapr_machine_2_4_class_options(mc);
3375 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3377 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3380 * pseries-2.2
3383 #define SPAPR_COMPAT_2_2 \
3384 HW_COMPAT_2_2 \
3386 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3387 .property = "mem_win_size",\
3388 .value = "0x20000000",\
3391 static void spapr_machine_2_2_instance_options(MachineState *machine)
3393 spapr_machine_2_3_instance_options(machine);
3394 machine->suppress_vmdesc = true;
3397 static void spapr_machine_2_2_class_options(MachineClass *mc)
3399 spapr_machine_2_3_class_options(mc);
3400 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3402 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3405 * pseries-2.1
3407 #define SPAPR_COMPAT_2_1 \
3408 HW_COMPAT_2_1
3410 static void spapr_machine_2_1_instance_options(MachineState *machine)
3412 spapr_machine_2_2_instance_options(machine);
3415 static void spapr_machine_2_1_class_options(MachineClass *mc)
3417 spapr_machine_2_2_class_options(mc);
3418 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3420 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3422 static void spapr_machine_register_types(void)
3424 type_register_static(&spapr_machine_info);
3427 type_init(spapr_machine_register_types)