vhost: correctly pass error to caller in vhost_dev_enable_notifiers()
[qemu/ar7.git] / target-arm / helper.c
blobaa341599cf9ce956040fe645aee4329c5cae1049
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #ifndef CONFIG_USER_ONLY
16 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
17 int access_type, ARMMMUIdx mmu_idx,
18 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
19 target_ulong *page_size, uint32_t *fsr);
21 /* Definitions for the PMCCNTR and PMCR registers */
22 #define PMCRD 0x8
23 #define PMCRC 0x4
24 #define PMCRE 0x1
25 #endif
27 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
29 int nregs;
31 /* VFP data registers are always little-endian. */
32 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
33 if (reg < nregs) {
34 stfq_le_p(buf, env->vfp.regs[reg]);
35 return 8;
37 if (arm_feature(env, ARM_FEATURE_NEON)) {
38 /* Aliases for Q regs. */
39 nregs += 16;
40 if (reg < nregs) {
41 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
42 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
43 return 16;
46 switch (reg - nregs) {
47 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
48 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
49 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
51 return 0;
54 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56 int nregs;
58 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
59 if (reg < nregs) {
60 env->vfp.regs[reg] = ldfq_le_p(buf);
61 return 8;
63 if (arm_feature(env, ARM_FEATURE_NEON)) {
64 nregs += 16;
65 if (reg < nregs) {
66 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
67 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
68 return 16;
71 switch (reg - nregs) {
72 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
73 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
74 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
76 return 0;
79 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
81 switch (reg) {
82 case 0 ... 31:
83 /* 128 bit FP register */
84 stfq_le_p(buf, env->vfp.regs[reg * 2]);
85 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
86 return 16;
87 case 32:
88 /* FPSR */
89 stl_p(buf, vfp_get_fpsr(env));
90 return 4;
91 case 33:
92 /* FPCR */
93 stl_p(buf, vfp_get_fpcr(env));
94 return 4;
95 default:
96 return 0;
100 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
102 switch (reg) {
103 case 0 ... 31:
104 /* 128 bit FP register */
105 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
106 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
107 return 16;
108 case 32:
109 /* FPSR */
110 vfp_set_fpsr(env, ldl_p(buf));
111 return 4;
112 case 33:
113 /* FPCR */
114 vfp_set_fpcr(env, ldl_p(buf));
115 return 4;
116 default:
117 return 0;
121 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
123 assert(ri->fieldoffset);
124 if (cpreg_field_is_64bit(ri)) {
125 return CPREG_FIELD64(env, ri);
126 } else {
127 return CPREG_FIELD32(env, ri);
131 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
132 uint64_t value)
134 assert(ri->fieldoffset);
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(env, ri) = value;
137 } else {
138 CPREG_FIELD32(env, ri) = value;
142 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
144 return (char *)env + ri->fieldoffset;
147 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
149 /* Raw read of a coprocessor register (as needed for migration, etc). */
150 if (ri->type & ARM_CP_CONST) {
151 return ri->resetvalue;
152 } else if (ri->raw_readfn) {
153 return ri->raw_readfn(env, ri);
154 } else if (ri->readfn) {
155 return ri->readfn(env, ri);
156 } else {
157 return raw_read(env, ri);
161 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
162 uint64_t v)
164 /* Raw write of a coprocessor register (as needed for migration, etc).
165 * Note that constant registers are treated as write-ignored; the
166 * caller should check for success by whether a readback gives the
167 * value written.
169 if (ri->type & ARM_CP_CONST) {
170 return;
171 } else if (ri->raw_writefn) {
172 ri->raw_writefn(env, ri, v);
173 } else if (ri->writefn) {
174 ri->writefn(env, ri, v);
175 } else {
176 raw_write(env, ri, v);
180 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
182 /* Return true if the regdef would cause an assertion if you called
183 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
184 * program bug for it not to have the NO_RAW flag).
185 * NB that returning false here doesn't necessarily mean that calling
186 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
187 * read/write access functions which are safe for raw use" from "has
188 * read/write access functions which have side effects but has forgotten
189 * to provide raw access functions".
190 * The tests here line up with the conditions in read/write_raw_cp_reg()
191 * and assertions in raw_read()/raw_write().
193 if ((ri->type & ARM_CP_CONST) ||
194 ri->fieldoffset ||
195 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
196 return false;
198 return true;
201 bool write_cpustate_to_list(ARMCPU *cpu)
203 /* Write the coprocessor state from cpu->env to the (index,value) list. */
204 int i;
205 bool ok = true;
207 for (i = 0; i < cpu->cpreg_array_len; i++) {
208 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
209 const ARMCPRegInfo *ri;
211 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
212 if (!ri) {
213 ok = false;
214 continue;
216 if (ri->type & ARM_CP_NO_RAW) {
217 continue;
219 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
221 return ok;
224 bool write_list_to_cpustate(ARMCPU *cpu)
226 int i;
227 bool ok = true;
229 for (i = 0; i < cpu->cpreg_array_len; i++) {
230 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
231 uint64_t v = cpu->cpreg_values[i];
232 const ARMCPRegInfo *ri;
234 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
235 if (!ri) {
236 ok = false;
237 continue;
239 if (ri->type & ARM_CP_NO_RAW) {
240 continue;
242 /* Write value and confirm it reads back as written
243 * (to catch read-only registers and partially read-only
244 * registers where the incoming migration value doesn't match)
246 write_raw_cp_reg(&cpu->env, ri, v);
247 if (read_raw_cp_reg(&cpu->env, ri) != v) {
248 ok = false;
251 return ok;
254 static void add_cpreg_to_list(gpointer key, gpointer opaque)
256 ARMCPU *cpu = opaque;
257 uint64_t regidx;
258 const ARMCPRegInfo *ri;
260 regidx = *(uint32_t *)key;
261 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
263 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
264 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
265 /* The value array need not be initialized at this point */
266 cpu->cpreg_array_len++;
270 static void count_cpreg(gpointer key, gpointer opaque)
272 ARMCPU *cpu = opaque;
273 uint64_t regidx;
274 const ARMCPRegInfo *ri;
276 regidx = *(uint32_t *)key;
277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
279 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
280 cpu->cpreg_array_len++;
284 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
286 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
287 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
289 if (aidx > bidx) {
290 return 1;
292 if (aidx < bidx) {
293 return -1;
295 return 0;
298 void init_cpreg_list(ARMCPU *cpu)
300 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
301 * Note that we require cpreg_tuples[] to be sorted by key ID.
303 GList *keys;
304 int arraylen;
306 keys = g_hash_table_get_keys(cpu->cp_regs);
307 keys = g_list_sort(keys, cpreg_key_compare);
309 cpu->cpreg_array_len = 0;
311 g_list_foreach(keys, count_cpreg, cpu);
313 arraylen = cpu->cpreg_array_len;
314 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
315 cpu->cpreg_values = g_new(uint64_t, arraylen);
316 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
317 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
318 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
319 cpu->cpreg_array_len = 0;
321 g_list_foreach(keys, add_cpreg_to_list, cpu);
323 assert(cpu->cpreg_array_len == arraylen);
325 g_list_free(keys);
328 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
330 ARMCPU *cpu = arm_env_get_cpu(env);
332 raw_write(env, ri, value);
333 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
336 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
338 ARMCPU *cpu = arm_env_get_cpu(env);
340 if (raw_read(env, ri) != value) {
341 /* Unlike real hardware the qemu TLB uses virtual addresses,
342 * not modified virtual addresses, so this causes a TLB flush.
344 tlb_flush(CPU(cpu), 1);
345 raw_write(env, ri, value);
349 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
350 uint64_t value)
352 ARMCPU *cpu = arm_env_get_cpu(env);
354 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
355 && !extended_addresses_enabled(env)) {
356 /* For VMSA (when not using the LPAE long descriptor page table
357 * format) this register includes the ASID, so do a TLB flush.
358 * For PMSA it is purely a process ID and no action is needed.
360 tlb_flush(CPU(cpu), 1);
362 raw_write(env, ri, value);
365 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
366 uint64_t value)
368 /* Invalidate all (TLBIALL) */
369 ARMCPU *cpu = arm_env_get_cpu(env);
371 tlb_flush(CPU(cpu), 1);
374 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
375 uint64_t value)
377 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
378 ARMCPU *cpu = arm_env_get_cpu(env);
380 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
383 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
384 uint64_t value)
386 /* Invalidate by ASID (TLBIASID) */
387 ARMCPU *cpu = arm_env_get_cpu(env);
389 tlb_flush(CPU(cpu), value == 0);
392 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
393 uint64_t value)
395 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
396 ARMCPU *cpu = arm_env_get_cpu(env);
398 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
401 /* IS variants of TLB operations must affect all cores */
402 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
403 uint64_t value)
405 CPUState *other_cs;
407 CPU_FOREACH(other_cs) {
408 tlb_flush(other_cs, 1);
412 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
413 uint64_t value)
415 CPUState *other_cs;
417 CPU_FOREACH(other_cs) {
418 tlb_flush(other_cs, value == 0);
422 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
423 uint64_t value)
425 CPUState *other_cs;
427 CPU_FOREACH(other_cs) {
428 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
432 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
433 uint64_t value)
435 CPUState *other_cs;
437 CPU_FOREACH(other_cs) {
438 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
442 static const ARMCPRegInfo cp_reginfo[] = {
443 /* Define the secure and non-secure FCSE identifier CP registers
444 * separately because there is no secure bank in V8 (no _EL3). This allows
445 * the secure register to be properly reset and migrated. There is also no
446 * v8 EL1 version of the register so the non-secure instance stands alone.
448 { .name = "FCSEIDR(NS)",
449 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
450 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
451 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
452 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
453 { .name = "FCSEIDR(S)",
454 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
455 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
456 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
457 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
458 /* Define the secure and non-secure context identifier CP registers
459 * separately because there is no secure bank in V8 (no _EL3). This allows
460 * the secure register to be properly reset and migrated. In the
461 * non-secure case, the 32-bit register will have reset and migration
462 * disabled during registration as it is handled by the 64-bit instance.
464 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
465 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
466 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
467 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
468 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
469 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
470 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
471 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
472 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
473 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
474 REGINFO_SENTINEL
477 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
478 /* NB: Some of these registers exist in v8 but with more precise
479 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
481 /* MMU Domain access control / MPU write buffer control */
482 { .name = "DACR",
483 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
484 .access = PL1_RW, .resetvalue = 0,
485 .writefn = dacr_write, .raw_writefn = raw_write,
486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
487 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
488 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
489 * For v6 and v5, these mappings are overly broad.
491 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
492 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
493 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
494 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
495 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
496 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
497 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
498 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
499 /* Cache maintenance ops; some of this space may be overridden later. */
500 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
501 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
502 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
503 REGINFO_SENTINEL
506 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
507 /* Not all pre-v6 cores implemented this WFI, so this is slightly
508 * over-broad.
510 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
511 .access = PL1_W, .type = ARM_CP_WFI },
512 REGINFO_SENTINEL
515 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
516 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
517 * is UNPREDICTABLE; we choose to NOP as most implementations do).
519 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
520 .access = PL1_W, .type = ARM_CP_WFI },
521 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
522 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
523 * OMAPCP will override this space.
525 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
526 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
527 .resetvalue = 0 },
528 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
529 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
530 .resetvalue = 0 },
531 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
532 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
533 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
534 .resetvalue = 0 },
535 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
536 * implementing it as RAZ means the "debug architecture version" bits
537 * will read as a reserved value, which should cause Linux to not try
538 * to use the debug hardware.
540 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
541 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
542 /* MMU TLB control. Note that the wildcarding means we cover not just
543 * the unified TLB ops but also the dside/iside/inner-shareable variants.
545 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
546 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
547 .type = ARM_CP_NO_RAW },
548 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
549 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
550 .type = ARM_CP_NO_RAW },
551 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
552 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
553 .type = ARM_CP_NO_RAW },
554 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
555 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
556 .type = ARM_CP_NO_RAW },
557 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
558 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
559 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
560 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
561 REGINFO_SENTINEL
564 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 uint32_t mask = 0;
569 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
570 if (!arm_feature(env, ARM_FEATURE_V8)) {
571 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
572 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
573 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
575 if (arm_feature(env, ARM_FEATURE_VFP)) {
576 /* VFP coprocessor: cp10 & cp11 [23:20] */
577 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
579 if (!arm_feature(env, ARM_FEATURE_NEON)) {
580 /* ASEDIS [31] bit is RAO/WI */
581 value |= (1 << 31);
584 /* VFPv3 and upwards with NEON implement 32 double precision
585 * registers (D0-D31).
587 if (!arm_feature(env, ARM_FEATURE_NEON) ||
588 !arm_feature(env, ARM_FEATURE_VFP3)) {
589 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
590 value |= (1 << 30);
593 value &= mask;
595 env->cp15.cpacr_el1 = value;
598 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
600 if (arm_feature(env, ARM_FEATURE_V8)) {
601 /* Check if CPACR accesses are to be trapped to EL2 */
602 if (arm_current_el(env) == 1 &&
603 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
604 return CP_ACCESS_TRAP_EL2;
605 /* Check if CPACR accesses are to be trapped to EL3 */
606 } else if (arm_current_el(env) < 3 &&
607 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
608 return CP_ACCESS_TRAP_EL3;
612 return CP_ACCESS_OK;
615 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
617 /* Check if CPTR accesses are set to trap to EL3 */
618 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
619 return CP_ACCESS_TRAP_EL3;
622 return CP_ACCESS_OK;
625 static const ARMCPRegInfo v6_cp_reginfo[] = {
626 /* prefetch by MVA in v6, NOP in v7 */
627 { .name = "MVA_prefetch",
628 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
629 .access = PL1_W, .type = ARM_CP_NOP },
630 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
631 .access = PL0_W, .type = ARM_CP_NOP },
632 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
633 .access = PL0_W, .type = ARM_CP_NOP },
634 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
635 .access = PL0_W, .type = ARM_CP_NOP },
636 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
637 .access = PL1_RW,
638 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
639 offsetof(CPUARMState, cp15.ifar_ns) },
640 .resetvalue = 0, },
641 /* Watchpoint Fault Address Register : should actually only be present
642 * for 1136, 1176, 11MPCore.
644 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
645 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
646 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
647 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
648 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
649 .resetvalue = 0, .writefn = cpacr_write },
650 REGINFO_SENTINEL
653 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
655 /* Performance monitor registers user accessibility is controlled
656 * by PMUSERENR.
658 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
659 return CP_ACCESS_TRAP;
661 return CP_ACCESS_OK;
664 #ifndef CONFIG_USER_ONLY
666 static inline bool arm_ccnt_enabled(CPUARMState *env)
668 /* This does not support checking PMCCFILTR_EL0 register */
670 if (!(env->cp15.c9_pmcr & PMCRE)) {
671 return false;
674 return true;
677 void pmccntr_sync(CPUARMState *env)
679 uint64_t temp_ticks;
681 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
682 get_ticks_per_sec(), 1000000);
684 if (env->cp15.c9_pmcr & PMCRD) {
685 /* Increment once every 64 processor clock cycles */
686 temp_ticks /= 64;
689 if (arm_ccnt_enabled(env)) {
690 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
694 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
695 uint64_t value)
697 pmccntr_sync(env);
699 if (value & PMCRC) {
700 /* The counter has been reset */
701 env->cp15.c15_ccnt = 0;
704 /* only the DP, X, D and E bits are writable */
705 env->cp15.c9_pmcr &= ~0x39;
706 env->cp15.c9_pmcr |= (value & 0x39);
708 pmccntr_sync(env);
711 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
713 uint64_t total_ticks;
715 if (!arm_ccnt_enabled(env)) {
716 /* Counter is disabled, do not change value */
717 return env->cp15.c15_ccnt;
720 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
721 get_ticks_per_sec(), 1000000);
723 if (env->cp15.c9_pmcr & PMCRD) {
724 /* Increment once every 64 processor clock cycles */
725 total_ticks /= 64;
727 return total_ticks - env->cp15.c15_ccnt;
730 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
731 uint64_t value)
733 uint64_t total_ticks;
735 if (!arm_ccnt_enabled(env)) {
736 /* Counter is disabled, set the absolute value */
737 env->cp15.c15_ccnt = value;
738 return;
741 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
742 get_ticks_per_sec(), 1000000);
744 if (env->cp15.c9_pmcr & PMCRD) {
745 /* Increment once every 64 processor clock cycles */
746 total_ticks /= 64;
748 env->cp15.c15_ccnt = total_ticks - value;
751 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
752 uint64_t value)
754 uint64_t cur_val = pmccntr_read(env, NULL);
756 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
759 #else /* CONFIG_USER_ONLY */
761 void pmccntr_sync(CPUARMState *env)
765 #endif
767 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
768 uint64_t value)
770 pmccntr_sync(env);
771 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
772 pmccntr_sync(env);
775 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
776 uint64_t value)
778 value &= (1 << 31);
779 env->cp15.c9_pmcnten |= value;
782 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t value)
785 value &= (1 << 31);
786 env->cp15.c9_pmcnten &= ~value;
789 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
790 uint64_t value)
792 env->cp15.c9_pmovsr &= ~value;
795 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t value)
798 env->cp15.c9_pmxevtyper = value & 0xff;
801 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
802 uint64_t value)
804 env->cp15.c9_pmuserenr = value & 1;
807 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
808 uint64_t value)
810 /* We have no event counters so only the C bit can be changed */
811 value &= (1 << 31);
812 env->cp15.c9_pminten |= value;
815 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
816 uint64_t value)
818 value &= (1 << 31);
819 env->cp15.c9_pminten &= ~value;
822 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
823 uint64_t value)
825 /* Note that even though the AArch64 view of this register has bits
826 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
827 * architectural requirements for bits which are RES0 only in some
828 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
829 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
831 raw_write(env, ri, value & ~0x1FULL);
834 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
836 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
837 * For bits that vary between AArch32/64, code needs to check the
838 * current execution mode before directly using the feature bit.
840 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
842 if (!arm_feature(env, ARM_FEATURE_EL2)) {
843 valid_mask &= ~SCR_HCE;
845 /* On ARMv7, SMD (or SCD as it is called in v7) is only
846 * supported if EL2 exists. The bit is UNK/SBZP when
847 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
848 * when EL2 is unavailable.
849 * On ARMv8, this bit is always available.
851 if (arm_feature(env, ARM_FEATURE_V7) &&
852 !arm_feature(env, ARM_FEATURE_V8)) {
853 valid_mask &= ~SCR_SMD;
857 /* Clear all-context RES0 bits. */
858 value &= valid_mask;
859 raw_write(env, ri, value);
862 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
864 ARMCPU *cpu = arm_env_get_cpu(env);
866 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
867 * bank
869 uint32_t index = A32_BANKED_REG_GET(env, csselr,
870 ri->secure & ARM_CP_SECSTATE_S);
872 return cpu->ccsidr[index];
875 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
876 uint64_t value)
878 raw_write(env, ri, value & 0xf);
881 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
883 CPUState *cs = ENV_GET_CPU(env);
884 uint64_t ret = 0;
886 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
887 ret |= CPSR_I;
889 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
890 ret |= CPSR_F;
892 /* External aborts are not possible in QEMU so A bit is always clear */
893 return ret;
896 static const ARMCPRegInfo v7_cp_reginfo[] = {
897 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
898 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
899 .access = PL1_W, .type = ARM_CP_NOP },
900 /* Performance monitors are implementation defined in v7,
901 * but with an ARM recommended set of registers, which we
902 * follow (although we don't actually implement any counters)
904 * Performance registers fall into three categories:
905 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
906 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
907 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
908 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
909 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
911 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
912 .access = PL0_RW, .type = ARM_CP_ALIAS,
913 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
914 .writefn = pmcntenset_write,
915 .accessfn = pmreg_access,
916 .raw_writefn = raw_write },
917 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
919 .access = PL0_RW, .accessfn = pmreg_access,
920 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
921 .writefn = pmcntenset_write, .raw_writefn = raw_write },
922 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
923 .access = PL0_RW,
924 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
925 .accessfn = pmreg_access,
926 .writefn = pmcntenclr_write,
927 .type = ARM_CP_ALIAS },
928 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
929 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
930 .access = PL0_RW, .accessfn = pmreg_access,
931 .type = ARM_CP_ALIAS,
932 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
933 .writefn = pmcntenclr_write },
934 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
935 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
936 .accessfn = pmreg_access,
937 .writefn = pmovsr_write,
938 .raw_writefn = raw_write },
939 /* Unimplemented so WI. */
940 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
941 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
942 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
943 * We choose to RAZ/WI.
945 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
946 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
947 .accessfn = pmreg_access },
948 #ifndef CONFIG_USER_ONLY
949 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
950 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
951 .readfn = pmccntr_read, .writefn = pmccntr_write32,
952 .accessfn = pmreg_access },
953 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
955 .access = PL0_RW, .accessfn = pmreg_access,
956 .type = ARM_CP_IO,
957 .readfn = pmccntr_read, .writefn = pmccntr_write, },
958 #endif
959 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
960 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
961 .writefn = pmccfiltr_write,
962 .access = PL0_RW, .accessfn = pmreg_access,
963 .type = ARM_CP_IO,
964 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
965 .resetvalue = 0, },
966 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
967 .access = PL0_RW,
968 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
969 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
970 .raw_writefn = raw_write },
971 /* Unimplemented, RAZ/WI. */
972 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
973 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
974 .accessfn = pmreg_access },
975 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
976 .access = PL0_R | PL1_RW,
977 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
978 .resetvalue = 0,
979 .writefn = pmuserenr_write, .raw_writefn = raw_write },
980 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
981 .access = PL1_RW,
982 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
983 .resetvalue = 0,
984 .writefn = pmintenset_write, .raw_writefn = raw_write },
985 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
986 .access = PL1_RW, .type = ARM_CP_ALIAS,
987 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
988 .writefn = pmintenclr_write, },
989 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
990 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
991 .access = PL1_RW, .writefn = vbar_write,
992 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
993 offsetof(CPUARMState, cp15.vbar_ns) },
994 .resetvalue = 0 },
995 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
996 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
997 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
998 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
999 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1000 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1001 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1002 offsetof(CPUARMState, cp15.csselr_ns) } },
1003 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1004 * just RAZ for all cores:
1006 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1007 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1008 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1009 /* Auxiliary fault status registers: these also are IMPDEF, and we
1010 * choose to RAZ/WI for all cores.
1012 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1013 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1014 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1015 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1016 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1017 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1018 /* MAIR can just read-as-written because we don't implement caches
1019 * and so don't need to care about memory attributes.
1021 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1022 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1023 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1024 .resetvalue = 0 },
1025 /* For non-long-descriptor page tables these are PRRR and NMRR;
1026 * regardless they still act as reads-as-written for QEMU.
1028 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1029 * allows them to assign the correct fieldoffset based on the endianness
1030 * handled in the field definitions.
1032 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1033 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1034 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1035 offsetof(CPUARMState, cp15.mair0_ns) },
1036 .resetfn = arm_cp_reset_ignore },
1037 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1038 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1039 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1040 offsetof(CPUARMState, cp15.mair1_ns) },
1041 .resetfn = arm_cp_reset_ignore },
1042 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1043 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1044 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1045 /* 32 bit ITLB invalidates */
1046 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1047 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1048 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1049 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1050 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1051 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1052 /* 32 bit DTLB invalidates */
1053 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1054 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1055 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1056 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1057 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1058 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1059 /* 32 bit TLB invalidates */
1060 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1061 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1062 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1063 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1064 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1065 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1066 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1067 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1068 REGINFO_SENTINEL
1071 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1072 /* 32 bit TLB invalidates, Inner Shareable */
1073 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1074 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1075 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1076 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1077 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1078 .type = ARM_CP_NO_RAW, .access = PL1_W,
1079 .writefn = tlbiasid_is_write },
1080 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1081 .type = ARM_CP_NO_RAW, .access = PL1_W,
1082 .writefn = tlbimvaa_is_write },
1083 REGINFO_SENTINEL
1086 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1087 uint64_t value)
1089 value &= 1;
1090 env->teecr = value;
1093 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1095 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1096 return CP_ACCESS_TRAP;
1098 return CP_ACCESS_OK;
1101 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1102 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1103 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1104 .resetvalue = 0,
1105 .writefn = teecr_write },
1106 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1107 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1108 .accessfn = teehbr_access, .resetvalue = 0 },
1109 REGINFO_SENTINEL
1112 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1113 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1114 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1115 .access = PL0_RW,
1116 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1117 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1118 .access = PL0_RW,
1119 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1120 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1121 .resetfn = arm_cp_reset_ignore },
1122 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1123 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1124 .access = PL0_R|PL1_W,
1125 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1126 .resetvalue = 0},
1127 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1128 .access = PL0_R|PL1_W,
1129 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1130 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1131 .resetfn = arm_cp_reset_ignore },
1132 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1133 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1134 .access = PL1_RW,
1135 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1136 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1137 .access = PL1_RW,
1138 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1139 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1140 .resetvalue = 0 },
1141 REGINFO_SENTINEL
1144 #ifndef CONFIG_USER_ONLY
1146 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1148 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1149 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1150 return CP_ACCESS_TRAP;
1152 return CP_ACCESS_OK;
1155 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1157 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1158 if (arm_current_el(env) == 0 &&
1159 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1160 return CP_ACCESS_TRAP;
1162 return CP_ACCESS_OK;
1165 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1167 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1168 * EL0[PV]TEN is zero.
1170 if (arm_current_el(env) == 0 &&
1171 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1172 return CP_ACCESS_TRAP;
1174 return CP_ACCESS_OK;
1177 static CPAccessResult gt_pct_access(CPUARMState *env,
1178 const ARMCPRegInfo *ri)
1180 return gt_counter_access(env, GTIMER_PHYS);
1183 static CPAccessResult gt_vct_access(CPUARMState *env,
1184 const ARMCPRegInfo *ri)
1186 return gt_counter_access(env, GTIMER_VIRT);
1189 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1191 return gt_timer_access(env, GTIMER_PHYS);
1194 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1196 return gt_timer_access(env, GTIMER_VIRT);
1199 static uint64_t gt_get_countervalue(CPUARMState *env)
1201 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1204 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1206 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1208 if (gt->ctl & 1) {
1209 /* Timer enabled: calculate and set current ISTATUS, irq, and
1210 * reset timer to when ISTATUS next has to change
1212 uint64_t count = gt_get_countervalue(&cpu->env);
1213 /* Note that this must be unsigned 64 bit arithmetic: */
1214 int istatus = count >= gt->cval;
1215 uint64_t nexttick;
1217 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1218 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1219 (istatus && !(gt->ctl & 2)));
1220 if (istatus) {
1221 /* Next transition is when count rolls back over to zero */
1222 nexttick = UINT64_MAX;
1223 } else {
1224 /* Next transition is when we hit cval */
1225 nexttick = gt->cval;
1227 /* Note that the desired next expiry time might be beyond the
1228 * signed-64-bit range of a QEMUTimer -- in this case we just
1229 * set the timer for as far in the future as possible. When the
1230 * timer expires we will reset the timer for any remaining period.
1232 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1233 nexttick = INT64_MAX / GTIMER_SCALE;
1235 timer_mod(cpu->gt_timer[timeridx], nexttick);
1236 } else {
1237 /* Timer disabled: ISTATUS and timer output always clear */
1238 gt->ctl &= ~4;
1239 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1240 timer_del(cpu->gt_timer[timeridx]);
1244 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1246 ARMCPU *cpu = arm_env_get_cpu(env);
1247 int timeridx = ri->opc1 & 1;
1249 timer_del(cpu->gt_timer[timeridx]);
1252 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1254 return gt_get_countervalue(env);
1257 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1258 uint64_t value)
1260 int timeridx = ri->opc1 & 1;
1262 env->cp15.c14_timer[timeridx].cval = value;
1263 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1266 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1268 int timeridx = ri->crm & 1;
1270 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1271 gt_get_countervalue(env));
1274 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1275 uint64_t value)
1277 int timeridx = ri->crm & 1;
1279 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1280 sextract64(value, 0, 32);
1281 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1284 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1285 uint64_t value)
1287 ARMCPU *cpu = arm_env_get_cpu(env);
1288 int timeridx = ri->crm & 1;
1289 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1291 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1292 if ((oldval ^ value) & 1) {
1293 /* Enable toggled */
1294 gt_recalc_timer(cpu, timeridx);
1295 } else if ((oldval ^ value) & 2) {
1296 /* IMASK toggled: don't need to recalculate,
1297 * just set the interrupt line based on ISTATUS
1299 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1300 (oldval & 4) && !(value & 2));
1304 void arm_gt_ptimer_cb(void *opaque)
1306 ARMCPU *cpu = opaque;
1308 gt_recalc_timer(cpu, GTIMER_PHYS);
1311 void arm_gt_vtimer_cb(void *opaque)
1313 ARMCPU *cpu = opaque;
1315 gt_recalc_timer(cpu, GTIMER_VIRT);
1318 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1319 /* Note that CNTFRQ is purely reads-as-written for the benefit
1320 * of software; writing it doesn't actually change the timer frequency.
1321 * Our reset value matches the fixed frequency we implement the timer at.
1323 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1324 .type = ARM_CP_ALIAS,
1325 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1328 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1329 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1330 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1331 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1332 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1334 /* overall control: mostly access permissions */
1335 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1336 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1337 .access = PL1_RW,
1338 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1339 .resetvalue = 0,
1341 /* per-timer control */
1342 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1343 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1344 .accessfn = gt_ptimer_access,
1345 .fieldoffset = offsetoflow32(CPUARMState,
1346 cp15.c14_timer[GTIMER_PHYS].ctl),
1347 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1349 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1351 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1352 .accessfn = gt_ptimer_access,
1353 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1354 .resetvalue = 0,
1355 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1357 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1358 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1359 .accessfn = gt_vtimer_access,
1360 .fieldoffset = offsetoflow32(CPUARMState,
1361 cp15.c14_timer[GTIMER_VIRT].ctl),
1362 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1364 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1365 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1366 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1367 .accessfn = gt_vtimer_access,
1368 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1369 .resetvalue = 0,
1370 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1372 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1373 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1374 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1375 .accessfn = gt_ptimer_access,
1376 .readfn = gt_tval_read, .writefn = gt_tval_write,
1378 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1379 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1380 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1381 .accessfn = gt_ptimer_access,
1382 .readfn = gt_tval_read, .writefn = gt_tval_write,
1384 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1385 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1386 .accessfn = gt_vtimer_access,
1387 .readfn = gt_tval_read, .writefn = gt_tval_write,
1389 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1390 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1391 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1392 .accessfn = gt_vtimer_access,
1393 .readfn = gt_tval_read, .writefn = gt_tval_write,
1395 /* The counter itself */
1396 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1397 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1398 .accessfn = gt_pct_access,
1399 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1401 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1402 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1403 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1404 .accessfn = gt_pct_access,
1405 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1407 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1408 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1409 .accessfn = gt_vct_access,
1410 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1412 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1413 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1414 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1415 .accessfn = gt_vct_access,
1416 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1418 /* Comparison value, indicating when the timer goes off */
1419 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1420 .access = PL1_RW | PL0_R,
1421 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1422 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1423 .accessfn = gt_ptimer_access,
1424 .writefn = gt_cval_write, .raw_writefn = raw_write,
1426 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1427 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1428 .access = PL1_RW | PL0_R,
1429 .type = ARM_CP_IO,
1430 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1431 .resetvalue = 0, .accessfn = gt_ptimer_access,
1432 .writefn = gt_cval_write, .raw_writefn = raw_write,
1434 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1435 .access = PL1_RW | PL0_R,
1436 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1437 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1438 .accessfn = gt_vtimer_access,
1439 .writefn = gt_cval_write, .raw_writefn = raw_write,
1441 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1442 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1443 .access = PL1_RW | PL0_R,
1444 .type = ARM_CP_IO,
1445 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1446 .resetvalue = 0, .accessfn = gt_vtimer_access,
1447 .writefn = gt_cval_write, .raw_writefn = raw_write,
1449 REGINFO_SENTINEL
1452 #else
1453 /* In user-mode none of the generic timer registers are accessible,
1454 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1455 * so instead just don't register any of them.
1457 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1458 REGINFO_SENTINEL
1461 #endif
1463 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1465 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1466 raw_write(env, ri, value);
1467 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1468 raw_write(env, ri, value & 0xfffff6ff);
1469 } else {
1470 raw_write(env, ri, value & 0xfffff1ff);
1474 #ifndef CONFIG_USER_ONLY
1475 /* get_phys_addr() isn't present for user-mode-only targets */
1477 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1479 if (ri->opc2 & 4) {
1480 /* Other states are only available with TrustZone; in
1481 * a non-TZ implementation these registers don't exist
1482 * at all, which is an Uncategorized trap. This underdecoding
1483 * is safe because the reginfo is NO_RAW.
1485 return CP_ACCESS_TRAP_UNCATEGORIZED;
1487 return CP_ACCESS_OK;
1490 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1491 int access_type, ARMMMUIdx mmu_idx)
1493 hwaddr phys_addr;
1494 target_ulong page_size;
1495 int prot;
1496 uint32_t fsr;
1497 bool ret;
1498 uint64_t par64;
1499 MemTxAttrs attrs = {};
1501 ret = get_phys_addr(env, value, access_type, mmu_idx,
1502 &phys_addr, &attrs, &prot, &page_size, &fsr);
1503 if (extended_addresses_enabled(env)) {
1504 /* fsr is a DFSR/IFSR value for the long descriptor
1505 * translation table format, but with WnR always clear.
1506 * Convert it to a 64-bit PAR.
1508 par64 = (1 << 11); /* LPAE bit always set */
1509 if (!ret) {
1510 par64 |= phys_addr & ~0xfffULL;
1511 if (!attrs.secure) {
1512 par64 |= (1 << 9); /* NS */
1514 /* We don't set the ATTR or SH fields in the PAR. */
1515 } else {
1516 par64 |= 1; /* F */
1517 par64 |= (fsr & 0x3f) << 1; /* FS */
1518 /* Note that S2WLK and FSTAGE are always zero, because we don't
1519 * implement virtualization and therefore there can't be a stage 2
1520 * fault.
1523 } else {
1524 /* fsr is a DFSR/IFSR value for the short descriptor
1525 * translation table format (with WnR always clear).
1526 * Convert it to a 32-bit PAR.
1528 if (!ret) {
1529 /* We do not set any attribute bits in the PAR */
1530 if (page_size == (1 << 24)
1531 && arm_feature(env, ARM_FEATURE_V7)) {
1532 par64 = (phys_addr & 0xff000000) | (1 << 1);
1533 } else {
1534 par64 = phys_addr & 0xfffff000;
1536 if (!attrs.secure) {
1537 par64 |= (1 << 9); /* NS */
1539 } else {
1540 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1541 ((fsr & 0xf) << 1) | 1;
1544 return par64;
1547 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1549 int access_type = ri->opc2 & 1;
1550 uint64_t par64;
1551 ARMMMUIdx mmu_idx;
1552 int el = arm_current_el(env);
1553 bool secure = arm_is_secure_below_el3(env);
1555 switch (ri->opc2 & 6) {
1556 case 0:
1557 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1558 switch (el) {
1559 case 3:
1560 mmu_idx = ARMMMUIdx_S1E3;
1561 break;
1562 case 2:
1563 mmu_idx = ARMMMUIdx_S1NSE1;
1564 break;
1565 case 1:
1566 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1567 break;
1568 default:
1569 g_assert_not_reached();
1571 break;
1572 case 2:
1573 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1574 switch (el) {
1575 case 3:
1576 mmu_idx = ARMMMUIdx_S1SE0;
1577 break;
1578 case 2:
1579 mmu_idx = ARMMMUIdx_S1NSE0;
1580 break;
1581 case 1:
1582 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1583 break;
1584 default:
1585 g_assert_not_reached();
1587 break;
1588 case 4:
1589 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1590 mmu_idx = ARMMMUIdx_S12NSE1;
1591 break;
1592 case 6:
1593 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1594 mmu_idx = ARMMMUIdx_S12NSE0;
1595 break;
1596 default:
1597 g_assert_not_reached();
1600 par64 = do_ats_write(env, value, access_type, mmu_idx);
1602 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1605 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1608 int access_type = ri->opc2 & 1;
1609 ARMMMUIdx mmu_idx;
1610 int secure = arm_is_secure_below_el3(env);
1612 switch (ri->opc2 & 6) {
1613 case 0:
1614 switch (ri->opc1) {
1615 case 0: /* AT S1E1R, AT S1E1W */
1616 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1617 break;
1618 case 4: /* AT S1E2R, AT S1E2W */
1619 mmu_idx = ARMMMUIdx_S1E2;
1620 break;
1621 case 6: /* AT S1E3R, AT S1E3W */
1622 mmu_idx = ARMMMUIdx_S1E3;
1623 break;
1624 default:
1625 g_assert_not_reached();
1627 break;
1628 case 2: /* AT S1E0R, AT S1E0W */
1629 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1630 break;
1631 case 4: /* AT S12E1R, AT S12E1W */
1632 mmu_idx = ARMMMUIdx_S12NSE1;
1633 break;
1634 case 6: /* AT S12E0R, AT S12E0W */
1635 mmu_idx = ARMMMUIdx_S12NSE0;
1636 break;
1637 default:
1638 g_assert_not_reached();
1641 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1643 #endif
1645 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1646 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1647 .access = PL1_RW, .resetvalue = 0,
1648 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1649 offsetoflow32(CPUARMState, cp15.par_ns) },
1650 .writefn = par_write },
1651 #ifndef CONFIG_USER_ONLY
1652 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1653 .access = PL1_W, .accessfn = ats_access,
1654 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1655 #endif
1656 REGINFO_SENTINEL
1659 /* Return basic MPU access permission bits. */
1660 static uint32_t simple_mpu_ap_bits(uint32_t val)
1662 uint32_t ret;
1663 uint32_t mask;
1664 int i;
1665 ret = 0;
1666 mask = 3;
1667 for (i = 0; i < 16; i += 2) {
1668 ret |= (val >> i) & mask;
1669 mask <<= 2;
1671 return ret;
1674 /* Pad basic MPU access permission bits to extended format. */
1675 static uint32_t extended_mpu_ap_bits(uint32_t val)
1677 uint32_t ret;
1678 uint32_t mask;
1679 int i;
1680 ret = 0;
1681 mask = 3;
1682 for (i = 0; i < 16; i += 2) {
1683 ret |= (val & mask) << i;
1684 mask <<= 2;
1686 return ret;
1689 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1690 uint64_t value)
1692 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1695 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1697 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1700 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701 uint64_t value)
1703 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1706 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1708 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1711 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
1713 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1715 if (!u32p) {
1716 return 0;
1719 u32p += env->cp15.c6_rgnr;
1720 return *u32p;
1723 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724 uint64_t value)
1726 ARMCPU *cpu = arm_env_get_cpu(env);
1727 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1729 if (!u32p) {
1730 return;
1733 u32p += env->cp15.c6_rgnr;
1734 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
1735 *u32p = value;
1738 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1740 ARMCPU *cpu = arm_env_get_cpu(env);
1741 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1743 if (!u32p) {
1744 return;
1747 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
1750 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value)
1753 ARMCPU *cpu = arm_env_get_cpu(env);
1754 uint32_t nrgs = cpu->pmsav7_dregion;
1756 if (value >= nrgs) {
1757 qemu_log_mask(LOG_GUEST_ERROR,
1758 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
1759 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
1760 return;
1763 raw_write(env, ri, value);
1766 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
1767 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
1768 .access = PL1_RW, .type = ARM_CP_NO_RAW,
1769 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
1770 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
1771 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
1772 .access = PL1_RW, .type = ARM_CP_NO_RAW,
1773 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
1774 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
1775 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
1776 .access = PL1_RW, .type = ARM_CP_NO_RAW,
1777 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
1778 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
1779 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
1780 .access = PL1_RW,
1781 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
1782 .writefn = pmsav7_rgnr_write },
1783 REGINFO_SENTINEL
1786 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1787 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1788 .access = PL1_RW, .type = ARM_CP_ALIAS,
1789 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1790 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1791 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1792 .access = PL1_RW, .type = ARM_CP_ALIAS,
1793 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1794 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1795 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1796 .access = PL1_RW,
1797 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1798 .resetvalue = 0, },
1799 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1800 .access = PL1_RW,
1801 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1802 .resetvalue = 0, },
1803 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1804 .access = PL1_RW,
1805 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1806 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1807 .access = PL1_RW,
1808 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1809 /* Protection region base and size registers */
1810 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1811 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1812 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1813 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1814 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1815 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1816 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1817 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1818 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1819 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1820 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1821 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1822 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1823 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1824 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1825 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1826 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1827 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1828 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1829 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1830 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1831 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1832 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1833 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1834 REGINFO_SENTINEL
1837 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1838 uint64_t value)
1840 TCR *tcr = raw_ptr(env, ri);
1841 int maskshift = extract32(value, 0, 3);
1843 if (!arm_feature(env, ARM_FEATURE_V8)) {
1844 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1845 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1846 * using Long-desciptor translation table format */
1847 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1848 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1849 /* In an implementation that includes the Security Extensions
1850 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1851 * Short-descriptor translation table format.
1853 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1854 } else {
1855 value &= TTBCR_N;
1859 /* Update the masks corresponding to the the TCR bank being written
1860 * Note that we always calculate mask and base_mask, but
1861 * they are only used for short-descriptor tables (ie if EAE is 0);
1862 * for long-descriptor tables the TCR fields are used differently
1863 * and the mask and base_mask values are meaningless.
1865 tcr->raw_tcr = value;
1866 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1867 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1870 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1871 uint64_t value)
1873 ARMCPU *cpu = arm_env_get_cpu(env);
1875 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1876 /* With LPAE the TTBCR could result in a change of ASID
1877 * via the TTBCR.A1 bit, so do a TLB flush.
1879 tlb_flush(CPU(cpu), 1);
1881 vmsa_ttbcr_raw_write(env, ri, value);
1884 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1886 TCR *tcr = raw_ptr(env, ri);
1888 /* Reset both the TCR as well as the masks corresponding to the bank of
1889 * the TCR being reset.
1891 tcr->raw_tcr = 0;
1892 tcr->mask = 0;
1893 tcr->base_mask = 0xffffc000u;
1896 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1897 uint64_t value)
1899 ARMCPU *cpu = arm_env_get_cpu(env);
1900 TCR *tcr = raw_ptr(env, ri);
1902 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1903 tlb_flush(CPU(cpu), 1);
1904 tcr->raw_tcr = value;
1907 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1908 uint64_t value)
1910 /* 64 bit accesses to the TTBRs can change the ASID and so we
1911 * must flush the TLB.
1913 if (cpreg_field_is_64bit(ri)) {
1914 ARMCPU *cpu = arm_env_get_cpu(env);
1916 tlb_flush(CPU(cpu), 1);
1918 raw_write(env, ri, value);
1921 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
1922 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1923 .access = PL1_RW, .type = ARM_CP_ALIAS,
1924 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
1925 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
1926 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1927 .access = PL1_RW, .resetvalue = 0,
1928 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
1929 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1930 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
1931 .access = PL1_RW, .resetvalue = 0,
1932 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
1933 offsetof(CPUARMState, cp15.dfar_ns) } },
1934 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
1935 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1936 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1937 .resetvalue = 0, },
1938 REGINFO_SENTINEL
1941 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1942 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1943 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1944 .access = PL1_RW,
1945 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1946 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1947 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
1948 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1949 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
1950 offsetof(CPUARMState, cp15.ttbr0_ns) } },
1951 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1952 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
1953 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1954 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
1955 offsetof(CPUARMState, cp15.ttbr1_ns) } },
1956 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1957 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1958 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1959 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1960 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1961 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1962 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1963 .raw_writefn = vmsa_ttbcr_raw_write,
1964 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
1965 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
1966 REGINFO_SENTINEL
1969 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1970 uint64_t value)
1972 env->cp15.c15_ticonfig = value & 0xe7;
1973 /* The OS_TYPE bit in this register changes the reported CPUID! */
1974 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1975 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1978 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1979 uint64_t value)
1981 env->cp15.c15_threadid = value & 0xffff;
1984 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1985 uint64_t value)
1987 /* Wait-for-interrupt (deprecated) */
1988 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1991 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1992 uint64_t value)
1994 /* On OMAP there are registers indicating the max/min index of dcache lines
1995 * containing a dirty line; cache flush operations have to reset these.
1997 env->cp15.c15_i_max = 0x000;
1998 env->cp15.c15_i_min = 0xff0;
2001 static const ARMCPRegInfo omap_cp_reginfo[] = {
2002 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2003 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2004 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2005 .resetvalue = 0, },
2006 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2007 .access = PL1_RW, .type = ARM_CP_NOP },
2008 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2009 .access = PL1_RW,
2010 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2011 .writefn = omap_ticonfig_write },
2012 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2013 .access = PL1_RW,
2014 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2015 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2016 .access = PL1_RW, .resetvalue = 0xff0,
2017 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2018 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2019 .access = PL1_RW,
2020 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2021 .writefn = omap_threadid_write },
2022 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2023 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2024 .type = ARM_CP_NO_RAW,
2025 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2026 /* TODO: Peripheral port remap register:
2027 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2028 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2029 * when MMU is off.
2031 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2032 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2033 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2034 .writefn = omap_cachemaint_write },
2035 { .name = "C9", .cp = 15, .crn = 9,
2036 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2037 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2038 REGINFO_SENTINEL
2041 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2042 uint64_t value)
2044 env->cp15.c15_cpar = value & 0x3fff;
2047 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2048 { .name = "XSCALE_CPAR",
2049 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2050 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2051 .writefn = xscale_cpar_write, },
2052 { .name = "XSCALE_AUXCR",
2053 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2054 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2055 .resetvalue = 0, },
2056 /* XScale specific cache-lockdown: since we have no cache we NOP these
2057 * and hope the guest does not really rely on cache behaviour.
2059 { .name = "XSCALE_LOCK_ICACHE_LINE",
2060 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2061 .access = PL1_W, .type = ARM_CP_NOP },
2062 { .name = "XSCALE_UNLOCK_ICACHE",
2063 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2064 .access = PL1_W, .type = ARM_CP_NOP },
2065 { .name = "XSCALE_DCACHE_LOCK",
2066 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2067 .access = PL1_RW, .type = ARM_CP_NOP },
2068 { .name = "XSCALE_UNLOCK_DCACHE",
2069 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2070 .access = PL1_W, .type = ARM_CP_NOP },
2071 REGINFO_SENTINEL
2074 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2075 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2076 * implementation of this implementation-defined space.
2077 * Ideally this should eventually disappear in favour of actually
2078 * implementing the correct behaviour for all cores.
2080 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2081 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2082 .access = PL1_RW,
2083 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2084 .resetvalue = 0 },
2085 REGINFO_SENTINEL
2088 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2089 /* Cache status: RAZ because we have no cache so it's always clean */
2090 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2091 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2092 .resetvalue = 0 },
2093 REGINFO_SENTINEL
2096 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2097 /* We never have a a block transfer operation in progress */
2098 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2099 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2100 .resetvalue = 0 },
2101 /* The cache ops themselves: these all NOP for QEMU */
2102 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2103 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2104 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2105 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2106 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2107 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2108 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2109 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2110 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2111 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2112 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2113 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2114 REGINFO_SENTINEL
2117 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2118 /* The cache test-and-clean instructions always return (1 << 30)
2119 * to indicate that there are no dirty cache lines.
2121 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2122 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2123 .resetvalue = (1 << 30) },
2124 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2125 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2126 .resetvalue = (1 << 30) },
2127 REGINFO_SENTINEL
2130 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2131 /* Ignore ReadBuffer accesses */
2132 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2133 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2134 .access = PL1_RW, .resetvalue = 0,
2135 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2136 REGINFO_SENTINEL
2139 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2141 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2142 uint64_t mpidr = cpu->mp_affinity;
2144 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2145 mpidr |= (1U << 31);
2146 /* Cores which are uniprocessor (non-coherent)
2147 * but still implement the MP extensions set
2148 * bit 30. (For instance, Cortex-R5).
2150 if (cpu->mp_is_up) {
2151 mpidr |= (1u << 30);
2154 return mpidr;
2157 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2158 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2159 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2160 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2161 REGINFO_SENTINEL
2164 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2165 /* NOP AMAIR0/1 */
2166 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2167 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2168 .access = PL1_RW, .type = ARM_CP_CONST,
2169 .resetvalue = 0 },
2170 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2171 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2172 .access = PL1_RW, .type = ARM_CP_CONST,
2173 .resetvalue = 0 },
2174 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2175 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2176 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2177 offsetof(CPUARMState, cp15.par_ns)} },
2178 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2179 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2180 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2181 offsetof(CPUARMState, cp15.ttbr0_ns) },
2182 .writefn = vmsa_ttbr_write, },
2183 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2184 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2185 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2186 offsetof(CPUARMState, cp15.ttbr1_ns) },
2187 .writefn = vmsa_ttbr_write, },
2188 REGINFO_SENTINEL
2191 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2193 return vfp_get_fpcr(env);
2196 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2197 uint64_t value)
2199 vfp_set_fpcr(env, value);
2202 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2204 return vfp_get_fpsr(env);
2207 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2208 uint64_t value)
2210 vfp_set_fpsr(env, value);
2213 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2215 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2216 return CP_ACCESS_TRAP;
2218 return CP_ACCESS_OK;
2221 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2222 uint64_t value)
2224 env->daif = value & PSTATE_DAIF;
2227 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2228 const ARMCPRegInfo *ri)
2230 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2231 * SCTLR_EL1.UCI is set.
2233 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2234 return CP_ACCESS_TRAP;
2236 return CP_ACCESS_OK;
2239 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2240 * Page D4-1736 (DDI0487A.b)
2243 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
2244 uint64_t value)
2246 /* Invalidate by VA (AArch64 version) */
2247 ARMCPU *cpu = arm_env_get_cpu(env);
2248 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2250 tlb_flush_page(CPU(cpu), pageaddr);
2253 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 uint64_t value)
2256 /* Invalidate by VA, all ASIDs (AArch64 version) */
2257 ARMCPU *cpu = arm_env_get_cpu(env);
2258 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2260 tlb_flush_page(CPU(cpu), pageaddr);
2263 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2264 uint64_t value)
2266 /* Invalidate by ASID (AArch64 version) */
2267 ARMCPU *cpu = arm_env_get_cpu(env);
2268 int asid = extract64(value, 48, 16);
2269 tlb_flush(CPU(cpu), asid == 0);
2272 static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2273 uint64_t value)
2275 CPUState *other_cs;
2276 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2278 CPU_FOREACH(other_cs) {
2279 tlb_flush_page(other_cs, pageaddr);
2283 static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2284 uint64_t value)
2286 CPUState *other_cs;
2287 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2289 CPU_FOREACH(other_cs) {
2290 tlb_flush_page(other_cs, pageaddr);
2294 static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2295 uint64_t value)
2297 CPUState *other_cs;
2298 int asid = extract64(value, 48, 16);
2300 CPU_FOREACH(other_cs) {
2301 tlb_flush(other_cs, asid == 0);
2305 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2307 /* We don't implement EL2, so the only control on DC ZVA is the
2308 * bit in the SCTLR which can prohibit access for EL0.
2310 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2311 return CP_ACCESS_TRAP;
2313 return CP_ACCESS_OK;
2316 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2318 ARMCPU *cpu = arm_env_get_cpu(env);
2319 int dzp_bit = 1 << 4;
2321 /* DZP indicates whether DC ZVA access is allowed */
2322 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2323 dzp_bit = 0;
2325 return cpu->dcz_blocksize | dzp_bit;
2328 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2330 if (!(env->pstate & PSTATE_SP)) {
2331 /* Access to SP_EL0 is undefined if it's being used as
2332 * the stack pointer.
2334 return CP_ACCESS_TRAP_UNCATEGORIZED;
2336 return CP_ACCESS_OK;
2339 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2341 return env->pstate & PSTATE_SP;
2344 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2346 update_spsel(env, val);
2349 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2350 uint64_t value)
2352 ARMCPU *cpu = arm_env_get_cpu(env);
2354 if (raw_read(env, ri) == value) {
2355 /* Skip the TLB flush if nothing actually changed; Linux likes
2356 * to do a lot of pointless SCTLR writes.
2358 return;
2361 raw_write(env, ri, value);
2362 /* ??? Lots of these bits are not implemented. */
2363 /* This may enable/disable the MMU, so do a TLB flush. */
2364 tlb_flush(CPU(cpu), 1);
2367 static const ARMCPRegInfo v8_cp_reginfo[] = {
2368 /* Minimal set of EL0-visible registers. This will need to be expanded
2369 * significantly for system emulation of AArch64 CPUs.
2371 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2372 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2373 .access = PL0_RW, .type = ARM_CP_NZCV },
2374 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2375 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2376 .type = ARM_CP_NO_RAW,
2377 .access = PL0_RW, .accessfn = aa64_daif_access,
2378 .fieldoffset = offsetof(CPUARMState, daif),
2379 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2380 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2381 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2382 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2383 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2384 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2385 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2386 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2387 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2388 .access = PL0_R, .type = ARM_CP_NO_RAW,
2389 .readfn = aa64_dczid_read },
2390 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2391 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2392 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2393 #ifndef CONFIG_USER_ONLY
2394 /* Avoid overhead of an access check that always passes in user-mode */
2395 .accessfn = aa64_zva_access,
2396 #endif
2398 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2399 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2400 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2401 /* Cache ops: all NOPs since we don't emulate caches */
2402 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2404 .access = PL1_W, .type = ARM_CP_NOP },
2405 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2406 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2407 .access = PL1_W, .type = ARM_CP_NOP },
2408 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2410 .access = PL0_W, .type = ARM_CP_NOP,
2411 .accessfn = aa64_cacheop_access },
2412 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2414 .access = PL1_W, .type = ARM_CP_NOP },
2415 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2416 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2417 .access = PL1_W, .type = ARM_CP_NOP },
2418 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2419 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2420 .access = PL0_W, .type = ARM_CP_NOP,
2421 .accessfn = aa64_cacheop_access },
2422 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2423 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2424 .access = PL1_W, .type = ARM_CP_NOP },
2425 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2426 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2427 .access = PL0_W, .type = ARM_CP_NOP,
2428 .accessfn = aa64_cacheop_access },
2429 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2430 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2431 .access = PL0_W, .type = ARM_CP_NOP,
2432 .accessfn = aa64_cacheop_access },
2433 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2434 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2435 .access = PL1_W, .type = ARM_CP_NOP },
2436 /* TLBI operations */
2437 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
2438 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
2439 .access = PL2_W, .type = ARM_CP_NO_RAW,
2440 .writefn = tlbiall_write },
2441 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2442 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
2443 .access = PL2_W, .type = ARM_CP_NO_RAW,
2444 .writefn = tlbiall_write },
2445 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2446 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2447 .access = PL1_W, .type = ARM_CP_NO_RAW,
2448 .writefn = tlbiall_is_write },
2449 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2450 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2451 .access = PL1_W, .type = ARM_CP_NO_RAW,
2452 .writefn = tlbi_aa64_va_is_write },
2453 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2454 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2455 .access = PL1_W, .type = ARM_CP_NO_RAW,
2456 .writefn = tlbi_aa64_asid_is_write },
2457 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2458 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2459 .access = PL1_W, .type = ARM_CP_NO_RAW,
2460 .writefn = tlbi_aa64_vaa_is_write },
2461 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2462 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2463 .access = PL1_W, .type = ARM_CP_NO_RAW,
2464 .writefn = tlbi_aa64_va_is_write },
2465 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2466 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2467 .access = PL1_W, .type = ARM_CP_NO_RAW,
2468 .writefn = tlbi_aa64_vaa_is_write },
2469 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2470 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2471 .access = PL1_W, .type = ARM_CP_NO_RAW,
2472 .writefn = tlbiall_write },
2473 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2474 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2475 .access = PL1_W, .type = ARM_CP_NO_RAW,
2476 .writefn = tlbi_aa64_va_write },
2477 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2478 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2479 .access = PL1_W, .type = ARM_CP_NO_RAW,
2480 .writefn = tlbi_aa64_asid_write },
2481 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2482 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2483 .access = PL1_W, .type = ARM_CP_NO_RAW,
2484 .writefn = tlbi_aa64_vaa_write },
2485 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2486 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2487 .access = PL1_W, .type = ARM_CP_NO_RAW,
2488 .writefn = tlbi_aa64_va_write },
2489 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2490 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2491 .access = PL1_W, .type = ARM_CP_NO_RAW,
2492 .writefn = tlbi_aa64_vaa_write },
2493 #ifndef CONFIG_USER_ONLY
2494 /* 64 bit address translation operations */
2495 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2496 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2497 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2498 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2499 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2500 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2501 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2502 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2503 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2504 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2505 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2506 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2507 #endif
2508 /* TLB invalidate last level of translation table walk */
2509 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2510 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2511 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2512 .type = ARM_CP_NO_RAW, .access = PL1_W,
2513 .writefn = tlbimvaa_is_write },
2514 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2515 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2516 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2517 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2518 /* 32 bit cache operations */
2519 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2520 .type = ARM_CP_NOP, .access = PL1_W },
2521 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2522 .type = ARM_CP_NOP, .access = PL1_W },
2523 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2524 .type = ARM_CP_NOP, .access = PL1_W },
2525 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2526 .type = ARM_CP_NOP, .access = PL1_W },
2527 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2528 .type = ARM_CP_NOP, .access = PL1_W },
2529 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2530 .type = ARM_CP_NOP, .access = PL1_W },
2531 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2532 .type = ARM_CP_NOP, .access = PL1_W },
2533 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2534 .type = ARM_CP_NOP, .access = PL1_W },
2535 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2536 .type = ARM_CP_NOP, .access = PL1_W },
2537 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2538 .type = ARM_CP_NOP, .access = PL1_W },
2539 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2540 .type = ARM_CP_NOP, .access = PL1_W },
2541 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2542 .type = ARM_CP_NOP, .access = PL1_W },
2543 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2544 .type = ARM_CP_NOP, .access = PL1_W },
2545 /* MMU Domain access control / MPU write buffer control */
2546 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2547 .access = PL1_RW, .resetvalue = 0,
2548 .writefn = dacr_write, .raw_writefn = raw_write,
2549 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2550 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2551 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2552 .type = ARM_CP_ALIAS,
2553 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2554 .access = PL1_RW,
2555 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2556 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2557 .type = ARM_CP_ALIAS,
2558 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2559 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2560 /* We rely on the access checks not allowing the guest to write to the
2561 * state field when SPSel indicates that it's being used as the stack
2562 * pointer.
2564 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2565 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2566 .access = PL1_RW, .accessfn = sp_el0_access,
2567 .type = ARM_CP_ALIAS,
2568 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2569 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2570 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2571 .access = PL2_RW, .type = ARM_CP_ALIAS,
2572 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2573 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2574 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2575 .type = ARM_CP_NO_RAW,
2576 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2577 REGINFO_SENTINEL
2580 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2581 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
2582 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2583 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2584 .access = PL2_RW,
2585 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2586 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2587 .type = ARM_CP_NO_RAW,
2588 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2589 .access = PL2_RW,
2590 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2591 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2592 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2593 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2594 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2595 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2596 .access = PL2_RW, .type = ARM_CP_CONST,
2597 .resetvalue = 0 },
2598 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2599 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2600 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2601 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
2602 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
2603 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2604 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
2605 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
2606 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2607 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
2608 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
2609 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2610 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
2611 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
2612 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2613 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
2614 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
2615 .resetvalue = 0 },
2616 REGINFO_SENTINEL
2619 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2621 ARMCPU *cpu = arm_env_get_cpu(env);
2622 uint64_t valid_mask = HCR_MASK;
2624 if (arm_feature(env, ARM_FEATURE_EL3)) {
2625 valid_mask &= ~HCR_HCD;
2626 } else {
2627 valid_mask &= ~HCR_TSC;
2630 /* Clear RES0 bits. */
2631 value &= valid_mask;
2633 /* These bits change the MMU setup:
2634 * HCR_VM enables stage 2 translation
2635 * HCR_PTW forbids certain page-table setups
2636 * HCR_DC Disables stage1 and enables stage2 translation
2638 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2639 tlb_flush(CPU(cpu), 1);
2641 raw_write(env, ri, value);
2644 static const ARMCPRegInfo el2_cp_reginfo[] = {
2645 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2646 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2647 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2648 .writefn = hcr_write },
2649 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
2650 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
2651 .access = PL2_RW, .resetvalue = 0,
2652 .writefn = dacr_write, .raw_writefn = raw_write,
2653 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2654 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2655 .type = ARM_CP_ALIAS,
2656 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2657 .access = PL2_RW,
2658 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2659 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2660 .type = ARM_CP_ALIAS,
2661 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2662 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2663 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
2664 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
2665 .access = PL2_RW, .resetvalue = 0,
2666 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2667 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2668 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2669 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2670 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2671 .type = ARM_CP_ALIAS,
2672 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2673 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2674 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2675 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2676 .access = PL2_RW, .writefn = vbar_write,
2677 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2678 .resetvalue = 0 },
2679 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
2680 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2681 .access = PL3_RW, .type = ARM_CP_ALIAS,
2682 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2683 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2684 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2685 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
2686 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
2687 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2688 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2689 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
2690 .resetvalue = 0 },
2691 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2692 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2693 .access = PL2_RW, .type = ARM_CP_ALIAS,
2694 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2695 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
2696 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
2697 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
2698 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2699 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
2700 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
2701 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
2702 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2703 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
2704 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
2705 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
2706 .access = PL2_RW, .resetvalue = 0,
2707 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
2708 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
2709 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
2710 .access = PL2_RW, .resetvalue = 0,
2711 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
2712 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
2713 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2714 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
2715 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
2716 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
2717 .type = ARM_CP_NO_RAW, .access = PL2_W,
2718 .writefn = tlbiall_write },
2719 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
2720 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
2721 .type = ARM_CP_NO_RAW, .access = PL2_W,
2722 .writefn = tlbi_aa64_vaa_write },
2723 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
2724 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
2725 .type = ARM_CP_NO_RAW, .access = PL2_W,
2726 .writefn = tlbi_aa64_vaa_write },
2727 REGINFO_SENTINEL
2730 static const ARMCPRegInfo el3_cp_reginfo[] = {
2731 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
2732 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
2733 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
2734 .resetvalue = 0, .writefn = scr_write },
2735 { .name = "SCR", .type = ARM_CP_ALIAS,
2736 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
2737 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
2738 .writefn = scr_write },
2739 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
2740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
2741 .access = PL3_RW, .resetvalue = 0,
2742 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
2743 { .name = "SDER",
2744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
2745 .access = PL3_RW, .resetvalue = 0,
2746 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
2747 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2748 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
2749 .access = PL3_W | PL1_R, .resetvalue = 0,
2750 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
2751 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
2752 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
2753 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2754 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
2755 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
2756 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2757 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
2758 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
2759 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
2760 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2761 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
2762 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
2763 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
2764 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
2765 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2766 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2767 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2768 .type = ARM_CP_ALIAS,
2769 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2770 .access = PL3_RW,
2771 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2772 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2773 .type = ARM_CP_ALIAS,
2774 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2775 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2776 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2777 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2778 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2779 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2780 .type = ARM_CP_ALIAS,
2781 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2782 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2783 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2784 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2785 .access = PL3_RW, .writefn = vbar_write,
2786 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2787 .resetvalue = 0 },
2788 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
2789 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
2790 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
2791 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
2792 REGINFO_SENTINEL
2795 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2797 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2798 * but the AArch32 CTR has its own reginfo struct)
2800 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2801 return CP_ACCESS_TRAP;
2803 return CP_ACCESS_OK;
2806 static const ARMCPRegInfo debug_cp_reginfo[] = {
2807 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2808 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2809 * unlike DBGDRAR it is never accessible from EL0.
2810 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2811 * accessor.
2813 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2814 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2815 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
2816 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
2817 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2818 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2819 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2820 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2821 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
2822 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2823 .access = PL1_RW,
2824 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2825 .resetvalue = 0 },
2826 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2827 * We don't implement the configurable EL0 access.
2829 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
2830 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2831 .type = ARM_CP_ALIAS,
2832 .access = PL1_R,
2833 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
2834 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2835 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
2836 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2837 .access = PL1_W, .type = ARM_CP_NOP },
2838 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2839 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
2840 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
2841 .access = PL1_RW, .type = ARM_CP_NOP },
2842 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2843 * implement vector catch debug events yet.
2845 { .name = "DBGVCR",
2846 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2847 .access = PL1_RW, .type = ARM_CP_NOP },
2848 REGINFO_SENTINEL
2851 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
2852 /* 64 bit access versions of the (dummy) debug registers */
2853 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
2854 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2855 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
2856 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2857 REGINFO_SENTINEL
2860 void hw_watchpoint_update(ARMCPU *cpu, int n)
2862 CPUARMState *env = &cpu->env;
2863 vaddr len = 0;
2864 vaddr wvr = env->cp15.dbgwvr[n];
2865 uint64_t wcr = env->cp15.dbgwcr[n];
2866 int mask;
2867 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
2869 if (env->cpu_watchpoint[n]) {
2870 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
2871 env->cpu_watchpoint[n] = NULL;
2874 if (!extract64(wcr, 0, 1)) {
2875 /* E bit clear : watchpoint disabled */
2876 return;
2879 switch (extract64(wcr, 3, 2)) {
2880 case 0:
2881 /* LSC 00 is reserved and must behave as if the wp is disabled */
2882 return;
2883 case 1:
2884 flags |= BP_MEM_READ;
2885 break;
2886 case 2:
2887 flags |= BP_MEM_WRITE;
2888 break;
2889 case 3:
2890 flags |= BP_MEM_ACCESS;
2891 break;
2894 /* Attempts to use both MASK and BAS fields simultaneously are
2895 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2896 * thus generating a watchpoint for every byte in the masked region.
2898 mask = extract64(wcr, 24, 4);
2899 if (mask == 1 || mask == 2) {
2900 /* Reserved values of MASK; we must act as if the mask value was
2901 * some non-reserved value, or as if the watchpoint were disabled.
2902 * We choose the latter.
2904 return;
2905 } else if (mask) {
2906 /* Watchpoint covers an aligned area up to 2GB in size */
2907 len = 1ULL << mask;
2908 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2909 * whether the watchpoint fires when the unmasked bits match; we opt
2910 * to generate the exceptions.
2912 wvr &= ~(len - 1);
2913 } else {
2914 /* Watchpoint covers bytes defined by the byte address select bits */
2915 int bas = extract64(wcr, 5, 8);
2916 int basstart;
2918 if (bas == 0) {
2919 /* This must act as if the watchpoint is disabled */
2920 return;
2923 if (extract64(wvr, 2, 1)) {
2924 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2925 * ignored, and BAS[3:0] define which bytes to watch.
2927 bas &= 0xf;
2929 /* The BAS bits are supposed to be programmed to indicate a contiguous
2930 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2931 * we fire for each byte in the word/doubleword addressed by the WVR.
2932 * We choose to ignore any non-zero bits after the first range of 1s.
2934 basstart = ctz32(bas);
2935 len = cto32(bas >> basstart);
2936 wvr += basstart;
2939 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
2940 &env->cpu_watchpoint[n]);
2943 void hw_watchpoint_update_all(ARMCPU *cpu)
2945 int i;
2946 CPUARMState *env = &cpu->env;
2948 /* Completely clear out existing QEMU watchpoints and our array, to
2949 * avoid possible stale entries following migration load.
2951 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
2952 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
2954 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
2955 hw_watchpoint_update(cpu, i);
2959 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960 uint64_t value)
2962 ARMCPU *cpu = arm_env_get_cpu(env);
2963 int i = ri->crm;
2965 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2966 * register reads and behaves as if values written are sign extended.
2967 * Bits [1:0] are RES0.
2969 value = sextract64(value, 0, 49) & ~3ULL;
2971 raw_write(env, ri, value);
2972 hw_watchpoint_update(cpu, i);
2975 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976 uint64_t value)
2978 ARMCPU *cpu = arm_env_get_cpu(env);
2979 int i = ri->crm;
2981 raw_write(env, ri, value);
2982 hw_watchpoint_update(cpu, i);
2985 void hw_breakpoint_update(ARMCPU *cpu, int n)
2987 CPUARMState *env = &cpu->env;
2988 uint64_t bvr = env->cp15.dbgbvr[n];
2989 uint64_t bcr = env->cp15.dbgbcr[n];
2990 vaddr addr;
2991 int bt;
2992 int flags = BP_CPU;
2994 if (env->cpu_breakpoint[n]) {
2995 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
2996 env->cpu_breakpoint[n] = NULL;
2999 if (!extract64(bcr, 0, 1)) {
3000 /* E bit clear : watchpoint disabled */
3001 return;
3004 bt = extract64(bcr, 20, 4);
3006 switch (bt) {
3007 case 4: /* unlinked address mismatch (reserved if AArch64) */
3008 case 5: /* linked address mismatch (reserved if AArch64) */
3009 qemu_log_mask(LOG_UNIMP,
3010 "arm: address mismatch breakpoint types not implemented");
3011 return;
3012 case 0: /* unlinked address match */
3013 case 1: /* linked address match */
3015 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3016 * we behave as if the register was sign extended. Bits [1:0] are
3017 * RES0. The BAS field is used to allow setting breakpoints on 16
3018 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3019 * a bp will fire if the addresses covered by the bp and the addresses
3020 * covered by the insn overlap but the insn doesn't start at the
3021 * start of the bp address range. We choose to require the insn and
3022 * the bp to have the same address. The constraints on writing to
3023 * BAS enforced in dbgbcr_write mean we have only four cases:
3024 * 0b0000 => no breakpoint
3025 * 0b0011 => breakpoint on addr
3026 * 0b1100 => breakpoint on addr + 2
3027 * 0b1111 => breakpoint on addr
3028 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3030 int bas = extract64(bcr, 5, 4);
3031 addr = sextract64(bvr, 0, 49) & ~3ULL;
3032 if (bas == 0) {
3033 return;
3035 if (bas == 0xc) {
3036 addr += 2;
3038 break;
3040 case 2: /* unlinked context ID match */
3041 case 8: /* unlinked VMID match (reserved if no EL2) */
3042 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3043 qemu_log_mask(LOG_UNIMP,
3044 "arm: unlinked context breakpoint types not implemented");
3045 return;
3046 case 9: /* linked VMID match (reserved if no EL2) */
3047 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3048 case 3: /* linked context ID match */
3049 default:
3050 /* We must generate no events for Linked context matches (unless
3051 * they are linked to by some other bp/wp, which is handled in
3052 * updates for the linking bp/wp). We choose to also generate no events
3053 * for reserved values.
3055 return;
3058 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3061 void hw_breakpoint_update_all(ARMCPU *cpu)
3063 int i;
3064 CPUARMState *env = &cpu->env;
3066 /* Completely clear out existing QEMU breakpoints and our array, to
3067 * avoid possible stale entries following migration load.
3069 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3070 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3072 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3073 hw_breakpoint_update(cpu, i);
3077 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 uint64_t value)
3080 ARMCPU *cpu = arm_env_get_cpu(env);
3081 int i = ri->crm;
3083 raw_write(env, ri, value);
3084 hw_breakpoint_update(cpu, i);
3087 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3088 uint64_t value)
3090 ARMCPU *cpu = arm_env_get_cpu(env);
3091 int i = ri->crm;
3093 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3094 * copy of BAS[0].
3096 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3097 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3099 raw_write(env, ri, value);
3100 hw_breakpoint_update(cpu, i);
3103 static void define_debug_regs(ARMCPU *cpu)
3105 /* Define v7 and v8 architectural debug registers.
3106 * These are just dummy implementations for now.
3108 int i;
3109 int wrps, brps, ctx_cmps;
3110 ARMCPRegInfo dbgdidr = {
3111 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3112 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3115 /* Note that all these register fields hold "number of Xs minus 1". */
3116 brps = extract32(cpu->dbgdidr, 24, 4);
3117 wrps = extract32(cpu->dbgdidr, 28, 4);
3118 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3120 assert(ctx_cmps <= brps);
3122 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3123 * of the debug registers such as number of breakpoints;
3124 * check that if they both exist then they agree.
3126 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3127 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3128 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3129 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3132 define_one_arm_cp_reg(cpu, &dbgdidr);
3133 define_arm_cp_regs(cpu, debug_cp_reginfo);
3135 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3136 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3139 for (i = 0; i < brps + 1; i++) {
3140 ARMCPRegInfo dbgregs[] = {
3141 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3142 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3143 .access = PL1_RW,
3144 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3145 .writefn = dbgbvr_write, .raw_writefn = raw_write
3147 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3148 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3149 .access = PL1_RW,
3150 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3151 .writefn = dbgbcr_write, .raw_writefn = raw_write
3153 REGINFO_SENTINEL
3155 define_arm_cp_regs(cpu, dbgregs);
3158 for (i = 0; i < wrps + 1; i++) {
3159 ARMCPRegInfo dbgregs[] = {
3160 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3161 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3162 .access = PL1_RW,
3163 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3164 .writefn = dbgwvr_write, .raw_writefn = raw_write
3166 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3167 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3168 .access = PL1_RW,
3169 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3170 .writefn = dbgwcr_write, .raw_writefn = raw_write
3172 REGINFO_SENTINEL
3174 define_arm_cp_regs(cpu, dbgregs);
3178 void register_cp_regs_for_features(ARMCPU *cpu)
3180 /* Register all the coprocessor registers based on feature bits */
3181 CPUARMState *env = &cpu->env;
3182 if (arm_feature(env, ARM_FEATURE_M)) {
3183 /* M profile has no coprocessor registers */
3184 return;
3187 define_arm_cp_regs(cpu, cp_reginfo);
3188 if (!arm_feature(env, ARM_FEATURE_V8)) {
3189 /* Must go early as it is full of wildcards that may be
3190 * overridden by later definitions.
3192 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3195 if (arm_feature(env, ARM_FEATURE_V6)) {
3196 /* The ID registers all have impdef reset values */
3197 ARMCPRegInfo v6_idregs[] = {
3198 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3200 .access = PL1_R, .type = ARM_CP_CONST,
3201 .resetvalue = cpu->id_pfr0 },
3202 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3204 .access = PL1_R, .type = ARM_CP_CONST,
3205 .resetvalue = cpu->id_pfr1 },
3206 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3208 .access = PL1_R, .type = ARM_CP_CONST,
3209 .resetvalue = cpu->id_dfr0 },
3210 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3211 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3212 .access = PL1_R, .type = ARM_CP_CONST,
3213 .resetvalue = cpu->id_afr0 },
3214 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3216 .access = PL1_R, .type = ARM_CP_CONST,
3217 .resetvalue = cpu->id_mmfr0 },
3218 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3219 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3220 .access = PL1_R, .type = ARM_CP_CONST,
3221 .resetvalue = cpu->id_mmfr1 },
3222 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3224 .access = PL1_R, .type = ARM_CP_CONST,
3225 .resetvalue = cpu->id_mmfr2 },
3226 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3228 .access = PL1_R, .type = ARM_CP_CONST,
3229 .resetvalue = cpu->id_mmfr3 },
3230 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3231 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3232 .access = PL1_R, .type = ARM_CP_CONST,
3233 .resetvalue = cpu->id_isar0 },
3234 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3235 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3236 .access = PL1_R, .type = ARM_CP_CONST,
3237 .resetvalue = cpu->id_isar1 },
3238 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3240 .access = PL1_R, .type = ARM_CP_CONST,
3241 .resetvalue = cpu->id_isar2 },
3242 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3244 .access = PL1_R, .type = ARM_CP_CONST,
3245 .resetvalue = cpu->id_isar3 },
3246 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3248 .access = PL1_R, .type = ARM_CP_CONST,
3249 .resetvalue = cpu->id_isar4 },
3250 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3252 .access = PL1_R, .type = ARM_CP_CONST,
3253 .resetvalue = cpu->id_isar5 },
3254 /* 6..7 are as yet unallocated and must RAZ */
3255 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3256 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3257 .resetvalue = 0 },
3258 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3259 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3260 .resetvalue = 0 },
3261 REGINFO_SENTINEL
3263 define_arm_cp_regs(cpu, v6_idregs);
3264 define_arm_cp_regs(cpu, v6_cp_reginfo);
3265 } else {
3266 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3268 if (arm_feature(env, ARM_FEATURE_V6K)) {
3269 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3271 if (arm_feature(env, ARM_FEATURE_V7MP) &&
3272 !arm_feature(env, ARM_FEATURE_MPU)) {
3273 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3275 if (arm_feature(env, ARM_FEATURE_V7)) {
3276 /* v7 performance monitor control register: same implementor
3277 * field as main ID register, and we implement only the cycle
3278 * count register.
3280 #ifndef CONFIG_USER_ONLY
3281 ARMCPRegInfo pmcr = {
3282 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3283 .access = PL0_RW,
3284 .type = ARM_CP_IO | ARM_CP_ALIAS,
3285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3286 .accessfn = pmreg_access, .writefn = pmcr_write,
3287 .raw_writefn = raw_write,
3289 ARMCPRegInfo pmcr64 = {
3290 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3292 .access = PL0_RW, .accessfn = pmreg_access,
3293 .type = ARM_CP_IO,
3294 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3295 .resetvalue = cpu->midr & 0xff000000,
3296 .writefn = pmcr_write, .raw_writefn = raw_write,
3298 define_one_arm_cp_reg(cpu, &pmcr);
3299 define_one_arm_cp_reg(cpu, &pmcr64);
3300 #endif
3301 ARMCPRegInfo clidr = {
3302 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3303 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3304 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3306 define_one_arm_cp_reg(cpu, &clidr);
3307 define_arm_cp_regs(cpu, v7_cp_reginfo);
3308 define_debug_regs(cpu);
3309 } else {
3310 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3312 if (arm_feature(env, ARM_FEATURE_V8)) {
3313 /* AArch64 ID registers, which all have impdef reset values */
3314 ARMCPRegInfo v8_idregs[] = {
3315 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3317 .access = PL1_R, .type = ARM_CP_CONST,
3318 .resetvalue = cpu->id_aa64pfr0 },
3319 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3321 .access = PL1_R, .type = ARM_CP_CONST,
3322 .resetvalue = cpu->id_aa64pfr1},
3323 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3325 .access = PL1_R, .type = ARM_CP_CONST,
3326 /* We mask out the PMUVer field, because we don't currently
3327 * implement the PMU. Not advertising it prevents the guest
3328 * from trying to use it and getting UNDEFs on registers we
3329 * don't implement.
3331 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3332 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3334 .access = PL1_R, .type = ARM_CP_CONST,
3335 .resetvalue = cpu->id_aa64dfr1 },
3336 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3338 .access = PL1_R, .type = ARM_CP_CONST,
3339 .resetvalue = cpu->id_aa64afr0 },
3340 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3342 .access = PL1_R, .type = ARM_CP_CONST,
3343 .resetvalue = cpu->id_aa64afr1 },
3344 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3346 .access = PL1_R, .type = ARM_CP_CONST,
3347 .resetvalue = cpu->id_aa64isar0 },
3348 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3350 .access = PL1_R, .type = ARM_CP_CONST,
3351 .resetvalue = cpu->id_aa64isar1 },
3352 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3354 .access = PL1_R, .type = ARM_CP_CONST,
3355 .resetvalue = cpu->id_aa64mmfr0 },
3356 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3358 .access = PL1_R, .type = ARM_CP_CONST,
3359 .resetvalue = cpu->id_aa64mmfr1 },
3360 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3362 .access = PL1_R, .type = ARM_CP_CONST,
3363 .resetvalue = cpu->mvfr0 },
3364 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3366 .access = PL1_R, .type = ARM_CP_CONST,
3367 .resetvalue = cpu->mvfr1 },
3368 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3370 .access = PL1_R, .type = ARM_CP_CONST,
3371 .resetvalue = cpu->mvfr2 },
3372 REGINFO_SENTINEL
3374 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3375 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3376 !arm_feature(env, ARM_FEATURE_EL2)) {
3377 ARMCPRegInfo rvbar = {
3378 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3379 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3380 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3382 define_one_arm_cp_reg(cpu, &rvbar);
3384 define_arm_cp_regs(cpu, v8_idregs);
3385 define_arm_cp_regs(cpu, v8_cp_reginfo);
3387 if (arm_feature(env, ARM_FEATURE_EL2)) {
3388 define_arm_cp_regs(cpu, el2_cp_reginfo);
3389 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3390 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3391 ARMCPRegInfo rvbar = {
3392 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3393 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3394 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3396 define_one_arm_cp_reg(cpu, &rvbar);
3398 } else {
3399 /* If EL2 is missing but higher ELs are enabled, we need to
3400 * register the no_el2 reginfos.
3402 if (arm_feature(env, ARM_FEATURE_EL3)) {
3403 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
3406 if (arm_feature(env, ARM_FEATURE_EL3)) {
3407 define_arm_cp_regs(cpu, el3_cp_reginfo);
3408 ARMCPRegInfo rvbar = {
3409 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3410 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3411 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3413 define_one_arm_cp_reg(cpu, &rvbar);
3415 if (arm_feature(env, ARM_FEATURE_MPU)) {
3416 if (arm_feature(env, ARM_FEATURE_V6)) {
3417 /* PMSAv6 not implemented */
3418 assert(arm_feature(env, ARM_FEATURE_V7));
3419 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
3420 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
3421 } else {
3422 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3424 } else {
3425 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
3426 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3428 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3429 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3431 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3432 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3434 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3435 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3437 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3438 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3440 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3441 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3443 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3444 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3446 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3447 define_arm_cp_regs(cpu, omap_cp_reginfo);
3449 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3450 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3452 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3453 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3455 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3456 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3458 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3459 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3461 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3462 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3463 * be read-only (ie write causes UNDEF exception).
3466 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3467 /* Pre-v8 MIDR space.
3468 * Note that the MIDR isn't a simple constant register because
3469 * of the TI925 behaviour where writes to another register can
3470 * cause the MIDR value to change.
3472 * Unimplemented registers in the c15 0 0 0 space default to
3473 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3474 * and friends override accordingly.
3476 { .name = "MIDR",
3477 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3478 .access = PL1_R, .resetvalue = cpu->midr,
3479 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3480 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3481 .type = ARM_CP_OVERRIDE },
3482 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3483 { .name = "DUMMY",
3484 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3485 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3486 { .name = "DUMMY",
3487 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3488 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3489 { .name = "DUMMY",
3490 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3491 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3492 { .name = "DUMMY",
3493 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3494 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3495 { .name = "DUMMY",
3496 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3497 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3498 REGINFO_SENTINEL
3500 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
3501 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3502 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3503 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3504 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
3505 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
3506 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
3507 .access = PL1_R, .resetvalue = cpu->midr },
3508 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
3509 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
3510 .access = PL1_R, .resetvalue = cpu->midr },
3511 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3513 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
3514 REGINFO_SENTINEL
3516 ARMCPRegInfo id_cp_reginfo[] = {
3517 /* These are common to v8 and pre-v8 */
3518 { .name = "CTR",
3519 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3520 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3521 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3522 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3523 .access = PL0_R, .accessfn = ctr_el0_access,
3524 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3525 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3526 { .name = "TCMTR",
3527 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3528 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3529 REGINFO_SENTINEL
3531 /* TLBTR is specific to VMSA */
3532 ARMCPRegInfo id_tlbtr_reginfo = {
3533 .name = "TLBTR",
3534 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3535 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
3537 /* MPUIR is specific to PMSA V6+ */
3538 ARMCPRegInfo id_mpuir_reginfo = {
3539 .name = "MPUIR",
3540 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
3541 .access = PL1_R, .type = ARM_CP_CONST,
3542 .resetvalue = cpu->pmsav7_dregion << 8
3544 ARMCPRegInfo crn0_wi_reginfo = {
3545 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3546 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3547 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3549 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3550 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3551 ARMCPRegInfo *r;
3552 /* Register the blanket "writes ignored" value first to cover the
3553 * whole space. Then update the specific ID registers to allow write
3554 * access, so that they ignore writes rather than causing them to
3555 * UNDEF.
3557 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3558 for (r = id_pre_v8_midr_cp_reginfo;
3559 r->type != ARM_CP_SENTINEL; r++) {
3560 r->access = PL1_RW;
3562 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3563 r->access = PL1_RW;
3565 id_tlbtr_reginfo.access = PL1_RW;
3566 id_tlbtr_reginfo.access = PL1_RW;
3568 if (arm_feature(env, ARM_FEATURE_V8)) {
3569 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3570 } else {
3571 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3573 define_arm_cp_regs(cpu, id_cp_reginfo);
3574 if (!arm_feature(env, ARM_FEATURE_MPU)) {
3575 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3576 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3577 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
3581 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
3582 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
3585 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
3586 ARMCPRegInfo auxcr = {
3587 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
3588 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3589 .access = PL1_RW, .type = ARM_CP_CONST,
3590 .resetvalue = cpu->reset_auxcr
3592 define_one_arm_cp_reg(cpu, &auxcr);
3595 if (arm_feature(env, ARM_FEATURE_CBAR)) {
3596 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3597 /* 32 bit view is [31:18] 0...0 [43:32]. */
3598 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
3599 | extract64(cpu->reset_cbar, 32, 12);
3600 ARMCPRegInfo cbar_reginfo[] = {
3601 { .name = "CBAR",
3602 .type = ARM_CP_CONST,
3603 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3604 .access = PL1_R, .resetvalue = cpu->reset_cbar },
3605 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
3606 .type = ARM_CP_CONST,
3607 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
3608 .access = PL1_R, .resetvalue = cbar32 },
3609 REGINFO_SENTINEL
3611 /* We don't implement a r/w 64 bit CBAR currently */
3612 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
3613 define_arm_cp_regs(cpu, cbar_reginfo);
3614 } else {
3615 ARMCPRegInfo cbar = {
3616 .name = "CBAR",
3617 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3618 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
3619 .fieldoffset = offsetof(CPUARMState,
3620 cp15.c15_config_base_address)
3622 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
3623 cbar.access = PL1_R;
3624 cbar.fieldoffset = 0;
3625 cbar.type = ARM_CP_CONST;
3627 define_one_arm_cp_reg(cpu, &cbar);
3631 /* Generic registers whose values depend on the implementation */
3633 ARMCPRegInfo sctlr = {
3634 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3635 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3636 .access = PL1_RW,
3637 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
3638 offsetof(CPUARMState, cp15.sctlr_ns) },
3639 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
3640 .raw_writefn = raw_write,
3642 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3643 /* Normally we would always end the TB on an SCTLR write, but Linux
3644 * arch/arm/mach-pxa/sleep.S expects two instructions following
3645 * an MMU enable to execute from cache. Imitate this behaviour.
3647 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
3649 define_one_arm_cp_reg(cpu, &sctlr);
3653 ARMCPU *cpu_arm_init(const char *cpu_model)
3655 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3658 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
3660 CPUState *cs = CPU(cpu);
3661 CPUARMState *env = &cpu->env;
3663 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3664 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
3665 aarch64_fpu_gdb_set_reg,
3666 34, "aarch64-fpu.xml", 0);
3667 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3668 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3669 51, "arm-neon.xml", 0);
3670 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3671 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3672 35, "arm-vfp3.xml", 0);
3673 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3674 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3675 19, "arm-vfp.xml", 0);
3679 /* Sort alphabetically by type name, except for "any". */
3680 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
3682 ObjectClass *class_a = (ObjectClass *)a;
3683 ObjectClass *class_b = (ObjectClass *)b;
3684 const char *name_a, *name_b;
3686 name_a = object_class_get_name(class_a);
3687 name_b = object_class_get_name(class_b);
3688 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3689 return 1;
3690 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3691 return -1;
3692 } else {
3693 return strcmp(name_a, name_b);
3697 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
3699 ObjectClass *oc = data;
3700 CPUListState *s = user_data;
3701 const char *typename;
3702 char *name;
3704 typename = object_class_get_name(oc);
3705 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3706 (*s->cpu_fprintf)(s->file, " %s\n",
3707 name);
3708 g_free(name);
3711 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
3713 CPUListState s = {
3714 .file = f,
3715 .cpu_fprintf = cpu_fprintf,
3717 GSList *list;
3719 list = object_class_get_list(TYPE_ARM_CPU, false);
3720 list = g_slist_sort(list, arm_cpu_list_compare);
3721 (*cpu_fprintf)(f, "Available CPUs:\n");
3722 g_slist_foreach(list, arm_cpu_list_entry, &s);
3723 g_slist_free(list);
3724 #ifdef CONFIG_KVM
3725 /* The 'host' CPU type is dynamically registered only if KVM is
3726 * enabled, so we have to special-case it here:
3728 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
3729 #endif
3732 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
3734 ObjectClass *oc = data;
3735 CpuDefinitionInfoList **cpu_list = user_data;
3736 CpuDefinitionInfoList *entry;
3737 CpuDefinitionInfo *info;
3738 const char *typename;
3740 typename = object_class_get_name(oc);
3741 info = g_malloc0(sizeof(*info));
3742 info->name = g_strndup(typename,
3743 strlen(typename) - strlen("-" TYPE_ARM_CPU));
3745 entry = g_malloc0(sizeof(*entry));
3746 entry->value = info;
3747 entry->next = *cpu_list;
3748 *cpu_list = entry;
3751 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
3753 CpuDefinitionInfoList *cpu_list = NULL;
3754 GSList *list;
3756 list = object_class_get_list(TYPE_ARM_CPU, false);
3757 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
3758 g_slist_free(list);
3760 return cpu_list;
3763 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3764 void *opaque, int state, int secstate,
3765 int crm, int opc1, int opc2)
3767 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3768 * add a single reginfo struct to the hash table.
3770 uint32_t *key = g_new(uint32_t, 1);
3771 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
3772 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3773 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
3775 /* Reset the secure state to the specific incoming state. This is
3776 * necessary as the register may have been defined with both states.
3778 r2->secure = secstate;
3780 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3781 /* Register is banked (using both entries in array).
3782 * Overwriting fieldoffset as the array is only used to define
3783 * banked registers but later only fieldoffset is used.
3785 r2->fieldoffset = r->bank_fieldoffsets[ns];
3788 if (state == ARM_CP_STATE_AA32) {
3789 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3790 /* If the register is banked then we don't need to migrate or
3791 * reset the 32-bit instance in certain cases:
3793 * 1) If the register has both 32-bit and 64-bit instances then we
3794 * can count on the 64-bit instance taking care of the
3795 * non-secure bank.
3796 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3797 * taking care of the secure bank. This requires that separate
3798 * 32 and 64-bit definitions are provided.
3800 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
3801 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3802 r2->type |= ARM_CP_ALIAS;
3804 } else if ((secstate != r->secure) && !ns) {
3805 /* The register is not banked so we only want to allow migration of
3806 * the non-secure instance.
3808 r2->type |= ARM_CP_ALIAS;
3811 if (r->state == ARM_CP_STATE_BOTH) {
3812 /* We assume it is a cp15 register if the .cp field is left unset.
3814 if (r2->cp == 0) {
3815 r2->cp = 15;
3818 #ifdef HOST_WORDS_BIGENDIAN
3819 if (r2->fieldoffset) {
3820 r2->fieldoffset += sizeof(uint32_t);
3822 #endif
3825 if (state == ARM_CP_STATE_AA64) {
3826 /* To allow abbreviation of ARMCPRegInfo
3827 * definitions, we treat cp == 0 as equivalent to
3828 * the value for "standard guest-visible sysreg".
3829 * STATE_BOTH definitions are also always "standard
3830 * sysreg" in their AArch64 view (the .cp value may
3831 * be non-zero for the benefit of the AArch32 view).
3833 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3834 r2->cp = CP_REG_ARM64_SYSREG_CP;
3836 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
3837 r2->opc0, opc1, opc2);
3838 } else {
3839 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3841 if (opaque) {
3842 r2->opaque = opaque;
3844 /* reginfo passed to helpers is correct for the actual access,
3845 * and is never ARM_CP_STATE_BOTH:
3847 r2->state = state;
3848 /* Make sure reginfo passed to helpers for wildcarded regs
3849 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3851 r2->crm = crm;
3852 r2->opc1 = opc1;
3853 r2->opc2 = opc2;
3854 /* By convention, for wildcarded registers only the first
3855 * entry is used for migration; the others are marked as
3856 * ALIAS so we don't try to transfer the register
3857 * multiple times. Special registers (ie NOP/WFI) are
3858 * never migratable and not even raw-accessible.
3860 if ((r->type & ARM_CP_SPECIAL)) {
3861 r2->type |= ARM_CP_NO_RAW;
3863 if (((r->crm == CP_ANY) && crm != 0) ||
3864 ((r->opc1 == CP_ANY) && opc1 != 0) ||
3865 ((r->opc2 == CP_ANY) && opc2 != 0)) {
3866 r2->type |= ARM_CP_ALIAS;
3869 /* Check that raw accesses are either forbidden or handled. Note that
3870 * we can't assert this earlier because the setup of fieldoffset for
3871 * banked registers has to be done first.
3873 if (!(r2->type & ARM_CP_NO_RAW)) {
3874 assert(!raw_accessors_invalid(r2));
3877 /* Overriding of an existing definition must be explicitly
3878 * requested.
3880 if (!(r->type & ARM_CP_OVERRIDE)) {
3881 ARMCPRegInfo *oldreg;
3882 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
3883 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
3884 fprintf(stderr, "Register redefined: cp=%d %d bit "
3885 "crn=%d crm=%d opc1=%d opc2=%d, "
3886 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
3887 r2->crn, r2->crm, r2->opc1, r2->opc2,
3888 oldreg->name, r2->name);
3889 g_assert_not_reached();
3892 g_hash_table_insert(cpu->cp_regs, key, r2);
3896 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
3897 const ARMCPRegInfo *r, void *opaque)
3899 /* Define implementations of coprocessor registers.
3900 * We store these in a hashtable because typically
3901 * there are less than 150 registers in a space which
3902 * is 16*16*16*8*8 = 262144 in size.
3903 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3904 * If a register is defined twice then the second definition is
3905 * used, so this can be used to define some generic registers and
3906 * then override them with implementation specific variations.
3907 * At least one of the original and the second definition should
3908 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3909 * against accidental use.
3911 * The state field defines whether the register is to be
3912 * visible in the AArch32 or AArch64 execution state. If the
3913 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3914 * reginfo structure for the AArch32 view, which sees the lower
3915 * 32 bits of the 64 bit register.
3917 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3918 * be wildcarded. AArch64 registers are always considered to be 64
3919 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3920 * the register, if any.
3922 int crm, opc1, opc2, state;
3923 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
3924 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
3925 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
3926 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
3927 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
3928 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
3929 /* 64 bit registers have only CRm and Opc1 fields */
3930 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3931 /* op0 only exists in the AArch64 encodings */
3932 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
3933 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3934 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
3935 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3936 * encodes a minimum access level for the register. We roll this
3937 * runtime check into our general permission check code, so check
3938 * here that the reginfo's specified permissions are strict enough
3939 * to encompass the generic architectural permission check.
3941 if (r->state != ARM_CP_STATE_AA32) {
3942 int mask = 0;
3943 switch (r->opc1) {
3944 case 0: case 1: case 2:
3945 /* min_EL EL1 */
3946 mask = PL1_RW;
3947 break;
3948 case 3:
3949 /* min_EL EL0 */
3950 mask = PL0_RW;
3951 break;
3952 case 4:
3953 /* min_EL EL2 */
3954 mask = PL2_RW;
3955 break;
3956 case 5:
3957 /* unallocated encoding, so not possible */
3958 assert(false);
3959 break;
3960 case 6:
3961 /* min_EL EL3 */
3962 mask = PL3_RW;
3963 break;
3964 case 7:
3965 /* min_EL EL1, secure mode only (we don't check the latter) */
3966 mask = PL1_RW;
3967 break;
3968 default:
3969 /* broken reginfo with out-of-range opc1 */
3970 assert(false);
3971 break;
3973 /* assert our permissions are not too lax (stricter is fine) */
3974 assert((r->access & ~mask) == 0);
3977 /* Check that the register definition has enough info to handle
3978 * reads and writes if they are permitted.
3980 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
3981 if (r->access & PL3_R) {
3982 assert((r->fieldoffset ||
3983 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3984 r->readfn);
3986 if (r->access & PL3_W) {
3987 assert((r->fieldoffset ||
3988 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3989 r->writefn);
3992 /* Bad type field probably means missing sentinel at end of reg list */
3993 assert(cptype_valid(r->type));
3994 for (crm = crmmin; crm <= crmmax; crm++) {
3995 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
3996 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3997 for (state = ARM_CP_STATE_AA32;
3998 state <= ARM_CP_STATE_AA64; state++) {
3999 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4000 continue;
4002 if (state == ARM_CP_STATE_AA32) {
4003 /* Under AArch32 CP registers can be common
4004 * (same for secure and non-secure world) or banked.
4006 switch (r->secure) {
4007 case ARM_CP_SECSTATE_S:
4008 case ARM_CP_SECSTATE_NS:
4009 add_cpreg_to_hashtable(cpu, r, opaque, state,
4010 r->secure, crm, opc1, opc2);
4011 break;
4012 default:
4013 add_cpreg_to_hashtable(cpu, r, opaque, state,
4014 ARM_CP_SECSTATE_S,
4015 crm, opc1, opc2);
4016 add_cpreg_to_hashtable(cpu, r, opaque, state,
4017 ARM_CP_SECSTATE_NS,
4018 crm, opc1, opc2);
4019 break;
4021 } else {
4022 /* AArch64 registers get mapped to non-secure instance
4023 * of AArch32 */
4024 add_cpreg_to_hashtable(cpu, r, opaque, state,
4025 ARM_CP_SECSTATE_NS,
4026 crm, opc1, opc2);
4034 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4035 const ARMCPRegInfo *regs, void *opaque)
4037 /* Define a whole list of registers */
4038 const ARMCPRegInfo *r;
4039 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4040 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4044 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4046 return g_hash_table_lookup(cpregs, &encoded_cp);
4049 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4050 uint64_t value)
4052 /* Helper coprocessor write function for write-ignore registers */
4055 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4057 /* Helper coprocessor write function for read-as-zero registers */
4058 return 0;
4061 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4063 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4066 static int bad_mode_switch(CPUARMState *env, int mode)
4068 /* Return true if it is not valid for us to switch to
4069 * this CPU mode (ie all the UNPREDICTABLE cases in
4070 * the ARM ARM CPSRWriteByInstr pseudocode).
4072 switch (mode) {
4073 case ARM_CPU_MODE_USR:
4074 case ARM_CPU_MODE_SYS:
4075 case ARM_CPU_MODE_SVC:
4076 case ARM_CPU_MODE_ABT:
4077 case ARM_CPU_MODE_UND:
4078 case ARM_CPU_MODE_IRQ:
4079 case ARM_CPU_MODE_FIQ:
4080 return 0;
4081 case ARM_CPU_MODE_MON:
4082 return !arm_is_secure(env);
4083 default:
4084 return 1;
4088 uint32_t cpsr_read(CPUARMState *env)
4090 int ZF;
4091 ZF = (env->ZF == 0);
4092 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4093 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4094 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4095 | ((env->condexec_bits & 0xfc) << 8)
4096 | (env->GE << 16) | (env->daif & CPSR_AIF);
4099 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4101 uint32_t changed_daif;
4103 if (mask & CPSR_NZCV) {
4104 env->ZF = (~val) & CPSR_Z;
4105 env->NF = val;
4106 env->CF = (val >> 29) & 1;
4107 env->VF = (val << 3) & 0x80000000;
4109 if (mask & CPSR_Q)
4110 env->QF = ((val & CPSR_Q) != 0);
4111 if (mask & CPSR_T)
4112 env->thumb = ((val & CPSR_T) != 0);
4113 if (mask & CPSR_IT_0_1) {
4114 env->condexec_bits &= ~3;
4115 env->condexec_bits |= (val >> 25) & 3;
4117 if (mask & CPSR_IT_2_7) {
4118 env->condexec_bits &= 3;
4119 env->condexec_bits |= (val >> 8) & 0xfc;
4121 if (mask & CPSR_GE) {
4122 env->GE = (val >> 16) & 0xf;
4125 /* In a V7 implementation that includes the security extensions but does
4126 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4127 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4128 * bits respectively.
4130 * In a V8 implementation, it is permitted for privileged software to
4131 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4133 if (!arm_feature(env, ARM_FEATURE_V8) &&
4134 arm_feature(env, ARM_FEATURE_EL3) &&
4135 !arm_feature(env, ARM_FEATURE_EL2) &&
4136 !arm_is_secure(env)) {
4138 changed_daif = (env->daif ^ val) & mask;
4140 if (changed_daif & CPSR_A) {
4141 /* Check to see if we are allowed to change the masking of async
4142 * abort exceptions from a non-secure state.
4144 if (!(env->cp15.scr_el3 & SCR_AW)) {
4145 qemu_log_mask(LOG_GUEST_ERROR,
4146 "Ignoring attempt to switch CPSR_A flag from "
4147 "non-secure world with SCR.AW bit clear\n");
4148 mask &= ~CPSR_A;
4152 if (changed_daif & CPSR_F) {
4153 /* Check to see if we are allowed to change the masking of FIQ
4154 * exceptions from a non-secure state.
4156 if (!(env->cp15.scr_el3 & SCR_FW)) {
4157 qemu_log_mask(LOG_GUEST_ERROR,
4158 "Ignoring attempt to switch CPSR_F flag from "
4159 "non-secure world with SCR.FW bit clear\n");
4160 mask &= ~CPSR_F;
4163 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4164 * If this bit is set software is not allowed to mask
4165 * FIQs, but is allowed to set CPSR_F to 0.
4167 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4168 (val & CPSR_F)) {
4169 qemu_log_mask(LOG_GUEST_ERROR,
4170 "Ignoring attempt to enable CPSR_F flag "
4171 "(non-maskable FIQ [NMFI] support enabled)\n");
4172 mask &= ~CPSR_F;
4177 env->daif &= ~(CPSR_AIF & mask);
4178 env->daif |= val & CPSR_AIF & mask;
4180 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4181 if (bad_mode_switch(env, val & CPSR_M)) {
4182 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4183 * We choose to ignore the attempt and leave the CPSR M field
4184 * untouched.
4186 mask &= ~CPSR_M;
4187 } else {
4188 switch_mode(env, val & CPSR_M);
4191 mask &= ~CACHED_CPSR_BITS;
4192 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4195 /* Sign/zero extend */
4196 uint32_t HELPER(sxtb16)(uint32_t x)
4198 uint32_t res;
4199 res = (uint16_t)(int8_t)x;
4200 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4201 return res;
4204 uint32_t HELPER(uxtb16)(uint32_t x)
4206 uint32_t res;
4207 res = (uint16_t)(uint8_t)x;
4208 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4209 return res;
4212 uint32_t HELPER(clz)(uint32_t x)
4214 return clz32(x);
4217 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4219 if (den == 0)
4220 return 0;
4221 if (num == INT_MIN && den == -1)
4222 return INT_MIN;
4223 return num / den;
4226 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4228 if (den == 0)
4229 return 0;
4230 return num / den;
4233 uint32_t HELPER(rbit)(uint32_t x)
4235 x = ((x & 0xff000000) >> 24)
4236 | ((x & 0x00ff0000) >> 8)
4237 | ((x & 0x0000ff00) << 8)
4238 | ((x & 0x000000ff) << 24);
4239 x = ((x & 0xf0f0f0f0) >> 4)
4240 | ((x & 0x0f0f0f0f) << 4);
4241 x = ((x & 0x88888888) >> 3)
4242 | ((x & 0x44444444) >> 1)
4243 | ((x & 0x22222222) << 1)
4244 | ((x & 0x11111111) << 3);
4245 return x;
4248 #if defined(CONFIG_USER_ONLY)
4250 /* These should probably raise undefined insn exceptions. */
4251 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4253 ARMCPU *cpu = arm_env_get_cpu(env);
4255 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
4258 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4260 ARMCPU *cpu = arm_env_get_cpu(env);
4262 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
4263 return 0;
4266 void switch_mode(CPUARMState *env, int mode)
4268 ARMCPU *cpu = arm_env_get_cpu(env);
4270 if (mode != ARM_CPU_MODE_USR) {
4271 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4275 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4277 ARMCPU *cpu = arm_env_get_cpu(env);
4279 cpu_abort(CPU(cpu), "banked r13 write\n");
4282 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4284 ARMCPU *cpu = arm_env_get_cpu(env);
4286 cpu_abort(CPU(cpu), "banked r13 read\n");
4287 return 0;
4290 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4291 uint32_t cur_el, bool secure)
4293 return 1;
4296 void aarch64_sync_64_to_32(CPUARMState *env)
4298 g_assert_not_reached();
4301 #else
4303 /* Map CPU modes onto saved register banks. */
4304 int bank_number(int mode)
4306 switch (mode) {
4307 case ARM_CPU_MODE_USR:
4308 case ARM_CPU_MODE_SYS:
4309 return 0;
4310 case ARM_CPU_MODE_SVC:
4311 return 1;
4312 case ARM_CPU_MODE_ABT:
4313 return 2;
4314 case ARM_CPU_MODE_UND:
4315 return 3;
4316 case ARM_CPU_MODE_IRQ:
4317 return 4;
4318 case ARM_CPU_MODE_FIQ:
4319 return 5;
4320 case ARM_CPU_MODE_HYP:
4321 return 6;
4322 case ARM_CPU_MODE_MON:
4323 return 7;
4325 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
4328 void switch_mode(CPUARMState *env, int mode)
4330 int old_mode;
4331 int i;
4333 old_mode = env->uncached_cpsr & CPSR_M;
4334 if (mode == old_mode)
4335 return;
4337 if (old_mode == ARM_CPU_MODE_FIQ) {
4338 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
4339 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
4340 } else if (mode == ARM_CPU_MODE_FIQ) {
4341 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
4342 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
4345 i = bank_number(old_mode);
4346 env->banked_r13[i] = env->regs[13];
4347 env->banked_r14[i] = env->regs[14];
4348 env->banked_spsr[i] = env->spsr;
4350 i = bank_number(mode);
4351 env->regs[13] = env->banked_r13[i];
4352 env->regs[14] = env->banked_r14[i];
4353 env->spsr = env->banked_spsr[i];
4356 /* Physical Interrupt Target EL Lookup Table
4358 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4360 * The below multi-dimensional table is used for looking up the target
4361 * exception level given numerous condition criteria. Specifically, the
4362 * target EL is based on SCR and HCR routing controls as well as the
4363 * currently executing EL and secure state.
4365 * Dimensions:
4366 * target_el_table[2][2][2][2][2][4]
4367 * | | | | | +--- Current EL
4368 * | | | | +------ Non-secure(0)/Secure(1)
4369 * | | | +--------- HCR mask override
4370 * | | +------------ SCR exec state control
4371 * | +--------------- SCR mask override
4372 * +------------------ 32-bit(0)/64-bit(1) EL3
4374 * The table values are as such:
4375 * 0-3 = EL0-EL3
4376 * -1 = Cannot occur
4378 * The ARM ARM target EL table includes entries indicating that an "exception
4379 * is not taken". The two cases where this is applicable are:
4380 * 1) An exception is taken from EL3 but the SCR does not have the exception
4381 * routed to EL3.
4382 * 2) An exception is taken from EL2 but the HCR does not have the exception
4383 * routed to EL2.
4384 * In these two cases, the below table contain a target of EL1. This value is
4385 * returned as it is expected that the consumer of the table data will check
4386 * for "target EL >= current EL" to ensure the exception is not taken.
4388 * SCR HCR
4389 * 64 EA AMO From
4390 * BIT IRQ IMO Non-secure Secure
4391 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4393 const int8_t target_el_table[2][2][2][2][2][4] = {
4394 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4395 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4396 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4397 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4398 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4399 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4400 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4401 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4402 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4403 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4404 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4405 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4406 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4407 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4408 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4409 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4413 * Determine the target EL for physical exceptions
4415 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4416 uint32_t cur_el, bool secure)
4418 CPUARMState *env = cs->env_ptr;
4419 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4420 int scr;
4421 int hcr;
4422 int target_el;
4423 int is64 = arm_el_is_aa64(env, 3);
4425 switch (excp_idx) {
4426 case EXCP_IRQ:
4427 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4428 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4429 break;
4430 case EXCP_FIQ:
4431 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4432 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4433 break;
4434 default:
4435 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4436 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4437 break;
4440 /* If HCR.TGE is set then HCR is treated as being 1 */
4441 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4443 /* Perform a table-lookup for the target EL given the current state */
4444 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4446 assert(target_el > 0);
4448 return target_el;
4451 static void v7m_push(CPUARMState *env, uint32_t val)
4453 CPUState *cs = CPU(arm_env_get_cpu(env));
4455 env->regs[13] -= 4;
4456 stl_phys(cs->as, env->regs[13], val);
4459 static uint32_t v7m_pop(CPUARMState *env)
4461 CPUState *cs = CPU(arm_env_get_cpu(env));
4462 uint32_t val;
4464 val = ldl_phys(cs->as, env->regs[13]);
4465 env->regs[13] += 4;
4466 return val;
4469 /* Switch to V7M main or process stack pointer. */
4470 static void switch_v7m_sp(CPUARMState *env, int process)
4472 uint32_t tmp;
4473 if (env->v7m.current_sp != process) {
4474 tmp = env->v7m.other_sp;
4475 env->v7m.other_sp = env->regs[13];
4476 env->regs[13] = tmp;
4477 env->v7m.current_sp = process;
4481 static void do_v7m_exception_exit(CPUARMState *env)
4483 uint32_t type;
4484 uint32_t xpsr;
4486 type = env->regs[15];
4487 if (env->v7m.exception != 0)
4488 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
4490 /* Switch to the target stack. */
4491 switch_v7m_sp(env, (type & 4) != 0);
4492 /* Pop registers. */
4493 env->regs[0] = v7m_pop(env);
4494 env->regs[1] = v7m_pop(env);
4495 env->regs[2] = v7m_pop(env);
4496 env->regs[3] = v7m_pop(env);
4497 env->regs[12] = v7m_pop(env);
4498 env->regs[14] = v7m_pop(env);
4499 env->regs[15] = v7m_pop(env);
4500 if (env->regs[15] & 1) {
4501 qemu_log_mask(LOG_GUEST_ERROR,
4502 "M profile return from interrupt with misaligned "
4503 "PC is UNPREDICTABLE\n");
4504 /* Actual hardware seems to ignore the lsbit, and there are several
4505 * RTOSes out there which incorrectly assume the r15 in the stack
4506 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4508 env->regs[15] &= ~1U;
4510 xpsr = v7m_pop(env);
4511 xpsr_write(env, xpsr, 0xfffffdff);
4512 /* Undo stack alignment. */
4513 if (xpsr & 0x200)
4514 env->regs[13] |= 4;
4515 /* ??? The exception return type specifies Thread/Handler mode. However
4516 this is also implied by the xPSR value. Not sure what to do
4517 if there is a mismatch. */
4518 /* ??? Likewise for mismatches between the CONTROL register and the stack
4519 pointer. */
4522 void arm_v7m_cpu_do_interrupt(CPUState *cs)
4524 ARMCPU *cpu = ARM_CPU(cs);
4525 CPUARMState *env = &cpu->env;
4526 uint32_t xpsr = xpsr_read(env);
4527 uint32_t lr;
4528 uint32_t addr;
4530 arm_log_exception(cs->exception_index);
4532 lr = 0xfffffff1;
4533 if (env->v7m.current_sp)
4534 lr |= 4;
4535 if (env->v7m.exception == 0)
4536 lr |= 8;
4538 /* For exceptions we just mark as pending on the NVIC, and let that
4539 handle it. */
4540 /* TODO: Need to escalate if the current priority is higher than the
4541 one we're raising. */
4542 switch (cs->exception_index) {
4543 case EXCP_UDEF:
4544 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
4545 return;
4546 case EXCP_SWI:
4547 /* The PC already points to the next instruction. */
4548 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
4549 return;
4550 case EXCP_PREFETCH_ABORT:
4551 case EXCP_DATA_ABORT:
4552 /* TODO: if we implemented the MPU registers, this is where we
4553 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4555 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
4556 return;
4557 case EXCP_BKPT:
4558 if (semihosting_enabled()) {
4559 int nr;
4560 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4561 if (nr == 0xab) {
4562 env->regs[15] += 2;
4563 env->regs[0] = do_arm_semihosting(env);
4564 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4565 return;
4568 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
4569 return;
4570 case EXCP_IRQ:
4571 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
4572 break;
4573 case EXCP_EXCEPTION_EXIT:
4574 do_v7m_exception_exit(env);
4575 return;
4576 default:
4577 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4578 return; /* Never happens. Keep compiler happy. */
4581 /* Align stack pointer. */
4582 /* ??? Should only do this if Configuration Control Register
4583 STACKALIGN bit is set. */
4584 if (env->regs[13] & 4) {
4585 env->regs[13] -= 4;
4586 xpsr |= 0x200;
4588 /* Switch to the handler mode. */
4589 v7m_push(env, xpsr);
4590 v7m_push(env, env->regs[15]);
4591 v7m_push(env, env->regs[14]);
4592 v7m_push(env, env->regs[12]);
4593 v7m_push(env, env->regs[3]);
4594 v7m_push(env, env->regs[2]);
4595 v7m_push(env, env->regs[1]);
4596 v7m_push(env, env->regs[0]);
4597 switch_v7m_sp(env, 0);
4598 /* Clear IT bits */
4599 env->condexec_bits = 0;
4600 env->regs[14] = lr;
4601 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
4602 env->regs[15] = addr & 0xfffffffe;
4603 env->thumb = addr & 1;
4606 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4607 * register set. This is necessary when switching between AArch32 and AArch64
4608 * execution state.
4610 void aarch64_sync_32_to_64(CPUARMState *env)
4612 int i;
4613 uint32_t mode = env->uncached_cpsr & CPSR_M;
4615 /* We can blanket copy R[0:7] to X[0:7] */
4616 for (i = 0; i < 8; i++) {
4617 env->xregs[i] = env->regs[i];
4620 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4621 * Otherwise, they come from the banked user regs.
4623 if (mode == ARM_CPU_MODE_FIQ) {
4624 for (i = 8; i < 13; i++) {
4625 env->xregs[i] = env->usr_regs[i - 8];
4627 } else {
4628 for (i = 8; i < 13; i++) {
4629 env->xregs[i] = env->regs[i];
4633 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4634 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4635 * from the mode banked register.
4637 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4638 env->xregs[13] = env->regs[13];
4639 env->xregs[14] = env->regs[14];
4640 } else {
4641 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
4642 /* HYP is an exception in that it is copied from r14 */
4643 if (mode == ARM_CPU_MODE_HYP) {
4644 env->xregs[14] = env->regs[14];
4645 } else {
4646 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
4650 if (mode == ARM_CPU_MODE_HYP) {
4651 env->xregs[15] = env->regs[13];
4652 } else {
4653 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
4656 if (mode == ARM_CPU_MODE_IRQ) {
4657 env->xregs[16] = env->regs[13];
4658 env->xregs[17] = env->regs[14];
4659 } else {
4660 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
4661 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
4664 if (mode == ARM_CPU_MODE_SVC) {
4665 env->xregs[18] = env->regs[13];
4666 env->xregs[19] = env->regs[14];
4667 } else {
4668 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
4669 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
4672 if (mode == ARM_CPU_MODE_ABT) {
4673 env->xregs[20] = env->regs[13];
4674 env->xregs[21] = env->regs[14];
4675 } else {
4676 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
4677 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
4680 if (mode == ARM_CPU_MODE_UND) {
4681 env->xregs[22] = env->regs[13];
4682 env->xregs[23] = env->regs[14];
4683 } else {
4684 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
4685 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
4688 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4689 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4690 * FIQ bank for r8-r14.
4692 if (mode == ARM_CPU_MODE_FIQ) {
4693 for (i = 24; i < 31; i++) {
4694 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
4696 } else {
4697 for (i = 24; i < 29; i++) {
4698 env->xregs[i] = env->fiq_regs[i - 24];
4700 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
4701 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
4704 env->pc = env->regs[15];
4707 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4708 * register set. This is necessary when switching between AArch32 and AArch64
4709 * execution state.
4711 void aarch64_sync_64_to_32(CPUARMState *env)
4713 int i;
4714 uint32_t mode = env->uncached_cpsr & CPSR_M;
4716 /* We can blanket copy X[0:7] to R[0:7] */
4717 for (i = 0; i < 8; i++) {
4718 env->regs[i] = env->xregs[i];
4721 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4722 * Otherwise, we copy x8-x12 into the banked user regs.
4724 if (mode == ARM_CPU_MODE_FIQ) {
4725 for (i = 8; i < 13; i++) {
4726 env->usr_regs[i - 8] = env->xregs[i];
4728 } else {
4729 for (i = 8; i < 13; i++) {
4730 env->regs[i] = env->xregs[i];
4734 /* Registers r13 & r14 depend on the current mode.
4735 * If we are in a given mode, we copy the corresponding x registers to r13
4736 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4737 * for the mode.
4739 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4740 env->regs[13] = env->xregs[13];
4741 env->regs[14] = env->xregs[14];
4742 } else {
4743 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
4745 /* HYP is an exception in that it does not have its own banked r14 but
4746 * shares the USR r14
4748 if (mode == ARM_CPU_MODE_HYP) {
4749 env->regs[14] = env->xregs[14];
4750 } else {
4751 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
4755 if (mode == ARM_CPU_MODE_HYP) {
4756 env->regs[13] = env->xregs[15];
4757 } else {
4758 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
4761 if (mode == ARM_CPU_MODE_IRQ) {
4762 env->regs[13] = env->xregs[16];
4763 env->regs[14] = env->xregs[17];
4764 } else {
4765 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
4766 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
4769 if (mode == ARM_CPU_MODE_SVC) {
4770 env->regs[13] = env->xregs[18];
4771 env->regs[14] = env->xregs[19];
4772 } else {
4773 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
4774 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
4777 if (mode == ARM_CPU_MODE_ABT) {
4778 env->regs[13] = env->xregs[20];
4779 env->regs[14] = env->xregs[21];
4780 } else {
4781 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
4782 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
4785 if (mode == ARM_CPU_MODE_UND) {
4786 env->regs[13] = env->xregs[22];
4787 env->regs[14] = env->xregs[23];
4788 } else {
4789 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
4790 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
4793 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4794 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4795 * FIQ bank for r8-r14.
4797 if (mode == ARM_CPU_MODE_FIQ) {
4798 for (i = 24; i < 31; i++) {
4799 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
4801 } else {
4802 for (i = 24; i < 29; i++) {
4803 env->fiq_regs[i - 24] = env->xregs[i];
4805 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
4806 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
4809 env->regs[15] = env->pc;
4812 /* Handle a CPU exception. */
4813 void arm_cpu_do_interrupt(CPUState *cs)
4815 ARMCPU *cpu = ARM_CPU(cs);
4816 CPUARMState *env = &cpu->env;
4817 uint32_t addr;
4818 uint32_t mask;
4819 int new_mode;
4820 uint32_t offset;
4821 uint32_t moe;
4823 assert(!IS_M(env));
4825 arm_log_exception(cs->exception_index);
4827 if (arm_is_psci_call(cpu, cs->exception_index)) {
4828 arm_handle_psci_call(cpu);
4829 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
4830 return;
4833 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4834 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
4835 case EC_BREAKPOINT:
4836 case EC_BREAKPOINT_SAME_EL:
4837 moe = 1;
4838 break;
4839 case EC_WATCHPOINT:
4840 case EC_WATCHPOINT_SAME_EL:
4841 moe = 10;
4842 break;
4843 case EC_AA32_BKPT:
4844 moe = 3;
4845 break;
4846 case EC_VECTORCATCH:
4847 moe = 5;
4848 break;
4849 default:
4850 moe = 0;
4851 break;
4854 if (moe) {
4855 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
4858 /* TODO: Vectored interrupt controller. */
4859 switch (cs->exception_index) {
4860 case EXCP_UDEF:
4861 new_mode = ARM_CPU_MODE_UND;
4862 addr = 0x04;
4863 mask = CPSR_I;
4864 if (env->thumb)
4865 offset = 2;
4866 else
4867 offset = 4;
4868 break;
4869 case EXCP_SWI:
4870 if (semihosting_enabled()) {
4871 /* Check for semihosting interrupt. */
4872 if (env->thumb) {
4873 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
4874 & 0xff;
4875 } else {
4876 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
4877 & 0xffffff;
4879 /* Only intercept calls from privileged modes, to provide some
4880 semblance of security. */
4881 if (((mask == 0x123456 && !env->thumb)
4882 || (mask == 0xab && env->thumb))
4883 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4884 env->regs[0] = do_arm_semihosting(env);
4885 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4886 return;
4889 new_mode = ARM_CPU_MODE_SVC;
4890 addr = 0x08;
4891 mask = CPSR_I;
4892 /* The PC already points to the next instruction. */
4893 offset = 0;
4894 break;
4895 case EXCP_BKPT:
4896 /* See if this is a semihosting syscall. */
4897 if (env->thumb && semihosting_enabled()) {
4898 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4899 if (mask == 0xab
4900 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4901 env->regs[15] += 2;
4902 env->regs[0] = do_arm_semihosting(env);
4903 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4904 return;
4907 env->exception.fsr = 2;
4908 /* Fall through to prefetch abort. */
4909 case EXCP_PREFETCH_ABORT:
4910 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
4911 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4912 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
4913 env->exception.fsr, (uint32_t)env->exception.vaddress);
4914 new_mode = ARM_CPU_MODE_ABT;
4915 addr = 0x0c;
4916 mask = CPSR_A | CPSR_I;
4917 offset = 4;
4918 break;
4919 case EXCP_DATA_ABORT:
4920 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
4921 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4922 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4923 env->exception.fsr,
4924 (uint32_t)env->exception.vaddress);
4925 new_mode = ARM_CPU_MODE_ABT;
4926 addr = 0x10;
4927 mask = CPSR_A | CPSR_I;
4928 offset = 8;
4929 break;
4930 case EXCP_IRQ:
4931 new_mode = ARM_CPU_MODE_IRQ;
4932 addr = 0x18;
4933 /* Disable IRQ and imprecise data aborts. */
4934 mask = CPSR_A | CPSR_I;
4935 offset = 4;
4936 if (env->cp15.scr_el3 & SCR_IRQ) {
4937 /* IRQ routed to monitor mode */
4938 new_mode = ARM_CPU_MODE_MON;
4939 mask |= CPSR_F;
4941 break;
4942 case EXCP_FIQ:
4943 new_mode = ARM_CPU_MODE_FIQ;
4944 addr = 0x1c;
4945 /* Disable FIQ, IRQ and imprecise data aborts. */
4946 mask = CPSR_A | CPSR_I | CPSR_F;
4947 if (env->cp15.scr_el3 & SCR_FIQ) {
4948 /* FIQ routed to monitor mode */
4949 new_mode = ARM_CPU_MODE_MON;
4951 offset = 4;
4952 break;
4953 case EXCP_SMC:
4954 new_mode = ARM_CPU_MODE_MON;
4955 addr = 0x08;
4956 mask = CPSR_A | CPSR_I | CPSR_F;
4957 offset = 0;
4958 break;
4959 default:
4960 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4961 return; /* Never happens. Keep compiler happy. */
4964 if (new_mode == ARM_CPU_MODE_MON) {
4965 addr += env->cp15.mvbar;
4966 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
4967 /* High vectors. When enabled, base address cannot be remapped. */
4968 addr += 0xffff0000;
4969 } else {
4970 /* ARM v7 architectures provide a vector base address register to remap
4971 * the interrupt vector table.
4972 * This register is only followed in non-monitor mode, and is banked.
4973 * Note: only bits 31:5 are valid.
4975 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
4978 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
4979 env->cp15.scr_el3 &= ~SCR_NS;
4982 switch_mode (env, new_mode);
4983 /* For exceptions taken to AArch32 we must clear the SS bit in both
4984 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4986 env->uncached_cpsr &= ~PSTATE_SS;
4987 env->spsr = cpsr_read(env);
4988 /* Clear IT bits. */
4989 env->condexec_bits = 0;
4990 /* Switch to the new mode, and to the correct instruction set. */
4991 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4992 env->daif |= mask;
4993 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4994 * and we should just guard the thumb mode on V4 */
4995 if (arm_feature(env, ARM_FEATURE_V4T)) {
4996 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4998 env->regs[14] = env->regs[15] + offset;
4999 env->regs[15] = addr;
5000 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
5004 /* Return the exception level which controls this address translation regime */
5005 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5007 switch (mmu_idx) {
5008 case ARMMMUIdx_S2NS:
5009 case ARMMMUIdx_S1E2:
5010 return 2;
5011 case ARMMMUIdx_S1E3:
5012 return 3;
5013 case ARMMMUIdx_S1SE0:
5014 return arm_el_is_aa64(env, 3) ? 1 : 3;
5015 case ARMMMUIdx_S1SE1:
5016 case ARMMMUIdx_S1NSE0:
5017 case ARMMMUIdx_S1NSE1:
5018 return 1;
5019 default:
5020 g_assert_not_reached();
5024 /* Return true if this address translation regime is secure */
5025 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5027 switch (mmu_idx) {
5028 case ARMMMUIdx_S12NSE0:
5029 case ARMMMUIdx_S12NSE1:
5030 case ARMMMUIdx_S1NSE0:
5031 case ARMMMUIdx_S1NSE1:
5032 case ARMMMUIdx_S1E2:
5033 case ARMMMUIdx_S2NS:
5034 return false;
5035 case ARMMMUIdx_S1E3:
5036 case ARMMMUIdx_S1SE0:
5037 case ARMMMUIdx_S1SE1:
5038 return true;
5039 default:
5040 g_assert_not_reached();
5044 /* Return the SCTLR value which controls this address translation regime */
5045 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5047 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5050 /* Return true if the specified stage of address translation is disabled */
5051 static inline bool regime_translation_disabled(CPUARMState *env,
5052 ARMMMUIdx mmu_idx)
5054 if (mmu_idx == ARMMMUIdx_S2NS) {
5055 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5057 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5060 /* Return the TCR controlling this translation regime */
5061 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5063 if (mmu_idx == ARMMMUIdx_S2NS) {
5064 /* TODO: return VTCR_EL2 */
5065 g_assert_not_reached();
5067 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5070 /* Return the TTBR associated with this translation regime */
5071 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5072 int ttbrn)
5074 if (mmu_idx == ARMMMUIdx_S2NS) {
5075 /* TODO: return VTTBR_EL2 */
5076 g_assert_not_reached();
5078 if (ttbrn == 0) {
5079 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5080 } else {
5081 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5085 /* Return true if the translation regime is using LPAE format page tables */
5086 static inline bool regime_using_lpae_format(CPUARMState *env,
5087 ARMMMUIdx mmu_idx)
5089 int el = regime_el(env, mmu_idx);
5090 if (el == 2 || arm_el_is_aa64(env, el)) {
5091 return true;
5093 if (arm_feature(env, ARM_FEATURE_LPAE)
5094 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5095 return true;
5097 return false;
5100 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5102 switch (mmu_idx) {
5103 case ARMMMUIdx_S1SE0:
5104 case ARMMMUIdx_S1NSE0:
5105 return true;
5106 default:
5107 return false;
5108 case ARMMMUIdx_S12NSE0:
5109 case ARMMMUIdx_S12NSE1:
5110 g_assert_not_reached();
5114 /* Translate section/page access permissions to page
5115 * R/W protection flags
5117 * @env: CPUARMState
5118 * @mmu_idx: MMU index indicating required translation regime
5119 * @ap: The 3-bit access permissions (AP[2:0])
5120 * @domain_prot: The 2-bit domain access permissions
5122 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5123 int ap, int domain_prot)
5125 bool is_user = regime_is_user(env, mmu_idx);
5127 if (domain_prot == 3) {
5128 return PAGE_READ | PAGE_WRITE;
5131 switch (ap) {
5132 case 0:
5133 if (arm_feature(env, ARM_FEATURE_V7)) {
5134 return 0;
5136 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5137 case SCTLR_S:
5138 return is_user ? 0 : PAGE_READ;
5139 case SCTLR_R:
5140 return PAGE_READ;
5141 default:
5142 return 0;
5144 case 1:
5145 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5146 case 2:
5147 if (is_user) {
5148 return PAGE_READ;
5149 } else {
5150 return PAGE_READ | PAGE_WRITE;
5152 case 3:
5153 return PAGE_READ | PAGE_WRITE;
5154 case 4: /* Reserved. */
5155 return 0;
5156 case 5:
5157 return is_user ? 0 : PAGE_READ;
5158 case 6:
5159 return PAGE_READ;
5160 case 7:
5161 if (!arm_feature(env, ARM_FEATURE_V6K)) {
5162 return 0;
5164 return PAGE_READ;
5165 default:
5166 g_assert_not_reached();
5170 /* Translate section/page access permissions to page
5171 * R/W protection flags.
5173 * @ap: The 2-bit simple AP (AP[2:1])
5174 * @is_user: TRUE if accessing from PL0
5176 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5178 switch (ap) {
5179 case 0:
5180 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5181 case 1:
5182 return PAGE_READ | PAGE_WRITE;
5183 case 2:
5184 return is_user ? 0 : PAGE_READ;
5185 case 3:
5186 return PAGE_READ;
5187 default:
5188 g_assert_not_reached();
5192 static inline int
5193 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5195 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5198 /* Translate section/page access permissions to protection flags
5200 * @env: CPUARMState
5201 * @mmu_idx: MMU index indicating required translation regime
5202 * @is_aa64: TRUE if AArch64
5203 * @ap: The 2-bit simple AP (AP[2:1])
5204 * @ns: NS (non-secure) bit
5205 * @xn: XN (execute-never) bit
5206 * @pxn: PXN (privileged execute-never) bit
5208 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5209 int ap, int ns, int xn, int pxn)
5211 bool is_user = regime_is_user(env, mmu_idx);
5212 int prot_rw, user_rw;
5213 bool have_wxn;
5214 int wxn = 0;
5216 assert(mmu_idx != ARMMMUIdx_S2NS);
5218 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5219 if (is_user) {
5220 prot_rw = user_rw;
5221 } else {
5222 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5225 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5226 return prot_rw;
5229 /* TODO have_wxn should be replaced with
5230 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5231 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5232 * compatible processors have EL2, which is required for [U]WXN.
5234 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5236 if (have_wxn) {
5237 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5240 if (is_aa64) {
5241 switch (regime_el(env, mmu_idx)) {
5242 case 1:
5243 if (!is_user) {
5244 xn = pxn || (user_rw & PAGE_WRITE);
5246 break;
5247 case 2:
5248 case 3:
5249 break;
5251 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5252 switch (regime_el(env, mmu_idx)) {
5253 case 1:
5254 case 3:
5255 if (is_user) {
5256 xn = xn || !(user_rw & PAGE_READ);
5257 } else {
5258 int uwxn = 0;
5259 if (have_wxn) {
5260 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5262 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5263 (uwxn && (user_rw & PAGE_WRITE));
5265 break;
5266 case 2:
5267 break;
5269 } else {
5270 xn = wxn = 0;
5273 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5274 return prot_rw;
5276 return prot_rw | PAGE_EXEC;
5279 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5280 uint32_t *table, uint32_t address)
5282 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5283 TCR *tcr = regime_tcr(env, mmu_idx);
5285 if (address & tcr->mask) {
5286 if (tcr->raw_tcr & TTBCR_PD1) {
5287 /* Translation table walk disabled for TTBR1 */
5288 return false;
5290 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5291 } else {
5292 if (tcr->raw_tcr & TTBCR_PD0) {
5293 /* Translation table walk disabled for TTBR0 */
5294 return false;
5296 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5298 *table |= (address >> 18) & 0x3ffc;
5299 return true;
5302 /* All loads done in the course of a page table walk go through here.
5303 * TODO: rather than ignoring errors from physical memory reads (which
5304 * are external aborts in ARM terminology) we should propagate this
5305 * error out so that we can turn it into a Data Abort if this walk
5306 * was being done for a CPU load/store or an address translation instruction
5307 * (but not if it was for a debug access).
5309 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5311 MemTxAttrs attrs = {};
5313 attrs.secure = is_secure;
5314 return address_space_ldl(cs->as, addr, attrs, NULL);
5317 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5319 MemTxAttrs attrs = {};
5321 attrs.secure = is_secure;
5322 return address_space_ldq(cs->as, addr, attrs, NULL);
5325 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
5326 int access_type, ARMMMUIdx mmu_idx,
5327 hwaddr *phys_ptr, int *prot,
5328 target_ulong *page_size, uint32_t *fsr)
5330 CPUState *cs = CPU(arm_env_get_cpu(env));
5331 int code;
5332 uint32_t table;
5333 uint32_t desc;
5334 int type;
5335 int ap;
5336 int domain = 0;
5337 int domain_prot;
5338 hwaddr phys_addr;
5339 uint32_t dacr;
5341 /* Pagetable walk. */
5342 /* Lookup l1 descriptor. */
5343 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5344 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5345 code = 5;
5346 goto do_fault;
5348 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5349 type = (desc & 3);
5350 domain = (desc >> 5) & 0x0f;
5351 if (regime_el(env, mmu_idx) == 1) {
5352 dacr = env->cp15.dacr_ns;
5353 } else {
5354 dacr = env->cp15.dacr_s;
5356 domain_prot = (dacr >> (domain * 2)) & 3;
5357 if (type == 0) {
5358 /* Section translation fault. */
5359 code = 5;
5360 goto do_fault;
5362 if (domain_prot == 0 || domain_prot == 2) {
5363 if (type == 2)
5364 code = 9; /* Section domain fault. */
5365 else
5366 code = 11; /* Page domain fault. */
5367 goto do_fault;
5369 if (type == 2) {
5370 /* 1Mb section. */
5371 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5372 ap = (desc >> 10) & 3;
5373 code = 13;
5374 *page_size = 1024 * 1024;
5375 } else {
5376 /* Lookup l2 entry. */
5377 if (type == 1) {
5378 /* Coarse pagetable. */
5379 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5380 } else {
5381 /* Fine pagetable. */
5382 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5384 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5385 switch (desc & 3) {
5386 case 0: /* Page translation fault. */
5387 code = 7;
5388 goto do_fault;
5389 case 1: /* 64k page. */
5390 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5391 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
5392 *page_size = 0x10000;
5393 break;
5394 case 2: /* 4k page. */
5395 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5396 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
5397 *page_size = 0x1000;
5398 break;
5399 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
5400 if (type == 1) {
5401 /* ARMv6/XScale extended small page format */
5402 if (arm_feature(env, ARM_FEATURE_XSCALE)
5403 || arm_feature(env, ARM_FEATURE_V6)) {
5404 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5405 *page_size = 0x1000;
5406 } else {
5407 /* UNPREDICTABLE in ARMv5; we choose to take a
5408 * page translation fault.
5410 code = 7;
5411 goto do_fault;
5413 } else {
5414 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5415 *page_size = 0x400;
5417 ap = (desc >> 4) & 3;
5418 break;
5419 default:
5420 /* Never happens, but compiler isn't smart enough to tell. */
5421 abort();
5423 code = 15;
5425 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5426 *prot |= *prot ? PAGE_EXEC : 0;
5427 if (!(*prot & (1 << access_type))) {
5428 /* Access permission fault. */
5429 goto do_fault;
5431 *phys_ptr = phys_addr;
5432 return false;
5433 do_fault:
5434 *fsr = code | (domain << 4);
5435 return true;
5438 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
5439 int access_type, ARMMMUIdx mmu_idx,
5440 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
5441 target_ulong *page_size, uint32_t *fsr)
5443 CPUState *cs = CPU(arm_env_get_cpu(env));
5444 int code;
5445 uint32_t table;
5446 uint32_t desc;
5447 uint32_t xn;
5448 uint32_t pxn = 0;
5449 int type;
5450 int ap;
5451 int domain = 0;
5452 int domain_prot;
5453 hwaddr phys_addr;
5454 uint32_t dacr;
5455 bool ns;
5457 /* Pagetable walk. */
5458 /* Lookup l1 descriptor. */
5459 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5460 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5461 code = 5;
5462 goto do_fault;
5464 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5465 type = (desc & 3);
5466 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
5467 /* Section translation fault, or attempt to use the encoding
5468 * which is Reserved on implementations without PXN.
5470 code = 5;
5471 goto do_fault;
5473 if ((type == 1) || !(desc & (1 << 18))) {
5474 /* Page or Section. */
5475 domain = (desc >> 5) & 0x0f;
5477 if (regime_el(env, mmu_idx) == 1) {
5478 dacr = env->cp15.dacr_ns;
5479 } else {
5480 dacr = env->cp15.dacr_s;
5482 domain_prot = (dacr >> (domain * 2)) & 3;
5483 if (domain_prot == 0 || domain_prot == 2) {
5484 if (type != 1) {
5485 code = 9; /* Section domain fault. */
5486 } else {
5487 code = 11; /* Page domain fault. */
5489 goto do_fault;
5491 if (type != 1) {
5492 if (desc & (1 << 18)) {
5493 /* Supersection. */
5494 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5495 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
5496 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
5497 *page_size = 0x1000000;
5498 } else {
5499 /* Section. */
5500 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5501 *page_size = 0x100000;
5503 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
5504 xn = desc & (1 << 4);
5505 pxn = desc & 1;
5506 code = 13;
5507 ns = extract32(desc, 19, 1);
5508 } else {
5509 if (arm_feature(env, ARM_FEATURE_PXN)) {
5510 pxn = (desc >> 2) & 1;
5512 ns = extract32(desc, 3, 1);
5513 /* Lookup l2 entry. */
5514 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5515 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5516 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
5517 switch (desc & 3) {
5518 case 0: /* Page translation fault. */
5519 code = 7;
5520 goto do_fault;
5521 case 1: /* 64k page. */
5522 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5523 xn = desc & (1 << 15);
5524 *page_size = 0x10000;
5525 break;
5526 case 2: case 3: /* 4k page. */
5527 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5528 xn = desc & 1;
5529 *page_size = 0x1000;
5530 break;
5531 default:
5532 /* Never happens, but compiler isn't smart enough to tell. */
5533 abort();
5535 code = 15;
5537 if (domain_prot == 3) {
5538 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5539 } else {
5540 if (pxn && !regime_is_user(env, mmu_idx)) {
5541 xn = 1;
5543 if (xn && access_type == 2)
5544 goto do_fault;
5546 if (arm_feature(env, ARM_FEATURE_V6K) &&
5547 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
5548 /* The simplified model uses AP[0] as an access control bit. */
5549 if ((ap & 1) == 0) {
5550 /* Access flag fault. */
5551 code = (code == 15) ? 6 : 3;
5552 goto do_fault;
5554 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
5555 } else {
5556 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5558 if (*prot && !xn) {
5559 *prot |= PAGE_EXEC;
5561 if (!(*prot & (1 << access_type))) {
5562 /* Access permission fault. */
5563 goto do_fault;
5566 if (ns) {
5567 /* The NS bit will (as required by the architecture) have no effect if
5568 * the CPU doesn't support TZ or this is a non-secure translation
5569 * regime, because the attribute will already be non-secure.
5571 attrs->secure = false;
5573 *phys_ptr = phys_addr;
5574 return false;
5575 do_fault:
5576 *fsr = code | (domain << 4);
5577 return true;
5580 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5581 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5583 typedef enum {
5584 translation_fault = 1,
5585 access_fault = 2,
5586 permission_fault = 3,
5587 } MMUFaultType;
5589 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
5590 int access_type, ARMMMUIdx mmu_idx,
5591 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
5592 target_ulong *page_size_ptr, uint32_t *fsr)
5594 CPUState *cs = CPU(arm_env_get_cpu(env));
5595 /* Read an LPAE long-descriptor translation table. */
5596 MMUFaultType fault_type = translation_fault;
5597 uint32_t level = 1;
5598 uint32_t epd;
5599 int32_t tsz;
5600 uint32_t tg;
5601 uint64_t ttbr;
5602 int ttbr_select;
5603 hwaddr descaddr, descmask;
5604 uint32_t tableattrs;
5605 target_ulong page_size;
5606 uint32_t attrs;
5607 int32_t granule_sz = 9;
5608 int32_t va_size = 32;
5609 int32_t tbi = 0;
5610 TCR *tcr = regime_tcr(env, mmu_idx);
5611 int ap, ns, xn, pxn;
5612 uint32_t el = regime_el(env, mmu_idx);
5613 bool ttbr1_valid = true;
5615 /* TODO:
5616 * This code does not handle the different format TCR for VTCR_EL2.
5617 * This code also does not support shareability levels.
5618 * Attribute and permission bit handling should also be checked when adding
5619 * support for those page table walks.
5621 if (arm_el_is_aa64(env, el)) {
5622 va_size = 64;
5623 if (el > 1) {
5624 tbi = extract64(tcr->raw_tcr, 20, 1);
5625 } else {
5626 if (extract64(address, 55, 1)) {
5627 tbi = extract64(tcr->raw_tcr, 38, 1);
5628 } else {
5629 tbi = extract64(tcr->raw_tcr, 37, 1);
5632 tbi *= 8;
5634 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
5635 * invalid.
5637 if (el > 1) {
5638 ttbr1_valid = false;
5642 /* Determine whether this address is in the region controlled by
5643 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5644 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5645 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5647 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5648 if (va_size == 64) {
5649 t0sz = MIN(t0sz, 39);
5650 t0sz = MAX(t0sz, 16);
5652 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5653 if (va_size == 64) {
5654 t1sz = MIN(t1sz, 39);
5655 t1sz = MAX(t1sz, 16);
5657 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5658 /* there is a ttbr0 region and we are in it (high bits all zero) */
5659 ttbr_select = 0;
5660 } else if (ttbr1_valid && t1sz &&
5661 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5662 /* there is a ttbr1 region and we are in it (high bits all one) */
5663 ttbr_select = 1;
5664 } else if (!t0sz) {
5665 /* ttbr0 region is "everything not in the ttbr1 region" */
5666 ttbr_select = 0;
5667 } else if (!t1sz && ttbr1_valid) {
5668 /* ttbr1 region is "everything not in the ttbr0 region" */
5669 ttbr_select = 1;
5670 } else {
5671 /* in the gap between the two regions, this is a Translation fault */
5672 fault_type = translation_fault;
5673 goto do_fault;
5676 /* Note that QEMU ignores shareability and cacheability attributes,
5677 * so we don't need to do anything with the SH, ORGN, IRGN fields
5678 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5679 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5680 * implement any ASID-like capability so we can ignore it (instead
5681 * we will always flush the TLB any time the ASID is changed).
5683 if (ttbr_select == 0) {
5684 ttbr = regime_ttbr(env, mmu_idx, 0);
5685 epd = extract32(tcr->raw_tcr, 7, 1);
5686 tsz = t0sz;
5688 tg = extract32(tcr->raw_tcr, 14, 2);
5689 if (tg == 1) { /* 64KB pages */
5690 granule_sz = 13;
5692 if (tg == 2) { /* 16KB pages */
5693 granule_sz = 11;
5695 } else {
5696 /* We should only be here if TTBR1 is valid */
5697 assert(ttbr1_valid);
5699 ttbr = regime_ttbr(env, mmu_idx, 1);
5700 epd = extract32(tcr->raw_tcr, 23, 1);
5701 tsz = t1sz;
5703 tg = extract32(tcr->raw_tcr, 30, 2);
5704 if (tg == 3) { /* 64KB pages */
5705 granule_sz = 13;
5707 if (tg == 1) { /* 16KB pages */
5708 granule_sz = 11;
5712 /* Here we should have set up all the parameters for the translation:
5713 * va_size, ttbr, epd, tsz, granule_sz, tbi
5716 if (epd) {
5717 /* Translation table walk disabled => Translation fault on TLB miss
5718 * Note: This is always 0 on 64-bit EL2 and EL3.
5720 goto do_fault;
5723 /* The starting level depends on the virtual address size (which can be
5724 * up to 48 bits) and the translation granule size. It indicates the number
5725 * of strides (granule_sz bits at a time) needed to consume the bits
5726 * of the input address. In the pseudocode this is:
5727 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5728 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5729 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5730 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5731 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5732 * = 4 - (va_size - tsz - 4) / granule_sz;
5734 level = 4 - (va_size - tsz - 4) / granule_sz;
5736 /* Clear the vaddr bits which aren't part of the within-region address,
5737 * so that we don't have to special case things when calculating the
5738 * first descriptor address.
5740 if (tsz) {
5741 address &= (1ULL << (va_size - tsz)) - 1;
5744 descmask = (1ULL << (granule_sz + 3)) - 1;
5746 /* Now we can extract the actual base address from the TTBR */
5747 descaddr = extract64(ttbr, 0, 48);
5748 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5750 /* Secure accesses start with the page table in secure memory and
5751 * can be downgraded to non-secure at any step. Non-secure accesses
5752 * remain non-secure. We implement this by just ORing in the NSTable/NS
5753 * bits at each step.
5755 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
5756 for (;;) {
5757 uint64_t descriptor;
5758 bool nstable;
5760 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
5761 descaddr &= ~7ULL;
5762 nstable = extract32(tableattrs, 4, 1);
5763 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
5764 if (!(descriptor & 1) ||
5765 (!(descriptor & 2) && (level == 3))) {
5766 /* Invalid, or the Reserved level 3 encoding */
5767 goto do_fault;
5769 descaddr = descriptor & 0xfffffff000ULL;
5771 if ((descriptor & 2) && (level < 3)) {
5772 /* Table entry. The top five bits are attributes which may
5773 * propagate down through lower levels of the table (and
5774 * which are all arranged so that 0 means "no effect", so
5775 * we can gather them up by ORing in the bits at each level).
5777 tableattrs |= extract64(descriptor, 59, 5);
5778 level++;
5779 continue;
5781 /* Block entry at level 1 or 2, or page entry at level 3.
5782 * These are basically the same thing, although the number
5783 * of bits we pull in from the vaddr varies.
5785 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5786 descaddr |= (address & (page_size - 1));
5787 /* Extract attributes from the descriptor and merge with table attrs */
5788 attrs = extract64(descriptor, 2, 10)
5789 | (extract64(descriptor, 52, 12) << 10);
5790 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
5791 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
5792 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5793 * means "force PL1 access only", which means forcing AP[1] to 0.
5795 if (extract32(tableattrs, 2, 1)) {
5796 attrs &= ~(1 << 4);
5798 attrs |= nstable << 3; /* NS */
5799 break;
5801 /* Here descaddr is the final physical address, and attributes
5802 * are all in attrs.
5804 fault_type = access_fault;
5805 if ((attrs & (1 << 8)) == 0) {
5806 /* Access flag */
5807 goto do_fault;
5810 ap = extract32(attrs, 4, 2);
5811 ns = extract32(attrs, 3, 1);
5812 xn = extract32(attrs, 12, 1);
5813 pxn = extract32(attrs, 11, 1);
5815 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
5817 fault_type = permission_fault;
5818 if (!(*prot & (1 << access_type))) {
5819 goto do_fault;
5822 if (ns) {
5823 /* The NS bit will (as required by the architecture) have no effect if
5824 * the CPU doesn't support TZ or this is a non-secure translation
5825 * regime, because the attribute will already be non-secure.
5827 txattrs->secure = false;
5829 *phys_ptr = descaddr;
5830 *page_size_ptr = page_size;
5831 return false;
5833 do_fault:
5834 /* Long-descriptor format IFSR/DFSR value */
5835 *fsr = (1 << 9) | (fault_type << 2) | level;
5836 return true;
5839 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
5840 ARMMMUIdx mmu_idx,
5841 int32_t address, int *prot)
5843 *prot = PAGE_READ | PAGE_WRITE;
5844 switch (address) {
5845 case 0xF0000000 ... 0xFFFFFFFF:
5846 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
5847 *prot |= PAGE_EXEC;
5849 break;
5850 case 0x00000000 ... 0x7FFFFFFF:
5851 *prot |= PAGE_EXEC;
5852 break;
5857 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
5858 int access_type, ARMMMUIdx mmu_idx,
5859 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
5861 ARMCPU *cpu = arm_env_get_cpu(env);
5862 int n;
5863 bool is_user = regime_is_user(env, mmu_idx);
5865 *phys_ptr = address;
5866 *prot = 0;
5868 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
5869 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
5870 } else { /* MPU enabled */
5871 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
5872 /* region search */
5873 uint32_t base = env->pmsav7.drbar[n];
5874 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
5875 uint32_t rmask;
5876 bool srdis = false;
5878 if (!(env->pmsav7.drsr[n] & 0x1)) {
5879 continue;
5882 if (!rsize) {
5883 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
5884 continue;
5886 rsize++;
5887 rmask = (1ull << rsize) - 1;
5889 if (base & rmask) {
5890 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
5891 "to DRSR region size, mask = %" PRIx32,
5892 base, rmask);
5893 continue;
5896 if (address < base || address > base + rmask) {
5897 continue;
5900 /* Region matched */
5902 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
5903 int i, snd;
5904 uint32_t srdis_mask;
5906 rsize -= 3; /* sub region size (power of 2) */
5907 snd = ((address - base) >> rsize) & 0x7;
5908 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
5910 srdis_mask = srdis ? 0x3 : 0x0;
5911 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
5912 /* This will check in groups of 2, 4 and then 8, whether
5913 * the subregion bits are consistent. rsize is incremented
5914 * back up to give the region size, considering consistent
5915 * adjacent subregions as one region. Stop testing if rsize
5916 * is already big enough for an entire QEMU page.
5918 int snd_rounded = snd & ~(i - 1);
5919 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
5920 snd_rounded + 8, i);
5921 if (srdis_mask ^ srdis_multi) {
5922 break;
5924 srdis_mask = (srdis_mask << i) | srdis_mask;
5925 rsize++;
5928 if (rsize < TARGET_PAGE_BITS) {
5929 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
5930 "alignment of %" PRIu32 " bits. Minimum is %d\n",
5931 rsize, TARGET_PAGE_BITS);
5932 continue;
5934 if (srdis) {
5935 continue;
5937 break;
5940 if (n == -1) { /* no hits */
5941 if (cpu->pmsav7_dregion &&
5942 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
5943 /* background fault */
5944 *fsr = 0;
5945 return true;
5947 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
5948 } else { /* a MPU hit! */
5949 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
5951 if (is_user) { /* User mode AP bit decoding */
5952 switch (ap) {
5953 case 0:
5954 case 1:
5955 case 5:
5956 break; /* no access */
5957 case 3:
5958 *prot |= PAGE_WRITE;
5959 /* fall through */
5960 case 2:
5961 case 6:
5962 *prot |= PAGE_READ | PAGE_EXEC;
5963 break;
5964 default:
5965 qemu_log_mask(LOG_GUEST_ERROR,
5966 "Bad value for AP bits in DRACR %"
5967 PRIx32 "\n", ap);
5969 } else { /* Priv. mode AP bits decoding */
5970 switch (ap) {
5971 case 0:
5972 break; /* no access */
5973 case 1:
5974 case 2:
5975 case 3:
5976 *prot |= PAGE_WRITE;
5977 /* fall through */
5978 case 5:
5979 case 6:
5980 *prot |= PAGE_READ | PAGE_EXEC;
5981 break;
5982 default:
5983 qemu_log_mask(LOG_GUEST_ERROR,
5984 "Bad value for AP bits in DRACR %"
5985 PRIx32 "\n", ap);
5989 /* execute never */
5990 if (env->pmsav7.dracr[n] & (1 << 12)) {
5991 *prot &= ~PAGE_EXEC;
5996 *fsr = 0x00d; /* Permission fault */
5997 return !(*prot & (1 << access_type));
6000 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
6001 int access_type, ARMMMUIdx mmu_idx,
6002 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6004 int n;
6005 uint32_t mask;
6006 uint32_t base;
6007 bool is_user = regime_is_user(env, mmu_idx);
6009 *phys_ptr = address;
6010 for (n = 7; n >= 0; n--) {
6011 base = env->cp15.c6_region[n];
6012 if ((base & 1) == 0) {
6013 continue;
6015 mask = 1 << ((base >> 1) & 0x1f);
6016 /* Keep this shift separate from the above to avoid an
6017 (undefined) << 32. */
6018 mask = (mask << 1) - 1;
6019 if (((base ^ address) & ~mask) == 0) {
6020 break;
6023 if (n < 0) {
6024 *fsr = 2;
6025 return true;
6028 if (access_type == 2) {
6029 mask = env->cp15.pmsav5_insn_ap;
6030 } else {
6031 mask = env->cp15.pmsav5_data_ap;
6033 mask = (mask >> (n * 4)) & 0xf;
6034 switch (mask) {
6035 case 0:
6036 *fsr = 1;
6037 return true;
6038 case 1:
6039 if (is_user) {
6040 *fsr = 1;
6041 return true;
6043 *prot = PAGE_READ | PAGE_WRITE;
6044 break;
6045 case 2:
6046 *prot = PAGE_READ;
6047 if (!is_user) {
6048 *prot |= PAGE_WRITE;
6050 break;
6051 case 3:
6052 *prot = PAGE_READ | PAGE_WRITE;
6053 break;
6054 case 5:
6055 if (is_user) {
6056 *fsr = 1;
6057 return true;
6059 *prot = PAGE_READ;
6060 break;
6061 case 6:
6062 *prot = PAGE_READ;
6063 break;
6064 default:
6065 /* Bad permission. */
6066 *fsr = 1;
6067 return true;
6069 *prot |= PAGE_EXEC;
6070 return false;
6073 /* get_phys_addr - get the physical address for this virtual address
6075 * Find the physical address corresponding to the given virtual address,
6076 * by doing a translation table walk on MMU based systems or using the
6077 * MPU state on MPU based systems.
6079 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6080 * prot and page_size may not be filled in, and the populated fsr value provides
6081 * information on why the translation aborted, in the format of a
6082 * DFSR/IFSR fault register, with the following caveats:
6083 * * we honour the short vs long DFSR format differences.
6084 * * the WnR bit is never set (the caller must do this).
6085 * * for PSMAv5 based systems we don't bother to return a full FSR format
6086 * value.
6088 * @env: CPUARMState
6089 * @address: virtual address to get physical address for
6090 * @access_type: 0 for read, 1 for write, 2 for execute
6091 * @mmu_idx: MMU index indicating required translation regime
6092 * @phys_ptr: set to the physical address corresponding to the virtual address
6093 * @attrs: set to the memory transaction attributes to use
6094 * @prot: set to the permissions for the page containing phys_ptr
6095 * @page_size: set to the size of the page containing phys_ptr
6096 * @fsr: set to the DFSR/IFSR value on failure
6098 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
6099 int access_type, ARMMMUIdx mmu_idx,
6100 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6101 target_ulong *page_size, uint32_t *fsr)
6103 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6104 /* TODO: when we support EL2 we should here call ourselves recursively
6105 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6106 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6107 * rather than direct physical memory loads when appropriate.
6108 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6110 assert(!arm_feature(env, ARM_FEATURE_EL2));
6111 mmu_idx += ARMMMUIdx_S1NSE0;
6114 /* The page table entries may downgrade secure to non-secure, but
6115 * cannot upgrade an non-secure translation regime's attributes
6116 * to secure.
6118 attrs->secure = regime_is_secure(env, mmu_idx);
6119 attrs->user = regime_is_user(env, mmu_idx);
6121 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6122 * In v7 and earlier it affects all stage 1 translations.
6124 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
6125 && !arm_feature(env, ARM_FEATURE_V8)) {
6126 if (regime_el(env, mmu_idx) == 3) {
6127 address += env->cp15.fcseidr_s;
6128 } else {
6129 address += env->cp15.fcseidr_ns;
6133 /* pmsav7 has special handling for when MPU is disabled so call it before
6134 * the common MMU/MPU disabled check below.
6136 if (arm_feature(env, ARM_FEATURE_MPU) &&
6137 arm_feature(env, ARM_FEATURE_V7)) {
6138 *page_size = TARGET_PAGE_SIZE;
6139 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
6140 phys_ptr, prot, fsr);
6143 if (regime_translation_disabled(env, mmu_idx)) {
6144 /* MMU/MPU disabled. */
6145 *phys_ptr = address;
6146 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6147 *page_size = TARGET_PAGE_SIZE;
6148 return 0;
6151 if (arm_feature(env, ARM_FEATURE_MPU)) {
6152 /* Pre-v7 MPU */
6153 *page_size = TARGET_PAGE_SIZE;
6154 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
6155 phys_ptr, prot, fsr);
6158 if (regime_using_lpae_format(env, mmu_idx)) {
6159 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
6160 attrs, prot, page_size, fsr);
6161 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
6162 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
6163 attrs, prot, page_size, fsr);
6164 } else {
6165 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
6166 prot, page_size, fsr);
6170 /* Walk the page table and (if the mapping exists) add the page
6171 * to the TLB. Return false on success, or true on failure. Populate
6172 * fsr with ARM DFSR/IFSR fault register format value on failure.
6174 bool arm_tlb_fill(CPUState *cs, vaddr address,
6175 int access_type, int mmu_idx, uint32_t *fsr)
6177 ARMCPU *cpu = ARM_CPU(cs);
6178 CPUARMState *env = &cpu->env;
6179 hwaddr phys_addr;
6180 target_ulong page_size;
6181 int prot;
6182 int ret;
6183 MemTxAttrs attrs = {};
6185 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
6186 &attrs, &prot, &page_size, fsr);
6187 if (!ret) {
6188 /* Map a single [sub]page. */
6189 phys_addr &= TARGET_PAGE_MASK;
6190 address &= TARGET_PAGE_MASK;
6191 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
6192 prot, mmu_idx, page_size);
6193 return 0;
6196 return ret;
6199 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
6201 ARMCPU *cpu = ARM_CPU(cs);
6202 CPUARMState *env = &cpu->env;
6203 hwaddr phys_addr;
6204 target_ulong page_size;
6205 int prot;
6206 bool ret;
6207 uint32_t fsr;
6208 MemTxAttrs attrs = {};
6210 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
6211 &attrs, &prot, &page_size, &fsr);
6213 if (ret) {
6214 return -1;
6217 return phys_addr;
6220 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
6222 if ((env->uncached_cpsr & CPSR_M) == mode) {
6223 env->regs[13] = val;
6224 } else {
6225 env->banked_r13[bank_number(mode)] = val;
6229 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
6231 if ((env->uncached_cpsr & CPSR_M) == mode) {
6232 return env->regs[13];
6233 } else {
6234 return env->banked_r13[bank_number(mode)];
6238 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6240 ARMCPU *cpu = arm_env_get_cpu(env);
6242 switch (reg) {
6243 case 0: /* APSR */
6244 return xpsr_read(env) & 0xf8000000;
6245 case 1: /* IAPSR */
6246 return xpsr_read(env) & 0xf80001ff;
6247 case 2: /* EAPSR */
6248 return xpsr_read(env) & 0xff00fc00;
6249 case 3: /* xPSR */
6250 return xpsr_read(env) & 0xff00fdff;
6251 case 5: /* IPSR */
6252 return xpsr_read(env) & 0x000001ff;
6253 case 6: /* EPSR */
6254 return xpsr_read(env) & 0x0700fc00;
6255 case 7: /* IEPSR */
6256 return xpsr_read(env) & 0x0700edff;
6257 case 8: /* MSP */
6258 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
6259 case 9: /* PSP */
6260 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
6261 case 16: /* PRIMASK */
6262 return (env->daif & PSTATE_I) != 0;
6263 case 17: /* BASEPRI */
6264 case 18: /* BASEPRI_MAX */
6265 return env->v7m.basepri;
6266 case 19: /* FAULTMASK */
6267 return (env->daif & PSTATE_F) != 0;
6268 case 20: /* CONTROL */
6269 return env->v7m.control;
6270 default:
6271 /* ??? For debugging only. */
6272 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
6273 return 0;
6277 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6279 ARMCPU *cpu = arm_env_get_cpu(env);
6281 switch (reg) {
6282 case 0: /* APSR */
6283 xpsr_write(env, val, 0xf8000000);
6284 break;
6285 case 1: /* IAPSR */
6286 xpsr_write(env, val, 0xf8000000);
6287 break;
6288 case 2: /* EAPSR */
6289 xpsr_write(env, val, 0xfe00fc00);
6290 break;
6291 case 3: /* xPSR */
6292 xpsr_write(env, val, 0xfe00fc00);
6293 break;
6294 case 5: /* IPSR */
6295 /* IPSR bits are readonly. */
6296 break;
6297 case 6: /* EPSR */
6298 xpsr_write(env, val, 0x0600fc00);
6299 break;
6300 case 7: /* IEPSR */
6301 xpsr_write(env, val, 0x0600fc00);
6302 break;
6303 case 8: /* MSP */
6304 if (env->v7m.current_sp)
6305 env->v7m.other_sp = val;
6306 else
6307 env->regs[13] = val;
6308 break;
6309 case 9: /* PSP */
6310 if (env->v7m.current_sp)
6311 env->regs[13] = val;
6312 else
6313 env->v7m.other_sp = val;
6314 break;
6315 case 16: /* PRIMASK */
6316 if (val & 1) {
6317 env->daif |= PSTATE_I;
6318 } else {
6319 env->daif &= ~PSTATE_I;
6321 break;
6322 case 17: /* BASEPRI */
6323 env->v7m.basepri = val & 0xff;
6324 break;
6325 case 18: /* BASEPRI_MAX */
6326 val &= 0xff;
6327 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
6328 env->v7m.basepri = val;
6329 break;
6330 case 19: /* FAULTMASK */
6331 if (val & 1) {
6332 env->daif |= PSTATE_F;
6333 } else {
6334 env->daif &= ~PSTATE_F;
6336 break;
6337 case 20: /* CONTROL */
6338 env->v7m.control = val & 3;
6339 switch_v7m_sp(env, (val & 2) != 0);
6340 break;
6341 default:
6342 /* ??? For debugging only. */
6343 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
6344 return;
6348 #endif
6350 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
6352 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
6353 * Note that we do not implement the (architecturally mandated)
6354 * alignment fault for attempts to use this on Device memory
6355 * (which matches the usual QEMU behaviour of not implementing either
6356 * alignment faults or any memory attribute handling).
6359 ARMCPU *cpu = arm_env_get_cpu(env);
6360 uint64_t blocklen = 4 << cpu->dcz_blocksize;
6361 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
6363 #ifndef CONFIG_USER_ONLY
6365 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6366 * the block size so we might have to do more than one TLB lookup.
6367 * We know that in fact for any v8 CPU the page size is at least 4K
6368 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6369 * 1K as an artefact of legacy v5 subpage support being present in the
6370 * same QEMU executable.
6372 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
6373 void *hostaddr[maxidx];
6374 int try, i;
6375 unsigned mmu_idx = cpu_mmu_index(env);
6376 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
6378 for (try = 0; try < 2; try++) {
6380 for (i = 0; i < maxidx; i++) {
6381 hostaddr[i] = tlb_vaddr_to_host(env,
6382 vaddr + TARGET_PAGE_SIZE * i,
6383 1, mmu_idx);
6384 if (!hostaddr[i]) {
6385 break;
6388 if (i == maxidx) {
6389 /* If it's all in the TLB it's fair game for just writing to;
6390 * we know we don't need to update dirty status, etc.
6392 for (i = 0; i < maxidx - 1; i++) {
6393 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
6395 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
6396 return;
6398 /* OK, try a store and see if we can populate the tlb. This
6399 * might cause an exception if the memory isn't writable,
6400 * in which case we will longjmp out of here. We must for
6401 * this purpose use the actual register value passed to us
6402 * so that we get the fault address right.
6404 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
6405 /* Now we can populate the other TLB entries, if any */
6406 for (i = 0; i < maxidx; i++) {
6407 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
6408 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6409 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
6414 /* Slow path (probably attempt to do this to an I/O device or
6415 * similar, or clearing of a block of code we have translations
6416 * cached for). Just do a series of byte writes as the architecture
6417 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6418 * memset(), unmap() sequence here because:
6419 * + we'd need to account for the blocksize being larger than a page
6420 * + the direct-RAM access case is almost always going to be dealt
6421 * with in the fastpath code above, so there's no speed benefit
6422 * + we would have to deal with the map returning NULL because the
6423 * bounce buffer was in use
6425 for (i = 0; i < blocklen; i++) {
6426 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
6429 #else
6430 memset(g2h(vaddr), 0, blocklen);
6431 #endif
6434 /* Note that signed overflow is undefined in C. The following routines are
6435 careful to use unsigned types where modulo arithmetic is required.
6436 Failure to do so _will_ break on newer gcc. */
6438 /* Signed saturating arithmetic. */
6440 /* Perform 16-bit signed saturating addition. */
6441 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
6443 uint16_t res;
6445 res = a + b;
6446 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
6447 if (a & 0x8000)
6448 res = 0x8000;
6449 else
6450 res = 0x7fff;
6452 return res;
6455 /* Perform 8-bit signed saturating addition. */
6456 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
6458 uint8_t res;
6460 res = a + b;
6461 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
6462 if (a & 0x80)
6463 res = 0x80;
6464 else
6465 res = 0x7f;
6467 return res;
6470 /* Perform 16-bit signed saturating subtraction. */
6471 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
6473 uint16_t res;
6475 res = a - b;
6476 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
6477 if (a & 0x8000)
6478 res = 0x8000;
6479 else
6480 res = 0x7fff;
6482 return res;
6485 /* Perform 8-bit signed saturating subtraction. */
6486 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
6488 uint8_t res;
6490 res = a - b;
6491 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
6492 if (a & 0x80)
6493 res = 0x80;
6494 else
6495 res = 0x7f;
6497 return res;
6500 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6501 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6502 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6503 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6504 #define PFX q
6506 #include "op_addsub.h"
6508 /* Unsigned saturating arithmetic. */
6509 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6511 uint16_t res;
6512 res = a + b;
6513 if (res < a)
6514 res = 0xffff;
6515 return res;
6518 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6520 if (a > b)
6521 return a - b;
6522 else
6523 return 0;
6526 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
6528 uint8_t res;
6529 res = a + b;
6530 if (res < a)
6531 res = 0xff;
6532 return res;
6535 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
6537 if (a > b)
6538 return a - b;
6539 else
6540 return 0;
6543 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6544 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6545 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6546 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6547 #define PFX uq
6549 #include "op_addsub.h"
6551 /* Signed modulo arithmetic. */
6552 #define SARITH16(a, b, n, op) do { \
6553 int32_t sum; \
6554 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6555 RESULT(sum, n, 16); \
6556 if (sum >= 0) \
6557 ge |= 3 << (n * 2); \
6558 } while(0)
6560 #define SARITH8(a, b, n, op) do { \
6561 int32_t sum; \
6562 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6563 RESULT(sum, n, 8); \
6564 if (sum >= 0) \
6565 ge |= 1 << n; \
6566 } while(0)
6569 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6570 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6571 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6572 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6573 #define PFX s
6574 #define ARITH_GE
6576 #include "op_addsub.h"
6578 /* Unsigned modulo arithmetic. */
6579 #define ADD16(a, b, n) do { \
6580 uint32_t sum; \
6581 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6582 RESULT(sum, n, 16); \
6583 if ((sum >> 16) == 1) \
6584 ge |= 3 << (n * 2); \
6585 } while(0)
6587 #define ADD8(a, b, n) do { \
6588 uint32_t sum; \
6589 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6590 RESULT(sum, n, 8); \
6591 if ((sum >> 8) == 1) \
6592 ge |= 1 << n; \
6593 } while(0)
6595 #define SUB16(a, b, n) do { \
6596 uint32_t sum; \
6597 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6598 RESULT(sum, n, 16); \
6599 if ((sum >> 16) == 0) \
6600 ge |= 3 << (n * 2); \
6601 } while(0)
6603 #define SUB8(a, b, n) do { \
6604 uint32_t sum; \
6605 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6606 RESULT(sum, n, 8); \
6607 if ((sum >> 8) == 0) \
6608 ge |= 1 << n; \
6609 } while(0)
6611 #define PFX u
6612 #define ARITH_GE
6614 #include "op_addsub.h"
6616 /* Halved signed arithmetic. */
6617 #define ADD16(a, b, n) \
6618 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6619 #define SUB16(a, b, n) \
6620 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6621 #define ADD8(a, b, n) \
6622 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6623 #define SUB8(a, b, n) \
6624 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6625 #define PFX sh
6627 #include "op_addsub.h"
6629 /* Halved unsigned arithmetic. */
6630 #define ADD16(a, b, n) \
6631 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6632 #define SUB16(a, b, n) \
6633 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6634 #define ADD8(a, b, n) \
6635 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6636 #define SUB8(a, b, n) \
6637 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6638 #define PFX uh
6640 #include "op_addsub.h"
6642 static inline uint8_t do_usad(uint8_t a, uint8_t b)
6644 if (a > b)
6645 return a - b;
6646 else
6647 return b - a;
6650 /* Unsigned sum of absolute byte differences. */
6651 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
6653 uint32_t sum;
6654 sum = do_usad(a, b);
6655 sum += do_usad(a >> 8, b >> 8);
6656 sum += do_usad(a >> 16, b >>16);
6657 sum += do_usad(a >> 24, b >> 24);
6658 return sum;
6661 /* For ARMv6 SEL instruction. */
6662 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
6664 uint32_t mask;
6666 mask = 0;
6667 if (flags & 1)
6668 mask |= 0xff;
6669 if (flags & 2)
6670 mask |= 0xff00;
6671 if (flags & 4)
6672 mask |= 0xff0000;
6673 if (flags & 8)
6674 mask |= 0xff000000;
6675 return (a & mask) | (b & ~mask);
6678 /* VFP support. We follow the convention used for VFP instructions:
6679 Single precision routines have a "s" suffix, double precision a
6680 "d" suffix. */
6682 /* Convert host exception flags to vfp form. */
6683 static inline int vfp_exceptbits_from_host(int host_bits)
6685 int target_bits = 0;
6687 if (host_bits & float_flag_invalid)
6688 target_bits |= 1;
6689 if (host_bits & float_flag_divbyzero)
6690 target_bits |= 2;
6691 if (host_bits & float_flag_overflow)
6692 target_bits |= 4;
6693 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
6694 target_bits |= 8;
6695 if (host_bits & float_flag_inexact)
6696 target_bits |= 0x10;
6697 if (host_bits & float_flag_input_denormal)
6698 target_bits |= 0x80;
6699 return target_bits;
6702 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
6704 int i;
6705 uint32_t fpscr;
6707 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
6708 | (env->vfp.vec_len << 16)
6709 | (env->vfp.vec_stride << 20);
6710 i = get_float_exception_flags(&env->vfp.fp_status);
6711 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
6712 fpscr |= vfp_exceptbits_from_host(i);
6713 return fpscr;
6716 uint32_t vfp_get_fpscr(CPUARMState *env)
6718 return HELPER(vfp_get_fpscr)(env);
6721 /* Convert vfp exception flags to target form. */
6722 static inline int vfp_exceptbits_to_host(int target_bits)
6724 int host_bits = 0;
6726 if (target_bits & 1)
6727 host_bits |= float_flag_invalid;
6728 if (target_bits & 2)
6729 host_bits |= float_flag_divbyzero;
6730 if (target_bits & 4)
6731 host_bits |= float_flag_overflow;
6732 if (target_bits & 8)
6733 host_bits |= float_flag_underflow;
6734 if (target_bits & 0x10)
6735 host_bits |= float_flag_inexact;
6736 if (target_bits & 0x80)
6737 host_bits |= float_flag_input_denormal;
6738 return host_bits;
6741 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
6743 int i;
6744 uint32_t changed;
6746 changed = env->vfp.xregs[ARM_VFP_FPSCR];
6747 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
6748 env->vfp.vec_len = (val >> 16) & 7;
6749 env->vfp.vec_stride = (val >> 20) & 3;
6751 changed ^= val;
6752 if (changed & (3 << 22)) {
6753 i = (val >> 22) & 3;
6754 switch (i) {
6755 case FPROUNDING_TIEEVEN:
6756 i = float_round_nearest_even;
6757 break;
6758 case FPROUNDING_POSINF:
6759 i = float_round_up;
6760 break;
6761 case FPROUNDING_NEGINF:
6762 i = float_round_down;
6763 break;
6764 case FPROUNDING_ZERO:
6765 i = float_round_to_zero;
6766 break;
6768 set_float_rounding_mode(i, &env->vfp.fp_status);
6770 if (changed & (1 << 24)) {
6771 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6772 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6774 if (changed & (1 << 25))
6775 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
6777 i = vfp_exceptbits_to_host(val);
6778 set_float_exception_flags(i, &env->vfp.fp_status);
6779 set_float_exception_flags(0, &env->vfp.standard_fp_status);
6782 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6784 HELPER(vfp_set_fpscr)(env, val);
6787 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6789 #define VFP_BINOP(name) \
6790 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6792 float_status *fpst = fpstp; \
6793 return float32_ ## name(a, b, fpst); \
6795 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6797 float_status *fpst = fpstp; \
6798 return float64_ ## name(a, b, fpst); \
6800 VFP_BINOP(add)
6801 VFP_BINOP(sub)
6802 VFP_BINOP(mul)
6803 VFP_BINOP(div)
6804 VFP_BINOP(min)
6805 VFP_BINOP(max)
6806 VFP_BINOP(minnum)
6807 VFP_BINOP(maxnum)
6808 #undef VFP_BINOP
6810 float32 VFP_HELPER(neg, s)(float32 a)
6812 return float32_chs(a);
6815 float64 VFP_HELPER(neg, d)(float64 a)
6817 return float64_chs(a);
6820 float32 VFP_HELPER(abs, s)(float32 a)
6822 return float32_abs(a);
6825 float64 VFP_HELPER(abs, d)(float64 a)
6827 return float64_abs(a);
6830 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
6832 return float32_sqrt(a, &env->vfp.fp_status);
6835 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
6837 return float64_sqrt(a, &env->vfp.fp_status);
6840 /* XXX: check quiet/signaling case */
6841 #define DO_VFP_cmp(p, type) \
6842 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6844 uint32_t flags; \
6845 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6846 case 0: flags = 0x6; break; \
6847 case -1: flags = 0x8; break; \
6848 case 1: flags = 0x2; break; \
6849 default: case 2: flags = 0x3; break; \
6851 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6852 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6854 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6856 uint32_t flags; \
6857 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6858 case 0: flags = 0x6; break; \
6859 case -1: flags = 0x8; break; \
6860 case 1: flags = 0x2; break; \
6861 default: case 2: flags = 0x3; break; \
6863 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6864 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6866 DO_VFP_cmp(s, float32)
6867 DO_VFP_cmp(d, float64)
6868 #undef DO_VFP_cmp
6870 /* Integer to float and float to integer conversions */
6872 #define CONV_ITOF(name, fsz, sign) \
6873 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6875 float_status *fpst = fpstp; \
6876 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6879 #define CONV_FTOI(name, fsz, sign, round) \
6880 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6882 float_status *fpst = fpstp; \
6883 if (float##fsz##_is_any_nan(x)) { \
6884 float_raise(float_flag_invalid, fpst); \
6885 return 0; \
6887 return float##fsz##_to_##sign##int32##round(x, fpst); \
6890 #define FLOAT_CONVS(name, p, fsz, sign) \
6891 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6892 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6893 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6895 FLOAT_CONVS(si, s, 32, )
6896 FLOAT_CONVS(si, d, 64, )
6897 FLOAT_CONVS(ui, s, 32, u)
6898 FLOAT_CONVS(ui, d, 64, u)
6900 #undef CONV_ITOF
6901 #undef CONV_FTOI
6902 #undef FLOAT_CONVS
6904 /* floating point conversion */
6905 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
6907 float64 r = float32_to_float64(x, &env->vfp.fp_status);
6908 /* ARM requires that S<->D conversion of any kind of NaN generates
6909 * a quiet NaN by forcing the most significant frac bit to 1.
6911 return float64_maybe_silence_nan(r);
6914 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
6916 float32 r = float64_to_float32(x, &env->vfp.fp_status);
6917 /* ARM requires that S<->D conversion of any kind of NaN generates
6918 * a quiet NaN by forcing the most significant frac bit to 1.
6920 return float32_maybe_silence_nan(r);
6923 /* VFP3 fixed point conversion. */
6924 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6925 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6926 void *fpstp) \
6928 float_status *fpst = fpstp; \
6929 float##fsz tmp; \
6930 tmp = itype##_to_##float##fsz(x, fpst); \
6931 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6934 /* Notice that we want only input-denormal exception flags from the
6935 * scalbn operation: the other possible flags (overflow+inexact if
6936 * we overflow to infinity, output-denormal) aren't correct for the
6937 * complete scale-and-convert operation.
6939 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6940 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6941 uint32_t shift, \
6942 void *fpstp) \
6944 float_status *fpst = fpstp; \
6945 int old_exc_flags = get_float_exception_flags(fpst); \
6946 float##fsz tmp; \
6947 if (float##fsz##_is_any_nan(x)) { \
6948 float_raise(float_flag_invalid, fpst); \
6949 return 0; \
6951 tmp = float##fsz##_scalbn(x, shift, fpst); \
6952 old_exc_flags |= get_float_exception_flags(fpst) \
6953 & float_flag_input_denormal; \
6954 set_float_exception_flags(old_exc_flags, fpst); \
6955 return float##fsz##_to_##itype##round(tmp, fpst); \
6958 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6959 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6960 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6961 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6963 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6964 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6965 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6967 VFP_CONV_FIX(sh, d, 64, 64, int16)
6968 VFP_CONV_FIX(sl, d, 64, 64, int32)
6969 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6970 VFP_CONV_FIX(uh, d, 64, 64, uint16)
6971 VFP_CONV_FIX(ul, d, 64, 64, uint32)
6972 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6973 VFP_CONV_FIX(sh, s, 32, 32, int16)
6974 VFP_CONV_FIX(sl, s, 32, 32, int32)
6975 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6976 VFP_CONV_FIX(uh, s, 32, 32, uint16)
6977 VFP_CONV_FIX(ul, s, 32, 32, uint32)
6978 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
6979 #undef VFP_CONV_FIX
6980 #undef VFP_CONV_FIX_FLOAT
6981 #undef VFP_CONV_FLOAT_FIX_ROUND
6983 /* Set the current fp rounding mode and return the old one.
6984 * The argument is a softfloat float_round_ value.
6986 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
6988 float_status *fp_status = &env->vfp.fp_status;
6990 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6991 set_float_rounding_mode(rmode, fp_status);
6993 return prev_rmode;
6996 /* Set the current fp rounding mode in the standard fp status and return
6997 * the old one. This is for NEON instructions that need to change the
6998 * rounding mode but wish to use the standard FPSCR values for everything
6999 * else. Always set the rounding mode back to the correct value after
7000 * modifying it.
7001 * The argument is a softfloat float_round_ value.
7003 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
7005 float_status *fp_status = &env->vfp.standard_fp_status;
7007 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7008 set_float_rounding_mode(rmode, fp_status);
7010 return prev_rmode;
7013 /* Half precision conversions. */
7014 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
7016 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7017 float32 r = float16_to_float32(make_float16(a), ieee, s);
7018 if (ieee) {
7019 return float32_maybe_silence_nan(r);
7021 return r;
7024 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
7026 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7027 float16 r = float32_to_float16(a, ieee, s);
7028 if (ieee) {
7029 r = float16_maybe_silence_nan(r);
7031 return float16_val(r);
7034 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7036 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
7039 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7041 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
7044 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7046 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
7049 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7051 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
7054 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
7056 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7057 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
7058 if (ieee) {
7059 return float64_maybe_silence_nan(r);
7061 return r;
7064 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
7066 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7067 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
7068 if (ieee) {
7069 r = float16_maybe_silence_nan(r);
7071 return float16_val(r);
7074 #define float32_two make_float32(0x40000000)
7075 #define float32_three make_float32(0x40400000)
7076 #define float32_one_point_five make_float32(0x3fc00000)
7078 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
7080 float_status *s = &env->vfp.standard_fp_status;
7081 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7082 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7083 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7084 float_raise(float_flag_input_denormal, s);
7086 return float32_two;
7088 return float32_sub(float32_two, float32_mul(a, b, s), s);
7091 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
7093 float_status *s = &env->vfp.standard_fp_status;
7094 float32 product;
7095 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7096 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7097 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7098 float_raise(float_flag_input_denormal, s);
7100 return float32_one_point_five;
7102 product = float32_mul(a, b, s);
7103 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
7106 /* NEON helpers. */
7108 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7109 * int->float conversions at run-time. */
7110 #define float64_256 make_float64(0x4070000000000000LL)
7111 #define float64_512 make_float64(0x4080000000000000LL)
7112 #define float32_maxnorm make_float32(0x7f7fffff)
7113 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7115 /* Reciprocal functions
7117 * The algorithm that must be used to calculate the estimate
7118 * is specified by the ARM ARM, see FPRecipEstimate()
7121 static float64 recip_estimate(float64 a, float_status *real_fp_status)
7123 /* These calculations mustn't set any fp exception flags,
7124 * so we use a local copy of the fp_status.
7126 float_status dummy_status = *real_fp_status;
7127 float_status *s = &dummy_status;
7128 /* q = (int)(a * 512.0) */
7129 float64 q = float64_mul(float64_512, a, s);
7130 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7132 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7133 q = int64_to_float64(q_int, s);
7134 q = float64_add(q, float64_half, s);
7135 q = float64_div(q, float64_512, s);
7136 q = float64_div(float64_one, q, s);
7138 /* s = (int)(256.0 * r + 0.5) */
7139 q = float64_mul(q, float64_256, s);
7140 q = float64_add(q, float64_half, s);
7141 q_int = float64_to_int64_round_to_zero(q, s);
7143 /* return (double)s / 256.0 */
7144 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7147 /* Common wrapper to call recip_estimate */
7148 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
7150 uint64_t val64 = float64_val(num);
7151 uint64_t frac = extract64(val64, 0, 52);
7152 int64_t exp = extract64(val64, 52, 11);
7153 uint64_t sbit;
7154 float64 scaled, estimate;
7156 /* Generate the scaled number for the estimate function */
7157 if (exp == 0) {
7158 if (extract64(frac, 51, 1) == 0) {
7159 exp = -1;
7160 frac = extract64(frac, 0, 50) << 2;
7161 } else {
7162 frac = extract64(frac, 0, 51) << 1;
7166 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7167 scaled = make_float64((0x3feULL << 52)
7168 | extract64(frac, 44, 8) << 44);
7170 estimate = recip_estimate(scaled, fpst);
7172 /* Build new result */
7173 val64 = float64_val(estimate);
7174 sbit = 0x8000000000000000ULL & val64;
7175 exp = off - exp;
7176 frac = extract64(val64, 0, 52);
7178 if (exp == 0) {
7179 frac = 1ULL << 51 | extract64(frac, 1, 51);
7180 } else if (exp == -1) {
7181 frac = 1ULL << 50 | extract64(frac, 2, 50);
7182 exp = 0;
7185 return make_float64(sbit | (exp << 52) | frac);
7188 static bool round_to_inf(float_status *fpst, bool sign_bit)
7190 switch (fpst->float_rounding_mode) {
7191 case float_round_nearest_even: /* Round to Nearest */
7192 return true;
7193 case float_round_up: /* Round to +Inf */
7194 return !sign_bit;
7195 case float_round_down: /* Round to -Inf */
7196 return sign_bit;
7197 case float_round_to_zero: /* Round to Zero */
7198 return false;
7201 g_assert_not_reached();
7204 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
7206 float_status *fpst = fpstp;
7207 float32 f32 = float32_squash_input_denormal(input, fpst);
7208 uint32_t f32_val = float32_val(f32);
7209 uint32_t f32_sbit = 0x80000000ULL & f32_val;
7210 int32_t f32_exp = extract32(f32_val, 23, 8);
7211 uint32_t f32_frac = extract32(f32_val, 0, 23);
7212 float64 f64, r64;
7213 uint64_t r64_val;
7214 int64_t r64_exp;
7215 uint64_t r64_frac;
7217 if (float32_is_any_nan(f32)) {
7218 float32 nan = f32;
7219 if (float32_is_signaling_nan(f32)) {
7220 float_raise(float_flag_invalid, fpst);
7221 nan = float32_maybe_silence_nan(f32);
7223 if (fpst->default_nan_mode) {
7224 nan = float32_default_nan;
7226 return nan;
7227 } else if (float32_is_infinity(f32)) {
7228 return float32_set_sign(float32_zero, float32_is_neg(f32));
7229 } else if (float32_is_zero(f32)) {
7230 float_raise(float_flag_divbyzero, fpst);
7231 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7232 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
7233 /* Abs(value) < 2.0^-128 */
7234 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7235 if (round_to_inf(fpst, f32_sbit)) {
7236 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7237 } else {
7238 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
7240 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
7241 float_raise(float_flag_underflow, fpst);
7242 return float32_set_sign(float32_zero, float32_is_neg(f32));
7246 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
7247 r64 = call_recip_estimate(f64, 253, fpst);
7248 r64_val = float64_val(r64);
7249 r64_exp = extract64(r64_val, 52, 11);
7250 r64_frac = extract64(r64_val, 0, 52);
7252 /* result = sign : result_exp<7:0> : fraction<51:29>; */
7253 return make_float32(f32_sbit |
7254 (r64_exp & 0xff) << 23 |
7255 extract64(r64_frac, 29, 24));
7258 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
7260 float_status *fpst = fpstp;
7261 float64 f64 = float64_squash_input_denormal(input, fpst);
7262 uint64_t f64_val = float64_val(f64);
7263 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
7264 int64_t f64_exp = extract64(f64_val, 52, 11);
7265 float64 r64;
7266 uint64_t r64_val;
7267 int64_t r64_exp;
7268 uint64_t r64_frac;
7270 /* Deal with any special cases */
7271 if (float64_is_any_nan(f64)) {
7272 float64 nan = f64;
7273 if (float64_is_signaling_nan(f64)) {
7274 float_raise(float_flag_invalid, fpst);
7275 nan = float64_maybe_silence_nan(f64);
7277 if (fpst->default_nan_mode) {
7278 nan = float64_default_nan;
7280 return nan;
7281 } else if (float64_is_infinity(f64)) {
7282 return float64_set_sign(float64_zero, float64_is_neg(f64));
7283 } else if (float64_is_zero(f64)) {
7284 float_raise(float_flag_divbyzero, fpst);
7285 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7286 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
7287 /* Abs(value) < 2.0^-1024 */
7288 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7289 if (round_to_inf(fpst, f64_sbit)) {
7290 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7291 } else {
7292 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
7294 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
7295 float_raise(float_flag_underflow, fpst);
7296 return float64_set_sign(float64_zero, float64_is_neg(f64));
7299 r64 = call_recip_estimate(f64, 2045, fpst);
7300 r64_val = float64_val(r64);
7301 r64_exp = extract64(r64_val, 52, 11);
7302 r64_frac = extract64(r64_val, 0, 52);
7304 /* result = sign : result_exp<10:0> : fraction<51:0> */
7305 return make_float64(f64_sbit |
7306 ((r64_exp & 0x7ff) << 52) |
7307 r64_frac);
7310 /* The algorithm that must be used to calculate the estimate
7311 * is specified by the ARM ARM.
7313 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
7315 /* These calculations mustn't set any fp exception flags,
7316 * so we use a local copy of the fp_status.
7318 float_status dummy_status = *real_fp_status;
7319 float_status *s = &dummy_status;
7320 float64 q;
7321 int64_t q_int;
7323 if (float64_lt(a, float64_half, s)) {
7324 /* range 0.25 <= a < 0.5 */
7326 /* a in units of 1/512 rounded down */
7327 /* q0 = (int)(a * 512.0); */
7328 q = float64_mul(float64_512, a, s);
7329 q_int = float64_to_int64_round_to_zero(q, s);
7331 /* reciprocal root r */
7332 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
7333 q = int64_to_float64(q_int, s);
7334 q = float64_add(q, float64_half, s);
7335 q = float64_div(q, float64_512, s);
7336 q = float64_sqrt(q, s);
7337 q = float64_div(float64_one, q, s);
7338 } else {
7339 /* range 0.5 <= a < 1.0 */
7341 /* a in units of 1/256 rounded down */
7342 /* q1 = (int)(a * 256.0); */
7343 q = float64_mul(float64_256, a, s);
7344 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7346 /* reciprocal root r */
7347 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
7348 q = int64_to_float64(q_int, s);
7349 q = float64_add(q, float64_half, s);
7350 q = float64_div(q, float64_256, s);
7351 q = float64_sqrt(q, s);
7352 q = float64_div(float64_one, q, s);
7354 /* r in units of 1/256 rounded to nearest */
7355 /* s = (int)(256.0 * r + 0.5); */
7357 q = float64_mul(q, float64_256,s );
7358 q = float64_add(q, float64_half, s);
7359 q_int = float64_to_int64_round_to_zero(q, s);
7361 /* return (double)s / 256.0;*/
7362 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7365 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
7367 float_status *s = fpstp;
7368 float32 f32 = float32_squash_input_denormal(input, s);
7369 uint32_t val = float32_val(f32);
7370 uint32_t f32_sbit = 0x80000000 & val;
7371 int32_t f32_exp = extract32(val, 23, 8);
7372 uint32_t f32_frac = extract32(val, 0, 23);
7373 uint64_t f64_frac;
7374 uint64_t val64;
7375 int result_exp;
7376 float64 f64;
7378 if (float32_is_any_nan(f32)) {
7379 float32 nan = f32;
7380 if (float32_is_signaling_nan(f32)) {
7381 float_raise(float_flag_invalid, s);
7382 nan = float32_maybe_silence_nan(f32);
7384 if (s->default_nan_mode) {
7385 nan = float32_default_nan;
7387 return nan;
7388 } else if (float32_is_zero(f32)) {
7389 float_raise(float_flag_divbyzero, s);
7390 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7391 } else if (float32_is_neg(f32)) {
7392 float_raise(float_flag_invalid, s);
7393 return float32_default_nan;
7394 } else if (float32_is_infinity(f32)) {
7395 return float32_zero;
7398 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7399 * preserving the parity of the exponent. */
7401 f64_frac = ((uint64_t) f32_frac) << 29;
7402 if (f32_exp == 0) {
7403 while (extract64(f64_frac, 51, 1) == 0) {
7404 f64_frac = f64_frac << 1;
7405 f32_exp = f32_exp-1;
7407 f64_frac = extract64(f64_frac, 0, 51) << 1;
7410 if (extract64(f32_exp, 0, 1) == 0) {
7411 f64 = make_float64(((uint64_t) f32_sbit) << 32
7412 | (0x3feULL << 52)
7413 | f64_frac);
7414 } else {
7415 f64 = make_float64(((uint64_t) f32_sbit) << 32
7416 | (0x3fdULL << 52)
7417 | f64_frac);
7420 result_exp = (380 - f32_exp) / 2;
7422 f64 = recip_sqrt_estimate(f64, s);
7424 val64 = float64_val(f64);
7426 val = ((result_exp & 0xff) << 23)
7427 | ((val64 >> 29) & 0x7fffff);
7428 return make_float32(val);
7431 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
7433 float_status *s = fpstp;
7434 float64 f64 = float64_squash_input_denormal(input, s);
7435 uint64_t val = float64_val(f64);
7436 uint64_t f64_sbit = 0x8000000000000000ULL & val;
7437 int64_t f64_exp = extract64(val, 52, 11);
7438 uint64_t f64_frac = extract64(val, 0, 52);
7439 int64_t result_exp;
7440 uint64_t result_frac;
7442 if (float64_is_any_nan(f64)) {
7443 float64 nan = f64;
7444 if (float64_is_signaling_nan(f64)) {
7445 float_raise(float_flag_invalid, s);
7446 nan = float64_maybe_silence_nan(f64);
7448 if (s->default_nan_mode) {
7449 nan = float64_default_nan;
7451 return nan;
7452 } else if (float64_is_zero(f64)) {
7453 float_raise(float_flag_divbyzero, s);
7454 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7455 } else if (float64_is_neg(f64)) {
7456 float_raise(float_flag_invalid, s);
7457 return float64_default_nan;
7458 } else if (float64_is_infinity(f64)) {
7459 return float64_zero;
7462 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7463 * preserving the parity of the exponent. */
7465 if (f64_exp == 0) {
7466 while (extract64(f64_frac, 51, 1) == 0) {
7467 f64_frac = f64_frac << 1;
7468 f64_exp = f64_exp - 1;
7470 f64_frac = extract64(f64_frac, 0, 51) << 1;
7473 if (extract64(f64_exp, 0, 1) == 0) {
7474 f64 = make_float64(f64_sbit
7475 | (0x3feULL << 52)
7476 | f64_frac);
7477 } else {
7478 f64 = make_float64(f64_sbit
7479 | (0x3fdULL << 52)
7480 | f64_frac);
7483 result_exp = (3068 - f64_exp) / 2;
7485 f64 = recip_sqrt_estimate(f64, s);
7487 result_frac = extract64(float64_val(f64), 0, 52);
7489 return make_float64(f64_sbit |
7490 ((result_exp & 0x7ff) << 52) |
7491 result_frac);
7494 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
7496 float_status *s = fpstp;
7497 float64 f64;
7499 if ((a & 0x80000000) == 0) {
7500 return 0xffffffff;
7503 f64 = make_float64((0x3feULL << 52)
7504 | ((int64_t)(a & 0x7fffffff) << 21));
7506 f64 = recip_estimate(f64, s);
7508 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7511 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
7513 float_status *fpst = fpstp;
7514 float64 f64;
7516 if ((a & 0xc0000000) == 0) {
7517 return 0xffffffff;
7520 if (a & 0x80000000) {
7521 f64 = make_float64((0x3feULL << 52)
7522 | ((uint64_t)(a & 0x7fffffff) << 21));
7523 } else { /* bits 31-30 == '01' */
7524 f64 = make_float64((0x3fdULL << 52)
7525 | ((uint64_t)(a & 0x3fffffff) << 22));
7528 f64 = recip_sqrt_estimate(f64, fpst);
7530 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7533 /* VFPv4 fused multiply-accumulate */
7534 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
7536 float_status *fpst = fpstp;
7537 return float32_muladd(a, b, c, 0, fpst);
7540 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
7542 float_status *fpst = fpstp;
7543 return float64_muladd(a, b, c, 0, fpst);
7546 /* ARMv8 round to integral */
7547 float32 HELPER(rints_exact)(float32 x, void *fp_status)
7549 return float32_round_to_int(x, fp_status);
7552 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
7554 return float64_round_to_int(x, fp_status);
7557 float32 HELPER(rints)(float32 x, void *fp_status)
7559 int old_flags = get_float_exception_flags(fp_status), new_flags;
7560 float32 ret;
7562 ret = float32_round_to_int(x, fp_status);
7564 /* Suppress any inexact exceptions the conversion produced */
7565 if (!(old_flags & float_flag_inexact)) {
7566 new_flags = get_float_exception_flags(fp_status);
7567 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7570 return ret;
7573 float64 HELPER(rintd)(float64 x, void *fp_status)
7575 int old_flags = get_float_exception_flags(fp_status), new_flags;
7576 float64 ret;
7578 ret = float64_round_to_int(x, fp_status);
7580 new_flags = get_float_exception_flags(fp_status);
7582 /* Suppress any inexact exceptions the conversion produced */
7583 if (!(old_flags & float_flag_inexact)) {
7584 new_flags = get_float_exception_flags(fp_status);
7585 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7588 return ret;
7591 /* Convert ARM rounding mode to softfloat */
7592 int arm_rmode_to_sf(int rmode)
7594 switch (rmode) {
7595 case FPROUNDING_TIEAWAY:
7596 rmode = float_round_ties_away;
7597 break;
7598 case FPROUNDING_ODD:
7599 /* FIXME: add support for TIEAWAY and ODD */
7600 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
7601 rmode);
7602 case FPROUNDING_TIEEVEN:
7603 default:
7604 rmode = float_round_nearest_even;
7605 break;
7606 case FPROUNDING_POSINF:
7607 rmode = float_round_up;
7608 break;
7609 case FPROUNDING_NEGINF:
7610 rmode = float_round_down;
7611 break;
7612 case FPROUNDING_ZERO:
7613 rmode = float_round_to_zero;
7614 break;
7616 return rmode;
7619 /* CRC helpers.
7620 * The upper bytes of val (above the number specified by 'bytes') must have
7621 * been zeroed out by the caller.
7623 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
7625 uint8_t buf[4];
7627 stl_le_p(buf, val);
7629 /* zlib crc32 converts the accumulator and output to one's complement. */
7630 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
7633 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
7635 uint8_t buf[4];
7637 stl_le_p(buf, val);
7639 /* Linux crc32c converts the output to one's complement. */
7640 return crc32c(acc, buf, bytes) ^ 0xffffffff;