target/arm: Decode aa64 armv8.3 fcadd
[qemu/ar7.git] / target / arm / translate-a64.c
blobefed4fd9d2420fa0ec10acb5f5f01a4390fc1b7f
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
40 static TCGv_i64 cpu_X[32];
41 static TCGv_i64 cpu_pc;
43 /* Load/store exclusive handling */
44 static TCGv_i64 cpu_exclusive_high;
45 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* Function prototype for gen_ functions for calling Neon helpers */
73 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
74 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
77 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
78 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
79 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
80 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
81 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
82 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
83 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
84 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
85 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
86 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 /* Note that the gvec expanders operate on offsets + sizes. */
89 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
90 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
91 uint32_t, uint32_t);
92 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
93 uint32_t, uint32_t, uint32_t);
95 /* initialize TCG globals. */
96 void a64_translate_init(void)
98 int i;
100 cpu_pc = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, pc),
102 "pc");
103 for (i = 0; i < 32; i++) {
104 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, xregs[i]),
106 regnames[i]);
109 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
110 offsetof(CPUARMState, exclusive_high), "exclusive_high");
113 static inline int get_a64_user_mem_index(DisasContext *s)
115 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
116 * if EL1, access as if EL0; otherwise access at current EL
118 ARMMMUIdx useridx;
120 switch (s->mmu_idx) {
121 case ARMMMUIdx_S12NSE1:
122 useridx = ARMMMUIdx_S12NSE0;
123 break;
124 case ARMMMUIdx_S1SE1:
125 useridx = ARMMMUIdx_S1SE0;
126 break;
127 case ARMMMUIdx_S2NS:
128 g_assert_not_reached();
129 default:
130 useridx = s->mmu_idx;
131 break;
133 return arm_to_core_mmu_idx(useridx);
136 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
137 fprintf_function cpu_fprintf, int flags)
139 ARMCPU *cpu = ARM_CPU(cs);
140 CPUARMState *env = &cpu->env;
141 uint32_t psr = pstate_read(env);
142 int i;
143 int el = arm_current_el(env);
144 const char *ns_status;
146 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
147 env->pc, env->xregs[31]);
148 for (i = 0; i < 31; i++) {
149 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
150 if ((i % 4) == 3) {
151 cpu_fprintf(f, "\n");
152 } else {
153 cpu_fprintf(f, " ");
157 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
158 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
159 } else {
160 ns_status = "";
163 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
164 psr,
165 psr & PSTATE_N ? 'N' : '-',
166 psr & PSTATE_Z ? 'Z' : '-',
167 psr & PSTATE_C ? 'C' : '-',
168 psr & PSTATE_V ? 'V' : '-',
169 ns_status,
171 psr & PSTATE_SP ? 'h' : 't');
173 if (flags & CPU_DUMP_FPU) {
174 int numvfpregs = 32;
175 for (i = 0; i < numvfpregs; i++) {
176 uint64_t *q = aa64_vfp_qreg(env, i);
177 uint64_t vlo = q[0];
178 uint64_t vhi = q[1];
179 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "%c",
180 i, vhi, vlo, (i & 1 ? '\n' : ' '));
182 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
183 vfp_get_fpcr(env), vfp_get_fpsr(env));
187 void gen_a64_set_pc_im(uint64_t val)
189 tcg_gen_movi_i64(cpu_pc, val);
192 /* Load the PC from a generic TCG variable.
194 * If address tagging is enabled via the TCR TBI bits, then loading
195 * an address into the PC will clear out any tag in the it:
196 * + for EL2 and EL3 there is only one TBI bit, and if it is set
197 * then the address is zero-extended, clearing bits [63:56]
198 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
199 * and TBI1 controls addressses with bit 55 == 1.
200 * If the appropriate TBI bit is set for the address then
201 * the address is sign-extended from bit 55 into bits [63:56]
203 * We can avoid doing this for relative-branches, because the
204 * PC + offset can never overflow into the tag bits (assuming
205 * that virtual addresses are less than 56 bits wide, as they
206 * are currently), but we must handle it for branch-to-register.
208 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
211 if (s->current_el <= 1) {
212 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
213 * examine bit 55 of address, can just generate code.
214 * If mixed, then test via generated code
216 if (s->tbi0 && s->tbi1) {
217 TCGv_i64 tmp_reg = tcg_temp_new_i64();
218 /* Both bits set, sign extension from bit 55 into [63:56] will
219 * cover both cases
221 tcg_gen_shli_i64(tmp_reg, src, 8);
222 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
223 tcg_temp_free_i64(tmp_reg);
224 } else if (!s->tbi0 && !s->tbi1) {
225 /* Neither bit set, just load it as-is */
226 tcg_gen_mov_i64(cpu_pc, src);
227 } else {
228 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
229 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
230 TCGv_i64 tcg_zero = tcg_const_i64(0);
232 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
234 if (s->tbi0) {
235 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
236 tcg_gen_andi_i64(tcg_tmpval, src,
237 0x00FFFFFFFFFFFFFFull);
238 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
239 tcg_tmpval, src);
240 } else {
241 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
242 tcg_gen_ori_i64(tcg_tmpval, src,
243 0xFF00000000000000ull);
244 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
245 tcg_tmpval, src);
247 tcg_temp_free_i64(tcg_zero);
248 tcg_temp_free_i64(tcg_bit55);
249 tcg_temp_free_i64(tcg_tmpval);
251 } else { /* EL > 1 */
252 if (s->tbi0) {
253 /* Force tag byte to all zero */
254 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
255 } else {
256 /* Load unmodified address */
257 tcg_gen_mov_i64(cpu_pc, src);
262 typedef struct DisasCompare64 {
263 TCGCond cond;
264 TCGv_i64 value;
265 } DisasCompare64;
267 static void a64_test_cc(DisasCompare64 *c64, int cc)
269 DisasCompare c32;
271 arm_test_cc(&c32, cc);
273 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
274 * properly. The NE/EQ comparisons are also fine with this choice. */
275 c64->cond = c32.cond;
276 c64->value = tcg_temp_new_i64();
277 tcg_gen_ext_i32_i64(c64->value, c32.value);
279 arm_free_cc(&c32);
282 static void a64_free_cc(DisasCompare64 *c64)
284 tcg_temp_free_i64(c64->value);
287 static void gen_exception_internal(int excp)
289 TCGv_i32 tcg_excp = tcg_const_i32(excp);
291 assert(excp_is_internal(excp));
292 gen_helper_exception_internal(cpu_env, tcg_excp);
293 tcg_temp_free_i32(tcg_excp);
296 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
298 TCGv_i32 tcg_excp = tcg_const_i32(excp);
299 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
300 TCGv_i32 tcg_el = tcg_const_i32(target_el);
302 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
303 tcg_syn, tcg_el);
304 tcg_temp_free_i32(tcg_el);
305 tcg_temp_free_i32(tcg_syn);
306 tcg_temp_free_i32(tcg_excp);
309 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
311 gen_a64_set_pc_im(s->pc - offset);
312 gen_exception_internal(excp);
313 s->base.is_jmp = DISAS_NORETURN;
316 static void gen_exception_insn(DisasContext *s, int offset, int excp,
317 uint32_t syndrome, uint32_t target_el)
319 gen_a64_set_pc_im(s->pc - offset);
320 gen_exception(excp, syndrome, target_el);
321 s->base.is_jmp = DISAS_NORETURN;
324 static void gen_ss_advance(DisasContext *s)
326 /* If the singlestep state is Active-not-pending, advance to
327 * Active-pending.
329 if (s->ss_active) {
330 s->pstate_ss = 0;
331 gen_helper_clear_pstate_ss(cpu_env);
335 static void gen_step_complete_exception(DisasContext *s)
337 /* We just completed step of an insn. Move from Active-not-pending
338 * to Active-pending, and then also take the swstep exception.
339 * This corresponds to making the (IMPDEF) choice to prioritize
340 * swstep exceptions over asynchronous exceptions taken to an exception
341 * level where debug is disabled. This choice has the advantage that
342 * we do not need to maintain internal state corresponding to the
343 * ISV/EX syndrome bits between completion of the step and generation
344 * of the exception, and our syndrome information is always correct.
346 gen_ss_advance(s);
347 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
348 default_exception_el(s));
349 s->base.is_jmp = DISAS_NORETURN;
352 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
354 /* No direct tb linking with singlestep (either QEMU's or the ARM
355 * debug architecture kind) or deterministic io
357 if (s->base.singlestep_enabled || s->ss_active ||
358 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
359 return false;
362 #ifndef CONFIG_USER_ONLY
363 /* Only link tbs from inside the same guest page */
364 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
365 return false;
367 #endif
369 return true;
372 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
374 TranslationBlock *tb;
376 tb = s->base.tb;
377 if (use_goto_tb(s, n, dest)) {
378 tcg_gen_goto_tb(n);
379 gen_a64_set_pc_im(dest);
380 tcg_gen_exit_tb((intptr_t)tb + n);
381 s->base.is_jmp = DISAS_NORETURN;
382 } else {
383 gen_a64_set_pc_im(dest);
384 if (s->ss_active) {
385 gen_step_complete_exception(s);
386 } else if (s->base.singlestep_enabled) {
387 gen_exception_internal(EXCP_DEBUG);
388 } else {
389 tcg_gen_lookup_and_goto_ptr();
390 s->base.is_jmp = DISAS_NORETURN;
395 static void unallocated_encoding(DisasContext *s)
397 /* Unallocated and reserved encodings are uncategorized */
398 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
399 default_exception_el(s));
402 #define unsupported_encoding(s, insn) \
403 do { \
404 qemu_log_mask(LOG_UNIMP, \
405 "%s:%d: unsupported instruction encoding 0x%08x " \
406 "at pc=%016" PRIx64 "\n", \
407 __FILE__, __LINE__, insn, s->pc - 4); \
408 unallocated_encoding(s); \
409 } while (0)
411 static void init_tmp_a64_array(DisasContext *s)
413 #ifdef CONFIG_DEBUG_TCG
414 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
415 #endif
416 s->tmp_a64_count = 0;
419 static void free_tmp_a64(DisasContext *s)
421 int i;
422 for (i = 0; i < s->tmp_a64_count; i++) {
423 tcg_temp_free_i64(s->tmp_a64[i]);
425 init_tmp_a64_array(s);
428 static TCGv_i64 new_tmp_a64(DisasContext *s)
430 assert(s->tmp_a64_count < TMP_A64_MAX);
431 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
434 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
436 TCGv_i64 t = new_tmp_a64(s);
437 tcg_gen_movi_i64(t, 0);
438 return t;
442 * Register access functions
444 * These functions are used for directly accessing a register in where
445 * changes to the final register value are likely to be made. If you
446 * need to use a register for temporary calculation (e.g. index type
447 * operations) use the read_* form.
449 * B1.2.1 Register mappings
451 * In instruction register encoding 31 can refer to ZR (zero register) or
452 * the SP (stack pointer) depending on context. In QEMU's case we map SP
453 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
454 * This is the point of the _sp forms.
456 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
458 if (reg == 31) {
459 return new_tmp_a64_zero(s);
460 } else {
461 return cpu_X[reg];
465 /* register access for when 31 == SP */
466 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
468 return cpu_X[reg];
471 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
472 * representing the register contents. This TCGv is an auto-freed
473 * temporary so it need not be explicitly freed, and may be modified.
475 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
477 TCGv_i64 v = new_tmp_a64(s);
478 if (reg != 31) {
479 if (sf) {
480 tcg_gen_mov_i64(v, cpu_X[reg]);
481 } else {
482 tcg_gen_ext32u_i64(v, cpu_X[reg]);
484 } else {
485 tcg_gen_movi_i64(v, 0);
487 return v;
490 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
492 TCGv_i64 v = new_tmp_a64(s);
493 if (sf) {
494 tcg_gen_mov_i64(v, cpu_X[reg]);
495 } else {
496 tcg_gen_ext32u_i64(v, cpu_X[reg]);
498 return v;
501 /* We should have at some point before trying to access an FP register
502 * done the necessary access check, so assert that
503 * (a) we did the check and
504 * (b) we didn't then just plough ahead anyway if it failed.
505 * Print the instruction pattern in the abort message so we can figure
506 * out what we need to fix if a user encounters this problem in the wild.
508 static inline void assert_fp_access_checked(DisasContext *s)
510 #ifdef CONFIG_DEBUG_TCG
511 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
512 fprintf(stderr, "target-arm: FP access check missing for "
513 "instruction 0x%08x\n", s->insn);
514 abort();
516 #endif
519 /* Return the offset into CPUARMState of an element of specified
520 * size, 'element' places in from the least significant end of
521 * the FP/vector register Qn.
523 static inline int vec_reg_offset(DisasContext *s, int regno,
524 int element, TCGMemOp size)
526 int offs = 0;
527 #ifdef HOST_WORDS_BIGENDIAN
528 /* This is complicated slightly because vfp.zregs[n].d[0] is
529 * still the low half and vfp.zregs[n].d[1] the high half
530 * of the 128 bit vector, even on big endian systems.
531 * Calculate the offset assuming a fully bigendian 128 bits,
532 * then XOR to account for the order of the two 64 bit halves.
534 offs += (16 - ((element + 1) * (1 << size)));
535 offs ^= 8;
536 #else
537 offs += element * (1 << size);
538 #endif
539 offs += offsetof(CPUARMState, vfp.zregs[regno]);
540 assert_fp_access_checked(s);
541 return offs;
544 /* Return the offset info CPUARMState of the "whole" vector register Qn. */
545 static inline int vec_full_reg_offset(DisasContext *s, int regno)
547 assert_fp_access_checked(s);
548 return offsetof(CPUARMState, vfp.zregs[regno]);
551 /* Return a newly allocated pointer to the vector register. */
552 static TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno)
554 TCGv_ptr ret = tcg_temp_new_ptr();
555 tcg_gen_addi_ptr(ret, cpu_env, vec_full_reg_offset(s, regno));
556 return ret;
559 /* Return the byte size of the "whole" vector register, VL / 8. */
560 static inline int vec_full_reg_size(DisasContext *s)
562 /* FIXME SVE: We should put the composite ZCR_EL* value into tb->flags.
563 In the meantime this is just the AdvSIMD length of 128. */
564 return 128 / 8;
567 /* Return the offset into CPUARMState of a slice (from
568 * the least significant end) of FP register Qn (ie
569 * Dn, Sn, Hn or Bn).
570 * (Note that this is not the same mapping as for A32; see cpu.h)
572 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
574 return vec_reg_offset(s, regno, 0, size);
577 /* Offset of the high half of the 128 bit vector Qn */
578 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
580 return vec_reg_offset(s, regno, 1, MO_64);
583 /* Convenience accessors for reading and writing single and double
584 * FP registers. Writing clears the upper parts of the associated
585 * 128 bit vector register, as required by the architecture.
586 * Note that unlike the GP register accessors, the values returned
587 * by the read functions must be manually freed.
589 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
591 TCGv_i64 v = tcg_temp_new_i64();
593 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
594 return v;
597 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
599 TCGv_i32 v = tcg_temp_new_i32();
601 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
602 return v;
605 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
606 * If SVE is not enabled, then there are only 128 bits in the vector.
608 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
610 unsigned ofs = fp_reg_offset(s, rd, MO_64);
611 unsigned vsz = vec_full_reg_size(s);
613 if (!is_q) {
614 TCGv_i64 tcg_zero = tcg_const_i64(0);
615 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
616 tcg_temp_free_i64(tcg_zero);
618 if (vsz > 16) {
619 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
623 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
625 unsigned ofs = fp_reg_offset(s, reg, MO_64);
627 tcg_gen_st_i64(v, cpu_env, ofs);
628 clear_vec_high(s, false, reg);
631 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
633 TCGv_i64 tmp = tcg_temp_new_i64();
635 tcg_gen_extu_i32_i64(tmp, v);
636 write_fp_dreg(s, reg, tmp);
637 tcg_temp_free_i64(tmp);
640 static TCGv_ptr get_fpstatus_ptr(bool is_f16)
642 TCGv_ptr statusptr = tcg_temp_new_ptr();
643 int offset;
645 /* In A64 all instructions (both FP and Neon) use the FPCR; there
646 * is no equivalent of the A32 Neon "standard FPSCR value".
647 * However half-precision operations operate under a different
648 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
650 if (is_f16) {
651 offset = offsetof(CPUARMState, vfp.fp_status_f16);
652 } else {
653 offset = offsetof(CPUARMState, vfp.fp_status);
655 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
656 return statusptr;
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661 GVecGen2Fn *gvec_fn, int vece)
663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664 is_q ? 16 : 8, vec_full_reg_size(s));
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668 * an expander function.
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674 imm, is_q ? 16 : 8, vec_full_reg_size(s));
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679 GVecGen3Fn *gvec_fn, int vece)
681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
685 /* Expand a 2-operand + immediate AdvSIMD vector operation using
686 * an op descriptor.
688 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
689 int rn, int64_t imm, const GVecGen2i *gvec_op)
691 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
692 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
695 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
696 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
697 int rn, int rm, const GVecGen3 *gvec_op)
699 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
700 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
701 vec_full_reg_size(s), gvec_op);
704 /* Expand a 3-operand + env pointer operation using
705 * an out-of-line helper.
707 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
708 int rn, int rm, gen_helper_gvec_3_ptr *fn)
710 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
711 vec_full_reg_offset(s, rn),
712 vec_full_reg_offset(s, rm), cpu_env,
713 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
716 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
717 * an out-of-line helper.
719 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
720 int rm, bool is_fp16, int data,
721 gen_helper_gvec_3_ptr *fn)
723 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
724 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
725 vec_full_reg_offset(s, rn),
726 vec_full_reg_offset(s, rm), fpst,
727 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
728 tcg_temp_free_ptr(fpst);
731 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
732 * than the 32 bit equivalent.
734 static inline void gen_set_NZ64(TCGv_i64 result)
736 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
737 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
740 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
741 static inline void gen_logic_CC(int sf, TCGv_i64 result)
743 if (sf) {
744 gen_set_NZ64(result);
745 } else {
746 tcg_gen_extrl_i64_i32(cpu_ZF, result);
747 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
749 tcg_gen_movi_i32(cpu_CF, 0);
750 tcg_gen_movi_i32(cpu_VF, 0);
753 /* dest = T0 + T1; compute C, N, V and Z flags */
754 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
756 if (sf) {
757 TCGv_i64 result, flag, tmp;
758 result = tcg_temp_new_i64();
759 flag = tcg_temp_new_i64();
760 tmp = tcg_temp_new_i64();
762 tcg_gen_movi_i64(tmp, 0);
763 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
765 tcg_gen_extrl_i64_i32(cpu_CF, flag);
767 gen_set_NZ64(result);
769 tcg_gen_xor_i64(flag, result, t0);
770 tcg_gen_xor_i64(tmp, t0, t1);
771 tcg_gen_andc_i64(flag, flag, tmp);
772 tcg_temp_free_i64(tmp);
773 tcg_gen_extrh_i64_i32(cpu_VF, flag);
775 tcg_gen_mov_i64(dest, result);
776 tcg_temp_free_i64(result);
777 tcg_temp_free_i64(flag);
778 } else {
779 /* 32 bit arithmetic */
780 TCGv_i32 t0_32 = tcg_temp_new_i32();
781 TCGv_i32 t1_32 = tcg_temp_new_i32();
782 TCGv_i32 tmp = tcg_temp_new_i32();
784 tcg_gen_movi_i32(tmp, 0);
785 tcg_gen_extrl_i64_i32(t0_32, t0);
786 tcg_gen_extrl_i64_i32(t1_32, t1);
787 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
788 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
789 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
790 tcg_gen_xor_i32(tmp, t0_32, t1_32);
791 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
792 tcg_gen_extu_i32_i64(dest, cpu_NF);
794 tcg_temp_free_i32(tmp);
795 tcg_temp_free_i32(t0_32);
796 tcg_temp_free_i32(t1_32);
800 /* dest = T0 - T1; compute C, N, V and Z flags */
801 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
803 if (sf) {
804 /* 64 bit arithmetic */
805 TCGv_i64 result, flag, tmp;
807 result = tcg_temp_new_i64();
808 flag = tcg_temp_new_i64();
809 tcg_gen_sub_i64(result, t0, t1);
811 gen_set_NZ64(result);
813 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
814 tcg_gen_extrl_i64_i32(cpu_CF, flag);
816 tcg_gen_xor_i64(flag, result, t0);
817 tmp = tcg_temp_new_i64();
818 tcg_gen_xor_i64(tmp, t0, t1);
819 tcg_gen_and_i64(flag, flag, tmp);
820 tcg_temp_free_i64(tmp);
821 tcg_gen_extrh_i64_i32(cpu_VF, flag);
822 tcg_gen_mov_i64(dest, result);
823 tcg_temp_free_i64(flag);
824 tcg_temp_free_i64(result);
825 } else {
826 /* 32 bit arithmetic */
827 TCGv_i32 t0_32 = tcg_temp_new_i32();
828 TCGv_i32 t1_32 = tcg_temp_new_i32();
829 TCGv_i32 tmp;
831 tcg_gen_extrl_i64_i32(t0_32, t0);
832 tcg_gen_extrl_i64_i32(t1_32, t1);
833 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
834 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
835 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
836 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
837 tmp = tcg_temp_new_i32();
838 tcg_gen_xor_i32(tmp, t0_32, t1_32);
839 tcg_temp_free_i32(t0_32);
840 tcg_temp_free_i32(t1_32);
841 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
842 tcg_temp_free_i32(tmp);
843 tcg_gen_extu_i32_i64(dest, cpu_NF);
847 /* dest = T0 + T1 + CF; do not compute flags. */
848 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
850 TCGv_i64 flag = tcg_temp_new_i64();
851 tcg_gen_extu_i32_i64(flag, cpu_CF);
852 tcg_gen_add_i64(dest, t0, t1);
853 tcg_gen_add_i64(dest, dest, flag);
854 tcg_temp_free_i64(flag);
856 if (!sf) {
857 tcg_gen_ext32u_i64(dest, dest);
861 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
862 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
864 if (sf) {
865 TCGv_i64 result, cf_64, vf_64, tmp;
866 result = tcg_temp_new_i64();
867 cf_64 = tcg_temp_new_i64();
868 vf_64 = tcg_temp_new_i64();
869 tmp = tcg_const_i64(0);
871 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
872 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
873 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
874 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
875 gen_set_NZ64(result);
877 tcg_gen_xor_i64(vf_64, result, t0);
878 tcg_gen_xor_i64(tmp, t0, t1);
879 tcg_gen_andc_i64(vf_64, vf_64, tmp);
880 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
882 tcg_gen_mov_i64(dest, result);
884 tcg_temp_free_i64(tmp);
885 tcg_temp_free_i64(vf_64);
886 tcg_temp_free_i64(cf_64);
887 tcg_temp_free_i64(result);
888 } else {
889 TCGv_i32 t0_32, t1_32, tmp;
890 t0_32 = tcg_temp_new_i32();
891 t1_32 = tcg_temp_new_i32();
892 tmp = tcg_const_i32(0);
894 tcg_gen_extrl_i64_i32(t0_32, t0);
895 tcg_gen_extrl_i64_i32(t1_32, t1);
896 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
897 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
899 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
900 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
901 tcg_gen_xor_i32(tmp, t0_32, t1_32);
902 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
903 tcg_gen_extu_i32_i64(dest, cpu_NF);
905 tcg_temp_free_i32(tmp);
906 tcg_temp_free_i32(t1_32);
907 tcg_temp_free_i32(t0_32);
912 * Load/Store generators
916 * Store from GPR register to memory.
918 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
919 TCGv_i64 tcg_addr, int size, int memidx,
920 bool iss_valid,
921 unsigned int iss_srt,
922 bool iss_sf, bool iss_ar)
924 g_assert(size <= 3);
925 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
927 if (iss_valid) {
928 uint32_t syn;
930 syn = syn_data_abort_with_iss(0,
931 size,
932 false,
933 iss_srt,
934 iss_sf,
935 iss_ar,
936 0, 0, 0, 0, 0, false);
937 disas_set_insn_syndrome(s, syn);
941 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
942 TCGv_i64 tcg_addr, int size,
943 bool iss_valid,
944 unsigned int iss_srt,
945 bool iss_sf, bool iss_ar)
947 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
948 iss_valid, iss_srt, iss_sf, iss_ar);
952 * Load from memory to GPR register
954 static void do_gpr_ld_memidx(DisasContext *s,
955 TCGv_i64 dest, TCGv_i64 tcg_addr,
956 int size, bool is_signed,
957 bool extend, int memidx,
958 bool iss_valid, unsigned int iss_srt,
959 bool iss_sf, bool iss_ar)
961 TCGMemOp memop = s->be_data + size;
963 g_assert(size <= 3);
965 if (is_signed) {
966 memop += MO_SIGN;
969 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
971 if (extend && is_signed) {
972 g_assert(size < 3);
973 tcg_gen_ext32u_i64(dest, dest);
976 if (iss_valid) {
977 uint32_t syn;
979 syn = syn_data_abort_with_iss(0,
980 size,
981 is_signed,
982 iss_srt,
983 iss_sf,
984 iss_ar,
985 0, 0, 0, 0, 0, false);
986 disas_set_insn_syndrome(s, syn);
990 static void do_gpr_ld(DisasContext *s,
991 TCGv_i64 dest, TCGv_i64 tcg_addr,
992 int size, bool is_signed, bool extend,
993 bool iss_valid, unsigned int iss_srt,
994 bool iss_sf, bool iss_ar)
996 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
997 get_mem_index(s),
998 iss_valid, iss_srt, iss_sf, iss_ar);
1002 * Store from FP register to memory
1004 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1006 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1007 TCGv_i64 tmp = tcg_temp_new_i64();
1008 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1009 if (size < 4) {
1010 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1011 s->be_data + size);
1012 } else {
1013 bool be = s->be_data == MO_BE;
1014 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1016 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1017 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1018 s->be_data | MO_Q);
1019 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1020 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1021 s->be_data | MO_Q);
1022 tcg_temp_free_i64(tcg_hiaddr);
1025 tcg_temp_free_i64(tmp);
1029 * Load from memory to FP register
1031 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1033 /* This always zero-extends and writes to a full 128 bit wide vector */
1034 TCGv_i64 tmplo = tcg_temp_new_i64();
1035 TCGv_i64 tmphi;
1037 if (size < 4) {
1038 TCGMemOp memop = s->be_data + size;
1039 tmphi = tcg_const_i64(0);
1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1041 } else {
1042 bool be = s->be_data == MO_BE;
1043 TCGv_i64 tcg_hiaddr;
1045 tmphi = tcg_temp_new_i64();
1046 tcg_hiaddr = tcg_temp_new_i64();
1048 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1049 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1050 s->be_data | MO_Q);
1051 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1052 s->be_data | MO_Q);
1053 tcg_temp_free_i64(tcg_hiaddr);
1056 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1057 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1059 tcg_temp_free_i64(tmplo);
1060 tcg_temp_free_i64(tmphi);
1062 clear_vec_high(s, true, destidx);
1066 * Vector load/store helpers.
1068 * The principal difference between this and a FP load is that we don't
1069 * zero extend as we are filling a partial chunk of the vector register.
1070 * These functions don't support 128 bit loads/stores, which would be
1071 * normal load/store operations.
1073 * The _i32 versions are useful when operating on 32 bit quantities
1074 * (eg for floating point single or using Neon helper functions).
1077 /* Get value of an element within a vector register */
1078 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1079 int element, TCGMemOp memop)
1081 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1082 switch (memop) {
1083 case MO_8:
1084 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1085 break;
1086 case MO_16:
1087 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1088 break;
1089 case MO_32:
1090 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1091 break;
1092 case MO_8|MO_SIGN:
1093 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1094 break;
1095 case MO_16|MO_SIGN:
1096 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1097 break;
1098 case MO_32|MO_SIGN:
1099 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1100 break;
1101 case MO_64:
1102 case MO_64|MO_SIGN:
1103 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1104 break;
1105 default:
1106 g_assert_not_reached();
1110 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1111 int element, TCGMemOp memop)
1113 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1114 switch (memop) {
1115 case MO_8:
1116 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1117 break;
1118 case MO_16:
1119 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1120 break;
1121 case MO_8|MO_SIGN:
1122 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1123 break;
1124 case MO_16|MO_SIGN:
1125 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1126 break;
1127 case MO_32:
1128 case MO_32|MO_SIGN:
1129 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1130 break;
1131 default:
1132 g_assert_not_reached();
1136 /* Set value of an element within a vector register */
1137 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1138 int element, TCGMemOp memop)
1140 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1141 switch (memop) {
1142 case MO_8:
1143 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1144 break;
1145 case MO_16:
1146 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1147 break;
1148 case MO_32:
1149 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1150 break;
1151 case MO_64:
1152 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1153 break;
1154 default:
1155 g_assert_not_reached();
1159 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1160 int destidx, int element, TCGMemOp memop)
1162 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1163 switch (memop) {
1164 case MO_8:
1165 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1166 break;
1167 case MO_16:
1168 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1169 break;
1170 case MO_32:
1171 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1172 break;
1173 default:
1174 g_assert_not_reached();
1178 /* Store from vector register to memory */
1179 static void do_vec_st(DisasContext *s, int srcidx, int element,
1180 TCGv_i64 tcg_addr, int size)
1182 TCGMemOp memop = s->be_data + size;
1183 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1185 read_vec_element(s, tcg_tmp, srcidx, element, size);
1186 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1188 tcg_temp_free_i64(tcg_tmp);
1191 /* Load from memory to vector register */
1192 static void do_vec_ld(DisasContext *s, int destidx, int element,
1193 TCGv_i64 tcg_addr, int size)
1195 TCGMemOp memop = s->be_data + size;
1196 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1198 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1199 write_vec_element(s, tcg_tmp, destidx, element, size);
1201 tcg_temp_free_i64(tcg_tmp);
1204 /* Check that FP/Neon access is enabled. If it is, return
1205 * true. If not, emit code to generate an appropriate exception,
1206 * and return false; the caller should not emit any code for
1207 * the instruction. Note that this check must happen after all
1208 * unallocated-encoding checks (otherwise the syndrome information
1209 * for the resulting exception will be incorrect).
1211 static inline bool fp_access_check(DisasContext *s)
1213 assert(!s->fp_access_checked);
1214 s->fp_access_checked = true;
1216 if (!s->fp_excp_el) {
1217 return true;
1220 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1221 s->fp_excp_el);
1222 return false;
1225 /* Check that SVE access is enabled. If it is, return true.
1226 * If not, emit code to generate an appropriate exception and return false.
1228 static inline bool sve_access_check(DisasContext *s)
1230 if (s->sve_excp_el) {
1231 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1232 s->sve_excp_el);
1233 return false;
1235 return true;
1239 * This utility function is for doing register extension with an
1240 * optional shift. You will likely want to pass a temporary for the
1241 * destination register. See DecodeRegExtend() in the ARM ARM.
1243 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1244 int option, unsigned int shift)
1246 int extsize = extract32(option, 0, 2);
1247 bool is_signed = extract32(option, 2, 1);
1249 if (is_signed) {
1250 switch (extsize) {
1251 case 0:
1252 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1253 break;
1254 case 1:
1255 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1256 break;
1257 case 2:
1258 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1259 break;
1260 case 3:
1261 tcg_gen_mov_i64(tcg_out, tcg_in);
1262 break;
1264 } else {
1265 switch (extsize) {
1266 case 0:
1267 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1268 break;
1269 case 1:
1270 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1271 break;
1272 case 2:
1273 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1274 break;
1275 case 3:
1276 tcg_gen_mov_i64(tcg_out, tcg_in);
1277 break;
1281 if (shift) {
1282 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1286 static inline void gen_check_sp_alignment(DisasContext *s)
1288 /* The AArch64 architecture mandates that (if enabled via PSTATE
1289 * or SCTLR bits) there is a check that SP is 16-aligned on every
1290 * SP-relative load or store (with an exception generated if it is not).
1291 * In line with general QEMU practice regarding misaligned accesses,
1292 * we omit these checks for the sake of guest program performance.
1293 * This function is provided as a hook so we can more easily add these
1294 * checks in future (possibly as a "favour catching guest program bugs
1295 * over speed" user selectable option).
1300 * This provides a simple table based table lookup decoder. It is
1301 * intended to be used when the relevant bits for decode are too
1302 * awkwardly placed and switch/if based logic would be confusing and
1303 * deeply nested. Since it's a linear search through the table, tables
1304 * should be kept small.
1306 * It returns the first handler where insn & mask == pattern, or
1307 * NULL if there is no match.
1308 * The table is terminated by an empty mask (i.e. 0)
1310 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1311 uint32_t insn)
1313 const AArch64DecodeTable *tptr = table;
1315 while (tptr->mask) {
1316 if ((insn & tptr->mask) == tptr->pattern) {
1317 return tptr->disas_fn;
1319 tptr++;
1321 return NULL;
1325 * The instruction disassembly implemented here matches
1326 * the instruction encoding classifications in chapter C4
1327 * of the ARM Architecture Reference Manual (DDI0487B_a);
1328 * classification names and decode diagrams here should generally
1329 * match up with those in the manual.
1332 /* Unconditional branch (immediate)
1333 * 31 30 26 25 0
1334 * +----+-----------+-------------------------------------+
1335 * | op | 0 0 1 0 1 | imm26 |
1336 * +----+-----------+-------------------------------------+
1338 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1340 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1342 if (insn & (1U << 31)) {
1343 /* BL Branch with link */
1344 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1347 /* B Branch / BL Branch with link */
1348 gen_goto_tb(s, 0, addr);
1351 /* Compare and branch (immediate)
1352 * 31 30 25 24 23 5 4 0
1353 * +----+-------------+----+---------------------+--------+
1354 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1355 * +----+-------------+----+---------------------+--------+
1357 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1359 unsigned int sf, op, rt;
1360 uint64_t addr;
1361 TCGLabel *label_match;
1362 TCGv_i64 tcg_cmp;
1364 sf = extract32(insn, 31, 1);
1365 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1366 rt = extract32(insn, 0, 5);
1367 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1369 tcg_cmp = read_cpu_reg(s, rt, sf);
1370 label_match = gen_new_label();
1372 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1373 tcg_cmp, 0, label_match);
1375 gen_goto_tb(s, 0, s->pc);
1376 gen_set_label(label_match);
1377 gen_goto_tb(s, 1, addr);
1380 /* Test and branch (immediate)
1381 * 31 30 25 24 23 19 18 5 4 0
1382 * +----+-------------+----+-------+-------------+------+
1383 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1384 * +----+-------------+----+-------+-------------+------+
1386 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1388 unsigned int bit_pos, op, rt;
1389 uint64_t addr;
1390 TCGLabel *label_match;
1391 TCGv_i64 tcg_cmp;
1393 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1394 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1395 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1396 rt = extract32(insn, 0, 5);
1398 tcg_cmp = tcg_temp_new_i64();
1399 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1400 label_match = gen_new_label();
1401 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1402 tcg_cmp, 0, label_match);
1403 tcg_temp_free_i64(tcg_cmp);
1404 gen_goto_tb(s, 0, s->pc);
1405 gen_set_label(label_match);
1406 gen_goto_tb(s, 1, addr);
1409 /* Conditional branch (immediate)
1410 * 31 25 24 23 5 4 3 0
1411 * +---------------+----+---------------------+----+------+
1412 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1413 * +---------------+----+---------------------+----+------+
1415 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1417 unsigned int cond;
1418 uint64_t addr;
1420 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1421 unallocated_encoding(s);
1422 return;
1424 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1425 cond = extract32(insn, 0, 4);
1427 if (cond < 0x0e) {
1428 /* genuinely conditional branches */
1429 TCGLabel *label_match = gen_new_label();
1430 arm_gen_test_cc(cond, label_match);
1431 gen_goto_tb(s, 0, s->pc);
1432 gen_set_label(label_match);
1433 gen_goto_tb(s, 1, addr);
1434 } else {
1435 /* 0xe and 0xf are both "always" conditions */
1436 gen_goto_tb(s, 0, addr);
1440 /* HINT instruction group, including various allocated HINTs */
1441 static void handle_hint(DisasContext *s, uint32_t insn,
1442 unsigned int op1, unsigned int op2, unsigned int crm)
1444 unsigned int selector = crm << 3 | op2;
1446 if (op1 != 3) {
1447 unallocated_encoding(s);
1448 return;
1451 switch (selector) {
1452 case 0: /* NOP */
1453 return;
1454 case 3: /* WFI */
1455 s->base.is_jmp = DISAS_WFI;
1456 return;
1457 /* When running in MTTCG we don't generate jumps to the yield and
1458 * WFE helpers as it won't affect the scheduling of other vCPUs.
1459 * If we wanted to more completely model WFE/SEV so we don't busy
1460 * spin unnecessarily we would need to do something more involved.
1462 case 1: /* YIELD */
1463 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1464 s->base.is_jmp = DISAS_YIELD;
1466 return;
1467 case 2: /* WFE */
1468 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1469 s->base.is_jmp = DISAS_WFE;
1471 return;
1472 case 4: /* SEV */
1473 case 5: /* SEVL */
1474 /* we treat all as NOP at least for now */
1475 return;
1476 default:
1477 /* default specified as NOP equivalent */
1478 return;
1482 static void gen_clrex(DisasContext *s, uint32_t insn)
1484 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1487 /* CLREX, DSB, DMB, ISB */
1488 static void handle_sync(DisasContext *s, uint32_t insn,
1489 unsigned int op1, unsigned int op2, unsigned int crm)
1491 TCGBar bar;
1493 if (op1 != 3) {
1494 unallocated_encoding(s);
1495 return;
1498 switch (op2) {
1499 case 2: /* CLREX */
1500 gen_clrex(s, insn);
1501 return;
1502 case 4: /* DSB */
1503 case 5: /* DMB */
1504 switch (crm & 3) {
1505 case 1: /* MBReqTypes_Reads */
1506 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1507 break;
1508 case 2: /* MBReqTypes_Writes */
1509 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1510 break;
1511 default: /* MBReqTypes_All */
1512 bar = TCG_BAR_SC | TCG_MO_ALL;
1513 break;
1515 tcg_gen_mb(bar);
1516 return;
1517 case 6: /* ISB */
1518 /* We need to break the TB after this insn to execute
1519 * a self-modified code correctly and also to take
1520 * any pending interrupts immediately.
1522 gen_goto_tb(s, 0, s->pc);
1523 return;
1524 default:
1525 unallocated_encoding(s);
1526 return;
1530 /* MSR (immediate) - move immediate to processor state field */
1531 static void handle_msr_i(DisasContext *s, uint32_t insn,
1532 unsigned int op1, unsigned int op2, unsigned int crm)
1534 int op = op1 << 3 | op2;
1535 switch (op) {
1536 case 0x05: /* SPSel */
1537 if (s->current_el == 0) {
1538 unallocated_encoding(s);
1539 return;
1541 /* fall through */
1542 case 0x1e: /* DAIFSet */
1543 case 0x1f: /* DAIFClear */
1545 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1546 TCGv_i32 tcg_op = tcg_const_i32(op);
1547 gen_a64_set_pc_im(s->pc - 4);
1548 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1549 tcg_temp_free_i32(tcg_imm);
1550 tcg_temp_free_i32(tcg_op);
1551 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1552 gen_a64_set_pc_im(s->pc);
1553 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1554 break;
1556 default:
1557 unallocated_encoding(s);
1558 return;
1562 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1564 TCGv_i32 tmp = tcg_temp_new_i32();
1565 TCGv_i32 nzcv = tcg_temp_new_i32();
1567 /* build bit 31, N */
1568 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1569 /* build bit 30, Z */
1570 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1571 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1572 /* build bit 29, C */
1573 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1574 /* build bit 28, V */
1575 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1576 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1577 /* generate result */
1578 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1580 tcg_temp_free_i32(nzcv);
1581 tcg_temp_free_i32(tmp);
1584 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1587 TCGv_i32 nzcv = tcg_temp_new_i32();
1589 /* take NZCV from R[t] */
1590 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1592 /* bit 31, N */
1593 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1594 /* bit 30, Z */
1595 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1596 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1597 /* bit 29, C */
1598 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1599 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1600 /* bit 28, V */
1601 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1602 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1603 tcg_temp_free_i32(nzcv);
1606 /* MRS - move from system register
1607 * MSR (register) - move to system register
1608 * SYS
1609 * SYSL
1610 * These are all essentially the same insn in 'read' and 'write'
1611 * versions, with varying op0 fields.
1613 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1614 unsigned int op0, unsigned int op1, unsigned int op2,
1615 unsigned int crn, unsigned int crm, unsigned int rt)
1617 const ARMCPRegInfo *ri;
1618 TCGv_i64 tcg_rt;
1620 ri = get_arm_cp_reginfo(s->cp_regs,
1621 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1622 crn, crm, op0, op1, op2));
1624 if (!ri) {
1625 /* Unknown register; this might be a guest error or a QEMU
1626 * unimplemented feature.
1628 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1629 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1630 isread ? "read" : "write", op0, op1, crn, crm, op2);
1631 unallocated_encoding(s);
1632 return;
1635 /* Check access permissions */
1636 if (!cp_access_ok(s->current_el, ri, isread)) {
1637 unallocated_encoding(s);
1638 return;
1641 if (ri->accessfn) {
1642 /* Emit code to perform further access permissions checks at
1643 * runtime; this may result in an exception.
1645 TCGv_ptr tmpptr;
1646 TCGv_i32 tcg_syn, tcg_isread;
1647 uint32_t syndrome;
1649 gen_a64_set_pc_im(s->pc - 4);
1650 tmpptr = tcg_const_ptr(ri);
1651 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1652 tcg_syn = tcg_const_i32(syndrome);
1653 tcg_isread = tcg_const_i32(isread);
1654 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1655 tcg_temp_free_ptr(tmpptr);
1656 tcg_temp_free_i32(tcg_syn);
1657 tcg_temp_free_i32(tcg_isread);
1660 /* Handle special cases first */
1661 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1662 case ARM_CP_NOP:
1663 return;
1664 case ARM_CP_NZCV:
1665 tcg_rt = cpu_reg(s, rt);
1666 if (isread) {
1667 gen_get_nzcv(tcg_rt);
1668 } else {
1669 gen_set_nzcv(tcg_rt);
1671 return;
1672 case ARM_CP_CURRENTEL:
1673 /* Reads as current EL value from pstate, which is
1674 * guaranteed to be constant by the tb flags.
1676 tcg_rt = cpu_reg(s, rt);
1677 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1678 return;
1679 case ARM_CP_DC_ZVA:
1680 /* Writes clear the aligned block of memory which rt points into. */
1681 tcg_rt = cpu_reg(s, rt);
1682 gen_helper_dc_zva(cpu_env, tcg_rt);
1683 return;
1684 default:
1685 break;
1687 if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1688 return;
1690 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1691 return;
1694 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1695 gen_io_start();
1698 tcg_rt = cpu_reg(s, rt);
1700 if (isread) {
1701 if (ri->type & ARM_CP_CONST) {
1702 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1703 } else if (ri->readfn) {
1704 TCGv_ptr tmpptr;
1705 tmpptr = tcg_const_ptr(ri);
1706 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1707 tcg_temp_free_ptr(tmpptr);
1708 } else {
1709 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1711 } else {
1712 if (ri->type & ARM_CP_CONST) {
1713 /* If not forbidden by access permissions, treat as WI */
1714 return;
1715 } else if (ri->writefn) {
1716 TCGv_ptr tmpptr;
1717 tmpptr = tcg_const_ptr(ri);
1718 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1719 tcg_temp_free_ptr(tmpptr);
1720 } else {
1721 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1725 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1726 /* I/O operations must end the TB here (whether read or write) */
1727 gen_io_end();
1728 s->base.is_jmp = DISAS_UPDATE;
1729 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1730 /* We default to ending the TB on a coprocessor register write,
1731 * but allow this to be suppressed by the register definition
1732 * (usually only necessary to work around guest bugs).
1734 s->base.is_jmp = DISAS_UPDATE;
1738 /* System
1739 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1740 * +---------------------+---+-----+-----+-------+-------+-----+------+
1741 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1742 * +---------------------+---+-----+-----+-------+-------+-----+------+
1744 static void disas_system(DisasContext *s, uint32_t insn)
1746 unsigned int l, op0, op1, crn, crm, op2, rt;
1747 l = extract32(insn, 21, 1);
1748 op0 = extract32(insn, 19, 2);
1749 op1 = extract32(insn, 16, 3);
1750 crn = extract32(insn, 12, 4);
1751 crm = extract32(insn, 8, 4);
1752 op2 = extract32(insn, 5, 3);
1753 rt = extract32(insn, 0, 5);
1755 if (op0 == 0) {
1756 if (l || rt != 31) {
1757 unallocated_encoding(s);
1758 return;
1760 switch (crn) {
1761 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1762 handle_hint(s, insn, op1, op2, crm);
1763 break;
1764 case 3: /* CLREX, DSB, DMB, ISB */
1765 handle_sync(s, insn, op1, op2, crm);
1766 break;
1767 case 4: /* MSR (immediate) */
1768 handle_msr_i(s, insn, op1, op2, crm);
1769 break;
1770 default:
1771 unallocated_encoding(s);
1772 break;
1774 return;
1776 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1779 /* Exception generation
1781 * 31 24 23 21 20 5 4 2 1 0
1782 * +-----------------+-----+------------------------+-----+----+
1783 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1784 * +-----------------------+------------------------+----------+
1786 static void disas_exc(DisasContext *s, uint32_t insn)
1788 int opc = extract32(insn, 21, 3);
1789 int op2_ll = extract32(insn, 0, 5);
1790 int imm16 = extract32(insn, 5, 16);
1791 TCGv_i32 tmp;
1793 switch (opc) {
1794 case 0:
1795 /* For SVC, HVC and SMC we advance the single-step state
1796 * machine before taking the exception. This is architecturally
1797 * mandated, to ensure that single-stepping a system call
1798 * instruction works properly.
1800 switch (op2_ll) {
1801 case 1: /* SVC */
1802 gen_ss_advance(s);
1803 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1804 default_exception_el(s));
1805 break;
1806 case 2: /* HVC */
1807 if (s->current_el == 0) {
1808 unallocated_encoding(s);
1809 break;
1811 /* The pre HVC helper handles cases when HVC gets trapped
1812 * as an undefined insn by runtime configuration.
1814 gen_a64_set_pc_im(s->pc - 4);
1815 gen_helper_pre_hvc(cpu_env);
1816 gen_ss_advance(s);
1817 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1818 break;
1819 case 3: /* SMC */
1820 if (s->current_el == 0) {
1821 unallocated_encoding(s);
1822 break;
1824 gen_a64_set_pc_im(s->pc - 4);
1825 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1826 gen_helper_pre_smc(cpu_env, tmp);
1827 tcg_temp_free_i32(tmp);
1828 gen_ss_advance(s);
1829 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1830 break;
1831 default:
1832 unallocated_encoding(s);
1833 break;
1835 break;
1836 case 1:
1837 if (op2_ll != 0) {
1838 unallocated_encoding(s);
1839 break;
1841 /* BRK */
1842 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1843 default_exception_el(s));
1844 break;
1845 case 2:
1846 if (op2_ll != 0) {
1847 unallocated_encoding(s);
1848 break;
1850 /* HLT. This has two purposes.
1851 * Architecturally, it is an external halting debug instruction.
1852 * Since QEMU doesn't implement external debug, we treat this as
1853 * it is required for halting debug disabled: it will UNDEF.
1854 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1856 if (semihosting_enabled() && imm16 == 0xf000) {
1857 #ifndef CONFIG_USER_ONLY
1858 /* In system mode, don't allow userspace access to semihosting,
1859 * to provide some semblance of security (and for consistency
1860 * with our 32-bit semihosting).
1862 if (s->current_el == 0) {
1863 unsupported_encoding(s, insn);
1864 break;
1866 #endif
1867 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1868 } else {
1869 unsupported_encoding(s, insn);
1871 break;
1872 case 5:
1873 if (op2_ll < 1 || op2_ll > 3) {
1874 unallocated_encoding(s);
1875 break;
1877 /* DCPS1, DCPS2, DCPS3 */
1878 unsupported_encoding(s, insn);
1879 break;
1880 default:
1881 unallocated_encoding(s);
1882 break;
1886 /* Unconditional branch (register)
1887 * 31 25 24 21 20 16 15 10 9 5 4 0
1888 * +---------------+-------+-------+-------+------+-------+
1889 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1890 * +---------------+-------+-------+-------+------+-------+
1892 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1894 unsigned int opc, op2, op3, rn, op4;
1896 opc = extract32(insn, 21, 4);
1897 op2 = extract32(insn, 16, 5);
1898 op3 = extract32(insn, 10, 6);
1899 rn = extract32(insn, 5, 5);
1900 op4 = extract32(insn, 0, 5);
1902 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1903 unallocated_encoding(s);
1904 return;
1907 switch (opc) {
1908 case 0: /* BR */
1909 case 1: /* BLR */
1910 case 2: /* RET */
1911 gen_a64_set_pc(s, cpu_reg(s, rn));
1912 /* BLR also needs to load return address */
1913 if (opc == 1) {
1914 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1916 break;
1917 case 4: /* ERET */
1918 if (s->current_el == 0) {
1919 unallocated_encoding(s);
1920 return;
1922 gen_helper_exception_return(cpu_env);
1923 /* Must exit loop to check un-masked IRQs */
1924 s->base.is_jmp = DISAS_EXIT;
1925 return;
1926 case 5: /* DRPS */
1927 if (rn != 0x1f) {
1928 unallocated_encoding(s);
1929 } else {
1930 unsupported_encoding(s, insn);
1932 return;
1933 default:
1934 unallocated_encoding(s);
1935 return;
1938 s->base.is_jmp = DISAS_JUMP;
1941 /* Branches, exception generating and system instructions */
1942 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1944 switch (extract32(insn, 25, 7)) {
1945 case 0x0a: case 0x0b:
1946 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1947 disas_uncond_b_imm(s, insn);
1948 break;
1949 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1950 disas_comp_b_imm(s, insn);
1951 break;
1952 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1953 disas_test_b_imm(s, insn);
1954 break;
1955 case 0x2a: /* Conditional branch (immediate) */
1956 disas_cond_b_imm(s, insn);
1957 break;
1958 case 0x6a: /* Exception generation / System */
1959 if (insn & (1 << 24)) {
1960 disas_system(s, insn);
1961 } else {
1962 disas_exc(s, insn);
1964 break;
1965 case 0x6b: /* Unconditional branch (register) */
1966 disas_uncond_b_reg(s, insn);
1967 break;
1968 default:
1969 unallocated_encoding(s);
1970 break;
1975 * Load/Store exclusive instructions are implemented by remembering
1976 * the value/address loaded, and seeing if these are the same
1977 * when the store is performed. This is not actually the architecturally
1978 * mandated semantics, but it works for typical guest code sequences
1979 * and avoids having to monitor regular stores.
1981 * The store exclusive uses the atomic cmpxchg primitives to avoid
1982 * races in multi-threaded linux-user and when MTTCG softmmu is
1983 * enabled.
1985 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1986 TCGv_i64 addr, int size, bool is_pair)
1988 int idx = get_mem_index(s);
1989 TCGMemOp memop = s->be_data;
1991 g_assert(size <= 3);
1992 if (is_pair) {
1993 g_assert(size >= 2);
1994 if (size == 2) {
1995 /* The pair must be single-copy atomic for the doubleword. */
1996 memop |= MO_64 | MO_ALIGN;
1997 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
1998 if (s->be_data == MO_LE) {
1999 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2000 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2001 } else {
2002 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2003 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2005 } else {
2006 /* The pair must be single-copy atomic for *each* doubleword, not
2007 the entire quadword, however it must be quadword aligned. */
2008 memop |= MO_64;
2009 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2010 memop | MO_ALIGN_16);
2012 TCGv_i64 addr2 = tcg_temp_new_i64();
2013 tcg_gen_addi_i64(addr2, addr, 8);
2014 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2015 tcg_temp_free_i64(addr2);
2017 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2018 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2020 } else {
2021 memop |= size | MO_ALIGN;
2022 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2023 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2025 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2028 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2029 TCGv_i64 addr, int size, int is_pair)
2031 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2032 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2033 * [addr] = {Rt};
2034 * if (is_pair) {
2035 * [addr + datasize] = {Rt2};
2037 * {Rd} = 0;
2038 * } else {
2039 * {Rd} = 1;
2041 * env->exclusive_addr = -1;
2043 TCGLabel *fail_label = gen_new_label();
2044 TCGLabel *done_label = gen_new_label();
2045 TCGv_i64 tmp;
2047 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2049 tmp = tcg_temp_new_i64();
2050 if (is_pair) {
2051 if (size == 2) {
2052 if (s->be_data == MO_LE) {
2053 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2054 } else {
2055 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2057 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2058 cpu_exclusive_val, tmp,
2059 get_mem_index(s),
2060 MO_64 | MO_ALIGN | s->be_data);
2061 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2062 } else if (s->be_data == MO_LE) {
2063 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2064 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2065 cpu_exclusive_addr,
2066 cpu_reg(s, rt),
2067 cpu_reg(s, rt2));
2068 } else {
2069 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2070 cpu_reg(s, rt), cpu_reg(s, rt2));
2072 } else {
2073 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2074 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2075 cpu_exclusive_addr,
2076 cpu_reg(s, rt),
2077 cpu_reg(s, rt2));
2078 } else {
2079 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2080 cpu_reg(s, rt), cpu_reg(s, rt2));
2083 } else {
2084 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2085 cpu_reg(s, rt), get_mem_index(s),
2086 size | MO_ALIGN | s->be_data);
2087 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2089 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2090 tcg_temp_free_i64(tmp);
2091 tcg_gen_br(done_label);
2093 gen_set_label(fail_label);
2094 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2095 gen_set_label(done_label);
2096 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2099 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2100 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2102 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2104 int opc0 = extract32(opc, 0, 1);
2105 int regsize;
2107 if (is_signed) {
2108 regsize = opc0 ? 32 : 64;
2109 } else {
2110 regsize = size == 3 ? 64 : 32;
2112 return regsize == 64;
2115 /* Load/store exclusive
2117 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2118 * +-----+-------------+----+---+----+------+----+-------+------+------+
2119 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2120 * +-----+-------------+----+---+----+------+----+-------+------+------+
2122 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2123 * L: 0 -> store, 1 -> load
2124 * o2: 0 -> exclusive, 1 -> not
2125 * o1: 0 -> single register, 1 -> register pair
2126 * o0: 1 -> load-acquire/store-release, 0 -> not
2128 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2130 int rt = extract32(insn, 0, 5);
2131 int rn = extract32(insn, 5, 5);
2132 int rt2 = extract32(insn, 10, 5);
2133 int is_lasr = extract32(insn, 15, 1);
2134 int rs = extract32(insn, 16, 5);
2135 int is_pair = extract32(insn, 21, 1);
2136 int is_store = !extract32(insn, 22, 1);
2137 int is_excl = !extract32(insn, 23, 1);
2138 int size = extract32(insn, 30, 2);
2139 TCGv_i64 tcg_addr;
2141 if ((!is_excl && !is_pair && !is_lasr) ||
2142 (!is_excl && is_pair) ||
2143 (is_pair && size < 2)) {
2144 unallocated_encoding(s);
2145 return;
2148 if (rn == 31) {
2149 gen_check_sp_alignment(s);
2151 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2153 /* Note that since TCG is single threaded load-acquire/store-release
2154 * semantics require no extra if (is_lasr) { ... } handling.
2157 if (is_excl) {
2158 if (!is_store) {
2159 s->is_ldex = true;
2160 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
2161 if (is_lasr) {
2162 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2164 } else {
2165 if (is_lasr) {
2166 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2168 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2170 } else {
2171 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2172 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2174 /* Generate ISS for non-exclusive accesses including LASR. */
2175 if (is_store) {
2176 if (is_lasr) {
2177 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2179 do_gpr_st(s, tcg_rt, tcg_addr, size,
2180 true, rt, iss_sf, is_lasr);
2181 } else {
2182 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2183 true, rt, iss_sf, is_lasr);
2184 if (is_lasr) {
2185 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2192 * Load register (literal)
2194 * 31 30 29 27 26 25 24 23 5 4 0
2195 * +-----+-------+---+-----+-------------------+-------+
2196 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2197 * +-----+-------+---+-----+-------------------+-------+
2199 * V: 1 -> vector (simd/fp)
2200 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2201 * 10-> 32 bit signed, 11 -> prefetch
2202 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2204 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2206 int rt = extract32(insn, 0, 5);
2207 int64_t imm = sextract32(insn, 5, 19) << 2;
2208 bool is_vector = extract32(insn, 26, 1);
2209 int opc = extract32(insn, 30, 2);
2210 bool is_signed = false;
2211 int size = 2;
2212 TCGv_i64 tcg_rt, tcg_addr;
2214 if (is_vector) {
2215 if (opc == 3) {
2216 unallocated_encoding(s);
2217 return;
2219 size = 2 + opc;
2220 if (!fp_access_check(s)) {
2221 return;
2223 } else {
2224 if (opc == 3) {
2225 /* PRFM (literal) : prefetch */
2226 return;
2228 size = 2 + extract32(opc, 0, 1);
2229 is_signed = extract32(opc, 1, 1);
2232 tcg_rt = cpu_reg(s, rt);
2234 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2235 if (is_vector) {
2236 do_fp_ld(s, rt, tcg_addr, size);
2237 } else {
2238 /* Only unsigned 32bit loads target 32bit registers. */
2239 bool iss_sf = opc != 0;
2241 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2242 true, rt, iss_sf, false);
2244 tcg_temp_free_i64(tcg_addr);
2248 * LDNP (Load Pair - non-temporal hint)
2249 * LDP (Load Pair - non vector)
2250 * LDPSW (Load Pair Signed Word - non vector)
2251 * STNP (Store Pair - non-temporal hint)
2252 * STP (Store Pair - non vector)
2253 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2254 * LDP (Load Pair of SIMD&FP)
2255 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2256 * STP (Store Pair of SIMD&FP)
2258 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2259 * +-----+-------+---+---+-------+---+-----------------------------+
2260 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2261 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2263 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2264 * LDPSW 01
2265 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2266 * V: 0 -> GPR, 1 -> Vector
2267 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2268 * 10 -> signed offset, 11 -> pre-index
2269 * L: 0 -> Store 1 -> Load
2271 * Rt, Rt2 = GPR or SIMD registers to be stored
2272 * Rn = general purpose register containing address
2273 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2275 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2277 int rt = extract32(insn, 0, 5);
2278 int rn = extract32(insn, 5, 5);
2279 int rt2 = extract32(insn, 10, 5);
2280 uint64_t offset = sextract64(insn, 15, 7);
2281 int index = extract32(insn, 23, 2);
2282 bool is_vector = extract32(insn, 26, 1);
2283 bool is_load = extract32(insn, 22, 1);
2284 int opc = extract32(insn, 30, 2);
2286 bool is_signed = false;
2287 bool postindex = false;
2288 bool wback = false;
2290 TCGv_i64 tcg_addr; /* calculated address */
2291 int size;
2293 if (opc == 3) {
2294 unallocated_encoding(s);
2295 return;
2298 if (is_vector) {
2299 size = 2 + opc;
2300 } else {
2301 size = 2 + extract32(opc, 1, 1);
2302 is_signed = extract32(opc, 0, 1);
2303 if (!is_load && is_signed) {
2304 unallocated_encoding(s);
2305 return;
2309 switch (index) {
2310 case 1: /* post-index */
2311 postindex = true;
2312 wback = true;
2313 break;
2314 case 0:
2315 /* signed offset with "non-temporal" hint. Since we don't emulate
2316 * caches we don't care about hints to the cache system about
2317 * data access patterns, and handle this identically to plain
2318 * signed offset.
2320 if (is_signed) {
2321 /* There is no non-temporal-hint version of LDPSW */
2322 unallocated_encoding(s);
2323 return;
2325 postindex = false;
2326 break;
2327 case 2: /* signed offset, rn not updated */
2328 postindex = false;
2329 break;
2330 case 3: /* pre-index */
2331 postindex = false;
2332 wback = true;
2333 break;
2336 if (is_vector && !fp_access_check(s)) {
2337 return;
2340 offset <<= size;
2342 if (rn == 31) {
2343 gen_check_sp_alignment(s);
2346 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2348 if (!postindex) {
2349 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2352 if (is_vector) {
2353 if (is_load) {
2354 do_fp_ld(s, rt, tcg_addr, size);
2355 } else {
2356 do_fp_st(s, rt, tcg_addr, size);
2358 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2359 if (is_load) {
2360 do_fp_ld(s, rt2, tcg_addr, size);
2361 } else {
2362 do_fp_st(s, rt2, tcg_addr, size);
2364 } else {
2365 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2366 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2368 if (is_load) {
2369 TCGv_i64 tmp = tcg_temp_new_i64();
2371 /* Do not modify tcg_rt before recognizing any exception
2372 * from the second load.
2374 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2375 false, 0, false, false);
2376 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2377 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2378 false, 0, false, false);
2380 tcg_gen_mov_i64(tcg_rt, tmp);
2381 tcg_temp_free_i64(tmp);
2382 } else {
2383 do_gpr_st(s, tcg_rt, tcg_addr, size,
2384 false, 0, false, false);
2385 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2386 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2387 false, 0, false, false);
2391 if (wback) {
2392 if (postindex) {
2393 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2394 } else {
2395 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2397 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2402 * Load/store (immediate post-indexed)
2403 * Load/store (immediate pre-indexed)
2404 * Load/store (unscaled immediate)
2406 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2407 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2408 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2409 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2411 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2412 10 -> unprivileged
2413 * V = 0 -> non-vector
2414 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2415 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2417 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2418 int opc,
2419 int size,
2420 int rt,
2421 bool is_vector)
2423 int rn = extract32(insn, 5, 5);
2424 int imm9 = sextract32(insn, 12, 9);
2425 int idx = extract32(insn, 10, 2);
2426 bool is_signed = false;
2427 bool is_store = false;
2428 bool is_extended = false;
2429 bool is_unpriv = (idx == 2);
2430 bool iss_valid = !is_vector;
2431 bool post_index;
2432 bool writeback;
2434 TCGv_i64 tcg_addr;
2436 if (is_vector) {
2437 size |= (opc & 2) << 1;
2438 if (size > 4 || is_unpriv) {
2439 unallocated_encoding(s);
2440 return;
2442 is_store = ((opc & 1) == 0);
2443 if (!fp_access_check(s)) {
2444 return;
2446 } else {
2447 if (size == 3 && opc == 2) {
2448 /* PRFM - prefetch */
2449 if (is_unpriv) {
2450 unallocated_encoding(s);
2451 return;
2453 return;
2455 if (opc == 3 && size > 1) {
2456 unallocated_encoding(s);
2457 return;
2459 is_store = (opc == 0);
2460 is_signed = extract32(opc, 1, 1);
2461 is_extended = (size < 3) && extract32(opc, 0, 1);
2464 switch (idx) {
2465 case 0:
2466 case 2:
2467 post_index = false;
2468 writeback = false;
2469 break;
2470 case 1:
2471 post_index = true;
2472 writeback = true;
2473 break;
2474 case 3:
2475 post_index = false;
2476 writeback = true;
2477 break;
2478 default:
2479 g_assert_not_reached();
2482 if (rn == 31) {
2483 gen_check_sp_alignment(s);
2485 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2487 if (!post_index) {
2488 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2491 if (is_vector) {
2492 if (is_store) {
2493 do_fp_st(s, rt, tcg_addr, size);
2494 } else {
2495 do_fp_ld(s, rt, tcg_addr, size);
2497 } else {
2498 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2499 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2500 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2502 if (is_store) {
2503 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2504 iss_valid, rt, iss_sf, false);
2505 } else {
2506 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2507 is_signed, is_extended, memidx,
2508 iss_valid, rt, iss_sf, false);
2512 if (writeback) {
2513 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2514 if (post_index) {
2515 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2517 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2522 * Load/store (register offset)
2524 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2525 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2526 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2527 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2529 * For non-vector:
2530 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2531 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2532 * For vector:
2533 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2534 * opc<0>: 0 -> store, 1 -> load
2535 * V: 1 -> vector/simd
2536 * opt: extend encoding (see DecodeRegExtend)
2537 * S: if S=1 then scale (essentially index by sizeof(size))
2538 * Rt: register to transfer into/out of
2539 * Rn: address register or SP for base
2540 * Rm: offset register or ZR for offset
2542 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2543 int opc,
2544 int size,
2545 int rt,
2546 bool is_vector)
2548 int rn = extract32(insn, 5, 5);
2549 int shift = extract32(insn, 12, 1);
2550 int rm = extract32(insn, 16, 5);
2551 int opt = extract32(insn, 13, 3);
2552 bool is_signed = false;
2553 bool is_store = false;
2554 bool is_extended = false;
2556 TCGv_i64 tcg_rm;
2557 TCGv_i64 tcg_addr;
2559 if (extract32(opt, 1, 1) == 0) {
2560 unallocated_encoding(s);
2561 return;
2564 if (is_vector) {
2565 size |= (opc & 2) << 1;
2566 if (size > 4) {
2567 unallocated_encoding(s);
2568 return;
2570 is_store = !extract32(opc, 0, 1);
2571 if (!fp_access_check(s)) {
2572 return;
2574 } else {
2575 if (size == 3 && opc == 2) {
2576 /* PRFM - prefetch */
2577 return;
2579 if (opc == 3 && size > 1) {
2580 unallocated_encoding(s);
2581 return;
2583 is_store = (opc == 0);
2584 is_signed = extract32(opc, 1, 1);
2585 is_extended = (size < 3) && extract32(opc, 0, 1);
2588 if (rn == 31) {
2589 gen_check_sp_alignment(s);
2591 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2593 tcg_rm = read_cpu_reg(s, rm, 1);
2594 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2596 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2598 if (is_vector) {
2599 if (is_store) {
2600 do_fp_st(s, rt, tcg_addr, size);
2601 } else {
2602 do_fp_ld(s, rt, tcg_addr, size);
2604 } else {
2605 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2606 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2607 if (is_store) {
2608 do_gpr_st(s, tcg_rt, tcg_addr, size,
2609 true, rt, iss_sf, false);
2610 } else {
2611 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2612 is_signed, is_extended,
2613 true, rt, iss_sf, false);
2619 * Load/store (unsigned immediate)
2621 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2622 * +----+-------+---+-----+-----+------------+-------+------+
2623 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2624 * +----+-------+---+-----+-----+------------+-------+------+
2626 * For non-vector:
2627 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2628 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2629 * For vector:
2630 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2631 * opc<0>: 0 -> store, 1 -> load
2632 * Rn: base address register (inc SP)
2633 * Rt: target register
2635 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2636 int opc,
2637 int size,
2638 int rt,
2639 bool is_vector)
2641 int rn = extract32(insn, 5, 5);
2642 unsigned int imm12 = extract32(insn, 10, 12);
2643 unsigned int offset;
2645 TCGv_i64 tcg_addr;
2647 bool is_store;
2648 bool is_signed = false;
2649 bool is_extended = false;
2651 if (is_vector) {
2652 size |= (opc & 2) << 1;
2653 if (size > 4) {
2654 unallocated_encoding(s);
2655 return;
2657 is_store = !extract32(opc, 0, 1);
2658 if (!fp_access_check(s)) {
2659 return;
2661 } else {
2662 if (size == 3 && opc == 2) {
2663 /* PRFM - prefetch */
2664 return;
2666 if (opc == 3 && size > 1) {
2667 unallocated_encoding(s);
2668 return;
2670 is_store = (opc == 0);
2671 is_signed = extract32(opc, 1, 1);
2672 is_extended = (size < 3) && extract32(opc, 0, 1);
2675 if (rn == 31) {
2676 gen_check_sp_alignment(s);
2678 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2679 offset = imm12 << size;
2680 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2682 if (is_vector) {
2683 if (is_store) {
2684 do_fp_st(s, rt, tcg_addr, size);
2685 } else {
2686 do_fp_ld(s, rt, tcg_addr, size);
2688 } else {
2689 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2690 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2691 if (is_store) {
2692 do_gpr_st(s, tcg_rt, tcg_addr, size,
2693 true, rt, iss_sf, false);
2694 } else {
2695 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2696 true, rt, iss_sf, false);
2701 /* Load/store register (all forms) */
2702 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2704 int rt = extract32(insn, 0, 5);
2705 int opc = extract32(insn, 22, 2);
2706 bool is_vector = extract32(insn, 26, 1);
2707 int size = extract32(insn, 30, 2);
2709 switch (extract32(insn, 24, 2)) {
2710 case 0:
2711 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2712 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2713 } else {
2714 /* Load/store register (unscaled immediate)
2715 * Load/store immediate pre/post-indexed
2716 * Load/store register unprivileged
2718 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2720 break;
2721 case 1:
2722 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2723 break;
2724 default:
2725 unallocated_encoding(s);
2726 break;
2730 /* AdvSIMD load/store multiple structures
2732 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2733 * +---+---+---------------+---+-------------+--------+------+------+------+
2734 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2735 * +---+---+---------------+---+-------------+--------+------+------+------+
2737 * AdvSIMD load/store multiple structures (post-indexed)
2739 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2740 * +---+---+---------------+---+---+---------+--------+------+------+------+
2741 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2742 * +---+---+---------------+---+---+---------+--------+------+------+------+
2744 * Rt: first (or only) SIMD&FP register to be transferred
2745 * Rn: base address or SP
2746 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2748 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2750 int rt = extract32(insn, 0, 5);
2751 int rn = extract32(insn, 5, 5);
2752 int size = extract32(insn, 10, 2);
2753 int opcode = extract32(insn, 12, 4);
2754 bool is_store = !extract32(insn, 22, 1);
2755 bool is_postidx = extract32(insn, 23, 1);
2756 bool is_q = extract32(insn, 30, 1);
2757 TCGv_i64 tcg_addr, tcg_rn;
2759 int ebytes = 1 << size;
2760 int elements = (is_q ? 128 : 64) / (8 << size);
2761 int rpt; /* num iterations */
2762 int selem; /* structure elements */
2763 int r;
2765 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2766 unallocated_encoding(s);
2767 return;
2770 /* From the shared decode logic */
2771 switch (opcode) {
2772 case 0x0:
2773 rpt = 1;
2774 selem = 4;
2775 break;
2776 case 0x2:
2777 rpt = 4;
2778 selem = 1;
2779 break;
2780 case 0x4:
2781 rpt = 1;
2782 selem = 3;
2783 break;
2784 case 0x6:
2785 rpt = 3;
2786 selem = 1;
2787 break;
2788 case 0x7:
2789 rpt = 1;
2790 selem = 1;
2791 break;
2792 case 0x8:
2793 rpt = 1;
2794 selem = 2;
2795 break;
2796 case 0xa:
2797 rpt = 2;
2798 selem = 1;
2799 break;
2800 default:
2801 unallocated_encoding(s);
2802 return;
2805 if (size == 3 && !is_q && selem != 1) {
2806 /* reserved */
2807 unallocated_encoding(s);
2808 return;
2811 if (!fp_access_check(s)) {
2812 return;
2815 if (rn == 31) {
2816 gen_check_sp_alignment(s);
2819 tcg_rn = cpu_reg_sp(s, rn);
2820 tcg_addr = tcg_temp_new_i64();
2821 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2823 for (r = 0; r < rpt; r++) {
2824 int e;
2825 for (e = 0; e < elements; e++) {
2826 int tt = (rt + r) % 32;
2827 int xs;
2828 for (xs = 0; xs < selem; xs++) {
2829 if (is_store) {
2830 do_vec_st(s, tt, e, tcg_addr, size);
2831 } else {
2832 do_vec_ld(s, tt, e, tcg_addr, size);
2834 /* For non-quad operations, setting a slice of the low
2835 * 64 bits of the register clears the high 64 bits (in
2836 * the ARM ARM pseudocode this is implicit in the fact
2837 * that 'rval' is a 64 bit wide variable).
2838 * For quad operations, we might still need to zero the
2839 * high bits of SVE. We optimize by noticing that we only
2840 * need to do this the first time we touch a register.
2842 if (e == 0 && (r == 0 || xs == selem - 1)) {
2843 clear_vec_high(s, is_q, tt);
2846 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2847 tt = (tt + 1) % 32;
2852 if (is_postidx) {
2853 int rm = extract32(insn, 16, 5);
2854 if (rm == 31) {
2855 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2856 } else {
2857 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2860 tcg_temp_free_i64(tcg_addr);
2863 /* AdvSIMD load/store single structure
2865 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2866 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2867 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2868 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2870 * AdvSIMD load/store single structure (post-indexed)
2872 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2873 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2874 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2875 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2877 * Rt: first (or only) SIMD&FP register to be transferred
2878 * Rn: base address or SP
2879 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2880 * index = encoded in Q:S:size dependent on size
2882 * lane_size = encoded in R, opc
2883 * transfer width = encoded in opc, S, size
2885 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2887 int rt = extract32(insn, 0, 5);
2888 int rn = extract32(insn, 5, 5);
2889 int size = extract32(insn, 10, 2);
2890 int S = extract32(insn, 12, 1);
2891 int opc = extract32(insn, 13, 3);
2892 int R = extract32(insn, 21, 1);
2893 int is_load = extract32(insn, 22, 1);
2894 int is_postidx = extract32(insn, 23, 1);
2895 int is_q = extract32(insn, 30, 1);
2897 int scale = extract32(opc, 1, 2);
2898 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2899 bool replicate = false;
2900 int index = is_q << 3 | S << 2 | size;
2901 int ebytes, xs;
2902 TCGv_i64 tcg_addr, tcg_rn;
2904 switch (scale) {
2905 case 3:
2906 if (!is_load || S) {
2907 unallocated_encoding(s);
2908 return;
2910 scale = size;
2911 replicate = true;
2912 break;
2913 case 0:
2914 break;
2915 case 1:
2916 if (extract32(size, 0, 1)) {
2917 unallocated_encoding(s);
2918 return;
2920 index >>= 1;
2921 break;
2922 case 2:
2923 if (extract32(size, 1, 1)) {
2924 unallocated_encoding(s);
2925 return;
2927 if (!extract32(size, 0, 1)) {
2928 index >>= 2;
2929 } else {
2930 if (S) {
2931 unallocated_encoding(s);
2932 return;
2934 index >>= 3;
2935 scale = 3;
2937 break;
2938 default:
2939 g_assert_not_reached();
2942 if (!fp_access_check(s)) {
2943 return;
2946 ebytes = 1 << scale;
2948 if (rn == 31) {
2949 gen_check_sp_alignment(s);
2952 tcg_rn = cpu_reg_sp(s, rn);
2953 tcg_addr = tcg_temp_new_i64();
2954 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2956 for (xs = 0; xs < selem; xs++) {
2957 if (replicate) {
2958 /* Load and replicate to all elements */
2959 uint64_t mulconst;
2960 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2962 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2963 get_mem_index(s), s->be_data + scale);
2964 switch (scale) {
2965 case 0:
2966 mulconst = 0x0101010101010101ULL;
2967 break;
2968 case 1:
2969 mulconst = 0x0001000100010001ULL;
2970 break;
2971 case 2:
2972 mulconst = 0x0000000100000001ULL;
2973 break;
2974 case 3:
2975 mulconst = 0;
2976 break;
2977 default:
2978 g_assert_not_reached();
2980 if (mulconst) {
2981 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2983 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2984 if (is_q) {
2985 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2987 tcg_temp_free_i64(tcg_tmp);
2988 clear_vec_high(s, is_q, rt);
2989 } else {
2990 /* Load/store one element per register */
2991 if (is_load) {
2992 do_vec_ld(s, rt, index, tcg_addr, scale);
2993 } else {
2994 do_vec_st(s, rt, index, tcg_addr, scale);
2997 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2998 rt = (rt + 1) % 32;
3001 if (is_postidx) {
3002 int rm = extract32(insn, 16, 5);
3003 if (rm == 31) {
3004 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3005 } else {
3006 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3009 tcg_temp_free_i64(tcg_addr);
3012 /* Loads and stores */
3013 static void disas_ldst(DisasContext *s, uint32_t insn)
3015 switch (extract32(insn, 24, 6)) {
3016 case 0x08: /* Load/store exclusive */
3017 disas_ldst_excl(s, insn);
3018 break;
3019 case 0x18: case 0x1c: /* Load register (literal) */
3020 disas_ld_lit(s, insn);
3021 break;
3022 case 0x28: case 0x29:
3023 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3024 disas_ldst_pair(s, insn);
3025 break;
3026 case 0x38: case 0x39:
3027 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3028 disas_ldst_reg(s, insn);
3029 break;
3030 case 0x0c: /* AdvSIMD load/store multiple structures */
3031 disas_ldst_multiple_struct(s, insn);
3032 break;
3033 case 0x0d: /* AdvSIMD load/store single structure */
3034 disas_ldst_single_struct(s, insn);
3035 break;
3036 default:
3037 unallocated_encoding(s);
3038 break;
3042 /* PC-rel. addressing
3043 * 31 30 29 28 24 23 5 4 0
3044 * +----+-------+-----------+-------------------+------+
3045 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3046 * +----+-------+-----------+-------------------+------+
3048 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3050 unsigned int page, rd;
3051 uint64_t base;
3052 uint64_t offset;
3054 page = extract32(insn, 31, 1);
3055 /* SignExtend(immhi:immlo) -> offset */
3056 offset = sextract64(insn, 5, 19);
3057 offset = offset << 2 | extract32(insn, 29, 2);
3058 rd = extract32(insn, 0, 5);
3059 base = s->pc - 4;
3061 if (page) {
3062 /* ADRP (page based) */
3063 base &= ~0xfff;
3064 offset <<= 12;
3067 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3071 * Add/subtract (immediate)
3073 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3074 * +--+--+--+-----------+-----+-------------+-----+-----+
3075 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3076 * +--+--+--+-----------+-----+-------------+-----+-----+
3078 * sf: 0 -> 32bit, 1 -> 64bit
3079 * op: 0 -> add , 1 -> sub
3080 * S: 1 -> set flags
3081 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3083 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3085 int rd = extract32(insn, 0, 5);
3086 int rn = extract32(insn, 5, 5);
3087 uint64_t imm = extract32(insn, 10, 12);
3088 int shift = extract32(insn, 22, 2);
3089 bool setflags = extract32(insn, 29, 1);
3090 bool sub_op = extract32(insn, 30, 1);
3091 bool is_64bit = extract32(insn, 31, 1);
3093 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3094 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3095 TCGv_i64 tcg_result;
3097 switch (shift) {
3098 case 0x0:
3099 break;
3100 case 0x1:
3101 imm <<= 12;
3102 break;
3103 default:
3104 unallocated_encoding(s);
3105 return;
3108 tcg_result = tcg_temp_new_i64();
3109 if (!setflags) {
3110 if (sub_op) {
3111 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3112 } else {
3113 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3115 } else {
3116 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3117 if (sub_op) {
3118 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3119 } else {
3120 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3122 tcg_temp_free_i64(tcg_imm);
3125 if (is_64bit) {
3126 tcg_gen_mov_i64(tcg_rd, tcg_result);
3127 } else {
3128 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3131 tcg_temp_free_i64(tcg_result);
3134 /* The input should be a value in the bottom e bits (with higher
3135 * bits zero); returns that value replicated into every element
3136 * of size e in a 64 bit integer.
3138 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3140 assert(e != 0);
3141 while (e < 64) {
3142 mask |= mask << e;
3143 e *= 2;
3145 return mask;
3148 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3149 static inline uint64_t bitmask64(unsigned int length)
3151 assert(length > 0 && length <= 64);
3152 return ~0ULL >> (64 - length);
3155 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3156 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3157 * value (ie should cause a guest UNDEF exception), and true if they are
3158 * valid, in which case the decoded bit pattern is written to result.
3160 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3161 unsigned int imms, unsigned int immr)
3163 uint64_t mask;
3164 unsigned e, levels, s, r;
3165 int len;
3167 assert(immn < 2 && imms < 64 && immr < 64);
3169 /* The bit patterns we create here are 64 bit patterns which
3170 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3171 * 64 bits each. Each element contains the same value: a run
3172 * of between 1 and e-1 non-zero bits, rotated within the
3173 * element by between 0 and e-1 bits.
3175 * The element size and run length are encoded into immn (1 bit)
3176 * and imms (6 bits) as follows:
3177 * 64 bit elements: immn = 1, imms = <length of run - 1>
3178 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3179 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3180 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3181 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3182 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3183 * Notice that immn = 0, imms = 11111x is the only combination
3184 * not covered by one of the above options; this is reserved.
3185 * Further, <length of run - 1> all-ones is a reserved pattern.
3187 * In all cases the rotation is by immr % e (and immr is 6 bits).
3190 /* First determine the element size */
3191 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3192 if (len < 1) {
3193 /* This is the immn == 0, imms == 0x11111x case */
3194 return false;
3196 e = 1 << len;
3198 levels = e - 1;
3199 s = imms & levels;
3200 r = immr & levels;
3202 if (s == levels) {
3203 /* <length of run - 1> mustn't be all-ones. */
3204 return false;
3207 /* Create the value of one element: s+1 set bits rotated
3208 * by r within the element (which is e bits wide)...
3210 mask = bitmask64(s + 1);
3211 if (r) {
3212 mask = (mask >> r) | (mask << (e - r));
3213 mask &= bitmask64(e);
3215 /* ...then replicate the element over the whole 64 bit value */
3216 mask = bitfield_replicate(mask, e);
3217 *result = mask;
3218 return true;
3221 /* Logical (immediate)
3222 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3223 * +----+-----+-------------+---+------+------+------+------+
3224 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3225 * +----+-----+-------------+---+------+------+------+------+
3227 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3229 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3230 TCGv_i64 tcg_rd, tcg_rn;
3231 uint64_t wmask;
3232 bool is_and = false;
3234 sf = extract32(insn, 31, 1);
3235 opc = extract32(insn, 29, 2);
3236 is_n = extract32(insn, 22, 1);
3237 immr = extract32(insn, 16, 6);
3238 imms = extract32(insn, 10, 6);
3239 rn = extract32(insn, 5, 5);
3240 rd = extract32(insn, 0, 5);
3242 if (!sf && is_n) {
3243 unallocated_encoding(s);
3244 return;
3247 if (opc == 0x3) { /* ANDS */
3248 tcg_rd = cpu_reg(s, rd);
3249 } else {
3250 tcg_rd = cpu_reg_sp(s, rd);
3252 tcg_rn = cpu_reg(s, rn);
3254 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3255 /* some immediate field values are reserved */
3256 unallocated_encoding(s);
3257 return;
3260 if (!sf) {
3261 wmask &= 0xffffffff;
3264 switch (opc) {
3265 case 0x3: /* ANDS */
3266 case 0x0: /* AND */
3267 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3268 is_and = true;
3269 break;
3270 case 0x1: /* ORR */
3271 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3272 break;
3273 case 0x2: /* EOR */
3274 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3275 break;
3276 default:
3277 assert(FALSE); /* must handle all above */
3278 break;
3281 if (!sf && !is_and) {
3282 /* zero extend final result; we know we can skip this for AND
3283 * since the immediate had the high 32 bits clear.
3285 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3288 if (opc == 3) { /* ANDS */
3289 gen_logic_CC(sf, tcg_rd);
3294 * Move wide (immediate)
3296 * 31 30 29 28 23 22 21 20 5 4 0
3297 * +--+-----+-------------+-----+----------------+------+
3298 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3299 * +--+-----+-------------+-----+----------------+------+
3301 * sf: 0 -> 32 bit, 1 -> 64 bit
3302 * opc: 00 -> N, 10 -> Z, 11 -> K
3303 * hw: shift/16 (0,16, and sf only 32, 48)
3305 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3307 int rd = extract32(insn, 0, 5);
3308 uint64_t imm = extract32(insn, 5, 16);
3309 int sf = extract32(insn, 31, 1);
3310 int opc = extract32(insn, 29, 2);
3311 int pos = extract32(insn, 21, 2) << 4;
3312 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3313 TCGv_i64 tcg_imm;
3315 if (!sf && (pos >= 32)) {
3316 unallocated_encoding(s);
3317 return;
3320 switch (opc) {
3321 case 0: /* MOVN */
3322 case 2: /* MOVZ */
3323 imm <<= pos;
3324 if (opc == 0) {
3325 imm = ~imm;
3327 if (!sf) {
3328 imm &= 0xffffffffu;
3330 tcg_gen_movi_i64(tcg_rd, imm);
3331 break;
3332 case 3: /* MOVK */
3333 tcg_imm = tcg_const_i64(imm);
3334 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3335 tcg_temp_free_i64(tcg_imm);
3336 if (!sf) {
3337 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3339 break;
3340 default:
3341 unallocated_encoding(s);
3342 break;
3346 /* Bitfield
3347 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3348 * +----+-----+-------------+---+------+------+------+------+
3349 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3350 * +----+-----+-------------+---+------+------+------+------+
3352 static void disas_bitfield(DisasContext *s, uint32_t insn)
3354 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3355 TCGv_i64 tcg_rd, tcg_tmp;
3357 sf = extract32(insn, 31, 1);
3358 opc = extract32(insn, 29, 2);
3359 n = extract32(insn, 22, 1);
3360 ri = extract32(insn, 16, 6);
3361 si = extract32(insn, 10, 6);
3362 rn = extract32(insn, 5, 5);
3363 rd = extract32(insn, 0, 5);
3364 bitsize = sf ? 64 : 32;
3366 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3367 unallocated_encoding(s);
3368 return;
3371 tcg_rd = cpu_reg(s, rd);
3373 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3374 to be smaller than bitsize, we'll never reference data outside the
3375 low 32-bits anyway. */
3376 tcg_tmp = read_cpu_reg(s, rn, 1);
3378 /* Recognize simple(r) extractions. */
3379 if (si >= ri) {
3380 /* Wd<s-r:0> = Wn<s:r> */
3381 len = (si - ri) + 1;
3382 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3383 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3384 goto done;
3385 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3386 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3387 return;
3389 /* opc == 1, BXFIL fall through to deposit */
3390 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3391 pos = 0;
3392 } else {
3393 /* Handle the ri > si case with a deposit
3394 * Wd<32+s-r,32-r> = Wn<s:0>
3396 len = si + 1;
3397 pos = (bitsize - ri) & (bitsize - 1);
3400 if (opc == 0 && len < ri) {
3401 /* SBFM: sign extend the destination field from len to fill
3402 the balance of the word. Let the deposit below insert all
3403 of those sign bits. */
3404 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3405 len = ri;
3408 if (opc == 1) { /* BFM, BXFIL */
3409 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3410 } else {
3411 /* SBFM or UBFM: We start with zero, and we haven't modified
3412 any bits outside bitsize, therefore the zero-extension
3413 below is unneeded. */
3414 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3415 return;
3418 done:
3419 if (!sf) { /* zero extend final result */
3420 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3424 /* Extract
3425 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3426 * +----+------+-------------+---+----+------+--------+------+------+
3427 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3428 * +----+------+-------------+---+----+------+--------+------+------+
3430 static void disas_extract(DisasContext *s, uint32_t insn)
3432 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3434 sf = extract32(insn, 31, 1);
3435 n = extract32(insn, 22, 1);
3436 rm = extract32(insn, 16, 5);
3437 imm = extract32(insn, 10, 6);
3438 rn = extract32(insn, 5, 5);
3439 rd = extract32(insn, 0, 5);
3440 op21 = extract32(insn, 29, 2);
3441 op0 = extract32(insn, 21, 1);
3442 bitsize = sf ? 64 : 32;
3444 if (sf != n || op21 || op0 || imm >= bitsize) {
3445 unallocated_encoding(s);
3446 } else {
3447 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3449 tcg_rd = cpu_reg(s, rd);
3451 if (unlikely(imm == 0)) {
3452 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3453 * so an extract from bit 0 is a special case.
3455 if (sf) {
3456 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3457 } else {
3458 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3460 } else if (rm == rn) { /* ROR */
3461 tcg_rm = cpu_reg(s, rm);
3462 if (sf) {
3463 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3464 } else {
3465 TCGv_i32 tmp = tcg_temp_new_i32();
3466 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3467 tcg_gen_rotri_i32(tmp, tmp, imm);
3468 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3469 tcg_temp_free_i32(tmp);
3471 } else {
3472 tcg_rm = read_cpu_reg(s, rm, sf);
3473 tcg_rn = read_cpu_reg(s, rn, sf);
3474 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3475 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3476 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3477 if (!sf) {
3478 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3484 /* Data processing - immediate */
3485 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3487 switch (extract32(insn, 23, 6)) {
3488 case 0x20: case 0x21: /* PC-rel. addressing */
3489 disas_pc_rel_adr(s, insn);
3490 break;
3491 case 0x22: case 0x23: /* Add/subtract (immediate) */
3492 disas_add_sub_imm(s, insn);
3493 break;
3494 case 0x24: /* Logical (immediate) */
3495 disas_logic_imm(s, insn);
3496 break;
3497 case 0x25: /* Move wide (immediate) */
3498 disas_movw_imm(s, insn);
3499 break;
3500 case 0x26: /* Bitfield */
3501 disas_bitfield(s, insn);
3502 break;
3503 case 0x27: /* Extract */
3504 disas_extract(s, insn);
3505 break;
3506 default:
3507 unallocated_encoding(s);
3508 break;
3512 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3513 * Note that it is the caller's responsibility to ensure that the
3514 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3515 * mandated semantics for out of range shifts.
3517 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3518 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3520 switch (shift_type) {
3521 case A64_SHIFT_TYPE_LSL:
3522 tcg_gen_shl_i64(dst, src, shift_amount);
3523 break;
3524 case A64_SHIFT_TYPE_LSR:
3525 tcg_gen_shr_i64(dst, src, shift_amount);
3526 break;
3527 case A64_SHIFT_TYPE_ASR:
3528 if (!sf) {
3529 tcg_gen_ext32s_i64(dst, src);
3531 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3532 break;
3533 case A64_SHIFT_TYPE_ROR:
3534 if (sf) {
3535 tcg_gen_rotr_i64(dst, src, shift_amount);
3536 } else {
3537 TCGv_i32 t0, t1;
3538 t0 = tcg_temp_new_i32();
3539 t1 = tcg_temp_new_i32();
3540 tcg_gen_extrl_i64_i32(t0, src);
3541 tcg_gen_extrl_i64_i32(t1, shift_amount);
3542 tcg_gen_rotr_i32(t0, t0, t1);
3543 tcg_gen_extu_i32_i64(dst, t0);
3544 tcg_temp_free_i32(t0);
3545 tcg_temp_free_i32(t1);
3547 break;
3548 default:
3549 assert(FALSE); /* all shift types should be handled */
3550 break;
3553 if (!sf) { /* zero extend final result */
3554 tcg_gen_ext32u_i64(dst, dst);
3558 /* Shift a TCGv src by immediate, put result in dst.
3559 * The shift amount must be in range (this should always be true as the
3560 * relevant instructions will UNDEF on bad shift immediates).
3562 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3563 enum a64_shift_type shift_type, unsigned int shift_i)
3565 assert(shift_i < (sf ? 64 : 32));
3567 if (shift_i == 0) {
3568 tcg_gen_mov_i64(dst, src);
3569 } else {
3570 TCGv_i64 shift_const;
3572 shift_const = tcg_const_i64(shift_i);
3573 shift_reg(dst, src, sf, shift_type, shift_const);
3574 tcg_temp_free_i64(shift_const);
3578 /* Logical (shifted register)
3579 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3580 * +----+-----+-----------+-------+---+------+--------+------+------+
3581 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3582 * +----+-----+-----------+-------+---+------+--------+------+------+
3584 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3586 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3587 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3589 sf = extract32(insn, 31, 1);
3590 opc = extract32(insn, 29, 2);
3591 shift_type = extract32(insn, 22, 2);
3592 invert = extract32(insn, 21, 1);
3593 rm = extract32(insn, 16, 5);
3594 shift_amount = extract32(insn, 10, 6);
3595 rn = extract32(insn, 5, 5);
3596 rd = extract32(insn, 0, 5);
3598 if (!sf && (shift_amount & (1 << 5))) {
3599 unallocated_encoding(s);
3600 return;
3603 tcg_rd = cpu_reg(s, rd);
3605 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3606 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3607 * register-register MOV and MVN, so it is worth special casing.
3609 tcg_rm = cpu_reg(s, rm);
3610 if (invert) {
3611 tcg_gen_not_i64(tcg_rd, tcg_rm);
3612 if (!sf) {
3613 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3615 } else {
3616 if (sf) {
3617 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3618 } else {
3619 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3622 return;
3625 tcg_rm = read_cpu_reg(s, rm, sf);
3627 if (shift_amount) {
3628 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3631 tcg_rn = cpu_reg(s, rn);
3633 switch (opc | (invert << 2)) {
3634 case 0: /* AND */
3635 case 3: /* ANDS */
3636 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3637 break;
3638 case 1: /* ORR */
3639 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3640 break;
3641 case 2: /* EOR */
3642 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3643 break;
3644 case 4: /* BIC */
3645 case 7: /* BICS */
3646 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3647 break;
3648 case 5: /* ORN */
3649 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3650 break;
3651 case 6: /* EON */
3652 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3653 break;
3654 default:
3655 assert(FALSE);
3656 break;
3659 if (!sf) {
3660 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3663 if (opc == 3) {
3664 gen_logic_CC(sf, tcg_rd);
3669 * Add/subtract (extended register)
3671 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3672 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3673 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3674 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3676 * sf: 0 -> 32bit, 1 -> 64bit
3677 * op: 0 -> add , 1 -> sub
3678 * S: 1 -> set flags
3679 * opt: 00
3680 * option: extension type (see DecodeRegExtend)
3681 * imm3: optional shift to Rm
3683 * Rd = Rn + LSL(extend(Rm), amount)
3685 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3687 int rd = extract32(insn, 0, 5);
3688 int rn = extract32(insn, 5, 5);
3689 int imm3 = extract32(insn, 10, 3);
3690 int option = extract32(insn, 13, 3);
3691 int rm = extract32(insn, 16, 5);
3692 bool setflags = extract32(insn, 29, 1);
3693 bool sub_op = extract32(insn, 30, 1);
3694 bool sf = extract32(insn, 31, 1);
3696 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3697 TCGv_i64 tcg_rd;
3698 TCGv_i64 tcg_result;
3700 if (imm3 > 4) {
3701 unallocated_encoding(s);
3702 return;
3705 /* non-flag setting ops may use SP */
3706 if (!setflags) {
3707 tcg_rd = cpu_reg_sp(s, rd);
3708 } else {
3709 tcg_rd = cpu_reg(s, rd);
3711 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3713 tcg_rm = read_cpu_reg(s, rm, sf);
3714 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3716 tcg_result = tcg_temp_new_i64();
3718 if (!setflags) {
3719 if (sub_op) {
3720 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3721 } else {
3722 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3724 } else {
3725 if (sub_op) {
3726 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3727 } else {
3728 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3732 if (sf) {
3733 tcg_gen_mov_i64(tcg_rd, tcg_result);
3734 } else {
3735 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3738 tcg_temp_free_i64(tcg_result);
3742 * Add/subtract (shifted register)
3744 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3745 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3746 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3747 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3749 * sf: 0 -> 32bit, 1 -> 64bit
3750 * op: 0 -> add , 1 -> sub
3751 * S: 1 -> set flags
3752 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3753 * imm6: Shift amount to apply to Rm before the add/sub
3755 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3757 int rd = extract32(insn, 0, 5);
3758 int rn = extract32(insn, 5, 5);
3759 int imm6 = extract32(insn, 10, 6);
3760 int rm = extract32(insn, 16, 5);
3761 int shift_type = extract32(insn, 22, 2);
3762 bool setflags = extract32(insn, 29, 1);
3763 bool sub_op = extract32(insn, 30, 1);
3764 bool sf = extract32(insn, 31, 1);
3766 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3767 TCGv_i64 tcg_rn, tcg_rm;
3768 TCGv_i64 tcg_result;
3770 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3771 unallocated_encoding(s);
3772 return;
3775 tcg_rn = read_cpu_reg(s, rn, sf);
3776 tcg_rm = read_cpu_reg(s, rm, sf);
3778 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3780 tcg_result = tcg_temp_new_i64();
3782 if (!setflags) {
3783 if (sub_op) {
3784 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3785 } else {
3786 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3788 } else {
3789 if (sub_op) {
3790 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3791 } else {
3792 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3796 if (sf) {
3797 tcg_gen_mov_i64(tcg_rd, tcg_result);
3798 } else {
3799 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3802 tcg_temp_free_i64(tcg_result);
3805 /* Data-processing (3 source)
3807 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3808 * +--+------+-----------+------+------+----+------+------+------+
3809 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3810 * +--+------+-----------+------+------+----+------+------+------+
3812 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3814 int rd = extract32(insn, 0, 5);
3815 int rn = extract32(insn, 5, 5);
3816 int ra = extract32(insn, 10, 5);
3817 int rm = extract32(insn, 16, 5);
3818 int op_id = (extract32(insn, 29, 3) << 4) |
3819 (extract32(insn, 21, 3) << 1) |
3820 extract32(insn, 15, 1);
3821 bool sf = extract32(insn, 31, 1);
3822 bool is_sub = extract32(op_id, 0, 1);
3823 bool is_high = extract32(op_id, 2, 1);
3824 bool is_signed = false;
3825 TCGv_i64 tcg_op1;
3826 TCGv_i64 tcg_op2;
3827 TCGv_i64 tcg_tmp;
3829 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3830 switch (op_id) {
3831 case 0x42: /* SMADDL */
3832 case 0x43: /* SMSUBL */
3833 case 0x44: /* SMULH */
3834 is_signed = true;
3835 break;
3836 case 0x0: /* MADD (32bit) */
3837 case 0x1: /* MSUB (32bit) */
3838 case 0x40: /* MADD (64bit) */
3839 case 0x41: /* MSUB (64bit) */
3840 case 0x4a: /* UMADDL */
3841 case 0x4b: /* UMSUBL */
3842 case 0x4c: /* UMULH */
3843 break;
3844 default:
3845 unallocated_encoding(s);
3846 return;
3849 if (is_high) {
3850 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3851 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3852 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3853 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3855 if (is_signed) {
3856 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3857 } else {
3858 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3861 tcg_temp_free_i64(low_bits);
3862 return;
3865 tcg_op1 = tcg_temp_new_i64();
3866 tcg_op2 = tcg_temp_new_i64();
3867 tcg_tmp = tcg_temp_new_i64();
3869 if (op_id < 0x42) {
3870 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3871 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3872 } else {
3873 if (is_signed) {
3874 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3875 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3876 } else {
3877 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3878 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3882 if (ra == 31 && !is_sub) {
3883 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3884 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3885 } else {
3886 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3887 if (is_sub) {
3888 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3889 } else {
3890 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3894 if (!sf) {
3895 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3898 tcg_temp_free_i64(tcg_op1);
3899 tcg_temp_free_i64(tcg_op2);
3900 tcg_temp_free_i64(tcg_tmp);
3903 /* Add/subtract (with carry)
3904 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3905 * +--+--+--+------------------------+------+---------+------+-----+
3906 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3907 * +--+--+--+------------------------+------+---------+------+-----+
3908 * [000000]
3911 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3913 unsigned int sf, op, setflags, rm, rn, rd;
3914 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3916 if (extract32(insn, 10, 6) != 0) {
3917 unallocated_encoding(s);
3918 return;
3921 sf = extract32(insn, 31, 1);
3922 op = extract32(insn, 30, 1);
3923 setflags = extract32(insn, 29, 1);
3924 rm = extract32(insn, 16, 5);
3925 rn = extract32(insn, 5, 5);
3926 rd = extract32(insn, 0, 5);
3928 tcg_rd = cpu_reg(s, rd);
3929 tcg_rn = cpu_reg(s, rn);
3931 if (op) {
3932 tcg_y = new_tmp_a64(s);
3933 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3934 } else {
3935 tcg_y = cpu_reg(s, rm);
3938 if (setflags) {
3939 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3940 } else {
3941 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3945 /* Conditional compare (immediate / register)
3946 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3947 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3948 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3949 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3950 * [1] y [0] [0]
3952 static void disas_cc(DisasContext *s, uint32_t insn)
3954 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3955 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3956 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3957 DisasCompare c;
3959 if (!extract32(insn, 29, 1)) {
3960 unallocated_encoding(s);
3961 return;
3963 if (insn & (1 << 10 | 1 << 4)) {
3964 unallocated_encoding(s);
3965 return;
3967 sf = extract32(insn, 31, 1);
3968 op = extract32(insn, 30, 1);
3969 is_imm = extract32(insn, 11, 1);
3970 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3971 cond = extract32(insn, 12, 4);
3972 rn = extract32(insn, 5, 5);
3973 nzcv = extract32(insn, 0, 4);
3975 /* Set T0 = !COND. */
3976 tcg_t0 = tcg_temp_new_i32();
3977 arm_test_cc(&c, cond);
3978 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3979 arm_free_cc(&c);
3981 /* Load the arguments for the new comparison. */
3982 if (is_imm) {
3983 tcg_y = new_tmp_a64(s);
3984 tcg_gen_movi_i64(tcg_y, y);
3985 } else {
3986 tcg_y = cpu_reg(s, y);
3988 tcg_rn = cpu_reg(s, rn);
3990 /* Set the flags for the new comparison. */
3991 tcg_tmp = tcg_temp_new_i64();
3992 if (op) {
3993 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3994 } else {
3995 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3997 tcg_temp_free_i64(tcg_tmp);
3999 /* If COND was false, force the flags to #nzcv. Compute two masks
4000 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4001 * For tcg hosts that support ANDC, we can make do with just T1.
4002 * In either case, allow the tcg optimizer to delete any unused mask.
4004 tcg_t1 = tcg_temp_new_i32();
4005 tcg_t2 = tcg_temp_new_i32();
4006 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4007 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4009 if (nzcv & 8) { /* N */
4010 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4011 } else {
4012 if (TCG_TARGET_HAS_andc_i32) {
4013 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4014 } else {
4015 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4018 if (nzcv & 4) { /* Z */
4019 if (TCG_TARGET_HAS_andc_i32) {
4020 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4021 } else {
4022 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4024 } else {
4025 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4027 if (nzcv & 2) { /* C */
4028 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4029 } else {
4030 if (TCG_TARGET_HAS_andc_i32) {
4031 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4032 } else {
4033 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4036 if (nzcv & 1) { /* V */
4037 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4038 } else {
4039 if (TCG_TARGET_HAS_andc_i32) {
4040 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4041 } else {
4042 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4045 tcg_temp_free_i32(tcg_t0);
4046 tcg_temp_free_i32(tcg_t1);
4047 tcg_temp_free_i32(tcg_t2);
4050 /* Conditional select
4051 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4052 * +----+----+---+-----------------+------+------+-----+------+------+
4053 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4054 * +----+----+---+-----------------+------+------+-----+------+------+
4056 static void disas_cond_select(DisasContext *s, uint32_t insn)
4058 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4059 TCGv_i64 tcg_rd, zero;
4060 DisasCompare64 c;
4062 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4063 /* S == 1 or op2<1> == 1 */
4064 unallocated_encoding(s);
4065 return;
4067 sf = extract32(insn, 31, 1);
4068 else_inv = extract32(insn, 30, 1);
4069 rm = extract32(insn, 16, 5);
4070 cond = extract32(insn, 12, 4);
4071 else_inc = extract32(insn, 10, 1);
4072 rn = extract32(insn, 5, 5);
4073 rd = extract32(insn, 0, 5);
4075 tcg_rd = cpu_reg(s, rd);
4077 a64_test_cc(&c, cond);
4078 zero = tcg_const_i64(0);
4080 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4081 /* CSET & CSETM. */
4082 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4083 if (else_inv) {
4084 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4086 } else {
4087 TCGv_i64 t_true = cpu_reg(s, rn);
4088 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4089 if (else_inv && else_inc) {
4090 tcg_gen_neg_i64(t_false, t_false);
4091 } else if (else_inv) {
4092 tcg_gen_not_i64(t_false, t_false);
4093 } else if (else_inc) {
4094 tcg_gen_addi_i64(t_false, t_false, 1);
4096 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4099 tcg_temp_free_i64(zero);
4100 a64_free_cc(&c);
4102 if (!sf) {
4103 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4107 static void handle_clz(DisasContext *s, unsigned int sf,
4108 unsigned int rn, unsigned int rd)
4110 TCGv_i64 tcg_rd, tcg_rn;
4111 tcg_rd = cpu_reg(s, rd);
4112 tcg_rn = cpu_reg(s, rn);
4114 if (sf) {
4115 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4116 } else {
4117 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4118 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4119 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4120 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4121 tcg_temp_free_i32(tcg_tmp32);
4125 static void handle_cls(DisasContext *s, unsigned int sf,
4126 unsigned int rn, unsigned int rd)
4128 TCGv_i64 tcg_rd, tcg_rn;
4129 tcg_rd = cpu_reg(s, rd);
4130 tcg_rn = cpu_reg(s, rn);
4132 if (sf) {
4133 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4134 } else {
4135 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4136 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4137 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4138 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4139 tcg_temp_free_i32(tcg_tmp32);
4143 static void handle_rbit(DisasContext *s, unsigned int sf,
4144 unsigned int rn, unsigned int rd)
4146 TCGv_i64 tcg_rd, tcg_rn;
4147 tcg_rd = cpu_reg(s, rd);
4148 tcg_rn = cpu_reg(s, rn);
4150 if (sf) {
4151 gen_helper_rbit64(tcg_rd, tcg_rn);
4152 } else {
4153 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4154 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4155 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4156 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4157 tcg_temp_free_i32(tcg_tmp32);
4161 /* REV with sf==1, opcode==3 ("REV64") */
4162 static void handle_rev64(DisasContext *s, unsigned int sf,
4163 unsigned int rn, unsigned int rd)
4165 if (!sf) {
4166 unallocated_encoding(s);
4167 return;
4169 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4172 /* REV with sf==0, opcode==2
4173 * REV32 (sf==1, opcode==2)
4175 static void handle_rev32(DisasContext *s, unsigned int sf,
4176 unsigned int rn, unsigned int rd)
4178 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4180 if (sf) {
4181 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4182 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4184 /* bswap32_i64 requires zero high word */
4185 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4186 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4187 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4188 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4189 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4191 tcg_temp_free_i64(tcg_tmp);
4192 } else {
4193 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4194 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4198 /* REV16 (opcode==1) */
4199 static void handle_rev16(DisasContext *s, unsigned int sf,
4200 unsigned int rn, unsigned int rd)
4202 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4203 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4204 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4205 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4207 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4208 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4209 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4210 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4211 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4213 tcg_temp_free_i64(mask);
4214 tcg_temp_free_i64(tcg_tmp);
4217 /* Data-processing (1 source)
4218 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4219 * +----+---+---+-----------------+---------+--------+------+------+
4220 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4221 * +----+---+---+-----------------+---------+--------+------+------+
4223 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4225 unsigned int sf, opcode, rn, rd;
4227 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4228 unallocated_encoding(s);
4229 return;
4232 sf = extract32(insn, 31, 1);
4233 opcode = extract32(insn, 10, 6);
4234 rn = extract32(insn, 5, 5);
4235 rd = extract32(insn, 0, 5);
4237 switch (opcode) {
4238 case 0: /* RBIT */
4239 handle_rbit(s, sf, rn, rd);
4240 break;
4241 case 1: /* REV16 */
4242 handle_rev16(s, sf, rn, rd);
4243 break;
4244 case 2: /* REV32 */
4245 handle_rev32(s, sf, rn, rd);
4246 break;
4247 case 3: /* REV64 */
4248 handle_rev64(s, sf, rn, rd);
4249 break;
4250 case 4: /* CLZ */
4251 handle_clz(s, sf, rn, rd);
4252 break;
4253 case 5: /* CLS */
4254 handle_cls(s, sf, rn, rd);
4255 break;
4259 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4260 unsigned int rm, unsigned int rn, unsigned int rd)
4262 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4263 tcg_rd = cpu_reg(s, rd);
4265 if (!sf && is_signed) {
4266 tcg_n = new_tmp_a64(s);
4267 tcg_m = new_tmp_a64(s);
4268 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4269 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4270 } else {
4271 tcg_n = read_cpu_reg(s, rn, sf);
4272 tcg_m = read_cpu_reg(s, rm, sf);
4275 if (is_signed) {
4276 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4277 } else {
4278 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4281 if (!sf) { /* zero extend final result */
4282 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4286 /* LSLV, LSRV, ASRV, RORV */
4287 static void handle_shift_reg(DisasContext *s,
4288 enum a64_shift_type shift_type, unsigned int sf,
4289 unsigned int rm, unsigned int rn, unsigned int rd)
4291 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4292 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4293 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4295 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4296 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4297 tcg_temp_free_i64(tcg_shift);
4300 /* CRC32[BHWX], CRC32C[BHWX] */
4301 static void handle_crc32(DisasContext *s,
4302 unsigned int sf, unsigned int sz, bool crc32c,
4303 unsigned int rm, unsigned int rn, unsigned int rd)
4305 TCGv_i64 tcg_acc, tcg_val;
4306 TCGv_i32 tcg_bytes;
4308 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4309 || (sf == 1 && sz != 3)
4310 || (sf == 0 && sz == 3)) {
4311 unallocated_encoding(s);
4312 return;
4315 if (sz == 3) {
4316 tcg_val = cpu_reg(s, rm);
4317 } else {
4318 uint64_t mask;
4319 switch (sz) {
4320 case 0:
4321 mask = 0xFF;
4322 break;
4323 case 1:
4324 mask = 0xFFFF;
4325 break;
4326 case 2:
4327 mask = 0xFFFFFFFF;
4328 break;
4329 default:
4330 g_assert_not_reached();
4332 tcg_val = new_tmp_a64(s);
4333 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4336 tcg_acc = cpu_reg(s, rn);
4337 tcg_bytes = tcg_const_i32(1 << sz);
4339 if (crc32c) {
4340 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4341 } else {
4342 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4345 tcg_temp_free_i32(tcg_bytes);
4348 /* Data-processing (2 source)
4349 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4350 * +----+---+---+-----------------+------+--------+------+------+
4351 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4352 * +----+---+---+-----------------+------+--------+------+------+
4354 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4356 unsigned int sf, rm, opcode, rn, rd;
4357 sf = extract32(insn, 31, 1);
4358 rm = extract32(insn, 16, 5);
4359 opcode = extract32(insn, 10, 6);
4360 rn = extract32(insn, 5, 5);
4361 rd = extract32(insn, 0, 5);
4363 if (extract32(insn, 29, 1)) {
4364 unallocated_encoding(s);
4365 return;
4368 switch (opcode) {
4369 case 2: /* UDIV */
4370 handle_div(s, false, sf, rm, rn, rd);
4371 break;
4372 case 3: /* SDIV */
4373 handle_div(s, true, sf, rm, rn, rd);
4374 break;
4375 case 8: /* LSLV */
4376 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4377 break;
4378 case 9: /* LSRV */
4379 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4380 break;
4381 case 10: /* ASRV */
4382 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4383 break;
4384 case 11: /* RORV */
4385 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4386 break;
4387 case 16:
4388 case 17:
4389 case 18:
4390 case 19:
4391 case 20:
4392 case 21:
4393 case 22:
4394 case 23: /* CRC32 */
4396 int sz = extract32(opcode, 0, 2);
4397 bool crc32c = extract32(opcode, 2, 1);
4398 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4399 break;
4401 default:
4402 unallocated_encoding(s);
4403 break;
4407 /* Data processing - register */
4408 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4410 switch (extract32(insn, 24, 5)) {
4411 case 0x0a: /* Logical (shifted register) */
4412 disas_logic_reg(s, insn);
4413 break;
4414 case 0x0b: /* Add/subtract */
4415 if (insn & (1 << 21)) { /* (extended register) */
4416 disas_add_sub_ext_reg(s, insn);
4417 } else {
4418 disas_add_sub_reg(s, insn);
4420 break;
4421 case 0x1b: /* Data-processing (3 source) */
4422 disas_data_proc_3src(s, insn);
4423 break;
4424 case 0x1a:
4425 switch (extract32(insn, 21, 3)) {
4426 case 0x0: /* Add/subtract (with carry) */
4427 disas_adc_sbc(s, insn);
4428 break;
4429 case 0x2: /* Conditional compare */
4430 disas_cc(s, insn); /* both imm and reg forms */
4431 break;
4432 case 0x4: /* Conditional select */
4433 disas_cond_select(s, insn);
4434 break;
4435 case 0x6: /* Data-processing */
4436 if (insn & (1 << 30)) { /* (1 source) */
4437 disas_data_proc_1src(s, insn);
4438 } else { /* (2 source) */
4439 disas_data_proc_2src(s, insn);
4441 break;
4442 default:
4443 unallocated_encoding(s);
4444 break;
4446 break;
4447 default:
4448 unallocated_encoding(s);
4449 break;
4453 static void handle_fp_compare(DisasContext *s, bool is_double,
4454 unsigned int rn, unsigned int rm,
4455 bool cmp_with_zero, bool signal_all_nans)
4457 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4458 TCGv_ptr fpst = get_fpstatus_ptr(false);
4460 if (is_double) {
4461 TCGv_i64 tcg_vn, tcg_vm;
4463 tcg_vn = read_fp_dreg(s, rn);
4464 if (cmp_with_zero) {
4465 tcg_vm = tcg_const_i64(0);
4466 } else {
4467 tcg_vm = read_fp_dreg(s, rm);
4469 if (signal_all_nans) {
4470 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4471 } else {
4472 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4474 tcg_temp_free_i64(tcg_vn);
4475 tcg_temp_free_i64(tcg_vm);
4476 } else {
4477 TCGv_i32 tcg_vn, tcg_vm;
4479 tcg_vn = read_fp_sreg(s, rn);
4480 if (cmp_with_zero) {
4481 tcg_vm = tcg_const_i32(0);
4482 } else {
4483 tcg_vm = read_fp_sreg(s, rm);
4485 if (signal_all_nans) {
4486 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4487 } else {
4488 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4490 tcg_temp_free_i32(tcg_vn);
4491 tcg_temp_free_i32(tcg_vm);
4494 tcg_temp_free_ptr(fpst);
4496 gen_set_nzcv(tcg_flags);
4498 tcg_temp_free_i64(tcg_flags);
4501 /* Floating point compare
4502 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4503 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4504 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4505 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4507 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4509 unsigned int mos, type, rm, op, rn, opc, op2r;
4511 mos = extract32(insn, 29, 3);
4512 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4513 rm = extract32(insn, 16, 5);
4514 op = extract32(insn, 14, 2);
4515 rn = extract32(insn, 5, 5);
4516 opc = extract32(insn, 3, 2);
4517 op2r = extract32(insn, 0, 3);
4519 if (mos || op || op2r || type > 1) {
4520 unallocated_encoding(s);
4521 return;
4524 if (!fp_access_check(s)) {
4525 return;
4528 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4531 /* Floating point conditional compare
4532 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4533 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4534 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4535 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4537 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4539 unsigned int mos, type, rm, cond, rn, op, nzcv;
4540 TCGv_i64 tcg_flags;
4541 TCGLabel *label_continue = NULL;
4543 mos = extract32(insn, 29, 3);
4544 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4545 rm = extract32(insn, 16, 5);
4546 cond = extract32(insn, 12, 4);
4547 rn = extract32(insn, 5, 5);
4548 op = extract32(insn, 4, 1);
4549 nzcv = extract32(insn, 0, 4);
4551 if (mos || type > 1) {
4552 unallocated_encoding(s);
4553 return;
4556 if (!fp_access_check(s)) {
4557 return;
4560 if (cond < 0x0e) { /* not always */
4561 TCGLabel *label_match = gen_new_label();
4562 label_continue = gen_new_label();
4563 arm_gen_test_cc(cond, label_match);
4564 /* nomatch: */
4565 tcg_flags = tcg_const_i64(nzcv << 28);
4566 gen_set_nzcv(tcg_flags);
4567 tcg_temp_free_i64(tcg_flags);
4568 tcg_gen_br(label_continue);
4569 gen_set_label(label_match);
4572 handle_fp_compare(s, type, rn, rm, false, op);
4574 if (cond < 0x0e) {
4575 gen_set_label(label_continue);
4579 /* Floating point conditional select
4580 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4581 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4582 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4583 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4585 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4587 unsigned int mos, type, rm, cond, rn, rd;
4588 TCGv_i64 t_true, t_false, t_zero;
4589 DisasCompare64 c;
4591 mos = extract32(insn, 29, 3);
4592 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4593 rm = extract32(insn, 16, 5);
4594 cond = extract32(insn, 12, 4);
4595 rn = extract32(insn, 5, 5);
4596 rd = extract32(insn, 0, 5);
4598 if (mos || type > 1) {
4599 unallocated_encoding(s);
4600 return;
4603 if (!fp_access_check(s)) {
4604 return;
4607 /* Zero extend sreg inputs to 64 bits now. */
4608 t_true = tcg_temp_new_i64();
4609 t_false = tcg_temp_new_i64();
4610 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4611 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4613 a64_test_cc(&c, cond);
4614 t_zero = tcg_const_i64(0);
4615 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4616 tcg_temp_free_i64(t_zero);
4617 tcg_temp_free_i64(t_false);
4618 a64_free_cc(&c);
4620 /* Note that sregs write back zeros to the high bits,
4621 and we've already done the zero-extension. */
4622 write_fp_dreg(s, rd, t_true);
4623 tcg_temp_free_i64(t_true);
4626 /* Floating-point data-processing (1 source) - half precision */
4627 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
4629 TCGv_ptr fpst = NULL;
4630 TCGv_i32 tcg_op = tcg_temp_new_i32();
4631 TCGv_i32 tcg_res = tcg_temp_new_i32();
4633 read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
4635 switch (opcode) {
4636 case 0x0: /* FMOV */
4637 tcg_gen_mov_i32(tcg_res, tcg_op);
4638 break;
4639 case 0x1: /* FABS */
4640 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
4641 break;
4642 case 0x2: /* FNEG */
4643 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
4644 break;
4645 case 0x3: /* FSQRT */
4646 gen_helper_sqrt_f16(tcg_res, tcg_op, cpu_env);
4647 break;
4648 case 0x8: /* FRINTN */
4649 case 0x9: /* FRINTP */
4650 case 0xa: /* FRINTM */
4651 case 0xb: /* FRINTZ */
4652 case 0xc: /* FRINTA */
4654 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4655 fpst = get_fpstatus_ptr(true);
4657 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4658 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4660 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4661 tcg_temp_free_i32(tcg_rmode);
4662 break;
4664 case 0xe: /* FRINTX */
4665 fpst = get_fpstatus_ptr(true);
4666 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
4667 break;
4668 case 0xf: /* FRINTI */
4669 fpst = get_fpstatus_ptr(true);
4670 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4671 break;
4672 default:
4673 abort();
4676 write_fp_sreg(s, rd, tcg_res);
4678 if (fpst) {
4679 tcg_temp_free_ptr(fpst);
4681 tcg_temp_free_i32(tcg_op);
4682 tcg_temp_free_i32(tcg_res);
4685 /* Floating-point data-processing (1 source) - single precision */
4686 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4688 TCGv_ptr fpst;
4689 TCGv_i32 tcg_op;
4690 TCGv_i32 tcg_res;
4692 fpst = get_fpstatus_ptr(false);
4693 tcg_op = read_fp_sreg(s, rn);
4694 tcg_res = tcg_temp_new_i32();
4696 switch (opcode) {
4697 case 0x0: /* FMOV */
4698 tcg_gen_mov_i32(tcg_res, tcg_op);
4699 break;
4700 case 0x1: /* FABS */
4701 gen_helper_vfp_abss(tcg_res, tcg_op);
4702 break;
4703 case 0x2: /* FNEG */
4704 gen_helper_vfp_negs(tcg_res, tcg_op);
4705 break;
4706 case 0x3: /* FSQRT */
4707 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4708 break;
4709 case 0x8: /* FRINTN */
4710 case 0x9: /* FRINTP */
4711 case 0xa: /* FRINTM */
4712 case 0xb: /* FRINTZ */
4713 case 0xc: /* FRINTA */
4715 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4717 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4718 gen_helper_rints(tcg_res, tcg_op, fpst);
4720 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4721 tcg_temp_free_i32(tcg_rmode);
4722 break;
4724 case 0xe: /* FRINTX */
4725 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4726 break;
4727 case 0xf: /* FRINTI */
4728 gen_helper_rints(tcg_res, tcg_op, fpst);
4729 break;
4730 default:
4731 abort();
4734 write_fp_sreg(s, rd, tcg_res);
4736 tcg_temp_free_ptr(fpst);
4737 tcg_temp_free_i32(tcg_op);
4738 tcg_temp_free_i32(tcg_res);
4741 /* Floating-point data-processing (1 source) - double precision */
4742 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4744 TCGv_ptr fpst;
4745 TCGv_i64 tcg_op;
4746 TCGv_i64 tcg_res;
4748 switch (opcode) {
4749 case 0x0: /* FMOV */
4750 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
4751 return;
4754 fpst = get_fpstatus_ptr(false);
4755 tcg_op = read_fp_dreg(s, rn);
4756 tcg_res = tcg_temp_new_i64();
4758 switch (opcode) {
4759 case 0x1: /* FABS */
4760 gen_helper_vfp_absd(tcg_res, tcg_op);
4761 break;
4762 case 0x2: /* FNEG */
4763 gen_helper_vfp_negd(tcg_res, tcg_op);
4764 break;
4765 case 0x3: /* FSQRT */
4766 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4767 break;
4768 case 0x8: /* FRINTN */
4769 case 0x9: /* FRINTP */
4770 case 0xa: /* FRINTM */
4771 case 0xb: /* FRINTZ */
4772 case 0xc: /* FRINTA */
4774 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4776 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4777 gen_helper_rintd(tcg_res, tcg_op, fpst);
4779 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4780 tcg_temp_free_i32(tcg_rmode);
4781 break;
4783 case 0xe: /* FRINTX */
4784 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4785 break;
4786 case 0xf: /* FRINTI */
4787 gen_helper_rintd(tcg_res, tcg_op, fpst);
4788 break;
4789 default:
4790 abort();
4793 write_fp_dreg(s, rd, tcg_res);
4795 tcg_temp_free_ptr(fpst);
4796 tcg_temp_free_i64(tcg_op);
4797 tcg_temp_free_i64(tcg_res);
4800 static void handle_fp_fcvt(DisasContext *s, int opcode,
4801 int rd, int rn, int dtype, int ntype)
4803 switch (ntype) {
4804 case 0x0:
4806 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4807 if (dtype == 1) {
4808 /* Single to double */
4809 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4810 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4811 write_fp_dreg(s, rd, tcg_rd);
4812 tcg_temp_free_i64(tcg_rd);
4813 } else {
4814 /* Single to half */
4815 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4816 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4817 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4818 write_fp_sreg(s, rd, tcg_rd);
4819 tcg_temp_free_i32(tcg_rd);
4821 tcg_temp_free_i32(tcg_rn);
4822 break;
4824 case 0x1:
4826 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4827 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4828 if (dtype == 0) {
4829 /* Double to single */
4830 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4831 } else {
4832 /* Double to half */
4833 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4834 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4836 write_fp_sreg(s, rd, tcg_rd);
4837 tcg_temp_free_i32(tcg_rd);
4838 tcg_temp_free_i64(tcg_rn);
4839 break;
4841 case 0x3:
4843 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4844 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4845 if (dtype == 0) {
4846 /* Half to single */
4847 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4848 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4849 write_fp_sreg(s, rd, tcg_rd);
4850 tcg_temp_free_i32(tcg_rd);
4851 } else {
4852 /* Half to double */
4853 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4854 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4855 write_fp_dreg(s, rd, tcg_rd);
4856 tcg_temp_free_i64(tcg_rd);
4858 tcg_temp_free_i32(tcg_rn);
4859 break;
4861 default:
4862 abort();
4866 /* Floating point data-processing (1 source)
4867 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4868 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4869 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4870 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4872 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4874 int type = extract32(insn, 22, 2);
4875 int opcode = extract32(insn, 15, 6);
4876 int rn = extract32(insn, 5, 5);
4877 int rd = extract32(insn, 0, 5);
4879 switch (opcode) {
4880 case 0x4: case 0x5: case 0x7:
4882 /* FCVT between half, single and double precision */
4883 int dtype = extract32(opcode, 0, 2);
4884 if (type == 2 || dtype == type) {
4885 unallocated_encoding(s);
4886 return;
4888 if (!fp_access_check(s)) {
4889 return;
4892 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4893 break;
4895 case 0x0 ... 0x3:
4896 case 0x8 ... 0xc:
4897 case 0xe ... 0xf:
4898 /* 32-to-32 and 64-to-64 ops */
4899 switch (type) {
4900 case 0:
4901 if (!fp_access_check(s)) {
4902 return;
4905 handle_fp_1src_single(s, opcode, rd, rn);
4906 break;
4907 case 1:
4908 if (!fp_access_check(s)) {
4909 return;
4912 handle_fp_1src_double(s, opcode, rd, rn);
4913 break;
4914 case 3:
4915 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4916 unallocated_encoding(s);
4917 return;
4920 if (!fp_access_check(s)) {
4921 return;
4924 handle_fp_1src_half(s, opcode, rd, rn);
4925 break;
4926 default:
4927 unallocated_encoding(s);
4929 break;
4930 default:
4931 unallocated_encoding(s);
4932 break;
4936 /* Floating-point data-processing (2 source) - single precision */
4937 static void handle_fp_2src_single(DisasContext *s, int opcode,
4938 int rd, int rn, int rm)
4940 TCGv_i32 tcg_op1;
4941 TCGv_i32 tcg_op2;
4942 TCGv_i32 tcg_res;
4943 TCGv_ptr fpst;
4945 tcg_res = tcg_temp_new_i32();
4946 fpst = get_fpstatus_ptr(false);
4947 tcg_op1 = read_fp_sreg(s, rn);
4948 tcg_op2 = read_fp_sreg(s, rm);
4950 switch (opcode) {
4951 case 0x0: /* FMUL */
4952 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4953 break;
4954 case 0x1: /* FDIV */
4955 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4956 break;
4957 case 0x2: /* FADD */
4958 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4959 break;
4960 case 0x3: /* FSUB */
4961 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4962 break;
4963 case 0x4: /* FMAX */
4964 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4965 break;
4966 case 0x5: /* FMIN */
4967 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4968 break;
4969 case 0x6: /* FMAXNM */
4970 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4971 break;
4972 case 0x7: /* FMINNM */
4973 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4974 break;
4975 case 0x8: /* FNMUL */
4976 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4977 gen_helper_vfp_negs(tcg_res, tcg_res);
4978 break;
4981 write_fp_sreg(s, rd, tcg_res);
4983 tcg_temp_free_ptr(fpst);
4984 tcg_temp_free_i32(tcg_op1);
4985 tcg_temp_free_i32(tcg_op2);
4986 tcg_temp_free_i32(tcg_res);
4989 /* Floating-point data-processing (2 source) - double precision */
4990 static void handle_fp_2src_double(DisasContext *s, int opcode,
4991 int rd, int rn, int rm)
4993 TCGv_i64 tcg_op1;
4994 TCGv_i64 tcg_op2;
4995 TCGv_i64 tcg_res;
4996 TCGv_ptr fpst;
4998 tcg_res = tcg_temp_new_i64();
4999 fpst = get_fpstatus_ptr(false);
5000 tcg_op1 = read_fp_dreg(s, rn);
5001 tcg_op2 = read_fp_dreg(s, rm);
5003 switch (opcode) {
5004 case 0x0: /* FMUL */
5005 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5006 break;
5007 case 0x1: /* FDIV */
5008 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5009 break;
5010 case 0x2: /* FADD */
5011 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5012 break;
5013 case 0x3: /* FSUB */
5014 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5015 break;
5016 case 0x4: /* FMAX */
5017 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5018 break;
5019 case 0x5: /* FMIN */
5020 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5021 break;
5022 case 0x6: /* FMAXNM */
5023 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5024 break;
5025 case 0x7: /* FMINNM */
5026 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5027 break;
5028 case 0x8: /* FNMUL */
5029 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5030 gen_helper_vfp_negd(tcg_res, tcg_res);
5031 break;
5034 write_fp_dreg(s, rd, tcg_res);
5036 tcg_temp_free_ptr(fpst);
5037 tcg_temp_free_i64(tcg_op1);
5038 tcg_temp_free_i64(tcg_op2);
5039 tcg_temp_free_i64(tcg_res);
5042 /* Floating point data-processing (2 source)
5043 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5044 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5045 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5046 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5048 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5050 int type = extract32(insn, 22, 2);
5051 int rd = extract32(insn, 0, 5);
5052 int rn = extract32(insn, 5, 5);
5053 int rm = extract32(insn, 16, 5);
5054 int opcode = extract32(insn, 12, 4);
5056 if (opcode > 8) {
5057 unallocated_encoding(s);
5058 return;
5061 switch (type) {
5062 case 0:
5063 if (!fp_access_check(s)) {
5064 return;
5066 handle_fp_2src_single(s, opcode, rd, rn, rm);
5067 break;
5068 case 1:
5069 if (!fp_access_check(s)) {
5070 return;
5072 handle_fp_2src_double(s, opcode, rd, rn, rm);
5073 break;
5074 default:
5075 unallocated_encoding(s);
5079 /* Floating-point data-processing (3 source) - single precision */
5080 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5081 int rd, int rn, int rm, int ra)
5083 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5084 TCGv_i32 tcg_res = tcg_temp_new_i32();
5085 TCGv_ptr fpst = get_fpstatus_ptr(false);
5087 tcg_op1 = read_fp_sreg(s, rn);
5088 tcg_op2 = read_fp_sreg(s, rm);
5089 tcg_op3 = read_fp_sreg(s, ra);
5091 /* These are fused multiply-add, and must be done as one
5092 * floating point operation with no rounding between the
5093 * multiplication and addition steps.
5094 * NB that doing the negations here as separate steps is
5095 * correct : an input NaN should come out with its sign bit
5096 * flipped if it is a negated-input.
5098 if (o1 == true) {
5099 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5102 if (o0 != o1) {
5103 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5106 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5108 write_fp_sreg(s, rd, tcg_res);
5110 tcg_temp_free_ptr(fpst);
5111 tcg_temp_free_i32(tcg_op1);
5112 tcg_temp_free_i32(tcg_op2);
5113 tcg_temp_free_i32(tcg_op3);
5114 tcg_temp_free_i32(tcg_res);
5117 /* Floating-point data-processing (3 source) - double precision */
5118 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
5119 int rd, int rn, int rm, int ra)
5121 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
5122 TCGv_i64 tcg_res = tcg_temp_new_i64();
5123 TCGv_ptr fpst = get_fpstatus_ptr(false);
5125 tcg_op1 = read_fp_dreg(s, rn);
5126 tcg_op2 = read_fp_dreg(s, rm);
5127 tcg_op3 = read_fp_dreg(s, ra);
5129 /* These are fused multiply-add, and must be done as one
5130 * floating point operation with no rounding between the
5131 * multiplication and addition steps.
5132 * NB that doing the negations here as separate steps is
5133 * correct : an input NaN should come out with its sign bit
5134 * flipped if it is a negated-input.
5136 if (o1 == true) {
5137 gen_helper_vfp_negd(tcg_op3, tcg_op3);
5140 if (o0 != o1) {
5141 gen_helper_vfp_negd(tcg_op1, tcg_op1);
5144 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5146 write_fp_dreg(s, rd, tcg_res);
5148 tcg_temp_free_ptr(fpst);
5149 tcg_temp_free_i64(tcg_op1);
5150 tcg_temp_free_i64(tcg_op2);
5151 tcg_temp_free_i64(tcg_op3);
5152 tcg_temp_free_i64(tcg_res);
5155 /* Floating point data-processing (3 source)
5156 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
5157 * +---+---+---+-----------+------+----+------+----+------+------+------+
5158 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
5159 * +---+---+---+-----------+------+----+------+----+------+------+------+
5161 static void disas_fp_3src(DisasContext *s, uint32_t insn)
5163 int type = extract32(insn, 22, 2);
5164 int rd = extract32(insn, 0, 5);
5165 int rn = extract32(insn, 5, 5);
5166 int ra = extract32(insn, 10, 5);
5167 int rm = extract32(insn, 16, 5);
5168 bool o0 = extract32(insn, 15, 1);
5169 bool o1 = extract32(insn, 21, 1);
5171 switch (type) {
5172 case 0:
5173 if (!fp_access_check(s)) {
5174 return;
5176 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
5177 break;
5178 case 1:
5179 if (!fp_access_check(s)) {
5180 return;
5182 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
5183 break;
5184 default:
5185 unallocated_encoding(s);
5189 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
5190 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
5191 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
5193 static uint64_t vfp_expand_imm(int size, uint8_t imm8)
5195 uint64_t imm;
5197 switch (size) {
5198 case MO_64:
5199 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5200 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5201 extract32(imm8, 0, 6);
5202 imm <<= 48;
5203 break;
5204 case MO_32:
5205 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5206 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5207 (extract32(imm8, 0, 6) << 3);
5208 imm <<= 16;
5209 break;
5210 case MO_16:
5211 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5212 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
5213 (extract32(imm8, 0, 6) << 6);
5214 break;
5215 default:
5216 g_assert_not_reached();
5218 return imm;
5221 /* Floating point immediate
5222 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
5223 * +---+---+---+-----------+------+---+------------+-------+------+------+
5224 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
5225 * +---+---+---+-----------+------+---+------------+-------+------+------+
5227 static void disas_fp_imm(DisasContext *s, uint32_t insn)
5229 int rd = extract32(insn, 0, 5);
5230 int imm8 = extract32(insn, 13, 8);
5231 int is_double = extract32(insn, 22, 2);
5232 uint64_t imm;
5233 TCGv_i64 tcg_res;
5235 if (is_double > 1) {
5236 unallocated_encoding(s);
5237 return;
5240 if (!fp_access_check(s)) {
5241 return;
5244 imm = vfp_expand_imm(MO_32 + is_double, imm8);
5246 tcg_res = tcg_const_i64(imm);
5247 write_fp_dreg(s, rd, tcg_res);
5248 tcg_temp_free_i64(tcg_res);
5251 /* Handle floating point <=> fixed point conversions. Note that we can
5252 * also deal with fp <=> integer conversions as a special case (scale == 64)
5253 * OPTME: consider handling that special case specially or at least skipping
5254 * the call to scalbn in the helpers for zero shifts.
5256 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5257 bool itof, int rmode, int scale, int sf, int type)
5259 bool is_signed = !(opcode & 1);
5260 bool is_double = type;
5261 TCGv_ptr tcg_fpstatus;
5262 TCGv_i32 tcg_shift;
5264 tcg_fpstatus = get_fpstatus_ptr(false);
5266 tcg_shift = tcg_const_i32(64 - scale);
5268 if (itof) {
5269 TCGv_i64 tcg_int = cpu_reg(s, rn);
5270 if (!sf) {
5271 TCGv_i64 tcg_extend = new_tmp_a64(s);
5273 if (is_signed) {
5274 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5275 } else {
5276 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5279 tcg_int = tcg_extend;
5282 if (is_double) {
5283 TCGv_i64 tcg_double = tcg_temp_new_i64();
5284 if (is_signed) {
5285 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5286 tcg_shift, tcg_fpstatus);
5287 } else {
5288 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5289 tcg_shift, tcg_fpstatus);
5291 write_fp_dreg(s, rd, tcg_double);
5292 tcg_temp_free_i64(tcg_double);
5293 } else {
5294 TCGv_i32 tcg_single = tcg_temp_new_i32();
5295 if (is_signed) {
5296 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5297 tcg_shift, tcg_fpstatus);
5298 } else {
5299 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5300 tcg_shift, tcg_fpstatus);
5302 write_fp_sreg(s, rd, tcg_single);
5303 tcg_temp_free_i32(tcg_single);
5305 } else {
5306 TCGv_i64 tcg_int = cpu_reg(s, rd);
5307 TCGv_i32 tcg_rmode;
5309 if (extract32(opcode, 2, 1)) {
5310 /* There are too many rounding modes to all fit into rmode,
5311 * so FCVTA[US] is a special case.
5313 rmode = FPROUNDING_TIEAWAY;
5316 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5318 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5320 if (is_double) {
5321 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5322 if (is_signed) {
5323 if (!sf) {
5324 gen_helper_vfp_tosld(tcg_int, tcg_double,
5325 tcg_shift, tcg_fpstatus);
5326 } else {
5327 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5328 tcg_shift, tcg_fpstatus);
5330 } else {
5331 if (!sf) {
5332 gen_helper_vfp_tould(tcg_int, tcg_double,
5333 tcg_shift, tcg_fpstatus);
5334 } else {
5335 gen_helper_vfp_touqd(tcg_int, tcg_double,
5336 tcg_shift, tcg_fpstatus);
5339 tcg_temp_free_i64(tcg_double);
5340 } else {
5341 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5342 if (sf) {
5343 if (is_signed) {
5344 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5345 tcg_shift, tcg_fpstatus);
5346 } else {
5347 gen_helper_vfp_touqs(tcg_int, tcg_single,
5348 tcg_shift, tcg_fpstatus);
5350 } else {
5351 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5352 if (is_signed) {
5353 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5354 tcg_shift, tcg_fpstatus);
5355 } else {
5356 gen_helper_vfp_touls(tcg_dest, tcg_single,
5357 tcg_shift, tcg_fpstatus);
5359 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5360 tcg_temp_free_i32(tcg_dest);
5362 tcg_temp_free_i32(tcg_single);
5365 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5366 tcg_temp_free_i32(tcg_rmode);
5368 if (!sf) {
5369 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5373 tcg_temp_free_ptr(tcg_fpstatus);
5374 tcg_temp_free_i32(tcg_shift);
5377 /* Floating point <-> fixed point conversions
5378 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5379 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5380 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5381 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5383 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5385 int rd = extract32(insn, 0, 5);
5386 int rn = extract32(insn, 5, 5);
5387 int scale = extract32(insn, 10, 6);
5388 int opcode = extract32(insn, 16, 3);
5389 int rmode = extract32(insn, 19, 2);
5390 int type = extract32(insn, 22, 2);
5391 bool sbit = extract32(insn, 29, 1);
5392 bool sf = extract32(insn, 31, 1);
5393 bool itof;
5395 if (sbit || (type > 1)
5396 || (!sf && scale < 32)) {
5397 unallocated_encoding(s);
5398 return;
5401 switch ((rmode << 3) | opcode) {
5402 case 0x2: /* SCVTF */
5403 case 0x3: /* UCVTF */
5404 itof = true;
5405 break;
5406 case 0x18: /* FCVTZS */
5407 case 0x19: /* FCVTZU */
5408 itof = false;
5409 break;
5410 default:
5411 unallocated_encoding(s);
5412 return;
5415 if (!fp_access_check(s)) {
5416 return;
5419 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5422 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5424 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5425 * without conversion.
5428 if (itof) {
5429 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5431 switch (type) {
5432 case 0:
5434 /* 32 bit */
5435 TCGv_i64 tmp = tcg_temp_new_i64();
5436 tcg_gen_ext32u_i64(tmp, tcg_rn);
5437 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5438 tcg_gen_movi_i64(tmp, 0);
5439 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5440 tcg_temp_free_i64(tmp);
5441 break;
5443 case 1:
5445 /* 64 bit */
5446 TCGv_i64 tmp = tcg_const_i64(0);
5447 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5448 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5449 tcg_temp_free_i64(tmp);
5450 break;
5452 case 2:
5453 /* 64 bit to top half. */
5454 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5455 break;
5457 } else {
5458 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5460 switch (type) {
5461 case 0:
5462 /* 32 bit */
5463 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5464 break;
5465 case 1:
5466 /* 64 bit */
5467 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5468 break;
5469 case 2:
5470 /* 64 bits from top half */
5471 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5472 break;
5477 /* Floating point <-> integer conversions
5478 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5479 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5480 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5481 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5483 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5485 int rd = extract32(insn, 0, 5);
5486 int rn = extract32(insn, 5, 5);
5487 int opcode = extract32(insn, 16, 3);
5488 int rmode = extract32(insn, 19, 2);
5489 int type = extract32(insn, 22, 2);
5490 bool sbit = extract32(insn, 29, 1);
5491 bool sf = extract32(insn, 31, 1);
5493 if (sbit) {
5494 unallocated_encoding(s);
5495 return;
5498 if (opcode > 5) {
5499 /* FMOV */
5500 bool itof = opcode & 1;
5502 if (rmode >= 2) {
5503 unallocated_encoding(s);
5504 return;
5507 switch (sf << 3 | type << 1 | rmode) {
5508 case 0x0: /* 32 bit */
5509 case 0xa: /* 64 bit */
5510 case 0xd: /* 64 bit to top half of quad */
5511 break;
5512 default:
5513 /* all other sf/type/rmode combinations are invalid */
5514 unallocated_encoding(s);
5515 break;
5518 if (!fp_access_check(s)) {
5519 return;
5521 handle_fmov(s, rd, rn, type, itof);
5522 } else {
5523 /* actual FP conversions */
5524 bool itof = extract32(opcode, 1, 1);
5526 if (type > 1 || (rmode != 0 && opcode > 1)) {
5527 unallocated_encoding(s);
5528 return;
5531 if (!fp_access_check(s)) {
5532 return;
5534 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5538 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5539 * 31 30 29 28 25 24 0
5540 * +---+---+---+---------+-----------------------------+
5541 * | | 0 | | 1 1 1 1 | |
5542 * +---+---+---+---------+-----------------------------+
5544 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5546 if (extract32(insn, 24, 1)) {
5547 /* Floating point data-processing (3 source) */
5548 disas_fp_3src(s, insn);
5549 } else if (extract32(insn, 21, 1) == 0) {
5550 /* Floating point to fixed point conversions */
5551 disas_fp_fixed_conv(s, insn);
5552 } else {
5553 switch (extract32(insn, 10, 2)) {
5554 case 1:
5555 /* Floating point conditional compare */
5556 disas_fp_ccomp(s, insn);
5557 break;
5558 case 2:
5559 /* Floating point data-processing (2 source) */
5560 disas_fp_2src(s, insn);
5561 break;
5562 case 3:
5563 /* Floating point conditional select */
5564 disas_fp_csel(s, insn);
5565 break;
5566 case 0:
5567 switch (ctz32(extract32(insn, 12, 4))) {
5568 case 0: /* [15:12] == xxx1 */
5569 /* Floating point immediate */
5570 disas_fp_imm(s, insn);
5571 break;
5572 case 1: /* [15:12] == xx10 */
5573 /* Floating point compare */
5574 disas_fp_compare(s, insn);
5575 break;
5576 case 2: /* [15:12] == x100 */
5577 /* Floating point data-processing (1 source) */
5578 disas_fp_1src(s, insn);
5579 break;
5580 case 3: /* [15:12] == 1000 */
5581 unallocated_encoding(s);
5582 break;
5583 default: /* [15:12] == 0000 */
5584 /* Floating point <-> integer conversions */
5585 disas_fp_int_conv(s, insn);
5586 break;
5588 break;
5593 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5594 int pos)
5596 /* Extract 64 bits from the middle of two concatenated 64 bit
5597 * vector register slices left:right. The extracted bits start
5598 * at 'pos' bits into the right (least significant) side.
5599 * We return the result in tcg_right, and guarantee not to
5600 * trash tcg_left.
5602 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5603 assert(pos > 0 && pos < 64);
5605 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5606 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5607 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5609 tcg_temp_free_i64(tcg_tmp);
5612 /* EXT
5613 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5614 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5615 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5616 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5618 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5620 int is_q = extract32(insn, 30, 1);
5621 int op2 = extract32(insn, 22, 2);
5622 int imm4 = extract32(insn, 11, 4);
5623 int rm = extract32(insn, 16, 5);
5624 int rn = extract32(insn, 5, 5);
5625 int rd = extract32(insn, 0, 5);
5626 int pos = imm4 << 3;
5627 TCGv_i64 tcg_resl, tcg_resh;
5629 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5630 unallocated_encoding(s);
5631 return;
5634 if (!fp_access_check(s)) {
5635 return;
5638 tcg_resh = tcg_temp_new_i64();
5639 tcg_resl = tcg_temp_new_i64();
5641 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5642 * either extracting 128 bits from a 128:128 concatenation, or
5643 * extracting 64 bits from a 64:64 concatenation.
5645 if (!is_q) {
5646 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5647 if (pos != 0) {
5648 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5649 do_ext64(s, tcg_resh, tcg_resl, pos);
5651 tcg_gen_movi_i64(tcg_resh, 0);
5652 } else {
5653 TCGv_i64 tcg_hh;
5654 typedef struct {
5655 int reg;
5656 int elt;
5657 } EltPosns;
5658 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5659 EltPosns *elt = eltposns;
5661 if (pos >= 64) {
5662 elt++;
5663 pos -= 64;
5666 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5667 elt++;
5668 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5669 elt++;
5670 if (pos != 0) {
5671 do_ext64(s, tcg_resh, tcg_resl, pos);
5672 tcg_hh = tcg_temp_new_i64();
5673 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5674 do_ext64(s, tcg_hh, tcg_resh, pos);
5675 tcg_temp_free_i64(tcg_hh);
5679 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5680 tcg_temp_free_i64(tcg_resl);
5681 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5682 tcg_temp_free_i64(tcg_resh);
5685 /* TBL/TBX
5686 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5687 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5688 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5689 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5691 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5693 int op2 = extract32(insn, 22, 2);
5694 int is_q = extract32(insn, 30, 1);
5695 int rm = extract32(insn, 16, 5);
5696 int rn = extract32(insn, 5, 5);
5697 int rd = extract32(insn, 0, 5);
5698 int is_tblx = extract32(insn, 12, 1);
5699 int len = extract32(insn, 13, 2);
5700 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5701 TCGv_i32 tcg_regno, tcg_numregs;
5703 if (op2 != 0) {
5704 unallocated_encoding(s);
5705 return;
5708 if (!fp_access_check(s)) {
5709 return;
5712 /* This does a table lookup: for every byte element in the input
5713 * we index into a table formed from up to four vector registers,
5714 * and then the output is the result of the lookups. Our helper
5715 * function does the lookup operation for a single 64 bit part of
5716 * the input.
5718 tcg_resl = tcg_temp_new_i64();
5719 tcg_resh = tcg_temp_new_i64();
5721 if (is_tblx) {
5722 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5723 } else {
5724 tcg_gen_movi_i64(tcg_resl, 0);
5726 if (is_tblx && is_q) {
5727 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5728 } else {
5729 tcg_gen_movi_i64(tcg_resh, 0);
5732 tcg_idx = tcg_temp_new_i64();
5733 tcg_regno = tcg_const_i32(rn);
5734 tcg_numregs = tcg_const_i32(len + 1);
5735 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5736 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5737 tcg_regno, tcg_numregs);
5738 if (is_q) {
5739 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5740 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5741 tcg_regno, tcg_numregs);
5743 tcg_temp_free_i64(tcg_idx);
5744 tcg_temp_free_i32(tcg_regno);
5745 tcg_temp_free_i32(tcg_numregs);
5747 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5748 tcg_temp_free_i64(tcg_resl);
5749 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5750 tcg_temp_free_i64(tcg_resh);
5753 /* ZIP/UZP/TRN
5754 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5755 * +---+---+-------------+------+---+------+---+------------------+------+
5756 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5757 * +---+---+-------------+------+---+------+---+------------------+------+
5759 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5761 int rd = extract32(insn, 0, 5);
5762 int rn = extract32(insn, 5, 5);
5763 int rm = extract32(insn, 16, 5);
5764 int size = extract32(insn, 22, 2);
5765 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5766 * bit 2 indicates 1 vs 2 variant of the insn.
5768 int opcode = extract32(insn, 12, 2);
5769 bool part = extract32(insn, 14, 1);
5770 bool is_q = extract32(insn, 30, 1);
5771 int esize = 8 << size;
5772 int i, ofs;
5773 int datasize = is_q ? 128 : 64;
5774 int elements = datasize / esize;
5775 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5777 if (opcode == 0 || (size == 3 && !is_q)) {
5778 unallocated_encoding(s);
5779 return;
5782 if (!fp_access_check(s)) {
5783 return;
5786 tcg_resl = tcg_const_i64(0);
5787 tcg_resh = tcg_const_i64(0);
5788 tcg_res = tcg_temp_new_i64();
5790 for (i = 0; i < elements; i++) {
5791 switch (opcode) {
5792 case 1: /* UZP1/2 */
5794 int midpoint = elements / 2;
5795 if (i < midpoint) {
5796 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5797 } else {
5798 read_vec_element(s, tcg_res, rm,
5799 2 * (i - midpoint) + part, size);
5801 break;
5803 case 2: /* TRN1/2 */
5804 if (i & 1) {
5805 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5806 } else {
5807 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5809 break;
5810 case 3: /* ZIP1/2 */
5812 int base = part * elements / 2;
5813 if (i & 1) {
5814 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5815 } else {
5816 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5818 break;
5820 default:
5821 g_assert_not_reached();
5824 ofs = i * esize;
5825 if (ofs < 64) {
5826 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5827 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5828 } else {
5829 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5830 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5834 tcg_temp_free_i64(tcg_res);
5836 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5837 tcg_temp_free_i64(tcg_resl);
5838 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5839 tcg_temp_free_i64(tcg_resh);
5843 * do_reduction_op helper
5845 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
5846 * important for correct NaN propagation that we do these
5847 * operations in exactly the order specified by the pseudocode.
5849 * This is a recursive function, TCG temps should be freed by the
5850 * calling function once it is done with the values.
5852 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
5853 int esize, int size, int vmap, TCGv_ptr fpst)
5855 if (esize == size) {
5856 int element;
5857 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
5858 TCGv_i32 tcg_elem;
5860 /* We should have one register left here */
5861 assert(ctpop8(vmap) == 1);
5862 element = ctz32(vmap);
5863 assert(element < 8);
5865 tcg_elem = tcg_temp_new_i32();
5866 read_vec_element_i32(s, tcg_elem, rn, element, msize);
5867 return tcg_elem;
5868 } else {
5869 int bits = size / 2;
5870 int shift = ctpop8(vmap) / 2;
5871 int vmap_lo = (vmap >> shift) & vmap;
5872 int vmap_hi = (vmap & ~vmap_lo);
5873 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
5875 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
5876 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
5877 tcg_res = tcg_temp_new_i32();
5879 switch (fpopcode) {
5880 case 0x0c: /* fmaxnmv half-precision */
5881 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
5882 break;
5883 case 0x0f: /* fmaxv half-precision */
5884 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
5885 break;
5886 case 0x1c: /* fminnmv half-precision */
5887 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
5888 break;
5889 case 0x1f: /* fminv half-precision */
5890 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
5891 break;
5892 case 0x2c: /* fmaxnmv */
5893 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
5894 break;
5895 case 0x2f: /* fmaxv */
5896 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
5897 break;
5898 case 0x3c: /* fminnmv */
5899 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
5900 break;
5901 case 0x3f: /* fminv */
5902 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
5903 break;
5904 default:
5905 g_assert_not_reached();
5908 tcg_temp_free_i32(tcg_hi);
5909 tcg_temp_free_i32(tcg_lo);
5910 return tcg_res;
5914 /* AdvSIMD across lanes
5915 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5916 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5917 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5918 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5920 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5922 int rd = extract32(insn, 0, 5);
5923 int rn = extract32(insn, 5, 5);
5924 int size = extract32(insn, 22, 2);
5925 int opcode = extract32(insn, 12, 5);
5926 bool is_q = extract32(insn, 30, 1);
5927 bool is_u = extract32(insn, 29, 1);
5928 bool is_fp = false;
5929 bool is_min = false;
5930 int esize;
5931 int elements;
5932 int i;
5933 TCGv_i64 tcg_res, tcg_elt;
5935 switch (opcode) {
5936 case 0x1b: /* ADDV */
5937 if (is_u) {
5938 unallocated_encoding(s);
5939 return;
5941 /* fall through */
5942 case 0x3: /* SADDLV, UADDLV */
5943 case 0xa: /* SMAXV, UMAXV */
5944 case 0x1a: /* SMINV, UMINV */
5945 if (size == 3 || (size == 2 && !is_q)) {
5946 unallocated_encoding(s);
5947 return;
5949 break;
5950 case 0xc: /* FMAXNMV, FMINNMV */
5951 case 0xf: /* FMAXV, FMINV */
5952 /* Bit 1 of size field encodes min vs max and the actual size
5953 * depends on the encoding of the U bit. If not set (and FP16
5954 * enabled) then we do half-precision float instead of single
5955 * precision.
5957 is_min = extract32(size, 1, 1);
5958 is_fp = true;
5959 if (!is_u && arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5960 size = 1;
5961 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
5962 unallocated_encoding(s);
5963 return;
5964 } else {
5965 size = 2;
5967 break;
5968 default:
5969 unallocated_encoding(s);
5970 return;
5973 if (!fp_access_check(s)) {
5974 return;
5977 esize = 8 << size;
5978 elements = (is_q ? 128 : 64) / esize;
5980 tcg_res = tcg_temp_new_i64();
5981 tcg_elt = tcg_temp_new_i64();
5983 /* These instructions operate across all lanes of a vector
5984 * to produce a single result. We can guarantee that a 64
5985 * bit intermediate is sufficient:
5986 * + for [US]ADDLV the maximum element size is 32 bits, and
5987 * the result type is 64 bits
5988 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5989 * same as the element size, which is 32 bits at most
5990 * For the integer operations we can choose to work at 64
5991 * or 32 bits and truncate at the end; for simplicity
5992 * we use 64 bits always. The floating point
5993 * ops do require 32 bit intermediates, though.
5995 if (!is_fp) {
5996 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5998 for (i = 1; i < elements; i++) {
5999 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
6001 switch (opcode) {
6002 case 0x03: /* SADDLV / UADDLV */
6003 case 0x1b: /* ADDV */
6004 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
6005 break;
6006 case 0x0a: /* SMAXV / UMAXV */
6007 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
6008 tcg_res,
6009 tcg_res, tcg_elt, tcg_res, tcg_elt);
6010 break;
6011 case 0x1a: /* SMINV / UMINV */
6012 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
6013 tcg_res,
6014 tcg_res, tcg_elt, tcg_res, tcg_elt);
6015 break;
6016 break;
6017 default:
6018 g_assert_not_reached();
6022 } else {
6023 /* Floating point vector reduction ops which work across 32
6024 * bit (single) or 16 bit (half-precision) intermediates.
6025 * Note that correct NaN propagation requires that we do these
6026 * operations in exactly the order specified by the pseudocode.
6028 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
6029 int fpopcode = opcode | is_min << 4 | is_u << 5;
6030 int vmap = (1 << elements) - 1;
6031 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
6032 (is_q ? 128 : 64), vmap, fpst);
6033 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
6034 tcg_temp_free_i32(tcg_res32);
6035 tcg_temp_free_ptr(fpst);
6038 tcg_temp_free_i64(tcg_elt);
6040 /* Now truncate the result to the width required for the final output */
6041 if (opcode == 0x03) {
6042 /* SADDLV, UADDLV: result is 2*esize */
6043 size++;
6046 switch (size) {
6047 case 0:
6048 tcg_gen_ext8u_i64(tcg_res, tcg_res);
6049 break;
6050 case 1:
6051 tcg_gen_ext16u_i64(tcg_res, tcg_res);
6052 break;
6053 case 2:
6054 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6055 break;
6056 case 3:
6057 break;
6058 default:
6059 g_assert_not_reached();
6062 write_fp_dreg(s, rd, tcg_res);
6063 tcg_temp_free_i64(tcg_res);
6066 /* DUP (Element, Vector)
6068 * 31 30 29 21 20 16 15 10 9 5 4 0
6069 * +---+---+-------------------+--------+-------------+------+------+
6070 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6071 * +---+---+-------------------+--------+-------------+------+------+
6073 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6075 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
6076 int imm5)
6078 int size = ctz32(imm5);
6079 int index = imm5 >> (size + 1);
6081 if (size > 3 || (size == 3 && !is_q)) {
6082 unallocated_encoding(s);
6083 return;
6086 if (!fp_access_check(s)) {
6087 return;
6090 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
6091 vec_reg_offset(s, rn, index, size),
6092 is_q ? 16 : 8, vec_full_reg_size(s));
6095 /* DUP (element, scalar)
6096 * 31 21 20 16 15 10 9 5 4 0
6097 * +-----------------------+--------+-------------+------+------+
6098 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6099 * +-----------------------+--------+-------------+------+------+
6101 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
6102 int imm5)
6104 int size = ctz32(imm5);
6105 int index;
6106 TCGv_i64 tmp;
6108 if (size > 3) {
6109 unallocated_encoding(s);
6110 return;
6113 if (!fp_access_check(s)) {
6114 return;
6117 index = imm5 >> (size + 1);
6119 /* This instruction just extracts the specified element and
6120 * zero-extends it into the bottom of the destination register.
6122 tmp = tcg_temp_new_i64();
6123 read_vec_element(s, tmp, rn, index, size);
6124 write_fp_dreg(s, rd, tmp);
6125 tcg_temp_free_i64(tmp);
6128 /* DUP (General)
6130 * 31 30 29 21 20 16 15 10 9 5 4 0
6131 * +---+---+-------------------+--------+-------------+------+------+
6132 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
6133 * +---+---+-------------------+--------+-------------+------+------+
6135 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6137 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
6138 int imm5)
6140 int size = ctz32(imm5);
6141 uint32_t dofs, oprsz, maxsz;
6143 if (size > 3 || ((size == 3) && !is_q)) {
6144 unallocated_encoding(s);
6145 return;
6148 if (!fp_access_check(s)) {
6149 return;
6152 dofs = vec_full_reg_offset(s, rd);
6153 oprsz = is_q ? 16 : 8;
6154 maxsz = vec_full_reg_size(s);
6156 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
6159 /* INS (Element)
6161 * 31 21 20 16 15 14 11 10 9 5 4 0
6162 * +-----------------------+--------+------------+---+------+------+
6163 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6164 * +-----------------------+--------+------------+---+------+------+
6166 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6167 * index: encoded in imm5<4:size+1>
6169 static void handle_simd_inse(DisasContext *s, int rd, int rn,
6170 int imm4, int imm5)
6172 int size = ctz32(imm5);
6173 int src_index, dst_index;
6174 TCGv_i64 tmp;
6176 if (size > 3) {
6177 unallocated_encoding(s);
6178 return;
6181 if (!fp_access_check(s)) {
6182 return;
6185 dst_index = extract32(imm5, 1+size, 5);
6186 src_index = extract32(imm4, size, 4);
6188 tmp = tcg_temp_new_i64();
6190 read_vec_element(s, tmp, rn, src_index, size);
6191 write_vec_element(s, tmp, rd, dst_index, size);
6193 tcg_temp_free_i64(tmp);
6197 /* INS (General)
6199 * 31 21 20 16 15 10 9 5 4 0
6200 * +-----------------------+--------+-------------+------+------+
6201 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
6202 * +-----------------------+--------+-------------+------+------+
6204 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6205 * index: encoded in imm5<4:size+1>
6207 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
6209 int size = ctz32(imm5);
6210 int idx;
6212 if (size > 3) {
6213 unallocated_encoding(s);
6214 return;
6217 if (!fp_access_check(s)) {
6218 return;
6221 idx = extract32(imm5, 1 + size, 4 - size);
6222 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
6226 * UMOV (General)
6227 * SMOV (General)
6229 * 31 30 29 21 20 16 15 12 10 9 5 4 0
6230 * +---+---+-------------------+--------+-------------+------+------+
6231 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6232 * +---+---+-------------------+--------+-------------+------+------+
6234 * U: unsigned when set
6235 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6237 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6238 int rn, int rd, int imm5)
6240 int size = ctz32(imm5);
6241 int element;
6242 TCGv_i64 tcg_rd;
6244 /* Check for UnallocatedEncodings */
6245 if (is_signed) {
6246 if (size > 2 || (size == 2 && !is_q)) {
6247 unallocated_encoding(s);
6248 return;
6250 } else {
6251 if (size > 3
6252 || (size < 3 && is_q)
6253 || (size == 3 && !is_q)) {
6254 unallocated_encoding(s);
6255 return;
6259 if (!fp_access_check(s)) {
6260 return;
6263 element = extract32(imm5, 1+size, 4);
6265 tcg_rd = cpu_reg(s, rd);
6266 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6267 if (is_signed && !is_q) {
6268 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6272 /* AdvSIMD copy
6273 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6274 * +---+---+----+-----------------+------+---+------+---+------+------+
6275 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6276 * +---+---+----+-----------------+------+---+------+---+------+------+
6278 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6280 int rd = extract32(insn, 0, 5);
6281 int rn = extract32(insn, 5, 5);
6282 int imm4 = extract32(insn, 11, 4);
6283 int op = extract32(insn, 29, 1);
6284 int is_q = extract32(insn, 30, 1);
6285 int imm5 = extract32(insn, 16, 5);
6287 if (op) {
6288 if (is_q) {
6289 /* INS (element) */
6290 handle_simd_inse(s, rd, rn, imm4, imm5);
6291 } else {
6292 unallocated_encoding(s);
6294 } else {
6295 switch (imm4) {
6296 case 0:
6297 /* DUP (element - vector) */
6298 handle_simd_dupe(s, is_q, rd, rn, imm5);
6299 break;
6300 case 1:
6301 /* DUP (general) */
6302 handle_simd_dupg(s, is_q, rd, rn, imm5);
6303 break;
6304 case 3:
6305 if (is_q) {
6306 /* INS (general) */
6307 handle_simd_insg(s, rd, rn, imm5);
6308 } else {
6309 unallocated_encoding(s);
6311 break;
6312 case 5:
6313 case 7:
6314 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6315 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6316 break;
6317 default:
6318 unallocated_encoding(s);
6319 break;
6324 /* AdvSIMD modified immediate
6325 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6326 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6327 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6328 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6330 * There are a number of operations that can be carried out here:
6331 * MOVI - move (shifted) imm into register
6332 * MVNI - move inverted (shifted) imm into register
6333 * ORR - bitwise OR of (shifted) imm with register
6334 * BIC - bitwise clear of (shifted) imm with register
6335 * With ARMv8.2 we also have:
6336 * FMOV half-precision
6338 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6340 int rd = extract32(insn, 0, 5);
6341 int cmode = extract32(insn, 12, 4);
6342 int cmode_3_1 = extract32(cmode, 1, 3);
6343 int cmode_0 = extract32(cmode, 0, 1);
6344 int o2 = extract32(insn, 11, 1);
6345 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6346 bool is_neg = extract32(insn, 29, 1);
6347 bool is_q = extract32(insn, 30, 1);
6348 uint64_t imm = 0;
6350 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6351 /* Check for FMOV (vector, immediate) - half-precision */
6352 if (!(arm_dc_feature(s, ARM_FEATURE_V8_FP16) && o2 && cmode == 0xf)) {
6353 unallocated_encoding(s);
6354 return;
6358 if (!fp_access_check(s)) {
6359 return;
6362 /* See AdvSIMDExpandImm() in ARM ARM */
6363 switch (cmode_3_1) {
6364 case 0: /* Replicate(Zeros(24):imm8, 2) */
6365 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6366 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6367 case 3: /* Replicate(imm8:Zeros(24), 2) */
6369 int shift = cmode_3_1 * 8;
6370 imm = bitfield_replicate(abcdefgh << shift, 32);
6371 break;
6373 case 4: /* Replicate(Zeros(8):imm8, 4) */
6374 case 5: /* Replicate(imm8:Zeros(8), 4) */
6376 int shift = (cmode_3_1 & 0x1) * 8;
6377 imm = bitfield_replicate(abcdefgh << shift, 16);
6378 break;
6380 case 6:
6381 if (cmode_0) {
6382 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6383 imm = (abcdefgh << 16) | 0xffff;
6384 } else {
6385 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6386 imm = (abcdefgh << 8) | 0xff;
6388 imm = bitfield_replicate(imm, 32);
6389 break;
6390 case 7:
6391 if (!cmode_0 && !is_neg) {
6392 imm = bitfield_replicate(abcdefgh, 8);
6393 } else if (!cmode_0 && is_neg) {
6394 int i;
6395 imm = 0;
6396 for (i = 0; i < 8; i++) {
6397 if ((abcdefgh) & (1 << i)) {
6398 imm |= 0xffULL << (i * 8);
6401 } else if (cmode_0) {
6402 if (is_neg) {
6403 imm = (abcdefgh & 0x3f) << 48;
6404 if (abcdefgh & 0x80) {
6405 imm |= 0x8000000000000000ULL;
6407 if (abcdefgh & 0x40) {
6408 imm |= 0x3fc0000000000000ULL;
6409 } else {
6410 imm |= 0x4000000000000000ULL;
6412 } else {
6413 if (o2) {
6414 /* FMOV (vector, immediate) - half-precision */
6415 imm = vfp_expand_imm(MO_16, abcdefgh);
6416 /* now duplicate across the lanes */
6417 imm = bitfield_replicate(imm, 16);
6418 } else {
6419 imm = (abcdefgh & 0x3f) << 19;
6420 if (abcdefgh & 0x80) {
6421 imm |= 0x80000000;
6423 if (abcdefgh & 0x40) {
6424 imm |= 0x3e000000;
6425 } else {
6426 imm |= 0x40000000;
6428 imm |= (imm << 32);
6432 break;
6433 default:
6434 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
6435 g_assert_not_reached();
6438 if (cmode_3_1 != 7 && is_neg) {
6439 imm = ~imm;
6442 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
6443 /* MOVI or MVNI, with MVNI negation handled above. */
6444 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
6445 vec_full_reg_size(s), imm);
6446 } else {
6447 /* ORR or BIC, with BIC negation to AND handled above. */
6448 if (is_neg) {
6449 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
6450 } else {
6451 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
6456 /* AdvSIMD scalar copy
6457 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6458 * +-----+----+-----------------+------+---+------+---+------+------+
6459 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6460 * +-----+----+-----------------+------+---+------+---+------+------+
6462 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6464 int rd = extract32(insn, 0, 5);
6465 int rn = extract32(insn, 5, 5);
6466 int imm4 = extract32(insn, 11, 4);
6467 int imm5 = extract32(insn, 16, 5);
6468 int op = extract32(insn, 29, 1);
6470 if (op != 0 || imm4 != 0) {
6471 unallocated_encoding(s);
6472 return;
6475 /* DUP (element, scalar) */
6476 handle_simd_dupes(s, rd, rn, imm5);
6479 /* AdvSIMD scalar pairwise
6480 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6481 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6482 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6483 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6485 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6487 int u = extract32(insn, 29, 1);
6488 int size = extract32(insn, 22, 2);
6489 int opcode = extract32(insn, 12, 5);
6490 int rn = extract32(insn, 5, 5);
6491 int rd = extract32(insn, 0, 5);
6492 TCGv_ptr fpst;
6494 /* For some ops (the FP ones), size[1] is part of the encoding.
6495 * For ADDP strictly it is not but size[1] is always 1 for valid
6496 * encodings.
6498 opcode |= (extract32(size, 1, 1) << 5);
6500 switch (opcode) {
6501 case 0x3b: /* ADDP */
6502 if (u || size != 3) {
6503 unallocated_encoding(s);
6504 return;
6506 if (!fp_access_check(s)) {
6507 return;
6510 fpst = NULL;
6511 break;
6512 case 0xc: /* FMAXNMP */
6513 case 0xd: /* FADDP */
6514 case 0xf: /* FMAXP */
6515 case 0x2c: /* FMINNMP */
6516 case 0x2f: /* FMINP */
6517 /* FP op, size[0] is 32 or 64 bit*/
6518 if (!u) {
6519 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6520 unallocated_encoding(s);
6521 return;
6522 } else {
6523 size = MO_16;
6525 } else {
6526 size = extract32(size, 0, 1) ? MO_64 : MO_32;
6529 if (!fp_access_check(s)) {
6530 return;
6533 fpst = get_fpstatus_ptr(size == MO_16);
6534 break;
6535 default:
6536 unallocated_encoding(s);
6537 return;
6540 if (size == MO_64) {
6541 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6542 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6543 TCGv_i64 tcg_res = tcg_temp_new_i64();
6545 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6546 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6548 switch (opcode) {
6549 case 0x3b: /* ADDP */
6550 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6551 break;
6552 case 0xc: /* FMAXNMP */
6553 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6554 break;
6555 case 0xd: /* FADDP */
6556 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6557 break;
6558 case 0xf: /* FMAXP */
6559 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6560 break;
6561 case 0x2c: /* FMINNMP */
6562 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6563 break;
6564 case 0x2f: /* FMINP */
6565 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6566 break;
6567 default:
6568 g_assert_not_reached();
6571 write_fp_dreg(s, rd, tcg_res);
6573 tcg_temp_free_i64(tcg_op1);
6574 tcg_temp_free_i64(tcg_op2);
6575 tcg_temp_free_i64(tcg_res);
6576 } else {
6577 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6578 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6579 TCGv_i32 tcg_res = tcg_temp_new_i32();
6581 read_vec_element_i32(s, tcg_op1, rn, 0, size);
6582 read_vec_element_i32(s, tcg_op2, rn, 1, size);
6584 if (size == MO_16) {
6585 switch (opcode) {
6586 case 0xc: /* FMAXNMP */
6587 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6588 break;
6589 case 0xd: /* FADDP */
6590 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6591 break;
6592 case 0xf: /* FMAXP */
6593 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6594 break;
6595 case 0x2c: /* FMINNMP */
6596 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6597 break;
6598 case 0x2f: /* FMINP */
6599 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6600 break;
6601 default:
6602 g_assert_not_reached();
6604 } else {
6605 switch (opcode) {
6606 case 0xc: /* FMAXNMP */
6607 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6608 break;
6609 case 0xd: /* FADDP */
6610 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6611 break;
6612 case 0xf: /* FMAXP */
6613 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6614 break;
6615 case 0x2c: /* FMINNMP */
6616 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6617 break;
6618 case 0x2f: /* FMINP */
6619 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6620 break;
6621 default:
6622 g_assert_not_reached();
6626 write_fp_sreg(s, rd, tcg_res);
6628 tcg_temp_free_i32(tcg_op1);
6629 tcg_temp_free_i32(tcg_op2);
6630 tcg_temp_free_i32(tcg_res);
6633 if (fpst) {
6634 tcg_temp_free_ptr(fpst);
6639 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6641 * This code is handles the common shifting code and is used by both
6642 * the vector and scalar code.
6644 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6645 TCGv_i64 tcg_rnd, bool accumulate,
6646 bool is_u, int size, int shift)
6648 bool extended_result = false;
6649 bool round = tcg_rnd != NULL;
6650 int ext_lshift = 0;
6651 TCGv_i64 tcg_src_hi;
6653 if (round && size == 3) {
6654 extended_result = true;
6655 ext_lshift = 64 - shift;
6656 tcg_src_hi = tcg_temp_new_i64();
6657 } else if (shift == 64) {
6658 if (!accumulate && is_u) {
6659 /* result is zero */
6660 tcg_gen_movi_i64(tcg_res, 0);
6661 return;
6665 /* Deal with the rounding step */
6666 if (round) {
6667 if (extended_result) {
6668 TCGv_i64 tcg_zero = tcg_const_i64(0);
6669 if (!is_u) {
6670 /* take care of sign extending tcg_res */
6671 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6672 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6673 tcg_src, tcg_src_hi,
6674 tcg_rnd, tcg_zero);
6675 } else {
6676 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6677 tcg_src, tcg_zero,
6678 tcg_rnd, tcg_zero);
6680 tcg_temp_free_i64(tcg_zero);
6681 } else {
6682 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6686 /* Now do the shift right */
6687 if (round && extended_result) {
6688 /* extended case, >64 bit precision required */
6689 if (ext_lshift == 0) {
6690 /* special case, only high bits matter */
6691 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6692 } else {
6693 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6694 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6695 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6697 } else {
6698 if (is_u) {
6699 if (shift == 64) {
6700 /* essentially shifting in 64 zeros */
6701 tcg_gen_movi_i64(tcg_src, 0);
6702 } else {
6703 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6705 } else {
6706 if (shift == 64) {
6707 /* effectively extending the sign-bit */
6708 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6709 } else {
6710 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6715 if (accumulate) {
6716 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6717 } else {
6718 tcg_gen_mov_i64(tcg_res, tcg_src);
6721 if (extended_result) {
6722 tcg_temp_free_i64(tcg_src_hi);
6726 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6727 static void handle_scalar_simd_shri(DisasContext *s,
6728 bool is_u, int immh, int immb,
6729 int opcode, int rn, int rd)
6731 const int size = 3;
6732 int immhb = immh << 3 | immb;
6733 int shift = 2 * (8 << size) - immhb;
6734 bool accumulate = false;
6735 bool round = false;
6736 bool insert = false;
6737 TCGv_i64 tcg_rn;
6738 TCGv_i64 tcg_rd;
6739 TCGv_i64 tcg_round;
6741 if (!extract32(immh, 3, 1)) {
6742 unallocated_encoding(s);
6743 return;
6746 if (!fp_access_check(s)) {
6747 return;
6750 switch (opcode) {
6751 case 0x02: /* SSRA / USRA (accumulate) */
6752 accumulate = true;
6753 break;
6754 case 0x04: /* SRSHR / URSHR (rounding) */
6755 round = true;
6756 break;
6757 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6758 accumulate = round = true;
6759 break;
6760 case 0x08: /* SRI */
6761 insert = true;
6762 break;
6765 if (round) {
6766 uint64_t round_const = 1ULL << (shift - 1);
6767 tcg_round = tcg_const_i64(round_const);
6768 } else {
6769 tcg_round = NULL;
6772 tcg_rn = read_fp_dreg(s, rn);
6773 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6775 if (insert) {
6776 /* shift count same as element size is valid but does nothing;
6777 * special case to avoid potential shift by 64.
6779 int esize = 8 << size;
6780 if (shift != esize) {
6781 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
6782 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
6784 } else {
6785 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6786 accumulate, is_u, size, shift);
6789 write_fp_dreg(s, rd, tcg_rd);
6791 tcg_temp_free_i64(tcg_rn);
6792 tcg_temp_free_i64(tcg_rd);
6793 if (round) {
6794 tcg_temp_free_i64(tcg_round);
6798 /* SHL/SLI - Scalar shift left */
6799 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6800 int immh, int immb, int opcode,
6801 int rn, int rd)
6803 int size = 32 - clz32(immh) - 1;
6804 int immhb = immh << 3 | immb;
6805 int shift = immhb - (8 << size);
6806 TCGv_i64 tcg_rn = new_tmp_a64(s);
6807 TCGv_i64 tcg_rd = new_tmp_a64(s);
6809 if (!extract32(immh, 3, 1)) {
6810 unallocated_encoding(s);
6811 return;
6814 if (!fp_access_check(s)) {
6815 return;
6818 tcg_rn = read_fp_dreg(s, rn);
6819 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6821 if (insert) {
6822 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
6823 } else {
6824 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
6827 write_fp_dreg(s, rd, tcg_rd);
6829 tcg_temp_free_i64(tcg_rn);
6830 tcg_temp_free_i64(tcg_rd);
6833 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6834 * (signed/unsigned) narrowing */
6835 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6836 bool is_u_shift, bool is_u_narrow,
6837 int immh, int immb, int opcode,
6838 int rn, int rd)
6840 int immhb = immh << 3 | immb;
6841 int size = 32 - clz32(immh) - 1;
6842 int esize = 8 << size;
6843 int shift = (2 * esize) - immhb;
6844 int elements = is_scalar ? 1 : (64 / esize);
6845 bool round = extract32(opcode, 0, 1);
6846 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6847 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6848 TCGv_i32 tcg_rd_narrowed;
6849 TCGv_i64 tcg_final;
6851 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6852 { gen_helper_neon_narrow_sat_s8,
6853 gen_helper_neon_unarrow_sat8 },
6854 { gen_helper_neon_narrow_sat_s16,
6855 gen_helper_neon_unarrow_sat16 },
6856 { gen_helper_neon_narrow_sat_s32,
6857 gen_helper_neon_unarrow_sat32 },
6858 { NULL, NULL },
6860 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6861 gen_helper_neon_narrow_sat_u8,
6862 gen_helper_neon_narrow_sat_u16,
6863 gen_helper_neon_narrow_sat_u32,
6864 NULL
6866 NeonGenNarrowEnvFn *narrowfn;
6868 int i;
6870 assert(size < 4);
6872 if (extract32(immh, 3, 1)) {
6873 unallocated_encoding(s);
6874 return;
6877 if (!fp_access_check(s)) {
6878 return;
6881 if (is_u_shift) {
6882 narrowfn = unsigned_narrow_fns[size];
6883 } else {
6884 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6887 tcg_rn = tcg_temp_new_i64();
6888 tcg_rd = tcg_temp_new_i64();
6889 tcg_rd_narrowed = tcg_temp_new_i32();
6890 tcg_final = tcg_const_i64(0);
6892 if (round) {
6893 uint64_t round_const = 1ULL << (shift - 1);
6894 tcg_round = tcg_const_i64(round_const);
6895 } else {
6896 tcg_round = NULL;
6899 for (i = 0; i < elements; i++) {
6900 read_vec_element(s, tcg_rn, rn, i, ldop);
6901 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6902 false, is_u_shift, size+1, shift);
6903 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6904 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6905 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6908 if (!is_q) {
6909 write_vec_element(s, tcg_final, rd, 0, MO_64);
6910 } else {
6911 write_vec_element(s, tcg_final, rd, 1, MO_64);
6914 if (round) {
6915 tcg_temp_free_i64(tcg_round);
6917 tcg_temp_free_i64(tcg_rn);
6918 tcg_temp_free_i64(tcg_rd);
6919 tcg_temp_free_i32(tcg_rd_narrowed);
6920 tcg_temp_free_i64(tcg_final);
6922 clear_vec_high(s, is_q, rd);
6925 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6926 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6927 bool src_unsigned, bool dst_unsigned,
6928 int immh, int immb, int rn, int rd)
6930 int immhb = immh << 3 | immb;
6931 int size = 32 - clz32(immh) - 1;
6932 int shift = immhb - (8 << size);
6933 int pass;
6935 assert(immh != 0);
6936 assert(!(scalar && is_q));
6938 if (!scalar) {
6939 if (!is_q && extract32(immh, 3, 1)) {
6940 unallocated_encoding(s);
6941 return;
6944 /* Since we use the variable-shift helpers we must
6945 * replicate the shift count into each element of
6946 * the tcg_shift value.
6948 switch (size) {
6949 case 0:
6950 shift |= shift << 8;
6951 /* fall through */
6952 case 1:
6953 shift |= shift << 16;
6954 break;
6955 case 2:
6956 case 3:
6957 break;
6958 default:
6959 g_assert_not_reached();
6963 if (!fp_access_check(s)) {
6964 return;
6967 if (size == 3) {
6968 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6969 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6970 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6971 { NULL, gen_helper_neon_qshl_u64 },
6973 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6974 int maxpass = is_q ? 2 : 1;
6976 for (pass = 0; pass < maxpass; pass++) {
6977 TCGv_i64 tcg_op = tcg_temp_new_i64();
6979 read_vec_element(s, tcg_op, rn, pass, MO_64);
6980 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6981 write_vec_element(s, tcg_op, rd, pass, MO_64);
6983 tcg_temp_free_i64(tcg_op);
6985 tcg_temp_free_i64(tcg_shift);
6986 clear_vec_high(s, is_q, rd);
6987 } else {
6988 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6989 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6991 { gen_helper_neon_qshl_s8,
6992 gen_helper_neon_qshl_s16,
6993 gen_helper_neon_qshl_s32 },
6994 { gen_helper_neon_qshlu_s8,
6995 gen_helper_neon_qshlu_s16,
6996 gen_helper_neon_qshlu_s32 }
6997 }, {
6998 { NULL, NULL, NULL },
6999 { gen_helper_neon_qshl_u8,
7000 gen_helper_neon_qshl_u16,
7001 gen_helper_neon_qshl_u32 }
7004 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
7005 TCGMemOp memop = scalar ? size : MO_32;
7006 int maxpass = scalar ? 1 : is_q ? 4 : 2;
7008 for (pass = 0; pass < maxpass; pass++) {
7009 TCGv_i32 tcg_op = tcg_temp_new_i32();
7011 read_vec_element_i32(s, tcg_op, rn, pass, memop);
7012 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7013 if (scalar) {
7014 switch (size) {
7015 case 0:
7016 tcg_gen_ext8u_i32(tcg_op, tcg_op);
7017 break;
7018 case 1:
7019 tcg_gen_ext16u_i32(tcg_op, tcg_op);
7020 break;
7021 case 2:
7022 break;
7023 default:
7024 g_assert_not_reached();
7026 write_fp_sreg(s, rd, tcg_op);
7027 } else {
7028 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7031 tcg_temp_free_i32(tcg_op);
7033 tcg_temp_free_i32(tcg_shift);
7035 if (!scalar) {
7036 clear_vec_high(s, is_q, rd);
7041 /* Common vector code for handling integer to FP conversion */
7042 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
7043 int elements, int is_signed,
7044 int fracbits, int size)
7046 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
7047 TCGv_i32 tcg_shift = NULL;
7049 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
7050 int pass;
7052 if (fracbits || size == MO_64) {
7053 tcg_shift = tcg_const_i32(fracbits);
7056 if (size == MO_64) {
7057 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
7058 TCGv_i64 tcg_double = tcg_temp_new_i64();
7060 for (pass = 0; pass < elements; pass++) {
7061 read_vec_element(s, tcg_int64, rn, pass, mop);
7063 if (is_signed) {
7064 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
7065 tcg_shift, tcg_fpst);
7066 } else {
7067 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
7068 tcg_shift, tcg_fpst);
7070 if (elements == 1) {
7071 write_fp_dreg(s, rd, tcg_double);
7072 } else {
7073 write_vec_element(s, tcg_double, rd, pass, MO_64);
7077 tcg_temp_free_i64(tcg_int64);
7078 tcg_temp_free_i64(tcg_double);
7080 } else {
7081 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
7082 TCGv_i32 tcg_float = tcg_temp_new_i32();
7084 for (pass = 0; pass < elements; pass++) {
7085 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
7087 switch (size) {
7088 case MO_32:
7089 if (fracbits) {
7090 if (is_signed) {
7091 gen_helper_vfp_sltos(tcg_float, tcg_int32,
7092 tcg_shift, tcg_fpst);
7093 } else {
7094 gen_helper_vfp_ultos(tcg_float, tcg_int32,
7095 tcg_shift, tcg_fpst);
7097 } else {
7098 if (is_signed) {
7099 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
7100 } else {
7101 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
7104 break;
7105 case MO_16:
7106 if (fracbits) {
7107 if (is_signed) {
7108 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
7109 tcg_shift, tcg_fpst);
7110 } else {
7111 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
7112 tcg_shift, tcg_fpst);
7114 } else {
7115 if (is_signed) {
7116 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
7117 } else {
7118 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
7121 break;
7122 default:
7123 g_assert_not_reached();
7126 if (elements == 1) {
7127 write_fp_sreg(s, rd, tcg_float);
7128 } else {
7129 write_vec_element_i32(s, tcg_float, rd, pass, size);
7133 tcg_temp_free_i32(tcg_int32);
7134 tcg_temp_free_i32(tcg_float);
7137 tcg_temp_free_ptr(tcg_fpst);
7138 if (tcg_shift) {
7139 tcg_temp_free_i32(tcg_shift);
7142 clear_vec_high(s, elements << size == 16, rd);
7145 /* UCVTF/SCVTF - Integer to FP conversion */
7146 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
7147 bool is_q, bool is_u,
7148 int immh, int immb, int opcode,
7149 int rn, int rd)
7151 bool is_double = extract32(immh, 3, 1);
7152 int size = is_double ? MO_64 : MO_32;
7153 int elements;
7154 int immhb = immh << 3 | immb;
7155 int fracbits = (is_double ? 128 : 64) - immhb;
7157 if (!extract32(immh, 2, 2)) {
7158 unallocated_encoding(s);
7159 return;
7162 if (is_scalar) {
7163 elements = 1;
7164 } else {
7165 elements = is_double ? 2 : is_q ? 4 : 2;
7166 if (is_double && !is_q) {
7167 unallocated_encoding(s);
7168 return;
7172 if (!fp_access_check(s)) {
7173 return;
7176 /* immh == 0 would be a failure of the decode logic */
7177 g_assert(immh);
7179 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
7182 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
7183 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
7184 bool is_q, bool is_u,
7185 int immh, int immb, int rn, int rd)
7187 bool is_double = extract32(immh, 3, 1);
7188 int immhb = immh << 3 | immb;
7189 int fracbits = (is_double ? 128 : 64) - immhb;
7190 int pass;
7191 TCGv_ptr tcg_fpstatus;
7192 TCGv_i32 tcg_rmode, tcg_shift;
7194 if (!extract32(immh, 2, 2)) {
7195 unallocated_encoding(s);
7196 return;
7199 if (!is_scalar && !is_q && is_double) {
7200 unallocated_encoding(s);
7201 return;
7204 if (!fp_access_check(s)) {
7205 return;
7208 assert(!(is_scalar && is_q));
7210 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
7211 tcg_fpstatus = get_fpstatus_ptr(false);
7212 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7213 tcg_shift = tcg_const_i32(fracbits);
7215 if (is_double) {
7216 int maxpass = is_scalar ? 1 : 2;
7218 for (pass = 0; pass < maxpass; pass++) {
7219 TCGv_i64 tcg_op = tcg_temp_new_i64();
7221 read_vec_element(s, tcg_op, rn, pass, MO_64);
7222 if (is_u) {
7223 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7224 } else {
7225 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7227 write_vec_element(s, tcg_op, rd, pass, MO_64);
7228 tcg_temp_free_i64(tcg_op);
7230 clear_vec_high(s, is_q, rd);
7231 } else {
7232 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
7233 for (pass = 0; pass < maxpass; pass++) {
7234 TCGv_i32 tcg_op = tcg_temp_new_i32();
7236 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7237 if (is_u) {
7238 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7239 } else {
7240 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7242 if (is_scalar) {
7243 write_fp_sreg(s, rd, tcg_op);
7244 } else {
7245 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7247 tcg_temp_free_i32(tcg_op);
7249 if (!is_scalar) {
7250 clear_vec_high(s, is_q, rd);
7254 tcg_temp_free_ptr(tcg_fpstatus);
7255 tcg_temp_free_i32(tcg_shift);
7256 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7257 tcg_temp_free_i32(tcg_rmode);
7260 /* AdvSIMD scalar shift by immediate
7261 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
7262 * +-----+---+-------------+------+------+--------+---+------+------+
7263 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
7264 * +-----+---+-------------+------+------+--------+---+------+------+
7266 * This is the scalar version so it works on a fixed sized registers
7268 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
7270 int rd = extract32(insn, 0, 5);
7271 int rn = extract32(insn, 5, 5);
7272 int opcode = extract32(insn, 11, 5);
7273 int immb = extract32(insn, 16, 3);
7274 int immh = extract32(insn, 19, 4);
7275 bool is_u = extract32(insn, 29, 1);
7277 if (immh == 0) {
7278 unallocated_encoding(s);
7279 return;
7282 switch (opcode) {
7283 case 0x08: /* SRI */
7284 if (!is_u) {
7285 unallocated_encoding(s);
7286 return;
7288 /* fall through */
7289 case 0x00: /* SSHR / USHR */
7290 case 0x02: /* SSRA / USRA */
7291 case 0x04: /* SRSHR / URSHR */
7292 case 0x06: /* SRSRA / URSRA */
7293 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7294 break;
7295 case 0x0a: /* SHL / SLI */
7296 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7297 break;
7298 case 0x1c: /* SCVTF, UCVTF */
7299 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7300 opcode, rn, rd);
7301 break;
7302 case 0x10: /* SQSHRUN, SQSHRUN2 */
7303 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7304 if (!is_u) {
7305 unallocated_encoding(s);
7306 return;
7308 handle_vec_simd_sqshrn(s, true, false, false, true,
7309 immh, immb, opcode, rn, rd);
7310 break;
7311 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7312 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7313 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7314 immh, immb, opcode, rn, rd);
7315 break;
7316 case 0xc: /* SQSHLU */
7317 if (!is_u) {
7318 unallocated_encoding(s);
7319 return;
7321 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7322 break;
7323 case 0xe: /* SQSHL, UQSHL */
7324 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7325 break;
7326 case 0x1f: /* FCVTZS, FCVTZU */
7327 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7328 break;
7329 default:
7330 unallocated_encoding(s);
7331 break;
7335 /* AdvSIMD scalar three different
7336 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7337 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7338 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7339 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7341 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7343 bool is_u = extract32(insn, 29, 1);
7344 int size = extract32(insn, 22, 2);
7345 int opcode = extract32(insn, 12, 4);
7346 int rm = extract32(insn, 16, 5);
7347 int rn = extract32(insn, 5, 5);
7348 int rd = extract32(insn, 0, 5);
7350 if (is_u) {
7351 unallocated_encoding(s);
7352 return;
7355 switch (opcode) {
7356 case 0x9: /* SQDMLAL, SQDMLAL2 */
7357 case 0xb: /* SQDMLSL, SQDMLSL2 */
7358 case 0xd: /* SQDMULL, SQDMULL2 */
7359 if (size == 0 || size == 3) {
7360 unallocated_encoding(s);
7361 return;
7363 break;
7364 default:
7365 unallocated_encoding(s);
7366 return;
7369 if (!fp_access_check(s)) {
7370 return;
7373 if (size == 2) {
7374 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7375 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7376 TCGv_i64 tcg_res = tcg_temp_new_i64();
7378 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7379 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7381 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7382 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7384 switch (opcode) {
7385 case 0xd: /* SQDMULL, SQDMULL2 */
7386 break;
7387 case 0xb: /* SQDMLSL, SQDMLSL2 */
7388 tcg_gen_neg_i64(tcg_res, tcg_res);
7389 /* fall through */
7390 case 0x9: /* SQDMLAL, SQDMLAL2 */
7391 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7392 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7393 tcg_res, tcg_op1);
7394 break;
7395 default:
7396 g_assert_not_reached();
7399 write_fp_dreg(s, rd, tcg_res);
7401 tcg_temp_free_i64(tcg_op1);
7402 tcg_temp_free_i64(tcg_op2);
7403 tcg_temp_free_i64(tcg_res);
7404 } else {
7405 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7406 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7407 TCGv_i64 tcg_res = tcg_temp_new_i64();
7409 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7410 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7412 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7413 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7415 switch (opcode) {
7416 case 0xd: /* SQDMULL, SQDMULL2 */
7417 break;
7418 case 0xb: /* SQDMLSL, SQDMLSL2 */
7419 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7420 /* fall through */
7421 case 0x9: /* SQDMLAL, SQDMLAL2 */
7423 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7424 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7425 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7426 tcg_res, tcg_op3);
7427 tcg_temp_free_i64(tcg_op3);
7428 break;
7430 default:
7431 g_assert_not_reached();
7434 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7435 write_fp_dreg(s, rd, tcg_res);
7437 tcg_temp_free_i32(tcg_op1);
7438 tcg_temp_free_i32(tcg_op2);
7439 tcg_temp_free_i64(tcg_res);
7443 /* CMTST : test is "if (X & Y != 0)". */
7444 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
7446 tcg_gen_and_i32(d, a, b);
7447 tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
7448 tcg_gen_neg_i32(d, d);
7451 static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
7453 tcg_gen_and_i64(d, a, b);
7454 tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
7455 tcg_gen_neg_i64(d, d);
7458 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
7460 tcg_gen_and_vec(vece, d, a, b);
7461 tcg_gen_dupi_vec(vece, a, 0);
7462 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
7465 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7466 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7468 /* Handle 64x64->64 opcodes which are shared between the scalar
7469 * and vector 3-same groups. We cover every opcode where size == 3
7470 * is valid in either the three-reg-same (integer, not pairwise)
7471 * or scalar-three-reg-same groups.
7473 TCGCond cond;
7475 switch (opcode) {
7476 case 0x1: /* SQADD */
7477 if (u) {
7478 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7479 } else {
7480 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7482 break;
7483 case 0x5: /* SQSUB */
7484 if (u) {
7485 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7486 } else {
7487 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7489 break;
7490 case 0x6: /* CMGT, CMHI */
7491 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7492 * We implement this using setcond (test) and then negating.
7494 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7495 do_cmop:
7496 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7497 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7498 break;
7499 case 0x7: /* CMGE, CMHS */
7500 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7501 goto do_cmop;
7502 case 0x11: /* CMTST, CMEQ */
7503 if (u) {
7504 cond = TCG_COND_EQ;
7505 goto do_cmop;
7507 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
7508 break;
7509 case 0x8: /* SSHL, USHL */
7510 if (u) {
7511 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7512 } else {
7513 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7515 break;
7516 case 0x9: /* SQSHL, UQSHL */
7517 if (u) {
7518 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7519 } else {
7520 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7522 break;
7523 case 0xa: /* SRSHL, URSHL */
7524 if (u) {
7525 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7526 } else {
7527 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7529 break;
7530 case 0xb: /* SQRSHL, UQRSHL */
7531 if (u) {
7532 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7533 } else {
7534 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7536 break;
7537 case 0x10: /* ADD, SUB */
7538 if (u) {
7539 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7540 } else {
7541 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7543 break;
7544 default:
7545 g_assert_not_reached();
7549 /* Handle the 3-same-operands float operations; shared by the scalar
7550 * and vector encodings. The caller must filter out any encodings
7551 * not allocated for the encoding it is dealing with.
7553 static void handle_3same_float(DisasContext *s, int size, int elements,
7554 int fpopcode, int rd, int rn, int rm)
7556 int pass;
7557 TCGv_ptr fpst = get_fpstatus_ptr(false);
7559 for (pass = 0; pass < elements; pass++) {
7560 if (size) {
7561 /* Double */
7562 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7563 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7564 TCGv_i64 tcg_res = tcg_temp_new_i64();
7566 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7567 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7569 switch (fpopcode) {
7570 case 0x39: /* FMLS */
7571 /* As usual for ARM, separate negation for fused multiply-add */
7572 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7573 /* fall through */
7574 case 0x19: /* FMLA */
7575 read_vec_element(s, tcg_res, rd, pass, MO_64);
7576 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7577 tcg_res, fpst);
7578 break;
7579 case 0x18: /* FMAXNM */
7580 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7581 break;
7582 case 0x1a: /* FADD */
7583 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7584 break;
7585 case 0x1b: /* FMULX */
7586 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7587 break;
7588 case 0x1c: /* FCMEQ */
7589 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7590 break;
7591 case 0x1e: /* FMAX */
7592 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7593 break;
7594 case 0x1f: /* FRECPS */
7595 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7596 break;
7597 case 0x38: /* FMINNM */
7598 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7599 break;
7600 case 0x3a: /* FSUB */
7601 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7602 break;
7603 case 0x3e: /* FMIN */
7604 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7605 break;
7606 case 0x3f: /* FRSQRTS */
7607 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7608 break;
7609 case 0x5b: /* FMUL */
7610 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7611 break;
7612 case 0x5c: /* FCMGE */
7613 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7614 break;
7615 case 0x5d: /* FACGE */
7616 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7617 break;
7618 case 0x5f: /* FDIV */
7619 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7620 break;
7621 case 0x7a: /* FABD */
7622 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7623 gen_helper_vfp_absd(tcg_res, tcg_res);
7624 break;
7625 case 0x7c: /* FCMGT */
7626 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7627 break;
7628 case 0x7d: /* FACGT */
7629 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7630 break;
7631 default:
7632 g_assert_not_reached();
7635 write_vec_element(s, tcg_res, rd, pass, MO_64);
7637 tcg_temp_free_i64(tcg_res);
7638 tcg_temp_free_i64(tcg_op1);
7639 tcg_temp_free_i64(tcg_op2);
7640 } else {
7641 /* Single */
7642 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7643 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7644 TCGv_i32 tcg_res = tcg_temp_new_i32();
7646 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7647 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7649 switch (fpopcode) {
7650 case 0x39: /* FMLS */
7651 /* As usual for ARM, separate negation for fused multiply-add */
7652 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7653 /* fall through */
7654 case 0x19: /* FMLA */
7655 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7656 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7657 tcg_res, fpst);
7658 break;
7659 case 0x1a: /* FADD */
7660 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7661 break;
7662 case 0x1b: /* FMULX */
7663 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7664 break;
7665 case 0x1c: /* FCMEQ */
7666 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7667 break;
7668 case 0x1e: /* FMAX */
7669 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7670 break;
7671 case 0x1f: /* FRECPS */
7672 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7673 break;
7674 case 0x18: /* FMAXNM */
7675 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7676 break;
7677 case 0x38: /* FMINNM */
7678 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7679 break;
7680 case 0x3a: /* FSUB */
7681 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7682 break;
7683 case 0x3e: /* FMIN */
7684 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7685 break;
7686 case 0x3f: /* FRSQRTS */
7687 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7688 break;
7689 case 0x5b: /* FMUL */
7690 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7691 break;
7692 case 0x5c: /* FCMGE */
7693 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7694 break;
7695 case 0x5d: /* FACGE */
7696 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7697 break;
7698 case 0x5f: /* FDIV */
7699 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7700 break;
7701 case 0x7a: /* FABD */
7702 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7703 gen_helper_vfp_abss(tcg_res, tcg_res);
7704 break;
7705 case 0x7c: /* FCMGT */
7706 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7707 break;
7708 case 0x7d: /* FACGT */
7709 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7710 break;
7711 default:
7712 g_assert_not_reached();
7715 if (elements == 1) {
7716 /* scalar single so clear high part */
7717 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7719 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7720 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7721 tcg_temp_free_i64(tcg_tmp);
7722 } else {
7723 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7726 tcg_temp_free_i32(tcg_res);
7727 tcg_temp_free_i32(tcg_op1);
7728 tcg_temp_free_i32(tcg_op2);
7732 tcg_temp_free_ptr(fpst);
7734 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
7737 /* AdvSIMD scalar three same
7738 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7739 * +-----+---+-----------+------+---+------+--------+---+------+------+
7740 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7741 * +-----+---+-----------+------+---+------+--------+---+------+------+
7743 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7745 int rd = extract32(insn, 0, 5);
7746 int rn = extract32(insn, 5, 5);
7747 int opcode = extract32(insn, 11, 5);
7748 int rm = extract32(insn, 16, 5);
7749 int size = extract32(insn, 22, 2);
7750 bool u = extract32(insn, 29, 1);
7751 TCGv_i64 tcg_rd;
7753 if (opcode >= 0x18) {
7754 /* Floating point: U, size[1] and opcode indicate operation */
7755 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7756 switch (fpopcode) {
7757 case 0x1b: /* FMULX */
7758 case 0x1f: /* FRECPS */
7759 case 0x3f: /* FRSQRTS */
7760 case 0x5d: /* FACGE */
7761 case 0x7d: /* FACGT */
7762 case 0x1c: /* FCMEQ */
7763 case 0x5c: /* FCMGE */
7764 case 0x7c: /* FCMGT */
7765 case 0x7a: /* FABD */
7766 break;
7767 default:
7768 unallocated_encoding(s);
7769 return;
7772 if (!fp_access_check(s)) {
7773 return;
7776 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7777 return;
7780 switch (opcode) {
7781 case 0x1: /* SQADD, UQADD */
7782 case 0x5: /* SQSUB, UQSUB */
7783 case 0x9: /* SQSHL, UQSHL */
7784 case 0xb: /* SQRSHL, UQRSHL */
7785 break;
7786 case 0x8: /* SSHL, USHL */
7787 case 0xa: /* SRSHL, URSHL */
7788 case 0x6: /* CMGT, CMHI */
7789 case 0x7: /* CMGE, CMHS */
7790 case 0x11: /* CMTST, CMEQ */
7791 case 0x10: /* ADD, SUB (vector) */
7792 if (size != 3) {
7793 unallocated_encoding(s);
7794 return;
7796 break;
7797 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7798 if (size != 1 && size != 2) {
7799 unallocated_encoding(s);
7800 return;
7802 break;
7803 default:
7804 unallocated_encoding(s);
7805 return;
7808 if (!fp_access_check(s)) {
7809 return;
7812 tcg_rd = tcg_temp_new_i64();
7814 if (size == 3) {
7815 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7816 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7818 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7819 tcg_temp_free_i64(tcg_rn);
7820 tcg_temp_free_i64(tcg_rm);
7821 } else {
7822 /* Do a single operation on the lowest element in the vector.
7823 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7824 * no side effects for all these operations.
7825 * OPTME: special-purpose helpers would avoid doing some
7826 * unnecessary work in the helper for the 8 and 16 bit cases.
7828 NeonGenTwoOpEnvFn *genenvfn;
7829 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7830 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7831 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7833 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7834 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7836 switch (opcode) {
7837 case 0x1: /* SQADD, UQADD */
7839 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7840 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7841 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7842 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7844 genenvfn = fns[size][u];
7845 break;
7847 case 0x5: /* SQSUB, UQSUB */
7849 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7850 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7851 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7852 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7854 genenvfn = fns[size][u];
7855 break;
7857 case 0x9: /* SQSHL, UQSHL */
7859 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7860 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7861 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7862 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7864 genenvfn = fns[size][u];
7865 break;
7867 case 0xb: /* SQRSHL, UQRSHL */
7869 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7870 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7871 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7872 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7874 genenvfn = fns[size][u];
7875 break;
7877 case 0x16: /* SQDMULH, SQRDMULH */
7879 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7880 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7881 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7883 assert(size == 1 || size == 2);
7884 genenvfn = fns[size - 1][u];
7885 break;
7887 default:
7888 g_assert_not_reached();
7891 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7892 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7893 tcg_temp_free_i32(tcg_rd32);
7894 tcg_temp_free_i32(tcg_rn);
7895 tcg_temp_free_i32(tcg_rm);
7898 write_fp_dreg(s, rd, tcg_rd);
7900 tcg_temp_free_i64(tcg_rd);
7903 /* AdvSIMD scalar three same FP16
7904 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
7905 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
7906 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
7907 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
7908 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
7909 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
7911 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
7912 uint32_t insn)
7914 int rd = extract32(insn, 0, 5);
7915 int rn = extract32(insn, 5, 5);
7916 int opcode = extract32(insn, 11, 3);
7917 int rm = extract32(insn, 16, 5);
7918 bool u = extract32(insn, 29, 1);
7919 bool a = extract32(insn, 23, 1);
7920 int fpopcode = opcode | (a << 3) | (u << 4);
7921 TCGv_ptr fpst;
7922 TCGv_i32 tcg_op1;
7923 TCGv_i32 tcg_op2;
7924 TCGv_i32 tcg_res;
7926 switch (fpopcode) {
7927 case 0x03: /* FMULX */
7928 case 0x04: /* FCMEQ (reg) */
7929 case 0x07: /* FRECPS */
7930 case 0x0f: /* FRSQRTS */
7931 case 0x14: /* FCMGE (reg) */
7932 case 0x15: /* FACGE */
7933 case 0x1a: /* FABD */
7934 case 0x1c: /* FCMGT (reg) */
7935 case 0x1d: /* FACGT */
7936 break;
7937 default:
7938 unallocated_encoding(s);
7939 return;
7942 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7943 unallocated_encoding(s);
7946 if (!fp_access_check(s)) {
7947 return;
7950 fpst = get_fpstatus_ptr(true);
7952 tcg_op1 = tcg_temp_new_i32();
7953 tcg_op2 = tcg_temp_new_i32();
7954 tcg_res = tcg_temp_new_i32();
7956 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7957 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7959 switch (fpopcode) {
7960 case 0x03: /* FMULX */
7961 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
7962 break;
7963 case 0x04: /* FCMEQ (reg) */
7964 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7965 break;
7966 case 0x07: /* FRECPS */
7967 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7968 break;
7969 case 0x0f: /* FRSQRTS */
7970 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7971 break;
7972 case 0x14: /* FCMGE (reg) */
7973 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7974 break;
7975 case 0x15: /* FACGE */
7976 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7977 break;
7978 case 0x1a: /* FABD */
7979 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
7980 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
7981 break;
7982 case 0x1c: /* FCMGT (reg) */
7983 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7984 break;
7985 case 0x1d: /* FACGT */
7986 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7987 break;
7988 default:
7989 g_assert_not_reached();
7992 write_fp_sreg(s, rd, tcg_res);
7995 tcg_temp_free_i32(tcg_res);
7996 tcg_temp_free_i32(tcg_op1);
7997 tcg_temp_free_i32(tcg_op2);
7998 tcg_temp_free_ptr(fpst);
8001 /* AdvSIMD scalar three same extra
8002 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8003 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8004 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
8005 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8007 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
8008 uint32_t insn)
8010 int rd = extract32(insn, 0, 5);
8011 int rn = extract32(insn, 5, 5);
8012 int opcode = extract32(insn, 11, 4);
8013 int rm = extract32(insn, 16, 5);
8014 int size = extract32(insn, 22, 2);
8015 bool u = extract32(insn, 29, 1);
8016 TCGv_i32 ele1, ele2, ele3;
8017 TCGv_i64 res;
8018 int feature;
8020 switch (u * 16 + opcode) {
8021 case 0x10: /* SQRDMLAH (vector) */
8022 case 0x11: /* SQRDMLSH (vector) */
8023 if (size != 1 && size != 2) {
8024 unallocated_encoding(s);
8025 return;
8027 feature = ARM_FEATURE_V8_RDM;
8028 break;
8029 default:
8030 unallocated_encoding(s);
8031 return;
8033 if (!arm_dc_feature(s, feature)) {
8034 unallocated_encoding(s);
8035 return;
8037 if (!fp_access_check(s)) {
8038 return;
8041 /* Do a single operation on the lowest element in the vector.
8042 * We use the standard Neon helpers and rely on 0 OP 0 == 0
8043 * with no side effects for all these operations.
8044 * OPTME: special-purpose helpers would avoid doing some
8045 * unnecessary work in the helper for the 16 bit cases.
8047 ele1 = tcg_temp_new_i32();
8048 ele2 = tcg_temp_new_i32();
8049 ele3 = tcg_temp_new_i32();
8051 read_vec_element_i32(s, ele1, rn, 0, size);
8052 read_vec_element_i32(s, ele2, rm, 0, size);
8053 read_vec_element_i32(s, ele3, rd, 0, size);
8055 switch (opcode) {
8056 case 0x0: /* SQRDMLAH */
8057 if (size == 1) {
8058 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
8059 } else {
8060 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
8062 break;
8063 case 0x1: /* SQRDMLSH */
8064 if (size == 1) {
8065 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
8066 } else {
8067 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
8069 break;
8070 default:
8071 g_assert_not_reached();
8073 tcg_temp_free_i32(ele1);
8074 tcg_temp_free_i32(ele2);
8076 res = tcg_temp_new_i64();
8077 tcg_gen_extu_i32_i64(res, ele3);
8078 tcg_temp_free_i32(ele3);
8080 write_fp_dreg(s, rd, res);
8081 tcg_temp_free_i64(res);
8084 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
8085 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
8086 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
8088 /* Handle 64->64 opcodes which are shared between the scalar and
8089 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
8090 * is valid in either group and also the double-precision fp ops.
8091 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
8092 * requires them.
8094 TCGCond cond;
8096 switch (opcode) {
8097 case 0x4: /* CLS, CLZ */
8098 if (u) {
8099 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8100 } else {
8101 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
8103 break;
8104 case 0x5: /* NOT */
8105 /* This opcode is shared with CNT and RBIT but we have earlier
8106 * enforced that size == 3 if and only if this is the NOT insn.
8108 tcg_gen_not_i64(tcg_rd, tcg_rn);
8109 break;
8110 case 0x7: /* SQABS, SQNEG */
8111 if (u) {
8112 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
8113 } else {
8114 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
8116 break;
8117 case 0xa: /* CMLT */
8118 /* 64 bit integer comparison against zero, result is
8119 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
8120 * subtracting 1.
8122 cond = TCG_COND_LT;
8123 do_cmop:
8124 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
8125 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8126 break;
8127 case 0x8: /* CMGT, CMGE */
8128 cond = u ? TCG_COND_GE : TCG_COND_GT;
8129 goto do_cmop;
8130 case 0x9: /* CMEQ, CMLE */
8131 cond = u ? TCG_COND_LE : TCG_COND_EQ;
8132 goto do_cmop;
8133 case 0xb: /* ABS, NEG */
8134 if (u) {
8135 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8136 } else {
8137 TCGv_i64 tcg_zero = tcg_const_i64(0);
8138 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8139 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
8140 tcg_rn, tcg_rd);
8141 tcg_temp_free_i64(tcg_zero);
8143 break;
8144 case 0x2f: /* FABS */
8145 gen_helper_vfp_absd(tcg_rd, tcg_rn);
8146 break;
8147 case 0x6f: /* FNEG */
8148 gen_helper_vfp_negd(tcg_rd, tcg_rn);
8149 break;
8150 case 0x7f: /* FSQRT */
8151 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
8152 break;
8153 case 0x1a: /* FCVTNS */
8154 case 0x1b: /* FCVTMS */
8155 case 0x1c: /* FCVTAS */
8156 case 0x3a: /* FCVTPS */
8157 case 0x3b: /* FCVTZS */
8159 TCGv_i32 tcg_shift = tcg_const_i32(0);
8160 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8161 tcg_temp_free_i32(tcg_shift);
8162 break;
8164 case 0x5a: /* FCVTNU */
8165 case 0x5b: /* FCVTMU */
8166 case 0x5c: /* FCVTAU */
8167 case 0x7a: /* FCVTPU */
8168 case 0x7b: /* FCVTZU */
8170 TCGv_i32 tcg_shift = tcg_const_i32(0);
8171 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8172 tcg_temp_free_i32(tcg_shift);
8173 break;
8175 case 0x18: /* FRINTN */
8176 case 0x19: /* FRINTM */
8177 case 0x38: /* FRINTP */
8178 case 0x39: /* FRINTZ */
8179 case 0x58: /* FRINTA */
8180 case 0x79: /* FRINTI */
8181 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
8182 break;
8183 case 0x59: /* FRINTX */
8184 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
8185 break;
8186 default:
8187 g_assert_not_reached();
8191 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
8192 bool is_scalar, bool is_u, bool is_q,
8193 int size, int rn, int rd)
8195 bool is_double = (size == MO_64);
8196 TCGv_ptr fpst;
8198 if (!fp_access_check(s)) {
8199 return;
8202 fpst = get_fpstatus_ptr(size == MO_16);
8204 if (is_double) {
8205 TCGv_i64 tcg_op = tcg_temp_new_i64();
8206 TCGv_i64 tcg_zero = tcg_const_i64(0);
8207 TCGv_i64 tcg_res = tcg_temp_new_i64();
8208 NeonGenTwoDoubleOPFn *genfn;
8209 bool swap = false;
8210 int pass;
8212 switch (opcode) {
8213 case 0x2e: /* FCMLT (zero) */
8214 swap = true;
8215 /* fallthrough */
8216 case 0x2c: /* FCMGT (zero) */
8217 genfn = gen_helper_neon_cgt_f64;
8218 break;
8219 case 0x2d: /* FCMEQ (zero) */
8220 genfn = gen_helper_neon_ceq_f64;
8221 break;
8222 case 0x6d: /* FCMLE (zero) */
8223 swap = true;
8224 /* fall through */
8225 case 0x6c: /* FCMGE (zero) */
8226 genfn = gen_helper_neon_cge_f64;
8227 break;
8228 default:
8229 g_assert_not_reached();
8232 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8233 read_vec_element(s, tcg_op, rn, pass, MO_64);
8234 if (swap) {
8235 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8236 } else {
8237 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8239 write_vec_element(s, tcg_res, rd, pass, MO_64);
8241 tcg_temp_free_i64(tcg_res);
8242 tcg_temp_free_i64(tcg_zero);
8243 tcg_temp_free_i64(tcg_op);
8245 clear_vec_high(s, !is_scalar, rd);
8246 } else {
8247 TCGv_i32 tcg_op = tcg_temp_new_i32();
8248 TCGv_i32 tcg_zero = tcg_const_i32(0);
8249 TCGv_i32 tcg_res = tcg_temp_new_i32();
8250 NeonGenTwoSingleOPFn *genfn;
8251 bool swap = false;
8252 int pass, maxpasses;
8254 if (size == MO_16) {
8255 switch (opcode) {
8256 case 0x2e: /* FCMLT (zero) */
8257 swap = true;
8258 /* fall through */
8259 case 0x2c: /* FCMGT (zero) */
8260 genfn = gen_helper_advsimd_cgt_f16;
8261 break;
8262 case 0x2d: /* FCMEQ (zero) */
8263 genfn = gen_helper_advsimd_ceq_f16;
8264 break;
8265 case 0x6d: /* FCMLE (zero) */
8266 swap = true;
8267 /* fall through */
8268 case 0x6c: /* FCMGE (zero) */
8269 genfn = gen_helper_advsimd_cge_f16;
8270 break;
8271 default:
8272 g_assert_not_reached();
8274 } else {
8275 switch (opcode) {
8276 case 0x2e: /* FCMLT (zero) */
8277 swap = true;
8278 /* fall through */
8279 case 0x2c: /* FCMGT (zero) */
8280 genfn = gen_helper_neon_cgt_f32;
8281 break;
8282 case 0x2d: /* FCMEQ (zero) */
8283 genfn = gen_helper_neon_ceq_f32;
8284 break;
8285 case 0x6d: /* FCMLE (zero) */
8286 swap = true;
8287 /* fall through */
8288 case 0x6c: /* FCMGE (zero) */
8289 genfn = gen_helper_neon_cge_f32;
8290 break;
8291 default:
8292 g_assert_not_reached();
8296 if (is_scalar) {
8297 maxpasses = 1;
8298 } else {
8299 int vector_size = 8 << is_q;
8300 maxpasses = vector_size >> size;
8303 for (pass = 0; pass < maxpasses; pass++) {
8304 read_vec_element_i32(s, tcg_op, rn, pass, size);
8305 if (swap) {
8306 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8307 } else {
8308 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8310 if (is_scalar) {
8311 write_fp_sreg(s, rd, tcg_res);
8312 } else {
8313 write_vec_element_i32(s, tcg_res, rd, pass, size);
8316 tcg_temp_free_i32(tcg_res);
8317 tcg_temp_free_i32(tcg_zero);
8318 tcg_temp_free_i32(tcg_op);
8319 if (!is_scalar) {
8320 clear_vec_high(s, is_q, rd);
8324 tcg_temp_free_ptr(fpst);
8327 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
8328 bool is_scalar, bool is_u, bool is_q,
8329 int size, int rn, int rd)
8331 bool is_double = (size == 3);
8332 TCGv_ptr fpst = get_fpstatus_ptr(false);
8334 if (is_double) {
8335 TCGv_i64 tcg_op = tcg_temp_new_i64();
8336 TCGv_i64 tcg_res = tcg_temp_new_i64();
8337 int pass;
8339 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8340 read_vec_element(s, tcg_op, rn, pass, MO_64);
8341 switch (opcode) {
8342 case 0x3d: /* FRECPE */
8343 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
8344 break;
8345 case 0x3f: /* FRECPX */
8346 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
8347 break;
8348 case 0x7d: /* FRSQRTE */
8349 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
8350 break;
8351 default:
8352 g_assert_not_reached();
8354 write_vec_element(s, tcg_res, rd, pass, MO_64);
8356 tcg_temp_free_i64(tcg_res);
8357 tcg_temp_free_i64(tcg_op);
8358 clear_vec_high(s, !is_scalar, rd);
8359 } else {
8360 TCGv_i32 tcg_op = tcg_temp_new_i32();
8361 TCGv_i32 tcg_res = tcg_temp_new_i32();
8362 int pass, maxpasses;
8364 if (is_scalar) {
8365 maxpasses = 1;
8366 } else {
8367 maxpasses = is_q ? 4 : 2;
8370 for (pass = 0; pass < maxpasses; pass++) {
8371 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
8373 switch (opcode) {
8374 case 0x3c: /* URECPE */
8375 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
8376 break;
8377 case 0x3d: /* FRECPE */
8378 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
8379 break;
8380 case 0x3f: /* FRECPX */
8381 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
8382 break;
8383 case 0x7d: /* FRSQRTE */
8384 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
8385 break;
8386 default:
8387 g_assert_not_reached();
8390 if (is_scalar) {
8391 write_fp_sreg(s, rd, tcg_res);
8392 } else {
8393 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8396 tcg_temp_free_i32(tcg_res);
8397 tcg_temp_free_i32(tcg_op);
8398 if (!is_scalar) {
8399 clear_vec_high(s, is_q, rd);
8402 tcg_temp_free_ptr(fpst);
8405 static void handle_2misc_narrow(DisasContext *s, bool scalar,
8406 int opcode, bool u, bool is_q,
8407 int size, int rn, int rd)
8409 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
8410 * in the source becomes a size element in the destination).
8412 int pass;
8413 TCGv_i32 tcg_res[2];
8414 int destelt = is_q ? 2 : 0;
8415 int passes = scalar ? 1 : 2;
8417 if (scalar) {
8418 tcg_res[1] = tcg_const_i32(0);
8421 for (pass = 0; pass < passes; pass++) {
8422 TCGv_i64 tcg_op = tcg_temp_new_i64();
8423 NeonGenNarrowFn *genfn = NULL;
8424 NeonGenNarrowEnvFn *genenvfn = NULL;
8426 if (scalar) {
8427 read_vec_element(s, tcg_op, rn, pass, size + 1);
8428 } else {
8429 read_vec_element(s, tcg_op, rn, pass, MO_64);
8431 tcg_res[pass] = tcg_temp_new_i32();
8433 switch (opcode) {
8434 case 0x12: /* XTN, SQXTUN */
8436 static NeonGenNarrowFn * const xtnfns[3] = {
8437 gen_helper_neon_narrow_u8,
8438 gen_helper_neon_narrow_u16,
8439 tcg_gen_extrl_i64_i32,
8441 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
8442 gen_helper_neon_unarrow_sat8,
8443 gen_helper_neon_unarrow_sat16,
8444 gen_helper_neon_unarrow_sat32,
8446 if (u) {
8447 genenvfn = sqxtunfns[size];
8448 } else {
8449 genfn = xtnfns[size];
8451 break;
8453 case 0x14: /* SQXTN, UQXTN */
8455 static NeonGenNarrowEnvFn * const fns[3][2] = {
8456 { gen_helper_neon_narrow_sat_s8,
8457 gen_helper_neon_narrow_sat_u8 },
8458 { gen_helper_neon_narrow_sat_s16,
8459 gen_helper_neon_narrow_sat_u16 },
8460 { gen_helper_neon_narrow_sat_s32,
8461 gen_helper_neon_narrow_sat_u32 },
8463 genenvfn = fns[size][u];
8464 break;
8466 case 0x16: /* FCVTN, FCVTN2 */
8467 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
8468 if (size == 2) {
8469 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
8470 } else {
8471 TCGv_i32 tcg_lo = tcg_temp_new_i32();
8472 TCGv_i32 tcg_hi = tcg_temp_new_i32();
8473 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
8474 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
8475 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
8476 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
8477 tcg_temp_free_i32(tcg_lo);
8478 tcg_temp_free_i32(tcg_hi);
8480 break;
8481 case 0x56: /* FCVTXN, FCVTXN2 */
8482 /* 64 bit to 32 bit float conversion
8483 * with von Neumann rounding (round to odd)
8485 assert(size == 2);
8486 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
8487 break;
8488 default:
8489 g_assert_not_reached();
8492 if (genfn) {
8493 genfn(tcg_res[pass], tcg_op);
8494 } else if (genenvfn) {
8495 genenvfn(tcg_res[pass], cpu_env, tcg_op);
8498 tcg_temp_free_i64(tcg_op);
8501 for (pass = 0; pass < 2; pass++) {
8502 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
8503 tcg_temp_free_i32(tcg_res[pass]);
8505 clear_vec_high(s, is_q, rd);
8508 /* Remaining saturating accumulating ops */
8509 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
8510 bool is_q, int size, int rn, int rd)
8512 bool is_double = (size == 3);
8514 if (is_double) {
8515 TCGv_i64 tcg_rn = tcg_temp_new_i64();
8516 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8517 int pass;
8519 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8520 read_vec_element(s, tcg_rn, rn, pass, MO_64);
8521 read_vec_element(s, tcg_rd, rd, pass, MO_64);
8523 if (is_u) { /* USQADD */
8524 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8525 } else { /* SUQADD */
8526 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8528 write_vec_element(s, tcg_rd, rd, pass, MO_64);
8530 tcg_temp_free_i64(tcg_rd);
8531 tcg_temp_free_i64(tcg_rn);
8532 clear_vec_high(s, !is_scalar, rd);
8533 } else {
8534 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8535 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8536 int pass, maxpasses;
8538 if (is_scalar) {
8539 maxpasses = 1;
8540 } else {
8541 maxpasses = is_q ? 4 : 2;
8544 for (pass = 0; pass < maxpasses; pass++) {
8545 if (is_scalar) {
8546 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8547 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8548 } else {
8549 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8550 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8553 if (is_u) { /* USQADD */
8554 switch (size) {
8555 case 0:
8556 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8557 break;
8558 case 1:
8559 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8560 break;
8561 case 2:
8562 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8563 break;
8564 default:
8565 g_assert_not_reached();
8567 } else { /* SUQADD */
8568 switch (size) {
8569 case 0:
8570 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8571 break;
8572 case 1:
8573 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8574 break;
8575 case 2:
8576 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8577 break;
8578 default:
8579 g_assert_not_reached();
8583 if (is_scalar) {
8584 TCGv_i64 tcg_zero = tcg_const_i64(0);
8585 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8586 tcg_temp_free_i64(tcg_zero);
8588 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8590 tcg_temp_free_i32(tcg_rd);
8591 tcg_temp_free_i32(tcg_rn);
8592 clear_vec_high(s, is_q, rd);
8596 /* AdvSIMD scalar two reg misc
8597 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8598 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8599 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8600 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8602 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8604 int rd = extract32(insn, 0, 5);
8605 int rn = extract32(insn, 5, 5);
8606 int opcode = extract32(insn, 12, 5);
8607 int size = extract32(insn, 22, 2);
8608 bool u = extract32(insn, 29, 1);
8609 bool is_fcvt = false;
8610 int rmode;
8611 TCGv_i32 tcg_rmode;
8612 TCGv_ptr tcg_fpstatus;
8614 switch (opcode) {
8615 case 0x3: /* USQADD / SUQADD*/
8616 if (!fp_access_check(s)) {
8617 return;
8619 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8620 return;
8621 case 0x7: /* SQABS / SQNEG */
8622 break;
8623 case 0xa: /* CMLT */
8624 if (u) {
8625 unallocated_encoding(s);
8626 return;
8628 /* fall through */
8629 case 0x8: /* CMGT, CMGE */
8630 case 0x9: /* CMEQ, CMLE */
8631 case 0xb: /* ABS, NEG */
8632 if (size != 3) {
8633 unallocated_encoding(s);
8634 return;
8636 break;
8637 case 0x12: /* SQXTUN */
8638 if (!u) {
8639 unallocated_encoding(s);
8640 return;
8642 /* fall through */
8643 case 0x14: /* SQXTN, UQXTN */
8644 if (size == 3) {
8645 unallocated_encoding(s);
8646 return;
8648 if (!fp_access_check(s)) {
8649 return;
8651 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8652 return;
8653 case 0xc ... 0xf:
8654 case 0x16 ... 0x1d:
8655 case 0x1f:
8656 /* Floating point: U, size[1] and opcode indicate operation;
8657 * size[0] indicates single or double precision.
8659 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8660 size = extract32(size, 0, 1) ? 3 : 2;
8661 switch (opcode) {
8662 case 0x2c: /* FCMGT (zero) */
8663 case 0x2d: /* FCMEQ (zero) */
8664 case 0x2e: /* FCMLT (zero) */
8665 case 0x6c: /* FCMGE (zero) */
8666 case 0x6d: /* FCMLE (zero) */
8667 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8668 return;
8669 case 0x1d: /* SCVTF */
8670 case 0x5d: /* UCVTF */
8672 bool is_signed = (opcode == 0x1d);
8673 if (!fp_access_check(s)) {
8674 return;
8676 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8677 return;
8679 case 0x3d: /* FRECPE */
8680 case 0x3f: /* FRECPX */
8681 case 0x7d: /* FRSQRTE */
8682 if (!fp_access_check(s)) {
8683 return;
8685 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8686 return;
8687 case 0x1a: /* FCVTNS */
8688 case 0x1b: /* FCVTMS */
8689 case 0x3a: /* FCVTPS */
8690 case 0x3b: /* FCVTZS */
8691 case 0x5a: /* FCVTNU */
8692 case 0x5b: /* FCVTMU */
8693 case 0x7a: /* FCVTPU */
8694 case 0x7b: /* FCVTZU */
8695 is_fcvt = true;
8696 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8697 break;
8698 case 0x1c: /* FCVTAS */
8699 case 0x5c: /* FCVTAU */
8700 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8701 is_fcvt = true;
8702 rmode = FPROUNDING_TIEAWAY;
8703 break;
8704 case 0x56: /* FCVTXN, FCVTXN2 */
8705 if (size == 2) {
8706 unallocated_encoding(s);
8707 return;
8709 if (!fp_access_check(s)) {
8710 return;
8712 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8713 return;
8714 default:
8715 unallocated_encoding(s);
8716 return;
8718 break;
8719 default:
8720 unallocated_encoding(s);
8721 return;
8724 if (!fp_access_check(s)) {
8725 return;
8728 if (is_fcvt) {
8729 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8730 tcg_fpstatus = get_fpstatus_ptr(false);
8731 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8732 } else {
8733 tcg_rmode = NULL;
8734 tcg_fpstatus = NULL;
8737 if (size == 3) {
8738 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8739 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8741 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8742 write_fp_dreg(s, rd, tcg_rd);
8743 tcg_temp_free_i64(tcg_rd);
8744 tcg_temp_free_i64(tcg_rn);
8745 } else {
8746 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8747 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8749 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8751 switch (opcode) {
8752 case 0x7: /* SQABS, SQNEG */
8754 NeonGenOneOpEnvFn *genfn;
8755 static NeonGenOneOpEnvFn * const fns[3][2] = {
8756 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8757 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8758 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8760 genfn = fns[size][u];
8761 genfn(tcg_rd, cpu_env, tcg_rn);
8762 break;
8764 case 0x1a: /* FCVTNS */
8765 case 0x1b: /* FCVTMS */
8766 case 0x1c: /* FCVTAS */
8767 case 0x3a: /* FCVTPS */
8768 case 0x3b: /* FCVTZS */
8770 TCGv_i32 tcg_shift = tcg_const_i32(0);
8771 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8772 tcg_temp_free_i32(tcg_shift);
8773 break;
8775 case 0x5a: /* FCVTNU */
8776 case 0x5b: /* FCVTMU */
8777 case 0x5c: /* FCVTAU */
8778 case 0x7a: /* FCVTPU */
8779 case 0x7b: /* FCVTZU */
8781 TCGv_i32 tcg_shift = tcg_const_i32(0);
8782 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8783 tcg_temp_free_i32(tcg_shift);
8784 break;
8786 default:
8787 g_assert_not_reached();
8790 write_fp_sreg(s, rd, tcg_rd);
8791 tcg_temp_free_i32(tcg_rd);
8792 tcg_temp_free_i32(tcg_rn);
8795 if (is_fcvt) {
8796 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8797 tcg_temp_free_i32(tcg_rmode);
8798 tcg_temp_free_ptr(tcg_fpstatus);
8802 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8804 tcg_gen_vec_sar8i_i64(a, a, shift);
8805 tcg_gen_vec_add8_i64(d, d, a);
8808 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8810 tcg_gen_vec_sar16i_i64(a, a, shift);
8811 tcg_gen_vec_add16_i64(d, d, a);
8814 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8816 tcg_gen_sari_i32(a, a, shift);
8817 tcg_gen_add_i32(d, d, a);
8820 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8822 tcg_gen_sari_i64(a, a, shift);
8823 tcg_gen_add_i64(d, d, a);
8826 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8828 tcg_gen_sari_vec(vece, a, a, sh);
8829 tcg_gen_add_vec(vece, d, d, a);
8832 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8834 tcg_gen_vec_shr8i_i64(a, a, shift);
8835 tcg_gen_vec_add8_i64(d, d, a);
8838 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8840 tcg_gen_vec_shr16i_i64(a, a, shift);
8841 tcg_gen_vec_add16_i64(d, d, a);
8844 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8846 tcg_gen_shri_i32(a, a, shift);
8847 tcg_gen_add_i32(d, d, a);
8850 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8852 tcg_gen_shri_i64(a, a, shift);
8853 tcg_gen_add_i64(d, d, a);
8856 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8858 tcg_gen_shri_vec(vece, a, a, sh);
8859 tcg_gen_add_vec(vece, d, d, a);
8862 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8864 uint64_t mask = dup_const(MO_8, 0xff >> shift);
8865 TCGv_i64 t = tcg_temp_new_i64();
8867 tcg_gen_shri_i64(t, a, shift);
8868 tcg_gen_andi_i64(t, t, mask);
8869 tcg_gen_andi_i64(d, d, ~mask);
8870 tcg_gen_or_i64(d, d, t);
8871 tcg_temp_free_i64(t);
8874 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8876 uint64_t mask = dup_const(MO_16, 0xffff >> shift);
8877 TCGv_i64 t = tcg_temp_new_i64();
8879 tcg_gen_shri_i64(t, a, shift);
8880 tcg_gen_andi_i64(t, t, mask);
8881 tcg_gen_andi_i64(d, d, ~mask);
8882 tcg_gen_or_i64(d, d, t);
8883 tcg_temp_free_i64(t);
8886 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8888 tcg_gen_shri_i32(a, a, shift);
8889 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
8892 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8894 tcg_gen_shri_i64(a, a, shift);
8895 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
8898 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8900 uint64_t mask = (2ull << ((8 << vece) - 1)) - 1;
8901 TCGv_vec t = tcg_temp_new_vec_matching(d);
8902 TCGv_vec m = tcg_temp_new_vec_matching(d);
8904 tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh));
8905 tcg_gen_shri_vec(vece, t, a, sh);
8906 tcg_gen_and_vec(vece, d, d, m);
8907 tcg_gen_or_vec(vece, d, d, t);
8909 tcg_temp_free_vec(t);
8910 tcg_temp_free_vec(m);
8913 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8914 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8915 int immh, int immb, int opcode, int rn, int rd)
8917 static const GVecGen2i ssra_op[4] = {
8918 { .fni8 = gen_ssra8_i64,
8919 .fniv = gen_ssra_vec,
8920 .load_dest = true,
8921 .opc = INDEX_op_sari_vec,
8922 .vece = MO_8 },
8923 { .fni8 = gen_ssra16_i64,
8924 .fniv = gen_ssra_vec,
8925 .load_dest = true,
8926 .opc = INDEX_op_sari_vec,
8927 .vece = MO_16 },
8928 { .fni4 = gen_ssra32_i32,
8929 .fniv = gen_ssra_vec,
8930 .load_dest = true,
8931 .opc = INDEX_op_sari_vec,
8932 .vece = MO_32 },
8933 { .fni8 = gen_ssra64_i64,
8934 .fniv = gen_ssra_vec,
8935 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8936 .load_dest = true,
8937 .opc = INDEX_op_sari_vec,
8938 .vece = MO_64 },
8940 static const GVecGen2i usra_op[4] = {
8941 { .fni8 = gen_usra8_i64,
8942 .fniv = gen_usra_vec,
8943 .load_dest = true,
8944 .opc = INDEX_op_shri_vec,
8945 .vece = MO_8, },
8946 { .fni8 = gen_usra16_i64,
8947 .fniv = gen_usra_vec,
8948 .load_dest = true,
8949 .opc = INDEX_op_shri_vec,
8950 .vece = MO_16, },
8951 { .fni4 = gen_usra32_i32,
8952 .fniv = gen_usra_vec,
8953 .load_dest = true,
8954 .opc = INDEX_op_shri_vec,
8955 .vece = MO_32, },
8956 { .fni8 = gen_usra64_i64,
8957 .fniv = gen_usra_vec,
8958 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8959 .load_dest = true,
8960 .opc = INDEX_op_shri_vec,
8961 .vece = MO_64, },
8963 static const GVecGen2i sri_op[4] = {
8964 { .fni8 = gen_shr8_ins_i64,
8965 .fniv = gen_shr_ins_vec,
8966 .load_dest = true,
8967 .opc = INDEX_op_shri_vec,
8968 .vece = MO_8 },
8969 { .fni8 = gen_shr16_ins_i64,
8970 .fniv = gen_shr_ins_vec,
8971 .load_dest = true,
8972 .opc = INDEX_op_shri_vec,
8973 .vece = MO_16 },
8974 { .fni4 = gen_shr32_ins_i32,
8975 .fniv = gen_shr_ins_vec,
8976 .load_dest = true,
8977 .opc = INDEX_op_shri_vec,
8978 .vece = MO_32 },
8979 { .fni8 = gen_shr64_ins_i64,
8980 .fniv = gen_shr_ins_vec,
8981 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8982 .load_dest = true,
8983 .opc = INDEX_op_shri_vec,
8984 .vece = MO_64 },
8987 int size = 32 - clz32(immh) - 1;
8988 int immhb = immh << 3 | immb;
8989 int shift = 2 * (8 << size) - immhb;
8990 bool accumulate = false;
8991 int dsize = is_q ? 128 : 64;
8992 int esize = 8 << size;
8993 int elements = dsize/esize;
8994 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8995 TCGv_i64 tcg_rn = new_tmp_a64(s);
8996 TCGv_i64 tcg_rd = new_tmp_a64(s);
8997 TCGv_i64 tcg_round;
8998 uint64_t round_const;
8999 int i;
9001 if (extract32(immh, 3, 1) && !is_q) {
9002 unallocated_encoding(s);
9003 return;
9006 if (size > 3 && !is_q) {
9007 unallocated_encoding(s);
9008 return;
9011 if (!fp_access_check(s)) {
9012 return;
9015 switch (opcode) {
9016 case 0x02: /* SSRA / USRA (accumulate) */
9017 if (is_u) {
9018 /* Shift count same as element size produces zero to add. */
9019 if (shift == 8 << size) {
9020 goto done;
9022 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9023 } else {
9024 /* Shift count same as element size produces all sign to add. */
9025 if (shift == 8 << size) {
9026 shift -= 1;
9028 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9030 return;
9031 case 0x08: /* SRI */
9032 /* Shift count same as element size is valid but does nothing. */
9033 if (shift == 8 << size) {
9034 goto done;
9036 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9037 return;
9039 case 0x00: /* SSHR / USHR */
9040 if (is_u) {
9041 if (shift == 8 << size) {
9042 /* Shift count the same size as element size produces zero. */
9043 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9044 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9045 } else {
9046 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9048 } else {
9049 /* Shift count the same size as element size produces all sign. */
9050 if (shift == 8 << size) {
9051 shift -= 1;
9053 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9055 return;
9057 case 0x04: /* SRSHR / URSHR (rounding) */
9058 break;
9059 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9060 accumulate = true;
9061 break;
9062 default:
9063 g_assert_not_reached();
9066 round_const = 1ULL << (shift - 1);
9067 tcg_round = tcg_const_i64(round_const);
9069 for (i = 0; i < elements; i++) {
9070 read_vec_element(s, tcg_rn, rn, i, memop);
9071 if (accumulate) {
9072 read_vec_element(s, tcg_rd, rd, i, memop);
9075 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9076 accumulate, is_u, size, shift);
9078 write_vec_element(s, tcg_rd, rd, i, size);
9080 tcg_temp_free_i64(tcg_round);
9082 done:
9083 clear_vec_high(s, is_q, rd);
9086 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9088 uint64_t mask = dup_const(MO_8, 0xff << shift);
9089 TCGv_i64 t = tcg_temp_new_i64();
9091 tcg_gen_shli_i64(t, a, shift);
9092 tcg_gen_andi_i64(t, t, mask);
9093 tcg_gen_andi_i64(d, d, ~mask);
9094 tcg_gen_or_i64(d, d, t);
9095 tcg_temp_free_i64(t);
9098 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9100 uint64_t mask = dup_const(MO_16, 0xffff << shift);
9101 TCGv_i64 t = tcg_temp_new_i64();
9103 tcg_gen_shli_i64(t, a, shift);
9104 tcg_gen_andi_i64(t, t, mask);
9105 tcg_gen_andi_i64(d, d, ~mask);
9106 tcg_gen_or_i64(d, d, t);
9107 tcg_temp_free_i64(t);
9110 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9112 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
9115 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9117 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
9120 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9122 uint64_t mask = (1ull << sh) - 1;
9123 TCGv_vec t = tcg_temp_new_vec_matching(d);
9124 TCGv_vec m = tcg_temp_new_vec_matching(d);
9126 tcg_gen_dupi_vec(vece, m, mask);
9127 tcg_gen_shli_vec(vece, t, a, sh);
9128 tcg_gen_and_vec(vece, d, d, m);
9129 tcg_gen_or_vec(vece, d, d, t);
9131 tcg_temp_free_vec(t);
9132 tcg_temp_free_vec(m);
9135 /* SHL/SLI - Vector shift left */
9136 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9137 int immh, int immb, int opcode, int rn, int rd)
9139 static const GVecGen2i shi_op[4] = {
9140 { .fni8 = gen_shl8_ins_i64,
9141 .fniv = gen_shl_ins_vec,
9142 .opc = INDEX_op_shli_vec,
9143 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9144 .load_dest = true,
9145 .vece = MO_8 },
9146 { .fni8 = gen_shl16_ins_i64,
9147 .fniv = gen_shl_ins_vec,
9148 .opc = INDEX_op_shli_vec,
9149 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9150 .load_dest = true,
9151 .vece = MO_16 },
9152 { .fni4 = gen_shl32_ins_i32,
9153 .fniv = gen_shl_ins_vec,
9154 .opc = INDEX_op_shli_vec,
9155 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9156 .load_dest = true,
9157 .vece = MO_32 },
9158 { .fni8 = gen_shl64_ins_i64,
9159 .fniv = gen_shl_ins_vec,
9160 .opc = INDEX_op_shli_vec,
9161 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9162 .load_dest = true,
9163 .vece = MO_64 },
9165 int size = 32 - clz32(immh) - 1;
9166 int immhb = immh << 3 | immb;
9167 int shift = immhb - (8 << size);
9169 if (extract32(immh, 3, 1) && !is_q) {
9170 unallocated_encoding(s);
9171 return;
9174 if (size > 3 && !is_q) {
9175 unallocated_encoding(s);
9176 return;
9179 if (!fp_access_check(s)) {
9180 return;
9183 if (insert) {
9184 gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]);
9185 } else {
9186 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9190 /* USHLL/SHLL - Vector shift left with widening */
9191 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
9192 int immh, int immb, int opcode, int rn, int rd)
9194 int size = 32 - clz32(immh) - 1;
9195 int immhb = immh << 3 | immb;
9196 int shift = immhb - (8 << size);
9197 int dsize = 64;
9198 int esize = 8 << size;
9199 int elements = dsize/esize;
9200 TCGv_i64 tcg_rn = new_tmp_a64(s);
9201 TCGv_i64 tcg_rd = new_tmp_a64(s);
9202 int i;
9204 if (size >= 3) {
9205 unallocated_encoding(s);
9206 return;
9209 if (!fp_access_check(s)) {
9210 return;
9213 /* For the LL variants the store is larger than the load,
9214 * so if rd == rn we would overwrite parts of our input.
9215 * So load everything right now and use shifts in the main loop.
9217 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
9219 for (i = 0; i < elements; i++) {
9220 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
9221 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
9222 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
9223 write_vec_element(s, tcg_rd, rd, i, size + 1);
9227 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
9228 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
9229 int immh, int immb, int opcode, int rn, int rd)
9231 int immhb = immh << 3 | immb;
9232 int size = 32 - clz32(immh) - 1;
9233 int dsize = 64;
9234 int esize = 8 << size;
9235 int elements = dsize/esize;
9236 int shift = (2 * esize) - immhb;
9237 bool round = extract32(opcode, 0, 1);
9238 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
9239 TCGv_i64 tcg_round;
9240 int i;
9242 if (extract32(immh, 3, 1)) {
9243 unallocated_encoding(s);
9244 return;
9247 if (!fp_access_check(s)) {
9248 return;
9251 tcg_rn = tcg_temp_new_i64();
9252 tcg_rd = tcg_temp_new_i64();
9253 tcg_final = tcg_temp_new_i64();
9254 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
9256 if (round) {
9257 uint64_t round_const = 1ULL << (shift - 1);
9258 tcg_round = tcg_const_i64(round_const);
9259 } else {
9260 tcg_round = NULL;
9263 for (i = 0; i < elements; i++) {
9264 read_vec_element(s, tcg_rn, rn, i, size+1);
9265 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9266 false, true, size+1, shift);
9268 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9271 if (!is_q) {
9272 write_vec_element(s, tcg_final, rd, 0, MO_64);
9273 } else {
9274 write_vec_element(s, tcg_final, rd, 1, MO_64);
9276 if (round) {
9277 tcg_temp_free_i64(tcg_round);
9279 tcg_temp_free_i64(tcg_rn);
9280 tcg_temp_free_i64(tcg_rd);
9281 tcg_temp_free_i64(tcg_final);
9283 clear_vec_high(s, is_q, rd);
9287 /* AdvSIMD shift by immediate
9288 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9289 * +---+---+---+-------------+------+------+--------+---+------+------+
9290 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9291 * +---+---+---+-------------+------+------+--------+---+------+------+
9293 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
9295 int rd = extract32(insn, 0, 5);
9296 int rn = extract32(insn, 5, 5);
9297 int opcode = extract32(insn, 11, 5);
9298 int immb = extract32(insn, 16, 3);
9299 int immh = extract32(insn, 19, 4);
9300 bool is_u = extract32(insn, 29, 1);
9301 bool is_q = extract32(insn, 30, 1);
9303 switch (opcode) {
9304 case 0x08: /* SRI */
9305 if (!is_u) {
9306 unallocated_encoding(s);
9307 return;
9309 /* fall through */
9310 case 0x00: /* SSHR / USHR */
9311 case 0x02: /* SSRA / USRA (accumulate) */
9312 case 0x04: /* SRSHR / URSHR (rounding) */
9313 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9314 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
9315 break;
9316 case 0x0a: /* SHL / SLI */
9317 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9318 break;
9319 case 0x10: /* SHRN */
9320 case 0x11: /* RSHRN / SQRSHRUN */
9321 if (is_u) {
9322 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
9323 opcode, rn, rd);
9324 } else {
9325 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
9327 break;
9328 case 0x12: /* SQSHRN / UQSHRN */
9329 case 0x13: /* SQRSHRN / UQRSHRN */
9330 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
9331 opcode, rn, rd);
9332 break;
9333 case 0x14: /* SSHLL / USHLL */
9334 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9335 break;
9336 case 0x1c: /* SCVTF / UCVTF */
9337 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
9338 opcode, rn, rd);
9339 break;
9340 case 0xc: /* SQSHLU */
9341 if (!is_u) {
9342 unallocated_encoding(s);
9343 return;
9345 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
9346 break;
9347 case 0xe: /* SQSHL, UQSHL */
9348 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
9349 break;
9350 case 0x1f: /* FCVTZS/ FCVTZU */
9351 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
9352 return;
9353 default:
9354 unallocated_encoding(s);
9355 return;
9359 /* Generate code to do a "long" addition or subtraction, ie one done in
9360 * TCGv_i64 on vector lanes twice the width specified by size.
9362 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
9363 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
9365 static NeonGenTwo64OpFn * const fns[3][2] = {
9366 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
9367 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
9368 { tcg_gen_add_i64, tcg_gen_sub_i64 },
9370 NeonGenTwo64OpFn *genfn;
9371 assert(size < 3);
9373 genfn = fns[size][is_sub];
9374 genfn(tcg_res, tcg_op1, tcg_op2);
9377 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
9378 int opcode, int rd, int rn, int rm)
9380 /* 3-reg-different widening insns: 64 x 64 -> 128 */
9381 TCGv_i64 tcg_res[2];
9382 int pass, accop;
9384 tcg_res[0] = tcg_temp_new_i64();
9385 tcg_res[1] = tcg_temp_new_i64();
9387 /* Does this op do an adding accumulate, a subtracting accumulate,
9388 * or no accumulate at all?
9390 switch (opcode) {
9391 case 5:
9392 case 8:
9393 case 9:
9394 accop = 1;
9395 break;
9396 case 10:
9397 case 11:
9398 accop = -1;
9399 break;
9400 default:
9401 accop = 0;
9402 break;
9405 if (accop != 0) {
9406 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
9407 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
9410 /* size == 2 means two 32x32->64 operations; this is worth special
9411 * casing because we can generally handle it inline.
9413 if (size == 2) {
9414 for (pass = 0; pass < 2; pass++) {
9415 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9416 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9417 TCGv_i64 tcg_passres;
9418 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
9420 int elt = pass + is_q * 2;
9422 read_vec_element(s, tcg_op1, rn, elt, memop);
9423 read_vec_element(s, tcg_op2, rm, elt, memop);
9425 if (accop == 0) {
9426 tcg_passres = tcg_res[pass];
9427 } else {
9428 tcg_passres = tcg_temp_new_i64();
9431 switch (opcode) {
9432 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9433 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
9434 break;
9435 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9436 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
9437 break;
9438 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9439 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9441 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
9442 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
9444 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
9445 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
9446 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
9447 tcg_passres,
9448 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
9449 tcg_temp_free_i64(tcg_tmp1);
9450 tcg_temp_free_i64(tcg_tmp2);
9451 break;
9453 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9454 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9455 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
9456 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9457 break;
9458 case 9: /* SQDMLAL, SQDMLAL2 */
9459 case 11: /* SQDMLSL, SQDMLSL2 */
9460 case 13: /* SQDMULL, SQDMULL2 */
9461 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9462 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
9463 tcg_passres, tcg_passres);
9464 break;
9465 default:
9466 g_assert_not_reached();
9469 if (opcode == 9 || opcode == 11) {
9470 /* saturating accumulate ops */
9471 if (accop < 0) {
9472 tcg_gen_neg_i64(tcg_passres, tcg_passres);
9474 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
9475 tcg_res[pass], tcg_passres);
9476 } else if (accop > 0) {
9477 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9478 } else if (accop < 0) {
9479 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9482 if (accop != 0) {
9483 tcg_temp_free_i64(tcg_passres);
9486 tcg_temp_free_i64(tcg_op1);
9487 tcg_temp_free_i64(tcg_op2);
9489 } else {
9490 /* size 0 or 1, generally helper functions */
9491 for (pass = 0; pass < 2; pass++) {
9492 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9493 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9494 TCGv_i64 tcg_passres;
9495 int elt = pass + is_q * 2;
9497 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
9498 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
9500 if (accop == 0) {
9501 tcg_passres = tcg_res[pass];
9502 } else {
9503 tcg_passres = tcg_temp_new_i64();
9506 switch (opcode) {
9507 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9508 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9510 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
9511 static NeonGenWidenFn * const widenfns[2][2] = {
9512 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
9513 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
9515 NeonGenWidenFn *widenfn = widenfns[size][is_u];
9517 widenfn(tcg_op2_64, tcg_op2);
9518 widenfn(tcg_passres, tcg_op1);
9519 gen_neon_addl(size, (opcode == 2), tcg_passres,
9520 tcg_passres, tcg_op2_64);
9521 tcg_temp_free_i64(tcg_op2_64);
9522 break;
9524 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9525 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9526 if (size == 0) {
9527 if (is_u) {
9528 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
9529 } else {
9530 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
9532 } else {
9533 if (is_u) {
9534 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
9535 } else {
9536 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
9539 break;
9540 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9541 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9542 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
9543 if (size == 0) {
9544 if (is_u) {
9545 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
9546 } else {
9547 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
9549 } else {
9550 if (is_u) {
9551 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
9552 } else {
9553 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
9556 break;
9557 case 9: /* SQDMLAL, SQDMLAL2 */
9558 case 11: /* SQDMLSL, SQDMLSL2 */
9559 case 13: /* SQDMULL, SQDMULL2 */
9560 assert(size == 1);
9561 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
9562 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
9563 tcg_passres, tcg_passres);
9564 break;
9565 case 14: /* PMULL */
9566 assert(size == 0);
9567 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
9568 break;
9569 default:
9570 g_assert_not_reached();
9572 tcg_temp_free_i32(tcg_op1);
9573 tcg_temp_free_i32(tcg_op2);
9575 if (accop != 0) {
9576 if (opcode == 9 || opcode == 11) {
9577 /* saturating accumulate ops */
9578 if (accop < 0) {
9579 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
9581 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
9582 tcg_res[pass],
9583 tcg_passres);
9584 } else {
9585 gen_neon_addl(size, (accop < 0), tcg_res[pass],
9586 tcg_res[pass], tcg_passres);
9588 tcg_temp_free_i64(tcg_passres);
9593 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9594 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9595 tcg_temp_free_i64(tcg_res[0]);
9596 tcg_temp_free_i64(tcg_res[1]);
9599 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
9600 int opcode, int rd, int rn, int rm)
9602 TCGv_i64 tcg_res[2];
9603 int part = is_q ? 2 : 0;
9604 int pass;
9606 for (pass = 0; pass < 2; pass++) {
9607 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9608 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9609 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
9610 static NeonGenWidenFn * const widenfns[3][2] = {
9611 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
9612 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
9613 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
9615 NeonGenWidenFn *widenfn = widenfns[size][is_u];
9617 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9618 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
9619 widenfn(tcg_op2_wide, tcg_op2);
9620 tcg_temp_free_i32(tcg_op2);
9621 tcg_res[pass] = tcg_temp_new_i64();
9622 gen_neon_addl(size, (opcode == 3),
9623 tcg_res[pass], tcg_op1, tcg_op2_wide);
9624 tcg_temp_free_i64(tcg_op1);
9625 tcg_temp_free_i64(tcg_op2_wide);
9628 for (pass = 0; pass < 2; pass++) {
9629 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9630 tcg_temp_free_i64(tcg_res[pass]);
9634 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
9636 tcg_gen_addi_i64(in, in, 1U << 31);
9637 tcg_gen_extrh_i64_i32(res, in);
9640 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
9641 int opcode, int rd, int rn, int rm)
9643 TCGv_i32 tcg_res[2];
9644 int part = is_q ? 2 : 0;
9645 int pass;
9647 for (pass = 0; pass < 2; pass++) {
9648 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9649 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9650 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
9651 static NeonGenNarrowFn * const narrowfns[3][2] = {
9652 { gen_helper_neon_narrow_high_u8,
9653 gen_helper_neon_narrow_round_high_u8 },
9654 { gen_helper_neon_narrow_high_u16,
9655 gen_helper_neon_narrow_round_high_u16 },
9656 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
9658 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
9660 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9661 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9663 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
9665 tcg_temp_free_i64(tcg_op1);
9666 tcg_temp_free_i64(tcg_op2);
9668 tcg_res[pass] = tcg_temp_new_i32();
9669 gennarrow(tcg_res[pass], tcg_wideres);
9670 tcg_temp_free_i64(tcg_wideres);
9673 for (pass = 0; pass < 2; pass++) {
9674 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
9675 tcg_temp_free_i32(tcg_res[pass]);
9677 clear_vec_high(s, is_q, rd);
9680 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
9682 /* PMULL of 64 x 64 -> 128 is an odd special case because it
9683 * is the only three-reg-diff instruction which produces a
9684 * 128-bit wide result from a single operation. However since
9685 * it's possible to calculate the two halves more or less
9686 * separately we just use two helper calls.
9688 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9689 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9690 TCGv_i64 tcg_res = tcg_temp_new_i64();
9692 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
9693 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
9694 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
9695 write_vec_element(s, tcg_res, rd, 0, MO_64);
9696 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
9697 write_vec_element(s, tcg_res, rd, 1, MO_64);
9699 tcg_temp_free_i64(tcg_op1);
9700 tcg_temp_free_i64(tcg_op2);
9701 tcg_temp_free_i64(tcg_res);
9704 /* AdvSIMD three different
9705 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9706 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
9707 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9708 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
9710 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
9712 /* Instructions in this group fall into three basic classes
9713 * (in each case with the operation working on each element in
9714 * the input vectors):
9715 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
9716 * 128 bit input)
9717 * (2) wide 64 x 128 -> 128
9718 * (3) narrowing 128 x 128 -> 64
9719 * Here we do initial decode, catch unallocated cases and
9720 * dispatch to separate functions for each class.
9722 int is_q = extract32(insn, 30, 1);
9723 int is_u = extract32(insn, 29, 1);
9724 int size = extract32(insn, 22, 2);
9725 int opcode = extract32(insn, 12, 4);
9726 int rm = extract32(insn, 16, 5);
9727 int rn = extract32(insn, 5, 5);
9728 int rd = extract32(insn, 0, 5);
9730 switch (opcode) {
9731 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
9732 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
9733 /* 64 x 128 -> 128 */
9734 if (size == 3) {
9735 unallocated_encoding(s);
9736 return;
9738 if (!fp_access_check(s)) {
9739 return;
9741 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
9742 break;
9743 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
9744 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
9745 /* 128 x 128 -> 64 */
9746 if (size == 3) {
9747 unallocated_encoding(s);
9748 return;
9750 if (!fp_access_check(s)) {
9751 return;
9753 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
9754 break;
9755 case 14: /* PMULL, PMULL2 */
9756 if (is_u || size == 1 || size == 2) {
9757 unallocated_encoding(s);
9758 return;
9760 if (size == 3) {
9761 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
9762 unallocated_encoding(s);
9763 return;
9765 if (!fp_access_check(s)) {
9766 return;
9768 handle_pmull_64(s, is_q, rd, rn, rm);
9769 return;
9771 goto is_widening;
9772 case 9: /* SQDMLAL, SQDMLAL2 */
9773 case 11: /* SQDMLSL, SQDMLSL2 */
9774 case 13: /* SQDMULL, SQDMULL2 */
9775 if (is_u || size == 0) {
9776 unallocated_encoding(s);
9777 return;
9779 /* fall through */
9780 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9781 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9782 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9783 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9784 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9785 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9786 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
9787 /* 64 x 64 -> 128 */
9788 if (size == 3) {
9789 unallocated_encoding(s);
9790 return;
9792 is_widening:
9793 if (!fp_access_check(s)) {
9794 return;
9797 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9798 break;
9799 default:
9800 /* opcode 15 not allocated */
9801 unallocated_encoding(s);
9802 break;
9806 static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9808 tcg_gen_xor_i64(rn, rn, rm);
9809 tcg_gen_and_i64(rn, rn, rd);
9810 tcg_gen_xor_i64(rd, rm, rn);
9813 static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9815 tcg_gen_xor_i64(rn, rn, rd);
9816 tcg_gen_and_i64(rn, rn, rm);
9817 tcg_gen_xor_i64(rd, rd, rn);
9820 static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9822 tcg_gen_xor_i64(rn, rn, rd);
9823 tcg_gen_andc_i64(rn, rn, rm);
9824 tcg_gen_xor_i64(rd, rd, rn);
9827 static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9829 tcg_gen_xor_vec(vece, rn, rn, rm);
9830 tcg_gen_and_vec(vece, rn, rn, rd);
9831 tcg_gen_xor_vec(vece, rd, rm, rn);
9834 static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9836 tcg_gen_xor_vec(vece, rn, rn, rd);
9837 tcg_gen_and_vec(vece, rn, rn, rm);
9838 tcg_gen_xor_vec(vece, rd, rd, rn);
9841 static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9843 tcg_gen_xor_vec(vece, rn, rn, rd);
9844 tcg_gen_andc_vec(vece, rn, rn, rm);
9845 tcg_gen_xor_vec(vece, rd, rd, rn);
9848 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9849 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9851 static const GVecGen3 bsl_op = {
9852 .fni8 = gen_bsl_i64,
9853 .fniv = gen_bsl_vec,
9854 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9855 .load_dest = true
9857 static const GVecGen3 bit_op = {
9858 .fni8 = gen_bit_i64,
9859 .fniv = gen_bit_vec,
9860 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9861 .load_dest = true
9863 static const GVecGen3 bif_op = {
9864 .fni8 = gen_bif_i64,
9865 .fniv = gen_bif_vec,
9866 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9867 .load_dest = true
9870 int rd = extract32(insn, 0, 5);
9871 int rn = extract32(insn, 5, 5);
9872 int rm = extract32(insn, 16, 5);
9873 int size = extract32(insn, 22, 2);
9874 bool is_u = extract32(insn, 29, 1);
9875 bool is_q = extract32(insn, 30, 1);
9877 if (!fp_access_check(s)) {
9878 return;
9881 switch (size + 4 * is_u) {
9882 case 0: /* AND */
9883 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
9884 return;
9885 case 1: /* BIC */
9886 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
9887 return;
9888 case 2: /* ORR */
9889 if (rn == rm) { /* MOV */
9890 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
9891 } else {
9892 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
9894 return;
9895 case 3: /* ORN */
9896 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
9897 return;
9898 case 4: /* EOR */
9899 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
9900 return;
9902 case 5: /* BSL bitwise select */
9903 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
9904 return;
9905 case 6: /* BIT, bitwise insert if true */
9906 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
9907 return;
9908 case 7: /* BIF, bitwise insert if false */
9909 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
9910 return;
9912 default:
9913 g_assert_not_reached();
9917 /* Helper functions for 32 bit comparisons */
9918 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9920 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9923 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9925 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9928 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9930 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9933 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9935 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9938 /* Pairwise op subgroup of C3.6.16.
9940 * This is called directly or via the handle_3same_float for float pairwise
9941 * operations where the opcode and size are calculated differently.
9943 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9944 int size, int rn, int rm, int rd)
9946 TCGv_ptr fpst;
9947 int pass;
9949 /* Floating point operations need fpst */
9950 if (opcode >= 0x58) {
9951 fpst = get_fpstatus_ptr(false);
9952 } else {
9953 fpst = NULL;
9956 if (!fp_access_check(s)) {
9957 return;
9960 /* These operations work on the concatenated rm:rn, with each pair of
9961 * adjacent elements being operated on to produce an element in the result.
9963 if (size == 3) {
9964 TCGv_i64 tcg_res[2];
9966 for (pass = 0; pass < 2; pass++) {
9967 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9968 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9969 int passreg = (pass == 0) ? rn : rm;
9971 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9972 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9973 tcg_res[pass] = tcg_temp_new_i64();
9975 switch (opcode) {
9976 case 0x17: /* ADDP */
9977 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9978 break;
9979 case 0x58: /* FMAXNMP */
9980 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9981 break;
9982 case 0x5a: /* FADDP */
9983 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9984 break;
9985 case 0x5e: /* FMAXP */
9986 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9987 break;
9988 case 0x78: /* FMINNMP */
9989 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9990 break;
9991 case 0x7e: /* FMINP */
9992 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9993 break;
9994 default:
9995 g_assert_not_reached();
9998 tcg_temp_free_i64(tcg_op1);
9999 tcg_temp_free_i64(tcg_op2);
10002 for (pass = 0; pass < 2; pass++) {
10003 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10004 tcg_temp_free_i64(tcg_res[pass]);
10006 } else {
10007 int maxpass = is_q ? 4 : 2;
10008 TCGv_i32 tcg_res[4];
10010 for (pass = 0; pass < maxpass; pass++) {
10011 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10012 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10013 NeonGenTwoOpFn *genfn = NULL;
10014 int passreg = pass < (maxpass / 2) ? rn : rm;
10015 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10017 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10018 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10019 tcg_res[pass] = tcg_temp_new_i32();
10021 switch (opcode) {
10022 case 0x17: /* ADDP */
10024 static NeonGenTwoOpFn * const fns[3] = {
10025 gen_helper_neon_padd_u8,
10026 gen_helper_neon_padd_u16,
10027 tcg_gen_add_i32,
10029 genfn = fns[size];
10030 break;
10032 case 0x14: /* SMAXP, UMAXP */
10034 static NeonGenTwoOpFn * const fns[3][2] = {
10035 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10036 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10037 { gen_max_s32, gen_max_u32 },
10039 genfn = fns[size][u];
10040 break;
10042 case 0x15: /* SMINP, UMINP */
10044 static NeonGenTwoOpFn * const fns[3][2] = {
10045 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10046 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10047 { gen_min_s32, gen_min_u32 },
10049 genfn = fns[size][u];
10050 break;
10052 /* The FP operations are all on single floats (32 bit) */
10053 case 0x58: /* FMAXNMP */
10054 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10055 break;
10056 case 0x5a: /* FADDP */
10057 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10058 break;
10059 case 0x5e: /* FMAXP */
10060 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10061 break;
10062 case 0x78: /* FMINNMP */
10063 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10064 break;
10065 case 0x7e: /* FMINP */
10066 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10067 break;
10068 default:
10069 g_assert_not_reached();
10072 /* FP ops called directly, otherwise call now */
10073 if (genfn) {
10074 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10077 tcg_temp_free_i32(tcg_op1);
10078 tcg_temp_free_i32(tcg_op2);
10081 for (pass = 0; pass < maxpass; pass++) {
10082 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10083 tcg_temp_free_i32(tcg_res[pass]);
10085 clear_vec_high(s, is_q, rd);
10088 if (fpst) {
10089 tcg_temp_free_ptr(fpst);
10093 /* Floating point op subgroup of C3.6.16. */
10094 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10096 /* For floating point ops, the U, size[1] and opcode bits
10097 * together indicate the operation. size[0] indicates single
10098 * or double.
10100 int fpopcode = extract32(insn, 11, 5)
10101 | (extract32(insn, 23, 1) << 5)
10102 | (extract32(insn, 29, 1) << 6);
10103 int is_q = extract32(insn, 30, 1);
10104 int size = extract32(insn, 22, 1);
10105 int rm = extract32(insn, 16, 5);
10106 int rn = extract32(insn, 5, 5);
10107 int rd = extract32(insn, 0, 5);
10109 int datasize = is_q ? 128 : 64;
10110 int esize = 32 << size;
10111 int elements = datasize / esize;
10113 if (size == 1 && !is_q) {
10114 unallocated_encoding(s);
10115 return;
10118 switch (fpopcode) {
10119 case 0x58: /* FMAXNMP */
10120 case 0x5a: /* FADDP */
10121 case 0x5e: /* FMAXP */
10122 case 0x78: /* FMINNMP */
10123 case 0x7e: /* FMINP */
10124 if (size && !is_q) {
10125 unallocated_encoding(s);
10126 return;
10128 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10129 rn, rm, rd);
10130 return;
10131 case 0x1b: /* FMULX */
10132 case 0x1f: /* FRECPS */
10133 case 0x3f: /* FRSQRTS */
10134 case 0x5d: /* FACGE */
10135 case 0x7d: /* FACGT */
10136 case 0x19: /* FMLA */
10137 case 0x39: /* FMLS */
10138 case 0x18: /* FMAXNM */
10139 case 0x1a: /* FADD */
10140 case 0x1c: /* FCMEQ */
10141 case 0x1e: /* FMAX */
10142 case 0x38: /* FMINNM */
10143 case 0x3a: /* FSUB */
10144 case 0x3e: /* FMIN */
10145 case 0x5b: /* FMUL */
10146 case 0x5c: /* FCMGE */
10147 case 0x5f: /* FDIV */
10148 case 0x7a: /* FABD */
10149 case 0x7c: /* FCMGT */
10150 if (!fp_access_check(s)) {
10151 return;
10154 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10155 return;
10156 default:
10157 unallocated_encoding(s);
10158 return;
10162 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10164 gen_helper_neon_mul_u8(a, a, b);
10165 gen_helper_neon_add_u8(d, d, a);
10168 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10170 gen_helper_neon_mul_u16(a, a, b);
10171 gen_helper_neon_add_u16(d, d, a);
10174 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10176 tcg_gen_mul_i32(a, a, b);
10177 tcg_gen_add_i32(d, d, a);
10180 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10182 tcg_gen_mul_i64(a, a, b);
10183 tcg_gen_add_i64(d, d, a);
10186 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10188 tcg_gen_mul_vec(vece, a, a, b);
10189 tcg_gen_add_vec(vece, d, d, a);
10192 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10194 gen_helper_neon_mul_u8(a, a, b);
10195 gen_helper_neon_sub_u8(d, d, a);
10198 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10200 gen_helper_neon_mul_u16(a, a, b);
10201 gen_helper_neon_sub_u16(d, d, a);
10204 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10206 tcg_gen_mul_i32(a, a, b);
10207 tcg_gen_sub_i32(d, d, a);
10210 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10212 tcg_gen_mul_i64(a, a, b);
10213 tcg_gen_sub_i64(d, d, a);
10216 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10218 tcg_gen_mul_vec(vece, a, a, b);
10219 tcg_gen_sub_vec(vece, d, d, a);
10222 /* Integer op subgroup of C3.6.16. */
10223 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10225 static const GVecGen3 cmtst_op[4] = {
10226 { .fni4 = gen_helper_neon_tst_u8,
10227 .fniv = gen_cmtst_vec,
10228 .vece = MO_8 },
10229 { .fni4 = gen_helper_neon_tst_u16,
10230 .fniv = gen_cmtst_vec,
10231 .vece = MO_16 },
10232 { .fni4 = gen_cmtst_i32,
10233 .fniv = gen_cmtst_vec,
10234 .vece = MO_32 },
10235 { .fni8 = gen_cmtst_i64,
10236 .fniv = gen_cmtst_vec,
10237 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10238 .vece = MO_64 },
10240 static const GVecGen3 mla_op[4] = {
10241 { .fni4 = gen_mla8_i32,
10242 .fniv = gen_mla_vec,
10243 .opc = INDEX_op_mul_vec,
10244 .load_dest = true,
10245 .vece = MO_8 },
10246 { .fni4 = gen_mla16_i32,
10247 .fniv = gen_mla_vec,
10248 .opc = INDEX_op_mul_vec,
10249 .load_dest = true,
10250 .vece = MO_16 },
10251 { .fni4 = gen_mla32_i32,
10252 .fniv = gen_mla_vec,
10253 .opc = INDEX_op_mul_vec,
10254 .load_dest = true,
10255 .vece = MO_32 },
10256 { .fni8 = gen_mla64_i64,
10257 .fniv = gen_mla_vec,
10258 .opc = INDEX_op_mul_vec,
10259 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10260 .load_dest = true,
10261 .vece = MO_64 },
10263 static const GVecGen3 mls_op[4] = {
10264 { .fni4 = gen_mls8_i32,
10265 .fniv = gen_mls_vec,
10266 .opc = INDEX_op_mul_vec,
10267 .load_dest = true,
10268 .vece = MO_8 },
10269 { .fni4 = gen_mls16_i32,
10270 .fniv = gen_mls_vec,
10271 .opc = INDEX_op_mul_vec,
10272 .load_dest = true,
10273 .vece = MO_16 },
10274 { .fni4 = gen_mls32_i32,
10275 .fniv = gen_mls_vec,
10276 .opc = INDEX_op_mul_vec,
10277 .load_dest = true,
10278 .vece = MO_32 },
10279 { .fni8 = gen_mls64_i64,
10280 .fniv = gen_mls_vec,
10281 .opc = INDEX_op_mul_vec,
10282 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10283 .load_dest = true,
10284 .vece = MO_64 },
10287 int is_q = extract32(insn, 30, 1);
10288 int u = extract32(insn, 29, 1);
10289 int size = extract32(insn, 22, 2);
10290 int opcode = extract32(insn, 11, 5);
10291 int rm = extract32(insn, 16, 5);
10292 int rn = extract32(insn, 5, 5);
10293 int rd = extract32(insn, 0, 5);
10294 int pass;
10295 TCGCond cond;
10297 switch (opcode) {
10298 case 0x13: /* MUL, PMUL */
10299 if (u && size != 0) {
10300 unallocated_encoding(s);
10301 return;
10303 /* fall through */
10304 case 0x0: /* SHADD, UHADD */
10305 case 0x2: /* SRHADD, URHADD */
10306 case 0x4: /* SHSUB, UHSUB */
10307 case 0xc: /* SMAX, UMAX */
10308 case 0xd: /* SMIN, UMIN */
10309 case 0xe: /* SABD, UABD */
10310 case 0xf: /* SABA, UABA */
10311 case 0x12: /* MLA, MLS */
10312 if (size == 3) {
10313 unallocated_encoding(s);
10314 return;
10316 break;
10317 case 0x16: /* SQDMULH, SQRDMULH */
10318 if (size == 0 || size == 3) {
10319 unallocated_encoding(s);
10320 return;
10322 break;
10323 default:
10324 if (size == 3 && !is_q) {
10325 unallocated_encoding(s);
10326 return;
10328 break;
10331 if (!fp_access_check(s)) {
10332 return;
10335 switch (opcode) {
10336 case 0x10: /* ADD, SUB */
10337 if (u) {
10338 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10339 } else {
10340 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10342 return;
10343 case 0x13: /* MUL, PMUL */
10344 if (!u) { /* MUL */
10345 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10346 return;
10348 break;
10349 case 0x12: /* MLA, MLS */
10350 if (u) {
10351 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10352 } else {
10353 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10355 return;
10356 case 0x11:
10357 if (!u) { /* CMTST */
10358 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10359 return;
10361 /* else CMEQ */
10362 cond = TCG_COND_EQ;
10363 goto do_gvec_cmp;
10364 case 0x06: /* CMGT, CMHI */
10365 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10366 goto do_gvec_cmp;
10367 case 0x07: /* CMGE, CMHS */
10368 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10369 do_gvec_cmp:
10370 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10371 vec_full_reg_offset(s, rn),
10372 vec_full_reg_offset(s, rm),
10373 is_q ? 16 : 8, vec_full_reg_size(s));
10374 return;
10377 if (size == 3) {
10378 assert(is_q);
10379 for (pass = 0; pass < 2; pass++) {
10380 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10381 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10382 TCGv_i64 tcg_res = tcg_temp_new_i64();
10384 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10385 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10387 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10389 write_vec_element(s, tcg_res, rd, pass, MO_64);
10391 tcg_temp_free_i64(tcg_res);
10392 tcg_temp_free_i64(tcg_op1);
10393 tcg_temp_free_i64(tcg_op2);
10395 } else {
10396 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10397 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10398 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10399 TCGv_i32 tcg_res = tcg_temp_new_i32();
10400 NeonGenTwoOpFn *genfn = NULL;
10401 NeonGenTwoOpEnvFn *genenvfn = NULL;
10403 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
10404 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
10406 switch (opcode) {
10407 case 0x0: /* SHADD, UHADD */
10409 static NeonGenTwoOpFn * const fns[3][2] = {
10410 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
10411 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
10412 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
10414 genfn = fns[size][u];
10415 break;
10417 case 0x1: /* SQADD, UQADD */
10419 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10420 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
10421 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
10422 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
10424 genenvfn = fns[size][u];
10425 break;
10427 case 0x2: /* SRHADD, URHADD */
10429 static NeonGenTwoOpFn * const fns[3][2] = {
10430 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
10431 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
10432 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
10434 genfn = fns[size][u];
10435 break;
10437 case 0x4: /* SHSUB, UHSUB */
10439 static NeonGenTwoOpFn * const fns[3][2] = {
10440 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
10441 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
10442 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
10444 genfn = fns[size][u];
10445 break;
10447 case 0x5: /* SQSUB, UQSUB */
10449 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10450 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
10451 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
10452 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
10454 genenvfn = fns[size][u];
10455 break;
10457 case 0x8: /* SSHL, USHL */
10459 static NeonGenTwoOpFn * const fns[3][2] = {
10460 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
10461 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
10462 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
10464 genfn = fns[size][u];
10465 break;
10467 case 0x9: /* SQSHL, UQSHL */
10469 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10470 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
10471 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
10472 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
10474 genenvfn = fns[size][u];
10475 break;
10477 case 0xa: /* SRSHL, URSHL */
10479 static NeonGenTwoOpFn * const fns[3][2] = {
10480 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
10481 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
10482 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
10484 genfn = fns[size][u];
10485 break;
10487 case 0xb: /* SQRSHL, UQRSHL */
10489 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10490 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
10491 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
10492 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
10494 genenvfn = fns[size][u];
10495 break;
10497 case 0xc: /* SMAX, UMAX */
10499 static NeonGenTwoOpFn * const fns[3][2] = {
10500 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
10501 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
10502 { gen_max_s32, gen_max_u32 },
10504 genfn = fns[size][u];
10505 break;
10508 case 0xd: /* SMIN, UMIN */
10510 static NeonGenTwoOpFn * const fns[3][2] = {
10511 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
10512 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
10513 { gen_min_s32, gen_min_u32 },
10515 genfn = fns[size][u];
10516 break;
10518 case 0xe: /* SABD, UABD */
10519 case 0xf: /* SABA, UABA */
10521 static NeonGenTwoOpFn * const fns[3][2] = {
10522 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
10523 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
10524 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
10526 genfn = fns[size][u];
10527 break;
10529 case 0x13: /* MUL, PMUL */
10530 assert(u); /* PMUL */
10531 assert(size == 0);
10532 genfn = gen_helper_neon_mul_p8;
10533 break;
10534 case 0x16: /* SQDMULH, SQRDMULH */
10536 static NeonGenTwoOpEnvFn * const fns[2][2] = {
10537 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
10538 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
10540 assert(size == 1 || size == 2);
10541 genenvfn = fns[size - 1][u];
10542 break;
10544 default:
10545 g_assert_not_reached();
10548 if (genenvfn) {
10549 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
10550 } else {
10551 genfn(tcg_res, tcg_op1, tcg_op2);
10554 if (opcode == 0xf) {
10555 /* SABA, UABA: accumulating ops */
10556 static NeonGenTwoOpFn * const fns[3] = {
10557 gen_helper_neon_add_u8,
10558 gen_helper_neon_add_u16,
10559 tcg_gen_add_i32,
10562 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
10563 fns[size](tcg_res, tcg_op1, tcg_res);
10566 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10568 tcg_temp_free_i32(tcg_res);
10569 tcg_temp_free_i32(tcg_op1);
10570 tcg_temp_free_i32(tcg_op2);
10573 clear_vec_high(s, is_q, rd);
10576 /* AdvSIMD three same
10577 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
10578 * +---+---+---+-----------+------+---+------+--------+---+------+------+
10579 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
10580 * +---+---+---+-----------+------+---+------+--------+---+------+------+
10582 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
10584 int opcode = extract32(insn, 11, 5);
10586 switch (opcode) {
10587 case 0x3: /* logic ops */
10588 disas_simd_3same_logic(s, insn);
10589 break;
10590 case 0x17: /* ADDP */
10591 case 0x14: /* SMAXP, UMAXP */
10592 case 0x15: /* SMINP, UMINP */
10594 /* Pairwise operations */
10595 int is_q = extract32(insn, 30, 1);
10596 int u = extract32(insn, 29, 1);
10597 int size = extract32(insn, 22, 2);
10598 int rm = extract32(insn, 16, 5);
10599 int rn = extract32(insn, 5, 5);
10600 int rd = extract32(insn, 0, 5);
10601 if (opcode == 0x17) {
10602 if (u || (size == 3 && !is_q)) {
10603 unallocated_encoding(s);
10604 return;
10606 } else {
10607 if (size == 3) {
10608 unallocated_encoding(s);
10609 return;
10612 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
10613 break;
10615 case 0x18 ... 0x31:
10616 /* floating point ops, sz[1] and U are part of opcode */
10617 disas_simd_3same_float(s, insn);
10618 break;
10619 default:
10620 disas_simd_3same_int(s, insn);
10621 break;
10626 * Advanced SIMD three same (ARMv8.2 FP16 variants)
10628 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
10629 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
10630 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
10631 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
10633 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
10634 * (register), FACGE, FABD, FCMGT (register) and FACGT.
10637 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
10639 int opcode, fpopcode;
10640 int is_q, u, a, rm, rn, rd;
10641 int datasize, elements;
10642 int pass;
10643 TCGv_ptr fpst;
10644 bool pairwise = false;
10646 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
10647 unallocated_encoding(s);
10648 return;
10651 if (!fp_access_check(s)) {
10652 return;
10655 /* For these floating point ops, the U, a and opcode bits
10656 * together indicate the operation.
10658 opcode = extract32(insn, 11, 3);
10659 u = extract32(insn, 29, 1);
10660 a = extract32(insn, 23, 1);
10661 is_q = extract32(insn, 30, 1);
10662 rm = extract32(insn, 16, 5);
10663 rn = extract32(insn, 5, 5);
10664 rd = extract32(insn, 0, 5);
10666 fpopcode = opcode | (a << 3) | (u << 4);
10667 datasize = is_q ? 128 : 64;
10668 elements = datasize / 16;
10670 switch (fpopcode) {
10671 case 0x10: /* FMAXNMP */
10672 case 0x12: /* FADDP */
10673 case 0x16: /* FMAXP */
10674 case 0x18: /* FMINNMP */
10675 case 0x1e: /* FMINP */
10676 pairwise = true;
10677 break;
10680 fpst = get_fpstatus_ptr(true);
10682 if (pairwise) {
10683 int maxpass = is_q ? 8 : 4;
10684 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10685 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10686 TCGv_i32 tcg_res[8];
10688 for (pass = 0; pass < maxpass; pass++) {
10689 int passreg = pass < (maxpass / 2) ? rn : rm;
10690 int passelt = (pass << 1) & (maxpass - 1);
10692 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
10693 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
10694 tcg_res[pass] = tcg_temp_new_i32();
10696 switch (fpopcode) {
10697 case 0x10: /* FMAXNMP */
10698 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
10699 fpst);
10700 break;
10701 case 0x12: /* FADDP */
10702 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10703 break;
10704 case 0x16: /* FMAXP */
10705 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10706 break;
10707 case 0x18: /* FMINNMP */
10708 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
10709 fpst);
10710 break;
10711 case 0x1e: /* FMINP */
10712 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10713 break;
10714 default:
10715 g_assert_not_reached();
10719 for (pass = 0; pass < maxpass; pass++) {
10720 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
10721 tcg_temp_free_i32(tcg_res[pass]);
10724 tcg_temp_free_i32(tcg_op1);
10725 tcg_temp_free_i32(tcg_op2);
10727 } else {
10728 for (pass = 0; pass < elements; pass++) {
10729 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10730 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10731 TCGv_i32 tcg_res = tcg_temp_new_i32();
10733 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
10734 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
10736 switch (fpopcode) {
10737 case 0x0: /* FMAXNM */
10738 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
10739 break;
10740 case 0x1: /* FMLA */
10741 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10742 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
10743 fpst);
10744 break;
10745 case 0x2: /* FADD */
10746 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
10747 break;
10748 case 0x3: /* FMULX */
10749 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
10750 break;
10751 case 0x4: /* FCMEQ */
10752 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10753 break;
10754 case 0x6: /* FMAX */
10755 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
10756 break;
10757 case 0x7: /* FRECPS */
10758 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10759 break;
10760 case 0x8: /* FMINNM */
10761 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
10762 break;
10763 case 0x9: /* FMLS */
10764 /* As usual for ARM, separate negation for fused multiply-add */
10765 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
10766 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10767 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
10768 fpst);
10769 break;
10770 case 0xa: /* FSUB */
10771 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
10772 break;
10773 case 0xe: /* FMIN */
10774 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
10775 break;
10776 case 0xf: /* FRSQRTS */
10777 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10778 break;
10779 case 0x13: /* FMUL */
10780 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
10781 break;
10782 case 0x14: /* FCMGE */
10783 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10784 break;
10785 case 0x15: /* FACGE */
10786 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10787 break;
10788 case 0x17: /* FDIV */
10789 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
10790 break;
10791 case 0x1a: /* FABD */
10792 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
10793 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
10794 break;
10795 case 0x1c: /* FCMGT */
10796 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10797 break;
10798 case 0x1d: /* FACGT */
10799 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10800 break;
10801 default:
10802 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
10803 __func__, insn, fpopcode, s->pc);
10804 g_assert_not_reached();
10807 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10808 tcg_temp_free_i32(tcg_res);
10809 tcg_temp_free_i32(tcg_op1);
10810 tcg_temp_free_i32(tcg_op2);
10814 tcg_temp_free_ptr(fpst);
10816 clear_vec_high(s, is_q, rd);
10819 /* AdvSIMD three same extra
10820 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
10821 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10822 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
10823 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10825 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10827 int rd = extract32(insn, 0, 5);
10828 int rn = extract32(insn, 5, 5);
10829 int opcode = extract32(insn, 11, 4);
10830 int rm = extract32(insn, 16, 5);
10831 int size = extract32(insn, 22, 2);
10832 bool u = extract32(insn, 29, 1);
10833 bool is_q = extract32(insn, 30, 1);
10834 int feature, rot;
10836 switch (u * 16 + opcode) {
10837 case 0x10: /* SQRDMLAH (vector) */
10838 case 0x11: /* SQRDMLSH (vector) */
10839 if (size != 1 && size != 2) {
10840 unallocated_encoding(s);
10841 return;
10843 feature = ARM_FEATURE_V8_RDM;
10844 break;
10845 case 0xc: /* FCADD, #90 */
10846 case 0xe: /* FCADD, #270 */
10847 if (size == 0
10848 || (size == 1 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16))
10849 || (size == 3 && !is_q)) {
10850 unallocated_encoding(s);
10851 return;
10853 feature = ARM_FEATURE_V8_FCMA;
10854 break;
10855 default:
10856 unallocated_encoding(s);
10857 return;
10859 if (!arm_dc_feature(s, feature)) {
10860 unallocated_encoding(s);
10861 return;
10863 if (!fp_access_check(s)) {
10864 return;
10867 switch (opcode) {
10868 case 0x0: /* SQRDMLAH (vector) */
10869 switch (size) {
10870 case 1:
10871 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
10872 break;
10873 case 2:
10874 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
10875 break;
10876 default:
10877 g_assert_not_reached();
10879 return;
10881 case 0x1: /* SQRDMLSH (vector) */
10882 switch (size) {
10883 case 1:
10884 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
10885 break;
10886 case 2:
10887 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
10888 break;
10889 default:
10890 g_assert_not_reached();
10892 return;
10894 case 0xc: /* FCADD, #90 */
10895 case 0xe: /* FCADD, #270 */
10896 rot = extract32(opcode, 1, 1);
10897 switch (size) {
10898 case 1:
10899 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10900 gen_helper_gvec_fcaddh);
10901 break;
10902 case 2:
10903 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10904 gen_helper_gvec_fcadds);
10905 break;
10906 case 3:
10907 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10908 gen_helper_gvec_fcaddd);
10909 break;
10910 default:
10911 g_assert_not_reached();
10913 return;
10915 default:
10916 g_assert_not_reached();
10920 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
10921 int size, int rn, int rd)
10923 /* Handle 2-reg-misc ops which are widening (so each size element
10924 * in the source becomes a 2*size element in the destination.
10925 * The only instruction like this is FCVTL.
10927 int pass;
10929 if (size == 3) {
10930 /* 32 -> 64 bit fp conversion */
10931 TCGv_i64 tcg_res[2];
10932 int srcelt = is_q ? 2 : 0;
10934 for (pass = 0; pass < 2; pass++) {
10935 TCGv_i32 tcg_op = tcg_temp_new_i32();
10936 tcg_res[pass] = tcg_temp_new_i64();
10938 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
10939 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
10940 tcg_temp_free_i32(tcg_op);
10942 for (pass = 0; pass < 2; pass++) {
10943 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10944 tcg_temp_free_i64(tcg_res[pass]);
10946 } else {
10947 /* 16 -> 32 bit fp conversion */
10948 int srcelt = is_q ? 4 : 0;
10949 TCGv_i32 tcg_res[4];
10951 for (pass = 0; pass < 4; pass++) {
10952 tcg_res[pass] = tcg_temp_new_i32();
10954 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
10955 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10956 cpu_env);
10958 for (pass = 0; pass < 4; pass++) {
10959 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10960 tcg_temp_free_i32(tcg_res[pass]);
10965 static void handle_rev(DisasContext *s, int opcode, bool u,
10966 bool is_q, int size, int rn, int rd)
10968 int op = (opcode << 1) | u;
10969 int opsz = op + size;
10970 int grp_size = 3 - opsz;
10971 int dsize = is_q ? 128 : 64;
10972 int i;
10974 if (opsz >= 3) {
10975 unallocated_encoding(s);
10976 return;
10979 if (!fp_access_check(s)) {
10980 return;
10983 if (size == 0) {
10984 /* Special case bytes, use bswap op on each group of elements */
10985 int groups = dsize / (8 << grp_size);
10987 for (i = 0; i < groups; i++) {
10988 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
10990 read_vec_element(s, tcg_tmp, rn, i, grp_size);
10991 switch (grp_size) {
10992 case MO_16:
10993 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
10994 break;
10995 case MO_32:
10996 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
10997 break;
10998 case MO_64:
10999 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11000 break;
11001 default:
11002 g_assert_not_reached();
11004 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11005 tcg_temp_free_i64(tcg_tmp);
11007 clear_vec_high(s, is_q, rd);
11008 } else {
11009 int revmask = (1 << grp_size) - 1;
11010 int esize = 8 << size;
11011 int elements = dsize / esize;
11012 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11013 TCGv_i64 tcg_rd = tcg_const_i64(0);
11014 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11016 for (i = 0; i < elements; i++) {
11017 int e_rev = (i & 0xf) ^ revmask;
11018 int off = e_rev * esize;
11019 read_vec_element(s, tcg_rn, rn, i, size);
11020 if (off >= 64) {
11021 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11022 tcg_rn, off - 64, esize);
11023 } else {
11024 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11027 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11028 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11030 tcg_temp_free_i64(tcg_rd_hi);
11031 tcg_temp_free_i64(tcg_rd);
11032 tcg_temp_free_i64(tcg_rn);
11036 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11037 bool is_q, int size, int rn, int rd)
11039 /* Implement the pairwise operations from 2-misc:
11040 * SADDLP, UADDLP, SADALP, UADALP.
11041 * These all add pairs of elements in the input to produce a
11042 * double-width result element in the output (possibly accumulating).
11044 bool accum = (opcode == 0x6);
11045 int maxpass = is_q ? 2 : 1;
11046 int pass;
11047 TCGv_i64 tcg_res[2];
11049 if (size == 2) {
11050 /* 32 + 32 -> 64 op */
11051 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11053 for (pass = 0; pass < maxpass; pass++) {
11054 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11055 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11057 tcg_res[pass] = tcg_temp_new_i64();
11059 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11060 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11061 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11062 if (accum) {
11063 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11064 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11067 tcg_temp_free_i64(tcg_op1);
11068 tcg_temp_free_i64(tcg_op2);
11070 } else {
11071 for (pass = 0; pass < maxpass; pass++) {
11072 TCGv_i64 tcg_op = tcg_temp_new_i64();
11073 NeonGenOneOpFn *genfn;
11074 static NeonGenOneOpFn * const fns[2][2] = {
11075 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11076 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11079 genfn = fns[size][u];
11081 tcg_res[pass] = tcg_temp_new_i64();
11083 read_vec_element(s, tcg_op, rn, pass, MO_64);
11084 genfn(tcg_res[pass], tcg_op);
11086 if (accum) {
11087 read_vec_element(s, tcg_op, rd, pass, MO_64);
11088 if (size == 0) {
11089 gen_helper_neon_addl_u16(tcg_res[pass],
11090 tcg_res[pass], tcg_op);
11091 } else {
11092 gen_helper_neon_addl_u32(tcg_res[pass],
11093 tcg_res[pass], tcg_op);
11096 tcg_temp_free_i64(tcg_op);
11099 if (!is_q) {
11100 tcg_res[1] = tcg_const_i64(0);
11102 for (pass = 0; pass < 2; pass++) {
11103 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11104 tcg_temp_free_i64(tcg_res[pass]);
11108 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11110 /* Implement SHLL and SHLL2 */
11111 int pass;
11112 int part = is_q ? 2 : 0;
11113 TCGv_i64 tcg_res[2];
11115 for (pass = 0; pass < 2; pass++) {
11116 static NeonGenWidenFn * const widenfns[3] = {
11117 gen_helper_neon_widen_u8,
11118 gen_helper_neon_widen_u16,
11119 tcg_gen_extu_i32_i64,
11121 NeonGenWidenFn *widenfn = widenfns[size];
11122 TCGv_i32 tcg_op = tcg_temp_new_i32();
11124 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11125 tcg_res[pass] = tcg_temp_new_i64();
11126 widenfn(tcg_res[pass], tcg_op);
11127 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11129 tcg_temp_free_i32(tcg_op);
11132 for (pass = 0; pass < 2; pass++) {
11133 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11134 tcg_temp_free_i64(tcg_res[pass]);
11138 /* AdvSIMD two reg misc
11139 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11140 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11141 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11142 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11144 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11146 int size = extract32(insn, 22, 2);
11147 int opcode = extract32(insn, 12, 5);
11148 bool u = extract32(insn, 29, 1);
11149 bool is_q = extract32(insn, 30, 1);
11150 int rn = extract32(insn, 5, 5);
11151 int rd = extract32(insn, 0, 5);
11152 bool need_fpstatus = false;
11153 bool need_rmode = false;
11154 int rmode = -1;
11155 TCGv_i32 tcg_rmode;
11156 TCGv_ptr tcg_fpstatus;
11158 switch (opcode) {
11159 case 0x0: /* REV64, REV32 */
11160 case 0x1: /* REV16 */
11161 handle_rev(s, opcode, u, is_q, size, rn, rd);
11162 return;
11163 case 0x5: /* CNT, NOT, RBIT */
11164 if (u && size == 0) {
11165 /* NOT */
11166 break;
11167 } else if (u && size == 1) {
11168 /* RBIT */
11169 break;
11170 } else if (!u && size == 0) {
11171 /* CNT */
11172 break;
11174 unallocated_encoding(s);
11175 return;
11176 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11177 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11178 if (size == 3) {
11179 unallocated_encoding(s);
11180 return;
11182 if (!fp_access_check(s)) {
11183 return;
11186 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11187 return;
11188 case 0x4: /* CLS, CLZ */
11189 if (size == 3) {
11190 unallocated_encoding(s);
11191 return;
11193 break;
11194 case 0x2: /* SADDLP, UADDLP */
11195 case 0x6: /* SADALP, UADALP */
11196 if (size == 3) {
11197 unallocated_encoding(s);
11198 return;
11200 if (!fp_access_check(s)) {
11201 return;
11203 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11204 return;
11205 case 0x13: /* SHLL, SHLL2 */
11206 if (u == 0 || size == 3) {
11207 unallocated_encoding(s);
11208 return;
11210 if (!fp_access_check(s)) {
11211 return;
11213 handle_shll(s, is_q, size, rn, rd);
11214 return;
11215 case 0xa: /* CMLT */
11216 if (u == 1) {
11217 unallocated_encoding(s);
11218 return;
11220 /* fall through */
11221 case 0x8: /* CMGT, CMGE */
11222 case 0x9: /* CMEQ, CMLE */
11223 case 0xb: /* ABS, NEG */
11224 if (size == 3 && !is_q) {
11225 unallocated_encoding(s);
11226 return;
11228 break;
11229 case 0x3: /* SUQADD, USQADD */
11230 if (size == 3 && !is_q) {
11231 unallocated_encoding(s);
11232 return;
11234 if (!fp_access_check(s)) {
11235 return;
11237 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11238 return;
11239 case 0x7: /* SQABS, SQNEG */
11240 if (size == 3 && !is_q) {
11241 unallocated_encoding(s);
11242 return;
11244 break;
11245 case 0xc ... 0xf:
11246 case 0x16 ... 0x1d:
11247 case 0x1f:
11249 /* Floating point: U, size[1] and opcode indicate operation;
11250 * size[0] indicates single or double precision.
11252 int is_double = extract32(size, 0, 1);
11253 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11254 size = is_double ? 3 : 2;
11255 switch (opcode) {
11256 case 0x2f: /* FABS */
11257 case 0x6f: /* FNEG */
11258 if (size == 3 && !is_q) {
11259 unallocated_encoding(s);
11260 return;
11262 break;
11263 case 0x1d: /* SCVTF */
11264 case 0x5d: /* UCVTF */
11266 bool is_signed = (opcode == 0x1d) ? true : false;
11267 int elements = is_double ? 2 : is_q ? 4 : 2;
11268 if (is_double && !is_q) {
11269 unallocated_encoding(s);
11270 return;
11272 if (!fp_access_check(s)) {
11273 return;
11275 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11276 return;
11278 case 0x2c: /* FCMGT (zero) */
11279 case 0x2d: /* FCMEQ (zero) */
11280 case 0x2e: /* FCMLT (zero) */
11281 case 0x6c: /* FCMGE (zero) */
11282 case 0x6d: /* FCMLE (zero) */
11283 if (size == 3 && !is_q) {
11284 unallocated_encoding(s);
11285 return;
11287 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11288 return;
11289 case 0x7f: /* FSQRT */
11290 if (size == 3 && !is_q) {
11291 unallocated_encoding(s);
11292 return;
11294 break;
11295 case 0x1a: /* FCVTNS */
11296 case 0x1b: /* FCVTMS */
11297 case 0x3a: /* FCVTPS */
11298 case 0x3b: /* FCVTZS */
11299 case 0x5a: /* FCVTNU */
11300 case 0x5b: /* FCVTMU */
11301 case 0x7a: /* FCVTPU */
11302 case 0x7b: /* FCVTZU */
11303 need_fpstatus = true;
11304 need_rmode = true;
11305 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11306 if (size == 3 && !is_q) {
11307 unallocated_encoding(s);
11308 return;
11310 break;
11311 case 0x5c: /* FCVTAU */
11312 case 0x1c: /* FCVTAS */
11313 need_fpstatus = true;
11314 need_rmode = true;
11315 rmode = FPROUNDING_TIEAWAY;
11316 if (size == 3 && !is_q) {
11317 unallocated_encoding(s);
11318 return;
11320 break;
11321 case 0x3c: /* URECPE */
11322 if (size == 3) {
11323 unallocated_encoding(s);
11324 return;
11326 /* fall through */
11327 case 0x3d: /* FRECPE */
11328 case 0x7d: /* FRSQRTE */
11329 if (size == 3 && !is_q) {
11330 unallocated_encoding(s);
11331 return;
11333 if (!fp_access_check(s)) {
11334 return;
11336 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11337 return;
11338 case 0x56: /* FCVTXN, FCVTXN2 */
11339 if (size == 2) {
11340 unallocated_encoding(s);
11341 return;
11343 /* fall through */
11344 case 0x16: /* FCVTN, FCVTN2 */
11345 /* handle_2misc_narrow does a 2*size -> size operation, but these
11346 * instructions encode the source size rather than dest size.
11348 if (!fp_access_check(s)) {
11349 return;
11351 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11352 return;
11353 case 0x17: /* FCVTL, FCVTL2 */
11354 if (!fp_access_check(s)) {
11355 return;
11357 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11358 return;
11359 case 0x18: /* FRINTN */
11360 case 0x19: /* FRINTM */
11361 case 0x38: /* FRINTP */
11362 case 0x39: /* FRINTZ */
11363 need_rmode = true;
11364 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11365 /* fall through */
11366 case 0x59: /* FRINTX */
11367 case 0x79: /* FRINTI */
11368 need_fpstatus = true;
11369 if (size == 3 && !is_q) {
11370 unallocated_encoding(s);
11371 return;
11373 break;
11374 case 0x58: /* FRINTA */
11375 need_rmode = true;
11376 rmode = FPROUNDING_TIEAWAY;
11377 need_fpstatus = true;
11378 if (size == 3 && !is_q) {
11379 unallocated_encoding(s);
11380 return;
11382 break;
11383 case 0x7c: /* URSQRTE */
11384 if (size == 3) {
11385 unallocated_encoding(s);
11386 return;
11388 need_fpstatus = true;
11389 break;
11390 default:
11391 unallocated_encoding(s);
11392 return;
11394 break;
11396 default:
11397 unallocated_encoding(s);
11398 return;
11401 if (!fp_access_check(s)) {
11402 return;
11405 if (need_fpstatus || need_rmode) {
11406 tcg_fpstatus = get_fpstatus_ptr(false);
11407 } else {
11408 tcg_fpstatus = NULL;
11410 if (need_rmode) {
11411 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11412 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11413 } else {
11414 tcg_rmode = NULL;
11417 switch (opcode) {
11418 case 0x5:
11419 if (u && size == 0) { /* NOT */
11420 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11421 return;
11423 break;
11424 case 0xb:
11425 if (u) { /* NEG */
11426 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11427 return;
11429 break;
11432 if (size == 3) {
11433 /* All 64-bit element operations can be shared with scalar 2misc */
11434 int pass;
11436 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
11437 TCGv_i64 tcg_op = tcg_temp_new_i64();
11438 TCGv_i64 tcg_res = tcg_temp_new_i64();
11440 read_vec_element(s, tcg_op, rn, pass, MO_64);
11442 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11443 tcg_rmode, tcg_fpstatus);
11445 write_vec_element(s, tcg_res, rd, pass, MO_64);
11447 tcg_temp_free_i64(tcg_res);
11448 tcg_temp_free_i64(tcg_op);
11450 } else {
11451 int pass;
11453 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11454 TCGv_i32 tcg_op = tcg_temp_new_i32();
11455 TCGv_i32 tcg_res = tcg_temp_new_i32();
11456 TCGCond cond;
11458 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11460 if (size == 2) {
11461 /* Special cases for 32 bit elements */
11462 switch (opcode) {
11463 case 0xa: /* CMLT */
11464 /* 32 bit integer comparison against zero, result is
11465 * test ? (2^32 - 1) : 0. We implement via setcond(test)
11466 * and inverting.
11468 cond = TCG_COND_LT;
11469 do_cmop:
11470 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
11471 tcg_gen_neg_i32(tcg_res, tcg_res);
11472 break;
11473 case 0x8: /* CMGT, CMGE */
11474 cond = u ? TCG_COND_GE : TCG_COND_GT;
11475 goto do_cmop;
11476 case 0x9: /* CMEQ, CMLE */
11477 cond = u ? TCG_COND_LE : TCG_COND_EQ;
11478 goto do_cmop;
11479 case 0x4: /* CLS */
11480 if (u) {
11481 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11482 } else {
11483 tcg_gen_clrsb_i32(tcg_res, tcg_op);
11485 break;
11486 case 0x7: /* SQABS, SQNEG */
11487 if (u) {
11488 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
11489 } else {
11490 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
11492 break;
11493 case 0xb: /* ABS, NEG */
11494 if (u) {
11495 tcg_gen_neg_i32(tcg_res, tcg_op);
11496 } else {
11497 TCGv_i32 tcg_zero = tcg_const_i32(0);
11498 tcg_gen_neg_i32(tcg_res, tcg_op);
11499 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
11500 tcg_zero, tcg_op, tcg_res);
11501 tcg_temp_free_i32(tcg_zero);
11503 break;
11504 case 0x2f: /* FABS */
11505 gen_helper_vfp_abss(tcg_res, tcg_op);
11506 break;
11507 case 0x6f: /* FNEG */
11508 gen_helper_vfp_negs(tcg_res, tcg_op);
11509 break;
11510 case 0x7f: /* FSQRT */
11511 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
11512 break;
11513 case 0x1a: /* FCVTNS */
11514 case 0x1b: /* FCVTMS */
11515 case 0x1c: /* FCVTAS */
11516 case 0x3a: /* FCVTPS */
11517 case 0x3b: /* FCVTZS */
11519 TCGv_i32 tcg_shift = tcg_const_i32(0);
11520 gen_helper_vfp_tosls(tcg_res, tcg_op,
11521 tcg_shift, tcg_fpstatus);
11522 tcg_temp_free_i32(tcg_shift);
11523 break;
11525 case 0x5a: /* FCVTNU */
11526 case 0x5b: /* FCVTMU */
11527 case 0x5c: /* FCVTAU */
11528 case 0x7a: /* FCVTPU */
11529 case 0x7b: /* FCVTZU */
11531 TCGv_i32 tcg_shift = tcg_const_i32(0);
11532 gen_helper_vfp_touls(tcg_res, tcg_op,
11533 tcg_shift, tcg_fpstatus);
11534 tcg_temp_free_i32(tcg_shift);
11535 break;
11537 case 0x18: /* FRINTN */
11538 case 0x19: /* FRINTM */
11539 case 0x38: /* FRINTP */
11540 case 0x39: /* FRINTZ */
11541 case 0x58: /* FRINTA */
11542 case 0x79: /* FRINTI */
11543 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11544 break;
11545 case 0x59: /* FRINTX */
11546 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11547 break;
11548 case 0x7c: /* URSQRTE */
11549 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
11550 break;
11551 default:
11552 g_assert_not_reached();
11554 } else {
11555 /* Use helpers for 8 and 16 bit elements */
11556 switch (opcode) {
11557 case 0x5: /* CNT, RBIT */
11558 /* For these two insns size is part of the opcode specifier
11559 * (handled earlier); they always operate on byte elements.
11561 if (u) {
11562 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11563 } else {
11564 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11566 break;
11567 case 0x7: /* SQABS, SQNEG */
11569 NeonGenOneOpEnvFn *genfn;
11570 static NeonGenOneOpEnvFn * const fns[2][2] = {
11571 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11572 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11574 genfn = fns[size][u];
11575 genfn(tcg_res, cpu_env, tcg_op);
11576 break;
11578 case 0x8: /* CMGT, CMGE */
11579 case 0x9: /* CMEQ, CMLE */
11580 case 0xa: /* CMLT */
11582 static NeonGenTwoOpFn * const fns[3][2] = {
11583 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
11584 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
11585 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
11587 NeonGenTwoOpFn *genfn;
11588 int comp;
11589 bool reverse;
11590 TCGv_i32 tcg_zero = tcg_const_i32(0);
11592 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
11593 comp = (opcode - 0x8) * 2 + u;
11594 /* ...but LE, LT are implemented as reverse GE, GT */
11595 reverse = (comp > 2);
11596 if (reverse) {
11597 comp = 4 - comp;
11599 genfn = fns[comp][size];
11600 if (reverse) {
11601 genfn(tcg_res, tcg_zero, tcg_op);
11602 } else {
11603 genfn(tcg_res, tcg_op, tcg_zero);
11605 tcg_temp_free_i32(tcg_zero);
11606 break;
11608 case 0xb: /* ABS, NEG */
11609 if (u) {
11610 TCGv_i32 tcg_zero = tcg_const_i32(0);
11611 if (size) {
11612 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
11613 } else {
11614 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
11616 tcg_temp_free_i32(tcg_zero);
11617 } else {
11618 if (size) {
11619 gen_helper_neon_abs_s16(tcg_res, tcg_op);
11620 } else {
11621 gen_helper_neon_abs_s8(tcg_res, tcg_op);
11624 break;
11625 case 0x4: /* CLS, CLZ */
11626 if (u) {
11627 if (size == 0) {
11628 gen_helper_neon_clz_u8(tcg_res, tcg_op);
11629 } else {
11630 gen_helper_neon_clz_u16(tcg_res, tcg_op);
11632 } else {
11633 if (size == 0) {
11634 gen_helper_neon_cls_s8(tcg_res, tcg_op);
11635 } else {
11636 gen_helper_neon_cls_s16(tcg_res, tcg_op);
11639 break;
11640 default:
11641 g_assert_not_reached();
11645 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11647 tcg_temp_free_i32(tcg_res);
11648 tcg_temp_free_i32(tcg_op);
11651 clear_vec_high(s, is_q, rd);
11653 if (need_rmode) {
11654 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11655 tcg_temp_free_i32(tcg_rmode);
11657 if (need_fpstatus) {
11658 tcg_temp_free_ptr(tcg_fpstatus);
11662 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11664 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11665 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11666 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11667 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11668 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11669 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11671 * This actually covers two groups where scalar access is governed by
11672 * bit 28. A bunch of the instructions (float to integral) only exist
11673 * in the vector form and are un-allocated for the scalar decode. Also
11674 * in the scalar decode Q is always 1.
11676 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11678 int fpop, opcode, a, u;
11679 int rn, rd;
11680 bool is_q;
11681 bool is_scalar;
11682 bool only_in_vector = false;
11684 int pass;
11685 TCGv_i32 tcg_rmode = NULL;
11686 TCGv_ptr tcg_fpstatus = NULL;
11687 bool need_rmode = false;
11688 bool need_fpst = true;
11689 int rmode;
11691 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
11692 unallocated_encoding(s);
11693 return;
11696 rd = extract32(insn, 0, 5);
11697 rn = extract32(insn, 5, 5);
11699 a = extract32(insn, 23, 1);
11700 u = extract32(insn, 29, 1);
11701 is_scalar = extract32(insn, 28, 1);
11702 is_q = extract32(insn, 30, 1);
11704 opcode = extract32(insn, 12, 5);
11705 fpop = deposit32(opcode, 5, 1, a);
11706 fpop = deposit32(fpop, 6, 1, u);
11708 rd = extract32(insn, 0, 5);
11709 rn = extract32(insn, 5, 5);
11711 switch (fpop) {
11712 case 0x1d: /* SCVTF */
11713 case 0x5d: /* UCVTF */
11715 int elements;
11717 if (is_scalar) {
11718 elements = 1;
11719 } else {
11720 elements = (is_q ? 8 : 4);
11723 if (!fp_access_check(s)) {
11724 return;
11726 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11727 return;
11729 break;
11730 case 0x2c: /* FCMGT (zero) */
11731 case 0x2d: /* FCMEQ (zero) */
11732 case 0x2e: /* FCMLT (zero) */
11733 case 0x6c: /* FCMGE (zero) */
11734 case 0x6d: /* FCMLE (zero) */
11735 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11736 return;
11737 case 0x3d: /* FRECPE */
11738 case 0x3f: /* FRECPX */
11739 break;
11740 case 0x18: /* FRINTN */
11741 need_rmode = true;
11742 only_in_vector = true;
11743 rmode = FPROUNDING_TIEEVEN;
11744 break;
11745 case 0x19: /* FRINTM */
11746 need_rmode = true;
11747 only_in_vector = true;
11748 rmode = FPROUNDING_NEGINF;
11749 break;
11750 case 0x38: /* FRINTP */
11751 need_rmode = true;
11752 only_in_vector = true;
11753 rmode = FPROUNDING_POSINF;
11754 break;
11755 case 0x39: /* FRINTZ */
11756 need_rmode = true;
11757 only_in_vector = true;
11758 rmode = FPROUNDING_ZERO;
11759 break;
11760 case 0x58: /* FRINTA */
11761 need_rmode = true;
11762 only_in_vector = true;
11763 rmode = FPROUNDING_TIEAWAY;
11764 break;
11765 case 0x59: /* FRINTX */
11766 case 0x79: /* FRINTI */
11767 only_in_vector = true;
11768 /* current rounding mode */
11769 break;
11770 case 0x1a: /* FCVTNS */
11771 need_rmode = true;
11772 rmode = FPROUNDING_TIEEVEN;
11773 break;
11774 case 0x1b: /* FCVTMS */
11775 need_rmode = true;
11776 rmode = FPROUNDING_NEGINF;
11777 break;
11778 case 0x1c: /* FCVTAS */
11779 need_rmode = true;
11780 rmode = FPROUNDING_TIEAWAY;
11781 break;
11782 case 0x3a: /* FCVTPS */
11783 need_rmode = true;
11784 rmode = FPROUNDING_POSINF;
11785 break;
11786 case 0x3b: /* FCVTZS */
11787 need_rmode = true;
11788 rmode = FPROUNDING_ZERO;
11789 break;
11790 case 0x5a: /* FCVTNU */
11791 need_rmode = true;
11792 rmode = FPROUNDING_TIEEVEN;
11793 break;
11794 case 0x5b: /* FCVTMU */
11795 need_rmode = true;
11796 rmode = FPROUNDING_NEGINF;
11797 break;
11798 case 0x5c: /* FCVTAU */
11799 need_rmode = true;
11800 rmode = FPROUNDING_TIEAWAY;
11801 break;
11802 case 0x7a: /* FCVTPU */
11803 need_rmode = true;
11804 rmode = FPROUNDING_POSINF;
11805 break;
11806 case 0x7b: /* FCVTZU */
11807 need_rmode = true;
11808 rmode = FPROUNDING_ZERO;
11809 break;
11810 case 0x2f: /* FABS */
11811 case 0x6f: /* FNEG */
11812 need_fpst = false;
11813 break;
11814 case 0x7d: /* FRSQRTE */
11815 case 0x7f: /* FSQRT (vector) */
11816 break;
11817 default:
11818 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
11819 g_assert_not_reached();
11823 /* Check additional constraints for the scalar encoding */
11824 if (is_scalar) {
11825 if (!is_q) {
11826 unallocated_encoding(s);
11827 return;
11829 /* FRINTxx is only in the vector form */
11830 if (only_in_vector) {
11831 unallocated_encoding(s);
11832 return;
11836 if (!fp_access_check(s)) {
11837 return;
11840 if (need_rmode || need_fpst) {
11841 tcg_fpstatus = get_fpstatus_ptr(true);
11844 if (need_rmode) {
11845 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11846 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11849 if (is_scalar) {
11850 TCGv_i32 tcg_op = tcg_temp_new_i32();
11851 TCGv_i32 tcg_res = tcg_temp_new_i32();
11853 read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
11855 switch (fpop) {
11856 case 0x1a: /* FCVTNS */
11857 case 0x1b: /* FCVTMS */
11858 case 0x1c: /* FCVTAS */
11859 case 0x3a: /* FCVTPS */
11860 case 0x3b: /* FCVTZS */
11861 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11862 break;
11863 case 0x3d: /* FRECPE */
11864 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11865 break;
11866 case 0x3f: /* FRECPX */
11867 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11868 break;
11869 case 0x5a: /* FCVTNU */
11870 case 0x5b: /* FCVTMU */
11871 case 0x5c: /* FCVTAU */
11872 case 0x7a: /* FCVTPU */
11873 case 0x7b: /* FCVTZU */
11874 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11875 break;
11876 case 0x6f: /* FNEG */
11877 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11878 break;
11879 case 0x7d: /* FRSQRTE */
11880 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11881 break;
11882 default:
11883 g_assert_not_reached();
11886 /* limit any sign extension going on */
11887 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11888 write_fp_sreg(s, rd, tcg_res);
11890 tcg_temp_free_i32(tcg_res);
11891 tcg_temp_free_i32(tcg_op);
11892 } else {
11893 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11894 TCGv_i32 tcg_op = tcg_temp_new_i32();
11895 TCGv_i32 tcg_res = tcg_temp_new_i32();
11897 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11899 switch (fpop) {
11900 case 0x1a: /* FCVTNS */
11901 case 0x1b: /* FCVTMS */
11902 case 0x1c: /* FCVTAS */
11903 case 0x3a: /* FCVTPS */
11904 case 0x3b: /* FCVTZS */
11905 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11906 break;
11907 case 0x3d: /* FRECPE */
11908 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11909 break;
11910 case 0x5a: /* FCVTNU */
11911 case 0x5b: /* FCVTMU */
11912 case 0x5c: /* FCVTAU */
11913 case 0x7a: /* FCVTPU */
11914 case 0x7b: /* FCVTZU */
11915 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11916 break;
11917 case 0x18: /* FRINTN */
11918 case 0x19: /* FRINTM */
11919 case 0x38: /* FRINTP */
11920 case 0x39: /* FRINTZ */
11921 case 0x58: /* FRINTA */
11922 case 0x79: /* FRINTI */
11923 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11924 break;
11925 case 0x59: /* FRINTX */
11926 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11927 break;
11928 case 0x2f: /* FABS */
11929 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11930 break;
11931 case 0x6f: /* FNEG */
11932 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11933 break;
11934 case 0x7d: /* FRSQRTE */
11935 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11936 break;
11937 case 0x7f: /* FSQRT */
11938 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11939 break;
11940 default:
11941 g_assert_not_reached();
11944 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11946 tcg_temp_free_i32(tcg_res);
11947 tcg_temp_free_i32(tcg_op);
11950 clear_vec_high(s, is_q, rd);
11953 if (tcg_rmode) {
11954 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11955 tcg_temp_free_i32(tcg_rmode);
11958 if (tcg_fpstatus) {
11959 tcg_temp_free_ptr(tcg_fpstatus);
11963 /* AdvSIMD scalar x indexed element
11964 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
11965 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11966 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
11967 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
11968 * AdvSIMD vector x indexed element
11969 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
11970 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11971 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
11972 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
11974 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
11976 /* This encoding has two kinds of instruction:
11977 * normal, where we perform elt x idxelt => elt for each
11978 * element in the vector
11979 * long, where we perform elt x idxelt and generate a result of
11980 * double the width of the input element
11981 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
11983 bool is_scalar = extract32(insn, 28, 1);
11984 bool is_q = extract32(insn, 30, 1);
11985 bool u = extract32(insn, 29, 1);
11986 int size = extract32(insn, 22, 2);
11987 int l = extract32(insn, 21, 1);
11988 int m = extract32(insn, 20, 1);
11989 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
11990 int rm = extract32(insn, 16, 4);
11991 int opcode = extract32(insn, 12, 4);
11992 int h = extract32(insn, 11, 1);
11993 int rn = extract32(insn, 5, 5);
11994 int rd = extract32(insn, 0, 5);
11995 bool is_long = false;
11996 bool is_fp = false;
11997 bool is_fp16 = false;
11998 int index;
11999 TCGv_ptr fpst;
12001 switch (16 * u + opcode) {
12002 case 0x08: /* MUL */
12003 case 0x10: /* MLA */
12004 case 0x14: /* MLS */
12005 if (is_scalar) {
12006 unallocated_encoding(s);
12007 return;
12009 break;
12010 case 0x02: /* SMLAL, SMLAL2 */
12011 case 0x12: /* UMLAL, UMLAL2 */
12012 case 0x06: /* SMLSL, SMLSL2 */
12013 case 0x16: /* UMLSL, UMLSL2 */
12014 case 0x0a: /* SMULL, SMULL2 */
12015 case 0x1a: /* UMULL, UMULL2 */
12016 if (is_scalar) {
12017 unallocated_encoding(s);
12018 return;
12020 is_long = true;
12021 break;
12022 case 0x03: /* SQDMLAL, SQDMLAL2 */
12023 case 0x07: /* SQDMLSL, SQDMLSL2 */
12024 case 0x0b: /* SQDMULL, SQDMULL2 */
12025 is_long = true;
12026 break;
12027 case 0x0c: /* SQDMULH */
12028 case 0x0d: /* SQRDMULH */
12029 break;
12030 case 0x01: /* FMLA */
12031 case 0x05: /* FMLS */
12032 case 0x09: /* FMUL */
12033 case 0x19: /* FMULX */
12034 is_fp = true;
12035 break;
12036 case 0x1d: /* SQRDMLAH */
12037 case 0x1f: /* SQRDMLSH */
12038 if (!arm_dc_feature(s, ARM_FEATURE_V8_RDM)) {
12039 unallocated_encoding(s);
12040 return;
12042 break;
12043 default:
12044 unallocated_encoding(s);
12045 return;
12048 if (is_fp) {
12049 /* convert insn encoded size to TCGMemOp size */
12050 switch (size) {
12051 case 0: /* half-precision */
12052 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
12053 unallocated_encoding(s);
12054 return;
12056 size = MO_16;
12057 break;
12058 case MO_32: /* single precision */
12059 case MO_64: /* double precision */
12060 break;
12061 default:
12062 unallocated_encoding(s);
12063 return;
12065 } else {
12066 switch (size) {
12067 case MO_8:
12068 case MO_64:
12069 unallocated_encoding(s);
12070 return;
12074 /* Given TCGMemOp size, adjust register and indexing. */
12075 switch (size) {
12076 case MO_16:
12077 index = h << 2 | l << 1 | m;
12078 break;
12079 case MO_32:
12080 index = h << 1 | l;
12081 rm |= m << 4;
12082 break;
12083 case MO_64:
12084 if (l || !is_q) {
12085 unallocated_encoding(s);
12086 return;
12088 index = h;
12089 rm |= m << 4;
12090 break;
12091 default:
12092 g_assert_not_reached();
12095 if (!fp_access_check(s)) {
12096 return;
12099 if (is_fp) {
12100 fpst = get_fpstatus_ptr(is_fp16);
12101 } else {
12102 fpst = NULL;
12105 if (size == 3) {
12106 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12107 int pass;
12109 assert(is_fp && is_q && !is_long);
12111 read_vec_element(s, tcg_idx, rm, index, MO_64);
12113 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12114 TCGv_i64 tcg_op = tcg_temp_new_i64();
12115 TCGv_i64 tcg_res = tcg_temp_new_i64();
12117 read_vec_element(s, tcg_op, rn, pass, MO_64);
12119 switch (16 * u + opcode) {
12120 case 0x05: /* FMLS */
12121 /* As usual for ARM, separate negation for fused multiply-add */
12122 gen_helper_vfp_negd(tcg_op, tcg_op);
12123 /* fall through */
12124 case 0x01: /* FMLA */
12125 read_vec_element(s, tcg_res, rd, pass, MO_64);
12126 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12127 break;
12128 case 0x09: /* FMUL */
12129 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12130 break;
12131 case 0x19: /* FMULX */
12132 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12133 break;
12134 default:
12135 g_assert_not_reached();
12138 write_vec_element(s, tcg_res, rd, pass, MO_64);
12139 tcg_temp_free_i64(tcg_op);
12140 tcg_temp_free_i64(tcg_res);
12143 tcg_temp_free_i64(tcg_idx);
12144 clear_vec_high(s, !is_scalar, rd);
12145 } else if (!is_long) {
12146 /* 32 bit floating point, or 16 or 32 bit integer.
12147 * For the 16 bit scalar case we use the usual Neon helpers and
12148 * rely on the fact that 0 op 0 == 0 with no side effects.
12150 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12151 int pass, maxpasses;
12153 if (is_scalar) {
12154 maxpasses = 1;
12155 } else {
12156 maxpasses = is_q ? 4 : 2;
12159 read_vec_element_i32(s, tcg_idx, rm, index, size);
12161 if (size == 1 && !is_scalar) {
12162 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12163 * the index into both halves of the 32 bit tcg_idx and then use
12164 * the usual Neon helpers.
12166 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12169 for (pass = 0; pass < maxpasses; pass++) {
12170 TCGv_i32 tcg_op = tcg_temp_new_i32();
12171 TCGv_i32 tcg_res = tcg_temp_new_i32();
12173 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12175 switch (16 * u + opcode) {
12176 case 0x08: /* MUL */
12177 case 0x10: /* MLA */
12178 case 0x14: /* MLS */
12180 static NeonGenTwoOpFn * const fns[2][2] = {
12181 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12182 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12184 NeonGenTwoOpFn *genfn;
12185 bool is_sub = opcode == 0x4;
12187 if (size == 1) {
12188 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12189 } else {
12190 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12192 if (opcode == 0x8) {
12193 break;
12195 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12196 genfn = fns[size - 1][is_sub];
12197 genfn(tcg_res, tcg_op, tcg_res);
12198 break;
12200 case 0x05: /* FMLS */
12201 case 0x01: /* FMLA */
12202 read_vec_element_i32(s, tcg_res, rd, pass,
12203 is_scalar ? size : MO_32);
12204 switch (size) {
12205 case 1:
12206 if (opcode == 0x5) {
12207 /* As usual for ARM, separate negation for fused
12208 * multiply-add */
12209 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12211 if (is_scalar) {
12212 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12213 tcg_res, fpst);
12214 } else {
12215 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12216 tcg_res, fpst);
12218 break;
12219 case 2:
12220 if (opcode == 0x5) {
12221 /* As usual for ARM, separate negation for
12222 * fused multiply-add */
12223 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12225 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12226 tcg_res, fpst);
12227 break;
12228 default:
12229 g_assert_not_reached();
12231 break;
12232 case 0x09: /* FMUL */
12233 switch (size) {
12234 case 1:
12235 if (is_scalar) {
12236 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12237 tcg_idx, fpst);
12238 } else {
12239 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12240 tcg_idx, fpst);
12242 break;
12243 case 2:
12244 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12245 break;
12246 default:
12247 g_assert_not_reached();
12249 break;
12250 case 0x19: /* FMULX */
12251 switch (size) {
12252 case 1:
12253 if (is_scalar) {
12254 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12255 tcg_idx, fpst);
12256 } else {
12257 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12258 tcg_idx, fpst);
12260 break;
12261 case 2:
12262 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12263 break;
12264 default:
12265 g_assert_not_reached();
12267 break;
12268 case 0x0c: /* SQDMULH */
12269 if (size == 1) {
12270 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12271 tcg_op, tcg_idx);
12272 } else {
12273 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12274 tcg_op, tcg_idx);
12276 break;
12277 case 0x0d: /* SQRDMULH */
12278 if (size == 1) {
12279 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12280 tcg_op, tcg_idx);
12281 } else {
12282 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
12283 tcg_op, tcg_idx);
12285 break;
12286 case 0x1d: /* SQRDMLAH */
12287 read_vec_element_i32(s, tcg_res, rd, pass,
12288 is_scalar ? size : MO_32);
12289 if (size == 1) {
12290 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
12291 tcg_op, tcg_idx, tcg_res);
12292 } else {
12293 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
12294 tcg_op, tcg_idx, tcg_res);
12296 break;
12297 case 0x1f: /* SQRDMLSH */
12298 read_vec_element_i32(s, tcg_res, rd, pass,
12299 is_scalar ? size : MO_32);
12300 if (size == 1) {
12301 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
12302 tcg_op, tcg_idx, tcg_res);
12303 } else {
12304 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
12305 tcg_op, tcg_idx, tcg_res);
12307 break;
12308 default:
12309 g_assert_not_reached();
12312 if (is_scalar) {
12313 write_fp_sreg(s, rd, tcg_res);
12314 } else {
12315 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12318 tcg_temp_free_i32(tcg_op);
12319 tcg_temp_free_i32(tcg_res);
12322 tcg_temp_free_i32(tcg_idx);
12323 clear_vec_high(s, is_q, rd);
12324 } else {
12325 /* long ops: 16x16->32 or 32x32->64 */
12326 TCGv_i64 tcg_res[2];
12327 int pass;
12328 bool satop = extract32(opcode, 0, 1);
12329 TCGMemOp memop = MO_32;
12331 if (satop || !u) {
12332 memop |= MO_SIGN;
12335 if (size == 2) {
12336 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12338 read_vec_element(s, tcg_idx, rm, index, memop);
12340 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12341 TCGv_i64 tcg_op = tcg_temp_new_i64();
12342 TCGv_i64 tcg_passres;
12343 int passelt;
12345 if (is_scalar) {
12346 passelt = 0;
12347 } else {
12348 passelt = pass + (is_q * 2);
12351 read_vec_element(s, tcg_op, rn, passelt, memop);
12353 tcg_res[pass] = tcg_temp_new_i64();
12355 if (opcode == 0xa || opcode == 0xb) {
12356 /* Non-accumulating ops */
12357 tcg_passres = tcg_res[pass];
12358 } else {
12359 tcg_passres = tcg_temp_new_i64();
12362 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12363 tcg_temp_free_i64(tcg_op);
12365 if (satop) {
12366 /* saturating, doubling */
12367 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
12368 tcg_passres, tcg_passres);
12371 if (opcode == 0xa || opcode == 0xb) {
12372 continue;
12375 /* Accumulating op: handle accumulate step */
12376 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12378 switch (opcode) {
12379 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12380 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12381 break;
12382 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12383 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12384 break;
12385 case 0x7: /* SQDMLSL, SQDMLSL2 */
12386 tcg_gen_neg_i64(tcg_passres, tcg_passres);
12387 /* fall through */
12388 case 0x3: /* SQDMLAL, SQDMLAL2 */
12389 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
12390 tcg_res[pass],
12391 tcg_passres);
12392 break;
12393 default:
12394 g_assert_not_reached();
12396 tcg_temp_free_i64(tcg_passres);
12398 tcg_temp_free_i64(tcg_idx);
12400 clear_vec_high(s, !is_scalar, rd);
12401 } else {
12402 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12404 assert(size == 1);
12405 read_vec_element_i32(s, tcg_idx, rm, index, size);
12407 if (!is_scalar) {
12408 /* The simplest way to handle the 16x16 indexed ops is to
12409 * duplicate the index into both halves of the 32 bit tcg_idx
12410 * and then use the usual Neon helpers.
12412 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12415 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12416 TCGv_i32 tcg_op = tcg_temp_new_i32();
12417 TCGv_i64 tcg_passres;
12419 if (is_scalar) {
12420 read_vec_element_i32(s, tcg_op, rn, pass, size);
12421 } else {
12422 read_vec_element_i32(s, tcg_op, rn,
12423 pass + (is_q * 2), MO_32);
12426 tcg_res[pass] = tcg_temp_new_i64();
12428 if (opcode == 0xa || opcode == 0xb) {
12429 /* Non-accumulating ops */
12430 tcg_passres = tcg_res[pass];
12431 } else {
12432 tcg_passres = tcg_temp_new_i64();
12435 if (memop & MO_SIGN) {
12436 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12437 } else {
12438 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12440 if (satop) {
12441 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
12442 tcg_passres, tcg_passres);
12444 tcg_temp_free_i32(tcg_op);
12446 if (opcode == 0xa || opcode == 0xb) {
12447 continue;
12450 /* Accumulating op: handle accumulate step */
12451 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12453 switch (opcode) {
12454 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12455 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12456 tcg_passres);
12457 break;
12458 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12459 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12460 tcg_passres);
12461 break;
12462 case 0x7: /* SQDMLSL, SQDMLSL2 */
12463 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12464 /* fall through */
12465 case 0x3: /* SQDMLAL, SQDMLAL2 */
12466 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
12467 tcg_res[pass],
12468 tcg_passres);
12469 break;
12470 default:
12471 g_assert_not_reached();
12473 tcg_temp_free_i64(tcg_passres);
12475 tcg_temp_free_i32(tcg_idx);
12477 if (is_scalar) {
12478 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12482 if (is_scalar) {
12483 tcg_res[1] = tcg_const_i64(0);
12486 for (pass = 0; pass < 2; pass++) {
12487 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12488 tcg_temp_free_i64(tcg_res[pass]);
12492 if (fpst) {
12493 tcg_temp_free_ptr(fpst);
12497 /* Crypto AES
12498 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
12499 * +-----------------+------+-----------+--------+-----+------+------+
12500 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
12501 * +-----------------+------+-----------+--------+-----+------+------+
12503 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
12505 int size = extract32(insn, 22, 2);
12506 int opcode = extract32(insn, 12, 5);
12507 int rn = extract32(insn, 5, 5);
12508 int rd = extract32(insn, 0, 5);
12509 int decrypt;
12510 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12511 TCGv_i32 tcg_decrypt;
12512 CryptoThreeOpIntFn *genfn;
12514 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
12515 || size != 0) {
12516 unallocated_encoding(s);
12517 return;
12520 switch (opcode) {
12521 case 0x4: /* AESE */
12522 decrypt = 0;
12523 genfn = gen_helper_crypto_aese;
12524 break;
12525 case 0x6: /* AESMC */
12526 decrypt = 0;
12527 genfn = gen_helper_crypto_aesmc;
12528 break;
12529 case 0x5: /* AESD */
12530 decrypt = 1;
12531 genfn = gen_helper_crypto_aese;
12532 break;
12533 case 0x7: /* AESIMC */
12534 decrypt = 1;
12535 genfn = gen_helper_crypto_aesmc;
12536 break;
12537 default:
12538 unallocated_encoding(s);
12539 return;
12542 if (!fp_access_check(s)) {
12543 return;
12546 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12547 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12548 tcg_decrypt = tcg_const_i32(decrypt);
12550 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
12552 tcg_temp_free_ptr(tcg_rd_ptr);
12553 tcg_temp_free_ptr(tcg_rn_ptr);
12554 tcg_temp_free_i32(tcg_decrypt);
12557 /* Crypto three-reg SHA
12558 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
12559 * +-----------------+------+---+------+---+--------+-----+------+------+
12560 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
12561 * +-----------------+------+---+------+---+--------+-----+------+------+
12563 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
12565 int size = extract32(insn, 22, 2);
12566 int opcode = extract32(insn, 12, 3);
12567 int rm = extract32(insn, 16, 5);
12568 int rn = extract32(insn, 5, 5);
12569 int rd = extract32(insn, 0, 5);
12570 CryptoThreeOpFn *genfn;
12571 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
12572 int feature = ARM_FEATURE_V8_SHA256;
12574 if (size != 0) {
12575 unallocated_encoding(s);
12576 return;
12579 switch (opcode) {
12580 case 0: /* SHA1C */
12581 case 1: /* SHA1P */
12582 case 2: /* SHA1M */
12583 case 3: /* SHA1SU0 */
12584 genfn = NULL;
12585 feature = ARM_FEATURE_V8_SHA1;
12586 break;
12587 case 4: /* SHA256H */
12588 genfn = gen_helper_crypto_sha256h;
12589 break;
12590 case 5: /* SHA256H2 */
12591 genfn = gen_helper_crypto_sha256h2;
12592 break;
12593 case 6: /* SHA256SU1 */
12594 genfn = gen_helper_crypto_sha256su1;
12595 break;
12596 default:
12597 unallocated_encoding(s);
12598 return;
12601 if (!arm_dc_feature(s, feature)) {
12602 unallocated_encoding(s);
12603 return;
12606 if (!fp_access_check(s)) {
12607 return;
12610 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12611 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12612 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
12614 if (genfn) {
12615 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
12616 } else {
12617 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
12619 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
12620 tcg_rm_ptr, tcg_opcode);
12621 tcg_temp_free_i32(tcg_opcode);
12624 tcg_temp_free_ptr(tcg_rd_ptr);
12625 tcg_temp_free_ptr(tcg_rn_ptr);
12626 tcg_temp_free_ptr(tcg_rm_ptr);
12629 /* Crypto two-reg SHA
12630 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
12631 * +-----------------+------+-----------+--------+-----+------+------+
12632 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
12633 * +-----------------+------+-----------+--------+-----+------+------+
12635 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
12637 int size = extract32(insn, 22, 2);
12638 int opcode = extract32(insn, 12, 5);
12639 int rn = extract32(insn, 5, 5);
12640 int rd = extract32(insn, 0, 5);
12641 CryptoTwoOpFn *genfn;
12642 int feature;
12643 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12645 if (size != 0) {
12646 unallocated_encoding(s);
12647 return;
12650 switch (opcode) {
12651 case 0: /* SHA1H */
12652 feature = ARM_FEATURE_V8_SHA1;
12653 genfn = gen_helper_crypto_sha1h;
12654 break;
12655 case 1: /* SHA1SU1 */
12656 feature = ARM_FEATURE_V8_SHA1;
12657 genfn = gen_helper_crypto_sha1su1;
12658 break;
12659 case 2: /* SHA256SU0 */
12660 feature = ARM_FEATURE_V8_SHA256;
12661 genfn = gen_helper_crypto_sha256su0;
12662 break;
12663 default:
12664 unallocated_encoding(s);
12665 return;
12668 if (!arm_dc_feature(s, feature)) {
12669 unallocated_encoding(s);
12670 return;
12673 if (!fp_access_check(s)) {
12674 return;
12677 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12678 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12680 genfn(tcg_rd_ptr, tcg_rn_ptr);
12682 tcg_temp_free_ptr(tcg_rd_ptr);
12683 tcg_temp_free_ptr(tcg_rn_ptr);
12686 /* Crypto three-reg SHA512
12687 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
12688 * +-----------------------+------+---+---+-----+--------+------+------+
12689 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
12690 * +-----------------------+------+---+---+-----+--------+------+------+
12692 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
12694 int opcode = extract32(insn, 10, 2);
12695 int o = extract32(insn, 14, 1);
12696 int rm = extract32(insn, 16, 5);
12697 int rn = extract32(insn, 5, 5);
12698 int rd = extract32(insn, 0, 5);
12699 int feature;
12700 CryptoThreeOpFn *genfn;
12702 if (o == 0) {
12703 switch (opcode) {
12704 case 0: /* SHA512H */
12705 feature = ARM_FEATURE_V8_SHA512;
12706 genfn = gen_helper_crypto_sha512h;
12707 break;
12708 case 1: /* SHA512H2 */
12709 feature = ARM_FEATURE_V8_SHA512;
12710 genfn = gen_helper_crypto_sha512h2;
12711 break;
12712 case 2: /* SHA512SU1 */
12713 feature = ARM_FEATURE_V8_SHA512;
12714 genfn = gen_helper_crypto_sha512su1;
12715 break;
12716 case 3: /* RAX1 */
12717 feature = ARM_FEATURE_V8_SHA3;
12718 genfn = NULL;
12719 break;
12721 } else {
12722 switch (opcode) {
12723 case 0: /* SM3PARTW1 */
12724 feature = ARM_FEATURE_V8_SM3;
12725 genfn = gen_helper_crypto_sm3partw1;
12726 break;
12727 case 1: /* SM3PARTW2 */
12728 feature = ARM_FEATURE_V8_SM3;
12729 genfn = gen_helper_crypto_sm3partw2;
12730 break;
12731 case 2: /* SM4EKEY */
12732 feature = ARM_FEATURE_V8_SM4;
12733 genfn = gen_helper_crypto_sm4ekey;
12734 break;
12735 default:
12736 unallocated_encoding(s);
12737 return;
12741 if (!arm_dc_feature(s, feature)) {
12742 unallocated_encoding(s);
12743 return;
12746 if (!fp_access_check(s)) {
12747 return;
12750 if (genfn) {
12751 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
12753 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12754 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12755 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
12757 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
12759 tcg_temp_free_ptr(tcg_rd_ptr);
12760 tcg_temp_free_ptr(tcg_rn_ptr);
12761 tcg_temp_free_ptr(tcg_rm_ptr);
12762 } else {
12763 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
12764 int pass;
12766 tcg_op1 = tcg_temp_new_i64();
12767 tcg_op2 = tcg_temp_new_i64();
12768 tcg_res[0] = tcg_temp_new_i64();
12769 tcg_res[1] = tcg_temp_new_i64();
12771 for (pass = 0; pass < 2; pass++) {
12772 read_vec_element(s, tcg_op1, rn, pass, MO_64);
12773 read_vec_element(s, tcg_op2, rm, pass, MO_64);
12775 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
12776 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12778 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
12779 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
12781 tcg_temp_free_i64(tcg_op1);
12782 tcg_temp_free_i64(tcg_op2);
12783 tcg_temp_free_i64(tcg_res[0]);
12784 tcg_temp_free_i64(tcg_res[1]);
12788 /* Crypto two-reg SHA512
12789 * 31 12 11 10 9 5 4 0
12790 * +-----------------------------------------+--------+------+------+
12791 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
12792 * +-----------------------------------------+--------+------+------+
12794 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
12796 int opcode = extract32(insn, 10, 2);
12797 int rn = extract32(insn, 5, 5);
12798 int rd = extract32(insn, 0, 5);
12799 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12800 int feature;
12801 CryptoTwoOpFn *genfn;
12803 switch (opcode) {
12804 case 0: /* SHA512SU0 */
12805 feature = ARM_FEATURE_V8_SHA512;
12806 genfn = gen_helper_crypto_sha512su0;
12807 break;
12808 case 1: /* SM4E */
12809 feature = ARM_FEATURE_V8_SM4;
12810 genfn = gen_helper_crypto_sm4e;
12811 break;
12812 default:
12813 unallocated_encoding(s);
12814 return;
12817 if (!arm_dc_feature(s, feature)) {
12818 unallocated_encoding(s);
12819 return;
12822 if (!fp_access_check(s)) {
12823 return;
12826 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12827 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12829 genfn(tcg_rd_ptr, tcg_rn_ptr);
12831 tcg_temp_free_ptr(tcg_rd_ptr);
12832 tcg_temp_free_ptr(tcg_rn_ptr);
12835 /* Crypto four-register
12836 * 31 23 22 21 20 16 15 14 10 9 5 4 0
12837 * +-------------------+-----+------+---+------+------+------+
12838 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
12839 * +-------------------+-----+------+---+------+------+------+
12841 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
12843 int op0 = extract32(insn, 21, 2);
12844 int rm = extract32(insn, 16, 5);
12845 int ra = extract32(insn, 10, 5);
12846 int rn = extract32(insn, 5, 5);
12847 int rd = extract32(insn, 0, 5);
12848 int feature;
12850 switch (op0) {
12851 case 0: /* EOR3 */
12852 case 1: /* BCAX */
12853 feature = ARM_FEATURE_V8_SHA3;
12854 break;
12855 case 2: /* SM3SS1 */
12856 feature = ARM_FEATURE_V8_SM3;
12857 break;
12858 default:
12859 unallocated_encoding(s);
12860 return;
12863 if (!arm_dc_feature(s, feature)) {
12864 unallocated_encoding(s);
12865 return;
12868 if (!fp_access_check(s)) {
12869 return;
12872 if (op0 < 2) {
12873 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
12874 int pass;
12876 tcg_op1 = tcg_temp_new_i64();
12877 tcg_op2 = tcg_temp_new_i64();
12878 tcg_op3 = tcg_temp_new_i64();
12879 tcg_res[0] = tcg_temp_new_i64();
12880 tcg_res[1] = tcg_temp_new_i64();
12882 for (pass = 0; pass < 2; pass++) {
12883 read_vec_element(s, tcg_op1, rn, pass, MO_64);
12884 read_vec_element(s, tcg_op2, rm, pass, MO_64);
12885 read_vec_element(s, tcg_op3, ra, pass, MO_64);
12887 if (op0 == 0) {
12888 /* EOR3 */
12889 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
12890 } else {
12891 /* BCAX */
12892 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
12894 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12896 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
12897 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
12899 tcg_temp_free_i64(tcg_op1);
12900 tcg_temp_free_i64(tcg_op2);
12901 tcg_temp_free_i64(tcg_op3);
12902 tcg_temp_free_i64(tcg_res[0]);
12903 tcg_temp_free_i64(tcg_res[1]);
12904 } else {
12905 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
12907 tcg_op1 = tcg_temp_new_i32();
12908 tcg_op2 = tcg_temp_new_i32();
12909 tcg_op3 = tcg_temp_new_i32();
12910 tcg_res = tcg_temp_new_i32();
12911 tcg_zero = tcg_const_i32(0);
12913 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
12914 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
12915 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
12917 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
12918 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
12919 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
12920 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
12922 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
12923 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
12924 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
12925 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
12927 tcg_temp_free_i32(tcg_op1);
12928 tcg_temp_free_i32(tcg_op2);
12929 tcg_temp_free_i32(tcg_op3);
12930 tcg_temp_free_i32(tcg_res);
12931 tcg_temp_free_i32(tcg_zero);
12935 /* Crypto XAR
12936 * 31 21 20 16 15 10 9 5 4 0
12937 * +-----------------------+------+--------+------+------+
12938 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
12939 * +-----------------------+------+--------+------+------+
12941 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
12943 int rm = extract32(insn, 16, 5);
12944 int imm6 = extract32(insn, 10, 6);
12945 int rn = extract32(insn, 5, 5);
12946 int rd = extract32(insn, 0, 5);
12947 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
12948 int pass;
12950 if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
12951 unallocated_encoding(s);
12952 return;
12955 if (!fp_access_check(s)) {
12956 return;
12959 tcg_op1 = tcg_temp_new_i64();
12960 tcg_op2 = tcg_temp_new_i64();
12961 tcg_res[0] = tcg_temp_new_i64();
12962 tcg_res[1] = tcg_temp_new_i64();
12964 for (pass = 0; pass < 2; pass++) {
12965 read_vec_element(s, tcg_op1, rn, pass, MO_64);
12966 read_vec_element(s, tcg_op2, rm, pass, MO_64);
12968 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
12969 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
12971 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
12972 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
12974 tcg_temp_free_i64(tcg_op1);
12975 tcg_temp_free_i64(tcg_op2);
12976 tcg_temp_free_i64(tcg_res[0]);
12977 tcg_temp_free_i64(tcg_res[1]);
12980 /* Crypto three-reg imm2
12981 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
12982 * +-----------------------+------+-----+------+--------+------+------+
12983 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
12984 * +-----------------------+------+-----+------+--------+------+------+
12986 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
12988 int opcode = extract32(insn, 10, 2);
12989 int imm2 = extract32(insn, 12, 2);
12990 int rm = extract32(insn, 16, 5);
12991 int rn = extract32(insn, 5, 5);
12992 int rd = extract32(insn, 0, 5);
12993 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
12994 TCGv_i32 tcg_imm2, tcg_opcode;
12996 if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) {
12997 unallocated_encoding(s);
12998 return;
13001 if (!fp_access_check(s)) {
13002 return;
13005 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13006 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13007 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13008 tcg_imm2 = tcg_const_i32(imm2);
13009 tcg_opcode = tcg_const_i32(opcode);
13011 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13012 tcg_opcode);
13014 tcg_temp_free_ptr(tcg_rd_ptr);
13015 tcg_temp_free_ptr(tcg_rn_ptr);
13016 tcg_temp_free_ptr(tcg_rm_ptr);
13017 tcg_temp_free_i32(tcg_imm2);
13018 tcg_temp_free_i32(tcg_opcode);
13021 /* C3.6 Data processing - SIMD, inc Crypto
13023 * As the decode gets a little complex we are using a table based
13024 * approach for this part of the decode.
13026 static const AArch64DecodeTable data_proc_simd[] = {
13027 /* pattern , mask , fn */
13028 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13029 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13030 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13031 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13032 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13033 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13034 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13035 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13036 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13037 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13038 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13039 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13040 { 0x2e000000, 0xbf208400, disas_simd_ext },
13041 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13042 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13043 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13044 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13045 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13046 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13047 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13048 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13049 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13050 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13051 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13052 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13053 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13054 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13055 { 0xce800000, 0xffe00000, disas_crypto_xar },
13056 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13057 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13058 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13059 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13060 { 0x00000000, 0x00000000, NULL }
13063 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13065 /* Note that this is called with all non-FP cases from
13066 * table C3-6 so it must UNDEF for entries not specifically
13067 * allocated to instructions in that table.
13069 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13070 if (fn) {
13071 fn(s, insn);
13072 } else {
13073 unallocated_encoding(s);
13077 /* C3.6 Data processing - SIMD and floating point */
13078 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13080 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13081 disas_data_proc_fp(s, insn);
13082 } else {
13083 /* SIMD, including crypto */
13084 disas_data_proc_simd(s, insn);
13088 /* C3.1 A64 instruction index by encoding */
13089 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13091 uint32_t insn;
13093 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13094 s->insn = insn;
13095 s->pc += 4;
13097 s->fp_access_checked = false;
13099 switch (extract32(insn, 25, 4)) {
13100 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
13101 unallocated_encoding(s);
13102 break;
13103 case 0x8: case 0x9: /* Data processing - immediate */
13104 disas_data_proc_imm(s, insn);
13105 break;
13106 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13107 disas_b_exc_sys(s, insn);
13108 break;
13109 case 0x4:
13110 case 0x6:
13111 case 0xc:
13112 case 0xe: /* Loads and stores */
13113 disas_ldst(s, insn);
13114 break;
13115 case 0x5:
13116 case 0xd: /* Data processing - register */
13117 disas_data_proc_reg(s, insn);
13118 break;
13119 case 0x7:
13120 case 0xf: /* Data processing - SIMD and floating point */
13121 disas_data_proc_simd_fp(s, insn);
13122 break;
13123 default:
13124 assert(FALSE); /* all 15 cases should be handled above */
13125 break;
13128 /* if we allocated any temporaries, free them here */
13129 free_tmp_a64(s);
13132 static int aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13133 CPUState *cpu, int max_insns)
13135 DisasContext *dc = container_of(dcbase, DisasContext, base);
13136 CPUARMState *env = cpu->env_ptr;
13137 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13138 int bound;
13140 dc->pc = dc->base.pc_first;
13141 dc->condjmp = 0;
13143 dc->aarch64 = 1;
13144 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
13145 * there is no secure EL1, so we route exceptions to EL3.
13147 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
13148 !arm_el_is_aa64(env, 3);
13149 dc->thumb = 0;
13150 dc->sctlr_b = 0;
13151 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
13152 dc->condexec_mask = 0;
13153 dc->condexec_cond = 0;
13154 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
13155 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
13156 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
13157 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13158 #if !defined(CONFIG_USER_ONLY)
13159 dc->user = (dc->current_el == 0);
13160 #endif
13161 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
13162 dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
13163 dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
13164 dc->vec_len = 0;
13165 dc->vec_stride = 0;
13166 dc->cp_regs = arm_cpu->cp_regs;
13167 dc->features = env->features;
13169 /* Single step state. The code-generation logic here is:
13170 * SS_ACTIVE == 0:
13171 * generate code with no special handling for single-stepping (except
13172 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13173 * this happens anyway because those changes are all system register or
13174 * PSTATE writes).
13175 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13176 * emit code for one insn
13177 * emit code to clear PSTATE.SS
13178 * emit code to generate software step exception for completed step
13179 * end TB (as usual for having generated an exception)
13180 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13181 * emit code to generate a software step exception
13182 * end the TB
13184 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
13185 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
13186 dc->is_ldex = false;
13187 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
13189 /* Bound the number of insns to execute to those left on the page. */
13190 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13192 /* If architectural single step active, limit to 1. */
13193 if (dc->ss_active) {
13194 bound = 1;
13196 max_insns = MIN(max_insns, bound);
13198 init_tmp_a64_array(dc);
13200 return max_insns;
13203 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13205 tcg_clear_temp_count();
13208 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13210 DisasContext *dc = container_of(dcbase, DisasContext, base);
13212 tcg_gen_insn_start(dc->pc, 0, 0);
13213 dc->insn_start = tcg_last_op();
13216 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
13217 const CPUBreakpoint *bp)
13219 DisasContext *dc = container_of(dcbase, DisasContext, base);
13221 if (bp->flags & BP_CPU) {
13222 gen_a64_set_pc_im(dc->pc);
13223 gen_helper_check_breakpoints(cpu_env);
13224 /* End the TB early; it likely won't be executed */
13225 dc->base.is_jmp = DISAS_TOO_MANY;
13226 } else {
13227 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
13228 /* The address covered by the breakpoint must be
13229 included in [tb->pc, tb->pc + tb->size) in order
13230 to for it to be properly cleared -- thus we
13231 increment the PC here so that the logic setting
13232 tb->size below does the right thing. */
13233 dc->pc += 4;
13234 dc->base.is_jmp = DISAS_NORETURN;
13237 return true;
13240 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13242 DisasContext *dc = container_of(dcbase, DisasContext, base);
13243 CPUARMState *env = cpu->env_ptr;
13245 if (dc->ss_active && !dc->pstate_ss) {
13246 /* Singlestep state is Active-pending.
13247 * If we're in this state at the start of a TB then either
13248 * a) we just took an exception to an EL which is being debugged
13249 * and this is the first insn in the exception handler
13250 * b) debug exceptions were masked and we just unmasked them
13251 * without changing EL (eg by clearing PSTATE.D)
13252 * In either case we're going to take a swstep exception in the
13253 * "did not step an insn" case, and so the syndrome ISV and EX
13254 * bits should be zero.
13256 assert(dc->base.num_insns == 1);
13257 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
13258 default_exception_el(dc));
13259 dc->base.is_jmp = DISAS_NORETURN;
13260 } else {
13261 disas_a64_insn(env, dc);
13264 dc->base.pc_next = dc->pc;
13265 translator_loop_temp_check(&dc->base);
13268 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13270 DisasContext *dc = container_of(dcbase, DisasContext, base);
13272 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
13273 /* Note that this means single stepping WFI doesn't halt the CPU.
13274 * For conditional branch insns this is harmless unreachable code as
13275 * gen_goto_tb() has already handled emitting the debug exception
13276 * (and thus a tb-jump is not possible when singlestepping).
13278 switch (dc->base.is_jmp) {
13279 default:
13280 gen_a64_set_pc_im(dc->pc);
13281 /* fall through */
13282 case DISAS_EXIT:
13283 case DISAS_JUMP:
13284 if (dc->base.singlestep_enabled) {
13285 gen_exception_internal(EXCP_DEBUG);
13286 } else {
13287 gen_step_complete_exception(dc);
13289 break;
13290 case DISAS_NORETURN:
13291 break;
13293 } else {
13294 switch (dc->base.is_jmp) {
13295 case DISAS_NEXT:
13296 case DISAS_TOO_MANY:
13297 gen_goto_tb(dc, 1, dc->pc);
13298 break;
13299 default:
13300 case DISAS_UPDATE:
13301 gen_a64_set_pc_im(dc->pc);
13302 /* fall through */
13303 case DISAS_JUMP:
13304 tcg_gen_lookup_and_goto_ptr();
13305 break;
13306 case DISAS_EXIT:
13307 tcg_gen_exit_tb(0);
13308 break;
13309 case DISAS_NORETURN:
13310 case DISAS_SWI:
13311 break;
13312 case DISAS_WFE:
13313 gen_a64_set_pc_im(dc->pc);
13314 gen_helper_wfe(cpu_env);
13315 break;
13316 case DISAS_YIELD:
13317 gen_a64_set_pc_im(dc->pc);
13318 gen_helper_yield(cpu_env);
13319 break;
13320 case DISAS_WFI:
13322 /* This is a special case because we don't want to just halt the CPU
13323 * if trying to debug across a WFI.
13325 TCGv_i32 tmp = tcg_const_i32(4);
13327 gen_a64_set_pc_im(dc->pc);
13328 gen_helper_wfi(cpu_env, tmp);
13329 tcg_temp_free_i32(tmp);
13330 /* The helper doesn't necessarily throw an exception, but we
13331 * must go back to the main loop to check for interrupts anyway.
13333 tcg_gen_exit_tb(0);
13334 break;
13339 /* Functions above can change dc->pc, so re-align db->pc_next */
13340 dc->base.pc_next = dc->pc;
13343 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
13344 CPUState *cpu)
13346 DisasContext *dc = container_of(dcbase, DisasContext, base);
13348 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
13349 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
13352 const TranslatorOps aarch64_translator_ops = {
13353 .init_disas_context = aarch64_tr_init_disas_context,
13354 .tb_start = aarch64_tr_tb_start,
13355 .insn_start = aarch64_tr_insn_start,
13356 .breakpoint_check = aarch64_tr_breakpoint_check,
13357 .translate_insn = aarch64_tr_translate_insn,
13358 .tb_stop = aarch64_tr_tb_stop,
13359 .disas_log = aarch64_tr_disas_log,