goldfish_rtc: change MemoryRegionOps endianness to DEVICE_NATIVE_ENDIAN
[qemu/ar7.git] / hw / mips / boston.c
blob1b3f69e949c213533bfbd1c3f5fd1b043d194824
1 /*
2 * MIPS Boston development board emulation.
4 * Copyright (c) 2016 Imagination Technologies
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/cps.h"
31 #include "hw/mips/cpudevs.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-properties.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/log.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
41 #include "sysemu/runstate.h"
43 #include <libfdt.h>
44 #include "qom/object.h"
46 #define TYPE_MIPS_BOSTON "mips-boston"
47 typedef struct BostonState BostonState;
48 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
49 TYPE_MIPS_BOSTON)
51 struct BostonState {
52 SysBusDevice parent_obj;
54 MachineState *mach;
55 MIPSCPSState cps;
56 SerialMM *uart;
58 CharBackend lcd_display;
59 char lcd_content[8];
60 bool lcd_inited;
62 hwaddr kernel_entry;
63 hwaddr fdt_base;
66 enum boston_plat_reg {
67 PLAT_FPGA_BUILD = 0x00,
68 PLAT_CORE_CL = 0x04,
69 PLAT_WRAPPER_CL = 0x08,
70 PLAT_SYSCLK_STATUS = 0x0c,
71 PLAT_SOFTRST_CTL = 0x10,
72 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
73 PLAT_DDR3_STATUS = 0x14,
74 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
75 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
76 PLAT_PCIE_STATUS = 0x18,
77 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
78 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
79 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
80 PLAT_FLASH_CTL = 0x1c,
81 PLAT_SPARE0 = 0x20,
82 PLAT_SPARE1 = 0x24,
83 PLAT_SPARE2 = 0x28,
84 PLAT_SPARE3 = 0x2c,
85 PLAT_MMCM_DIV = 0x30,
86 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
87 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
88 #define PLAT_MMCM_DIV_MUL_SHIFT 16
89 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
90 PLAT_BUILD_CFG = 0x34,
91 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
92 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
93 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
94 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
95 PLAT_DDR_CFG = 0x38,
96 #define PLAT_DDR_CFG_SIZE (0xf << 0)
97 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
98 PLAT_NOC_PCIE0_ADDR = 0x3c,
99 PLAT_NOC_PCIE1_ADDR = 0x40,
100 PLAT_NOC_PCIE2_ADDR = 0x44,
101 PLAT_SYS_CTL = 0x48,
104 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
106 BostonState *s = opaque;
107 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
108 qemu_chr_fe_printf(&s->lcd_display, " ");
109 s->lcd_inited = true;
113 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
114 unsigned size)
116 BostonState *s = opaque;
117 uint64_t val = 0;
119 switch (size) {
120 case 8:
121 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
122 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
123 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
124 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
125 /* fall through */
126 case 4:
127 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
128 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
129 /* fall through */
130 case 2:
131 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
132 /* fall through */
133 case 1:
134 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
135 break;
138 return val;
141 static void boston_lcd_write(void *opaque, hwaddr addr,
142 uint64_t val, unsigned size)
144 BostonState *s = opaque;
146 switch (size) {
147 case 8:
148 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
149 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
150 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
151 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
152 /* fall through */
153 case 4:
154 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
155 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
156 /* fall through */
157 case 2:
158 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
159 /* fall through */
160 case 1:
161 s->lcd_content[(addr + 0) & 0x7] = val;
162 break;
165 qemu_chr_fe_printf(&s->lcd_display,
166 "\r%-8.8s", s->lcd_content);
169 static const MemoryRegionOps boston_lcd_ops = {
170 .read = boston_lcd_read,
171 .write = boston_lcd_write,
172 .endianness = DEVICE_NATIVE_ENDIAN,
175 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
176 unsigned size)
178 BostonState *s = opaque;
179 uint32_t gic_freq, val;
181 if (size != 4) {
182 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
183 return 0;
186 switch (addr & 0xffff) {
187 case PLAT_FPGA_BUILD:
188 case PLAT_CORE_CL:
189 case PLAT_WRAPPER_CL:
190 return 0;
191 case PLAT_DDR3_STATUS:
192 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
193 case PLAT_MMCM_DIV:
194 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
195 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
196 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
197 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
198 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
199 return val;
200 case PLAT_BUILD_CFG:
201 val = PLAT_BUILD_CFG_PCIE0_EN;
202 val |= PLAT_BUILD_CFG_PCIE1_EN;
203 val |= PLAT_BUILD_CFG_PCIE2_EN;
204 return val;
205 case PLAT_DDR_CFG:
206 val = s->mach->ram_size / GiB;
207 assert(!(val & ~PLAT_DDR_CFG_SIZE));
208 val |= PLAT_DDR_CFG_MHZ;
209 return val;
210 default:
211 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
212 addr & 0xffff);
213 return 0;
217 static void boston_platreg_write(void *opaque, hwaddr addr,
218 uint64_t val, unsigned size)
220 if (size != 4) {
221 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
222 return;
225 switch (addr & 0xffff) {
226 case PLAT_FPGA_BUILD:
227 case PLAT_CORE_CL:
228 case PLAT_WRAPPER_CL:
229 case PLAT_DDR3_STATUS:
230 case PLAT_PCIE_STATUS:
231 case PLAT_MMCM_DIV:
232 case PLAT_BUILD_CFG:
233 case PLAT_DDR_CFG:
234 /* read only */
235 break;
236 case PLAT_SOFTRST_CTL:
237 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
238 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
240 break;
241 default:
242 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
243 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
244 break;
248 static const MemoryRegionOps boston_platreg_ops = {
249 .read = boston_platreg_read,
250 .write = boston_platreg_write,
251 .endianness = DEVICE_NATIVE_ENDIAN,
254 static const TypeInfo boston_device = {
255 .name = TYPE_MIPS_BOSTON,
256 .parent = TYPE_SYS_BUS_DEVICE,
257 .instance_size = sizeof(BostonState),
260 static void boston_register_types(void)
262 type_register_static(&boston_device);
264 type_init(boston_register_types)
266 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
267 bool is_64b)
269 const uint32_t cm_base = 0x16100000;
270 const uint32_t gic_base = 0x16120000;
271 const uint32_t cpc_base = 0x16200000;
273 /* Move CM GCRs */
274 if (is_64b) {
275 stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
276 stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
277 } else {
278 stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
279 stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
281 stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
282 stl_p(p++, 0x01094025); /* or $8, $9 */
283 stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
284 if (is_64b) {
285 stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
286 } else {
287 stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
289 stl_p(p++, 0x012a4025); /* or $8, $10 */
291 /* Move & enable GIC GCRs */
292 stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
293 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
294 if (is_64b) {
295 stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
296 } else {
297 stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
300 /* Move & enable CPC GCRs */
301 stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
302 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
303 if (is_64b) {
304 stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
305 } else {
306 stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
310 * Setup argument registers to follow the UHI boot protocol:
312 * a0/$4 = -2
313 * a1/$5 = virtual address of FDT
314 * a2/$6 = 0
315 * a3/$7 = 0
317 stl_p(p++, 0x2404fffe); /* li $4, -2 */
318 /* lui $5, hi(fdt_addr) */
319 stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
320 if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
321 stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
323 stl_p(p++, 0x34060000); /* li $6, 0 */
324 stl_p(p++, 0x34070000); /* li $7, 0 */
326 /* Load kernel entry address & jump to it */
327 /* lui $25, hi(kernel_entry) */
328 stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
329 /* ori $25, lo(kernel_entry) */
330 stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
331 stl_p(p++, 0x03200009); /* jr $25 */
334 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
335 const void *match_data, hwaddr *load_addr)
337 BostonState *s = BOSTON(opaque);
338 MachineState *machine = s->mach;
339 const char *cmdline;
340 int err;
341 void *fdt;
342 size_t fdt_sz, ram_low_sz, ram_high_sz;
344 fdt_sz = fdt_totalsize(fdt_orig) * 2;
345 fdt = g_malloc0(fdt_sz);
347 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
348 if (err) {
349 fprintf(stderr, "unable to open FDT\n");
350 return NULL;
353 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
354 ? machine->kernel_cmdline : " ";
355 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
356 if (err < 0) {
357 fprintf(stderr, "couldn't set /chosen/bootargs\n");
358 return NULL;
361 ram_low_sz = MIN(256 * MiB, machine->ram_size);
362 ram_high_sz = machine->ram_size - ram_low_sz;
363 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
364 1, 0x00000000, 1, ram_low_sz,
365 1, 0x90000000, 1, ram_high_sz);
367 fdt = g_realloc(fdt, fdt_totalsize(fdt));
368 qemu_fdt_dumpdtb(fdt, fdt_sz);
370 s->fdt_base = *load_addr;
372 return fdt;
375 static const void *boston_kernel_filter(void *opaque, const void *kernel,
376 hwaddr *load_addr, hwaddr *entry_addr)
378 BostonState *s = BOSTON(opaque);
380 s->kernel_entry = *entry_addr;
382 return kernel;
385 static const struct fit_loader_match boston_matches[] = {
386 { "img,boston" },
387 { NULL },
390 static const struct fit_loader boston_fit_loader = {
391 .matches = boston_matches,
392 .addr_to_phys = cpu_mips_kseg0_to_phys,
393 .fdt_filter = boston_fdt_filter,
394 .kernel_filter = boston_kernel_filter,
397 static inline XilinxPCIEHost *
398 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
399 hwaddr cfg_base, uint64_t cfg_size,
400 hwaddr mmio_base, uint64_t mmio_size,
401 qemu_irq irq, bool link_up)
403 DeviceState *dev;
404 MemoryRegion *cfg, *mmio;
406 dev = qdev_new(TYPE_XILINX_PCIE_HOST);
408 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
409 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
410 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
411 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
412 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
413 qdev_prop_set_bit(dev, "link_up", link_up);
415 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
417 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
418 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
420 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
421 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
423 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
425 return XILINX_PCIE_HOST(dev);
428 static void boston_mach_init(MachineState *machine)
430 DeviceState *dev;
431 BostonState *s;
432 MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
433 MemoryRegion *sys_mem = get_system_memory();
434 XilinxPCIEHost *pcie2;
435 PCIDevice *ahci;
436 DriveInfo *hd[6];
437 Chardev *chr;
438 int fw_size, fit_err;
439 bool is_64b;
441 if ((machine->ram_size % GiB) ||
442 (machine->ram_size > (2 * GiB))) {
443 error_report("Memory size must be 1GB or 2GB");
444 exit(1);
447 dev = qdev_new(TYPE_MIPS_BOSTON);
448 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
450 s = BOSTON(dev);
451 s->mach = machine;
453 if (!cpu_supports_cps_smp(machine->cpu_type)) {
454 error_report("Boston requires CPUs which support CPS");
455 exit(1);
458 is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
460 object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
461 object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
462 &error_fatal);
463 object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
464 &error_fatal);
465 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
467 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
469 flash = g_new(MemoryRegion, 1);
470 memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
471 &error_fatal);
472 memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
474 memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
476 ddr_low_alias = g_new(MemoryRegion, 1);
477 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
478 machine->ram, 0,
479 MIN(machine->ram_size, (256 * MiB)));
480 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
482 xilinx_pcie_init(sys_mem, 0,
483 0x10000000, 32 * MiB,
484 0x40000000, 1 * GiB,
485 get_cps_irq(&s->cps, 2), false);
487 xilinx_pcie_init(sys_mem, 1,
488 0x12000000, 32 * MiB,
489 0x20000000, 512 * MiB,
490 get_cps_irq(&s->cps, 1), false);
492 pcie2 = xilinx_pcie_init(sys_mem, 2,
493 0x14000000, 32 * MiB,
494 0x16000000, 1 * MiB,
495 get_cps_irq(&s->cps, 0), true);
497 platreg = g_new(MemoryRegion, 1);
498 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
499 "boston-platregs", 0x1000);
500 memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
502 s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
503 get_cps_irq(&s->cps, 3), 10000000,
504 serial_hd(0), DEVICE_NATIVE_ENDIAN);
506 lcd = g_new(MemoryRegion, 1);
507 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
508 memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
510 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
511 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
512 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
513 boston_lcd_event, NULL, s, NULL, true);
515 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
516 PCI_DEVFN(0, 0),
517 true, TYPE_ICH9_AHCI);
518 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
519 ide_drive_get(hd, ahci_get_num_ports(ahci));
520 ahci_ide_create_devs(ahci, hd);
522 if (machine->firmware) {
523 fw_size = load_image_targphys(machine->firmware,
524 0x1fc00000, 4 * MiB);
525 if (fw_size == -1) {
526 error_report("unable to load firmware image '%s'",
527 machine->firmware);
528 exit(1);
530 } else if (machine->kernel_filename) {
531 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
532 if (fit_err) {
533 error_report("unable to load FIT image");
534 exit(1);
537 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
538 s->kernel_entry, s->fdt_base, is_64b);
539 } else if (!qtest_enabled()) {
540 error_report("Please provide either a -kernel or -bios argument");
541 exit(1);
545 static void boston_mach_class_init(MachineClass *mc)
547 mc->desc = "MIPS Boston";
548 mc->init = boston_mach_init;
549 mc->block_default_type = IF_IDE;
550 mc->default_ram_size = 1 * GiB;
551 mc->default_ram_id = "boston.ddr";
552 mc->max_cpus = 16;
553 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
556 DEFINE_MACHINE("boston", boston_mach_class_init)