4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
69 #include "qemu/pmem.h"
71 #include "migration/vmstate.h"
73 #include "qemu/range.h"
75 #include "qemu/mmap-alloc.h"
78 #include "monitor/monitor.h"
80 //#define DEBUG_SUBPAGE
82 #if !defined(CONFIG_USER_ONLY)
83 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
86 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
88 static MemoryRegion
*system_memory
;
89 static MemoryRegion
*system_io
;
91 AddressSpace address_space_io
;
92 AddressSpace address_space_memory
;
94 static MemoryRegion io_mem_unassigned
;
97 CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
99 /* current CPU in the current thread. It is only valid inside
101 __thread CPUState
*current_cpu
;
103 uintptr_t qemu_host_page_size
;
104 intptr_t qemu_host_page_mask
;
106 #if !defined(CONFIG_USER_ONLY)
107 /* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
112 typedef struct PhysPageEntry PhysPageEntry
;
114 struct PhysPageEntry
{
115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
121 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
123 /* Size of the L2 (and L3, etc) page tables. */
124 #define ADDR_SPACE_BITS 64
127 #define P_L2_SIZE (1 << P_L2_BITS)
129 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
131 typedef PhysPageEntry Node
[P_L2_SIZE
];
133 typedef struct PhysPageMap
{
136 unsigned sections_nb
;
137 unsigned sections_nb_alloc
;
139 unsigned nodes_nb_alloc
;
141 MemoryRegionSection
*sections
;
144 struct AddressSpaceDispatch
{
145 MemoryRegionSection
*mru_section
;
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
149 PhysPageEntry phys_map
;
153 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154 typedef struct subpage_t
{
158 uint16_t sub_section
[];
161 #define PHYS_SECTION_UNASSIGNED 0
163 static void io_mem_init(void);
164 static void memory_map_init(void);
165 static void tcg_log_global_after_sync(MemoryListener
*listener
);
166 static void tcg_commit(MemoryListener
*listener
);
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
175 struct CPUAddressSpace
{
178 struct AddressSpaceDispatch
*memory_dispatch
;
179 MemoryListener tcg_as_listener
;
182 struct DirtyBitmapSnapshot
{
185 unsigned long dirty
[];
190 #if !defined(CONFIG_USER_ONLY)
192 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
194 static unsigned alloc_hint
= 16;
195 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
196 map
->nodes_nb_alloc
= MAX(alloc_hint
, map
->nodes_nb
+ nodes
);
197 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
198 alloc_hint
= map
->nodes_nb_alloc
;
202 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
209 ret
= map
->nodes_nb
++;
211 assert(ret
!= PHYS_MAP_NODE_NIL
);
212 assert(ret
!= map
->nodes_nb_alloc
);
214 e
.skip
= leaf
? 0 : 1;
215 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
216 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
217 memcpy(&p
[i
], &e
, sizeof(e
));
222 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
223 hwaddr
*index
, uint64_t *nb
, uint16_t leaf
,
227 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
229 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
230 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
232 p
= map
->nodes
[lp
->ptr
];
233 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
235 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
236 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
242 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
248 static void phys_page_set(AddressSpaceDispatch
*d
,
249 hwaddr index
, uint64_t nb
,
252 /* Wildly overreserve - it doesn't matter much. */
253 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
255 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
258 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
261 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
263 unsigned valid_ptr
= P_L2_SIZE
;
268 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
273 for (i
= 0; i
< P_L2_SIZE
; i
++) {
274 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
281 phys_page_compact(&p
[i
], nodes
);
285 /* We can only compress if there's only one child. */
290 assert(valid_ptr
< P_L2_SIZE
);
292 /* Don't compress if it won't fit in the # of bits we have. */
293 if (P_L2_LEVELS
>= (1 << 6) &&
294 lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 6)) {
298 lp
->ptr
= p
[valid_ptr
].ptr
;
299 if (!p
[valid_ptr
].skip
) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
308 lp
->skip
+= p
[valid_ptr
].skip
;
312 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
314 if (d
->phys_map
.skip
) {
315 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
319 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
325 return int128_gethi(section
->size
) ||
326 range_covers_byte(section
->offset_within_address_space
,
327 int128_getlo(section
->size
), addr
);
330 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
332 PhysPageEntry lp
= d
->phys_map
, *p
;
333 Node
*nodes
= d
->map
.nodes
;
334 MemoryRegionSection
*sections
= d
->map
.sections
;
335 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
338 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
339 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
340 return §ions
[PHYS_SECTION_UNASSIGNED
];
343 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
346 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
347 return §ions
[lp
.ptr
];
349 return §ions
[PHYS_SECTION_UNASSIGNED
];
353 /* Called from RCU critical section */
354 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
356 bool resolve_subpage
)
358 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
361 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
362 !section_covers_addr(section
, addr
)) {
363 section
= phys_page_find(d
, addr
);
364 atomic_set(&d
->mru_section
, section
);
366 if (resolve_subpage
&& section
->mr
->subpage
) {
367 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
368 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
373 /* Called from RCU critical section */
374 static MemoryRegionSection
*
375 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
376 hwaddr
*plen
, bool resolve_subpage
)
378 MemoryRegionSection
*section
;
382 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
383 /* Compute offset within MemoryRegionSection */
384 addr
-= section
->offset_within_address_space
;
386 /* Compute offset within MemoryRegion */
387 *xlat
= addr
+ section
->offset_within_region
;
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
402 if (memory_region_is_ram(mr
)) {
403 diff
= int128_sub(section
->size
, int128_make64(addr
));
404 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
426 * @attrs: transaction attributes
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
431 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
434 hwaddr
*page_mask_out
,
437 AddressSpace
**target_as
,
440 MemoryRegionSection
*section
;
441 hwaddr page_mask
= (hwaddr
)-1;
445 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
449 if (imrc
->attrs_to_index
) {
450 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
453 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
454 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
456 if (!(iotlb
.perm
& (1 << is_write
))) {
460 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
461 | (addr
& iotlb
.addr_mask
));
462 page_mask
&= iotlb
.addr_mask
;
463 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
464 *target_as
= iotlb
.target_as
;
466 section
= address_space_translate_internal(
467 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
470 iommu_mr
= memory_region_get_iommu(section
->mr
);
471 } while (unlikely(iommu_mr
));
474 *page_mask_out
= page_mask
;
479 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
483 * flatview_do_translate - translate an address in FlatView
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
497 * @target_as: the address space targeted by the IOMMU
498 * @attrs: memory transaction attributes
500 * This function is called from RCU critical section
502 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
506 hwaddr
*page_mask_out
,
509 AddressSpace
**target_as
,
512 MemoryRegionSection
*section
;
513 IOMMUMemoryRegion
*iommu_mr
;
514 hwaddr plen
= (hwaddr
)(-1);
520 section
= address_space_translate_internal(
521 flatview_to_dispatch(fv
), addr
, xlat
,
524 iommu_mr
= memory_region_get_iommu(section
->mr
);
525 if (unlikely(iommu_mr
)) {
526 return address_space_translate_iommu(iommu_mr
, xlat
,
527 plen_out
, page_mask_out
,
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out
= ~TARGET_PAGE_MASK
;
539 /* Called from RCU critical section */
540 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
541 bool is_write
, MemTxAttrs attrs
)
543 MemoryRegionSection section
;
544 hwaddr xlat
, page_mask
;
547 * This can never be MMIO, and we don't really care about plen,
550 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
551 NULL
, &page_mask
, is_write
, false, &as
,
554 /* Illegal translation */
555 if (section
.mr
== &io_mem_unassigned
) {
559 /* Convert memory region offset into address space offset */
560 xlat
+= section
.offset_within_address_space
-
561 section
.offset_within_region
;
563 return (IOMMUTLBEntry
) {
565 .iova
= addr
& ~page_mask
,
566 .translated_addr
= xlat
& ~page_mask
,
567 .addr_mask
= page_mask
,
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
573 return (IOMMUTLBEntry
) {0};
576 /* Called from RCU critical section */
577 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
578 hwaddr
*plen
, bool is_write
,
582 MemoryRegionSection section
;
583 AddressSpace
*as
= NULL
;
585 /* This can be MMIO, so setup MMIO bit. */
586 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
587 is_write
, true, &as
, attrs
);
590 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
591 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
592 *plen
= MIN(page
, *plen
);
598 typedef struct TCGIOMMUNotifier
{
606 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
608 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
610 if (!notifier
->active
) {
613 tlb_flush(notifier
->cpu
);
614 notifier
->active
= false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
622 static void tcg_register_iommu_notifier(CPUState
*cpu
,
623 IOMMUMemoryRegion
*iommu_mr
,
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
630 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
631 TCGIOMMUNotifier
*notifier
;
635 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
636 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
637 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
641 if (i
== cpu
->iommu_notifiers
->len
) {
642 /* Not found, add a new entry at the end of the array */
643 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
644 notifier
= g_new0(TCGIOMMUNotifier
, 1);
645 g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
) = notifier
;
648 notifier
->iommu_idx
= iommu_idx
;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
656 iommu_notifier_init(¬ifier
->n
,
657 tcg_iommu_unmap_notify
,
658 IOMMU_NOTIFIER_UNMAP
,
662 ret
= memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
,
665 error_report_err(err
);
670 if (!notifier
->active
) {
671 notifier
->active
= true;
675 static void tcg_iommu_free_notifier_list(CPUState
*cpu
)
677 /* Destroy the CPU's notifier list */
679 TCGIOMMUNotifier
*notifier
;
681 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
682 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
683 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
686 g_array_free(cpu
->iommu_notifiers
, true);
689 /* Called from RCU critical section */
690 MemoryRegionSection
*
691 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
692 hwaddr
*xlat
, hwaddr
*plen
,
693 MemTxAttrs attrs
, int *prot
)
695 MemoryRegionSection
*section
;
696 IOMMUMemoryRegion
*iommu_mr
;
697 IOMMUMemoryRegionClass
*imrc
;
700 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
703 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
705 iommu_mr
= memory_region_get_iommu(section
->mr
);
710 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
712 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
713 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
717 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
718 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
719 | (addr
& iotlb
.addr_mask
));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
724 if (!(iotlb
.perm
& IOMMU_RO
)) {
725 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
727 if (!(iotlb
.perm
& IOMMU_WO
)) {
728 *prot
&= ~PAGE_WRITE
;
735 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
738 assert(!memory_region_is_iommu(section
->mr
));
743 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
747 #if !defined(CONFIG_USER_ONLY)
749 static int cpu_common_post_load(void *opaque
, int version_id
)
751 CPUState
*cpu
= opaque
;
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
755 cpu
->interrupt_request
&= ~0x01;
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
768 static int cpu_common_pre_load(void *opaque
)
770 CPUState
*cpu
= opaque
;
772 cpu
->exception_index
= -1;
777 static bool cpu_common_exception_index_needed(void *opaque
)
779 CPUState
*cpu
= opaque
;
781 return tcg_enabled() && cpu
->exception_index
!= -1;
784 static const VMStateDescription vmstate_cpu_common_exception_index
= {
785 .name
= "cpu_common/exception_index",
787 .minimum_version_id
= 1,
788 .needed
= cpu_common_exception_index_needed
,
789 .fields
= (VMStateField
[]) {
790 VMSTATE_INT32(exception_index
, CPUState
),
791 VMSTATE_END_OF_LIST()
795 static bool cpu_common_crash_occurred_needed(void *opaque
)
797 CPUState
*cpu
= opaque
;
799 return cpu
->crash_occurred
;
802 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
803 .name
= "cpu_common/crash_occurred",
805 .minimum_version_id
= 1,
806 .needed
= cpu_common_crash_occurred_needed
,
807 .fields
= (VMStateField
[]) {
808 VMSTATE_BOOL(crash_occurred
, CPUState
),
809 VMSTATE_END_OF_LIST()
813 const VMStateDescription vmstate_cpu_common
= {
814 .name
= "cpu_common",
816 .minimum_version_id
= 1,
817 .pre_load
= cpu_common_pre_load
,
818 .post_load
= cpu_common_post_load
,
819 .fields
= (VMStateField
[]) {
820 VMSTATE_UINT32(halted
, CPUState
),
821 VMSTATE_UINT32(interrupt_request
, CPUState
),
822 VMSTATE_END_OF_LIST()
824 .subsections
= (const VMStateDescription
*[]) {
825 &vmstate_cpu_common_exception_index
,
826 &vmstate_cpu_common_crash_occurred
,
833 CPUState
*qemu_get_cpu(int index
)
838 if (cpu
->cpu_index
== index
) {
846 #if !defined(CONFIG_USER_ONLY)
847 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
848 const char *prefix
, MemoryRegion
*mr
)
850 CPUAddressSpace
*newas
;
851 AddressSpace
*as
= g_new0(AddressSpace
, 1);
855 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
856 address_space_init(as
, mr
, as_name
);
859 /* Target code should have set num_ases before calling us */
860 assert(asidx
< cpu
->num_ases
);
863 /* address space 0 gets the convenience alias */
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx
== 0 || !kvm_enabled());
870 if (!cpu
->cpu_ases
) {
871 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
874 newas
= &cpu
->cpu_ases
[asidx
];
878 newas
->tcg_as_listener
.log_global_after_sync
= tcg_log_global_after_sync
;
879 newas
->tcg_as_listener
.commit
= tcg_commit
;
880 memory_listener_register(&newas
->tcg_as_listener
, as
);
884 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu
->cpu_ases
[asidx
].as
;
891 void cpu_exec_unrealizefn(CPUState
*cpu
)
893 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
896 cpu_list_remove(cpu
);
898 if (cc
->vmsd
!= NULL
) {
899 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
901 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
902 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
904 #ifndef CONFIG_USER_ONLY
905 tcg_iommu_free_notifier_list(cpu
);
909 Property cpu_common_props
[] = {
910 #ifndef CONFIG_USER_ONLY
911 /* Create a memory property for softmmu CPU object,
912 * so users can wire up its memory. (This can't go in hw/core/cpu.c
913 * because that file is compiled only once for both user-mode
914 * and system builds.) The default if no link is set up is to use
915 * the system address space.
917 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
920 DEFINE_PROP_END_OF_LIST(),
923 void cpu_exec_initfn(CPUState
*cpu
)
928 #ifndef CONFIG_USER_ONLY
929 cpu
->thread_id
= qemu_get_thread_id();
930 cpu
->memory
= system_memory
;
931 object_ref(OBJECT(cpu
->memory
));
935 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
937 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
938 static bool tcg_target_initialized
;
942 if (tcg_enabled() && !tcg_target_initialized
) {
943 tcg_target_initialized
= true;
944 cc
->tcg_initialize();
948 qemu_plugin_vcpu_init_hook(cpu
);
950 #ifdef CONFIG_USER_ONLY
951 assert(cc
->vmsd
== NULL
);
952 #else /* !CONFIG_USER_ONLY */
953 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
954 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
956 if (cc
->vmsd
!= NULL
) {
957 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
960 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
*));
964 const char *parse_cpu_option(const char *cpu_option
)
968 gchar
**model_pieces
;
969 const char *cpu_type
;
971 model_pieces
= g_strsplit(cpu_option
, ",", 2);
972 if (!model_pieces
[0]) {
973 error_report("-cpu option cannot be empty");
977 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
979 error_report("unable to find CPU model '%s'", model_pieces
[0]);
980 g_strfreev(model_pieces
);
984 cpu_type
= object_class_get_name(oc
);
986 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
987 g_strfreev(model_pieces
);
991 #if defined(CONFIG_USER_ONLY)
992 void tb_invalidate_phys_addr(target_ulong addr
)
995 tb_invalidate_phys_page_range(addr
, addr
+ 1);
999 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1001 tb_invalidate_phys_addr(pc
);
1004 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
)
1006 ram_addr_t ram_addr
;
1010 if (!tcg_enabled()) {
1014 RCU_READ_LOCK_GUARD();
1015 mr
= address_space_translate(as
, addr
, &addr
, &l
, false, attrs
);
1016 if (!(memory_region_is_ram(mr
)
1017 || memory_region_is_romd(mr
))) {
1020 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1021 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1);
1024 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1027 * There may not be a virtual to physical translation for the pc
1028 * right now, but there may exist cached TB for this pc.
1029 * Flush the whole TB cache to force re-translation of such TBs.
1030 * This is heavyweight, but we're debugging anyway.
1036 #ifndef CONFIG_USER_ONLY
1037 /* Add a watchpoint. */
1038 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1039 int flags
, CPUWatchpoint
**watchpoint
)
1044 /* forbid ranges which are empty or run off the end of the address space */
1045 if (len
== 0 || (addr
+ len
- 1) < addr
) {
1046 error_report("tried to set invalid watchpoint at %"
1047 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
1050 wp
= g_malloc(sizeof(*wp
));
1056 /* keep all GDB-injected watchpoints in front */
1057 if (flags
& BP_GDB
) {
1058 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
1060 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
1063 in_page
= -(addr
| TARGET_PAGE_MASK
);
1064 if (len
<= in_page
) {
1065 tlb_flush_page(cpu
, addr
);
1075 /* Remove a specific watchpoint. */
1076 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1081 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1082 if (addr
== wp
->vaddr
&& len
== wp
->len
1083 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1084 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1091 /* Remove a specific watchpoint by reference. */
1092 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1094 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
1096 tlb_flush_page(cpu
, watchpoint
->vaddr
);
1101 /* Remove all matching watchpoints. */
1102 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1104 CPUWatchpoint
*wp
, *next
;
1106 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
1107 if (wp
->flags
& mask
) {
1108 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1113 /* Return true if this watchpoint address matches the specified
1114 * access (ie the address range covered by the watchpoint overlaps
1115 * partially or completely with the address range covered by the
1118 static inline bool watchpoint_address_matches(CPUWatchpoint
*wp
,
1119 vaddr addr
, vaddr len
)
1121 /* We know the lengths are non-zero, but a little caution is
1122 * required to avoid errors in the case where the range ends
1123 * exactly at the top of the address space and so addr + len
1124 * wraps round to zero.
1126 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1127 vaddr addrend
= addr
+ len
- 1;
1129 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1132 /* Return flags for watchpoints that match addr + prot. */
1133 int cpu_watchpoint_address_matches(CPUState
*cpu
, vaddr addr
, vaddr len
)
1138 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1139 if (watchpoint_address_matches(wp
, addr
, len
)) {
1145 #endif /* !CONFIG_USER_ONLY */
1147 /* Add a breakpoint. */
1148 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1149 CPUBreakpoint
**breakpoint
)
1153 bp
= g_malloc(sizeof(*bp
));
1158 /* keep all GDB-injected breakpoints in front */
1159 if (flags
& BP_GDB
) {
1160 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1162 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1165 breakpoint_invalidate(cpu
, pc
);
1173 /* Remove a specific breakpoint. */
1174 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1178 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1179 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1180 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1187 /* Remove a specific breakpoint by reference. */
1188 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1190 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1192 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1197 /* Remove all matching breakpoints. */
1198 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1200 CPUBreakpoint
*bp
, *next
;
1202 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1203 if (bp
->flags
& mask
) {
1204 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1209 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1210 CPU loop after each instruction */
1211 void cpu_single_step(CPUState
*cpu
, int enabled
)
1213 if (cpu
->singlestep_enabled
!= enabled
) {
1214 cpu
->singlestep_enabled
= enabled
;
1215 if (kvm_enabled()) {
1216 kvm_update_guest_debug(cpu
, 0);
1218 /* must flush all the translated code to avoid inconsistencies */
1219 /* XXX: only flush what is necessary */
1225 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1232 fprintf(stderr
, "qemu: fatal: ");
1233 vfprintf(stderr
, fmt
, ap
);
1234 fprintf(stderr
, "\n");
1235 cpu_dump_state(cpu
, stderr
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1236 if (qemu_log_separate()) {
1237 FILE *logfile
= qemu_log_lock();
1238 qemu_log("qemu: fatal: ");
1239 qemu_log_vprintf(fmt
, ap2
);
1241 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1243 qemu_log_unlock(logfile
);
1249 #if defined(CONFIG_USER_ONLY)
1251 struct sigaction act
;
1252 sigfillset(&act
.sa_mask
);
1253 act
.sa_handler
= SIG_DFL
;
1255 sigaction(SIGABRT
, &act
, NULL
);
1261 #if !defined(CONFIG_USER_ONLY)
1262 /* Called from RCU critical section */
1263 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1267 block
= atomic_rcu_read(&ram_list
.mru_block
);
1268 if (block
&& addr
- block
->offset
< block
->max_length
) {
1271 RAMBLOCK_FOREACH(block
) {
1272 if (addr
- block
->offset
< block
->max_length
) {
1277 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1281 /* It is safe to write mru_block outside the iothread lock. This
1286 * xxx removed from list
1290 * call_rcu(reclaim_ramblock, xxx);
1293 * atomic_rcu_set is not needed here. The block was already published
1294 * when it was placed into the list. Here we're just making an extra
1295 * copy of the pointer.
1297 ram_list
.mru_block
= block
;
1301 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1308 assert(tcg_enabled());
1309 end
= TARGET_PAGE_ALIGN(start
+ length
);
1310 start
&= TARGET_PAGE_MASK
;
1312 RCU_READ_LOCK_GUARD();
1313 block
= qemu_get_ram_block(start
);
1314 assert(block
== qemu_get_ram_block(end
- 1));
1315 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1317 tlb_reset_dirty(cpu
, start1
, length
);
1321 /* Note: start and end must be within the same ram block. */
1322 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1326 DirtyMemoryBlocks
*blocks
;
1327 unsigned long end
, page
, start_page
;
1330 uint64_t mr_offset
, mr_size
;
1336 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1337 start_page
= start
>> TARGET_PAGE_BITS
;
1340 WITH_RCU_READ_LOCK_GUARD() {
1341 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1342 ramblock
= qemu_get_ram_block(start
);
1343 /* Range sanity check on the ramblock */
1344 assert(start
>= ramblock
->offset
&&
1345 start
+ length
<= ramblock
->offset
+ ramblock
->used_length
);
1347 while (page
< end
) {
1348 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1349 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1350 unsigned long num
= MIN(end
- page
,
1351 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1353 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1358 mr_offset
= (ram_addr_t
)(start_page
<< TARGET_PAGE_BITS
) - ramblock
->offset
;
1359 mr_size
= (end
- start_page
) << TARGET_PAGE_BITS
;
1360 memory_region_clear_dirty_bitmap(ramblock
->mr
, mr_offset
, mr_size
);
1363 if (dirty
&& tcg_enabled()) {
1364 tlb_reset_dirty_range_all(start
, length
);
1370 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1371 (MemoryRegion
*mr
, hwaddr offset
, hwaddr length
, unsigned client
)
1373 DirtyMemoryBlocks
*blocks
;
1374 ram_addr_t start
= memory_region_get_ram_addr(mr
) + offset
;
1375 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1376 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1377 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1378 DirtyBitmapSnapshot
*snap
;
1379 unsigned long page
, end
, dest
;
1381 snap
= g_malloc0(sizeof(*snap
) +
1382 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1383 snap
->start
= first
;
1386 page
= first
>> TARGET_PAGE_BITS
;
1387 end
= last
>> TARGET_PAGE_BITS
;
1390 WITH_RCU_READ_LOCK_GUARD() {
1391 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1393 while (page
< end
) {
1394 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1395 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1396 unsigned long num
= MIN(end
- page
,
1397 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1399 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1400 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1401 offset
>>= BITS_PER_LEVEL
;
1403 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1404 blocks
->blocks
[idx
] + offset
,
1407 dest
+= num
>> BITS_PER_LEVEL
;
1411 if (tcg_enabled()) {
1412 tlb_reset_dirty_range_all(start
, length
);
1415 memory_region_clear_dirty_bitmap(mr
, offset
, length
);
1420 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1424 unsigned long page
, end
;
1426 assert(start
>= snap
->start
);
1427 assert(start
+ length
<= snap
->end
);
1429 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1430 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1432 while (page
< end
) {
1433 if (test_bit(page
, snap
->dirty
)) {
1441 /* Called from RCU critical section */
1442 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1443 MemoryRegionSection
*section
)
1445 AddressSpaceDispatch
*d
= flatview_to_dispatch(section
->fv
);
1446 return section
- d
->map
.sections
;
1448 #endif /* defined(CONFIG_USER_ONLY) */
1450 #if !defined(CONFIG_USER_ONLY)
1452 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1454 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1456 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1457 qemu_anon_ram_alloc
;
1460 * Set a custom physical guest memory alloator.
1461 * Accelerators with unusual needs may need this. Hopefully, we can
1462 * get rid of it eventually.
1464 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1466 phys_mem_alloc
= alloc
;
1469 static uint16_t phys_section_add(PhysPageMap
*map
,
1470 MemoryRegionSection
*section
)
1472 /* The physical section number is ORed with a page-aligned
1473 * pointer to produce the iotlb entries. Thus it should
1474 * never overflow into the page-aligned value.
1476 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1478 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1479 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1480 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1481 map
->sections_nb_alloc
);
1483 map
->sections
[map
->sections_nb
] = *section
;
1484 memory_region_ref(section
->mr
);
1485 return map
->sections_nb
++;
1488 static void phys_section_destroy(MemoryRegion
*mr
)
1490 bool have_sub_page
= mr
->subpage
;
1492 memory_region_unref(mr
);
1494 if (have_sub_page
) {
1495 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1496 object_unref(OBJECT(&subpage
->iomem
));
1501 static void phys_sections_free(PhysPageMap
*map
)
1503 while (map
->sections_nb
> 0) {
1504 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1505 phys_section_destroy(section
->mr
);
1507 g_free(map
->sections
);
1511 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1513 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1515 hwaddr base
= section
->offset_within_address_space
1517 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1518 MemoryRegionSection subsection
= {
1519 .offset_within_address_space
= base
,
1520 .size
= int128_make64(TARGET_PAGE_SIZE
),
1524 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1526 if (!(existing
->mr
->subpage
)) {
1527 subpage
= subpage_init(fv
, base
);
1529 subsection
.mr
= &subpage
->iomem
;
1530 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1531 phys_section_add(&d
->map
, &subsection
));
1533 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1535 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1536 end
= start
+ int128_get64(section
->size
) - 1;
1537 subpage_register(subpage
, start
, end
,
1538 phys_section_add(&d
->map
, section
));
1542 static void register_multipage(FlatView
*fv
,
1543 MemoryRegionSection
*section
)
1545 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1546 hwaddr start_addr
= section
->offset_within_address_space
;
1547 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1548 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1552 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1556 * The range in *section* may look like this:
1560 * where s stands for subpage and P for page.
1562 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1564 MemoryRegionSection remain
= *section
;
1565 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1567 /* register first subpage */
1568 if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1569 uint64_t left
= TARGET_PAGE_ALIGN(remain
.offset_within_address_space
)
1570 - remain
.offset_within_address_space
;
1572 MemoryRegionSection now
= remain
;
1573 now
.size
= int128_min(int128_make64(left
), now
.size
);
1574 register_subpage(fv
, &now
);
1575 if (int128_eq(remain
.size
, now
.size
)) {
1578 remain
.size
= int128_sub(remain
.size
, now
.size
);
1579 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1580 remain
.offset_within_region
+= int128_get64(now
.size
);
1583 /* register whole pages */
1584 if (int128_ge(remain
.size
, page_size
)) {
1585 MemoryRegionSection now
= remain
;
1586 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1587 register_multipage(fv
, &now
);
1588 if (int128_eq(remain
.size
, now
.size
)) {
1591 remain
.size
= int128_sub(remain
.size
, now
.size
);
1592 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1593 remain
.offset_within_region
+= int128_get64(now
.size
);
1596 /* register last subpage */
1597 register_subpage(fv
, &remain
);
1600 void qemu_flush_coalesced_mmio_buffer(void)
1603 kvm_flush_coalesced_mmio_buffer();
1606 void qemu_mutex_lock_ramlist(void)
1608 qemu_mutex_lock(&ram_list
.mutex
);
1611 void qemu_mutex_unlock_ramlist(void)
1613 qemu_mutex_unlock(&ram_list
.mutex
);
1616 void ram_block_dump(Monitor
*mon
)
1621 RCU_READ_LOCK_GUARD();
1622 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1623 "Block Name", "PSize", "Offset", "Used", "Total");
1624 RAMBLOCK_FOREACH(block
) {
1625 psize
= size_to_str(block
->page_size
);
1626 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1627 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1628 (uint64_t)block
->offset
,
1629 (uint64_t)block
->used_length
,
1630 (uint64_t)block
->max_length
);
1637 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1638 * may or may not name the same files / on the same filesystem now as
1639 * when we actually open and map them. Iterate over the file
1640 * descriptors instead, and use qemu_fd_getpagesize().
1642 static int find_min_backend_pagesize(Object
*obj
, void *opaque
)
1644 long *hpsize_min
= opaque
;
1646 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1647 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1648 long hpsize
= host_memory_backend_pagesize(backend
);
1650 if (host_memory_backend_is_mapped(backend
) && (hpsize
< *hpsize_min
)) {
1651 *hpsize_min
= hpsize
;
1658 static int find_max_backend_pagesize(Object
*obj
, void *opaque
)
1660 long *hpsize_max
= opaque
;
1662 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1663 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1664 long hpsize
= host_memory_backend_pagesize(backend
);
1666 if (host_memory_backend_is_mapped(backend
) && (hpsize
> *hpsize_max
)) {
1667 *hpsize_max
= hpsize
;
1675 * TODO: We assume right now that all mapped host memory backends are
1676 * used as RAM, however some might be used for different purposes.
1678 long qemu_minrampagesize(void)
1680 long hpsize
= LONG_MAX
;
1681 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1683 object_child_foreach(memdev_root
, find_min_backend_pagesize
, &hpsize
);
1687 long qemu_maxrampagesize(void)
1690 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1692 object_child_foreach(memdev_root
, find_max_backend_pagesize
, &pagesize
);
1696 long qemu_minrampagesize(void)
1698 return qemu_real_host_page_size
;
1700 long qemu_maxrampagesize(void)
1702 return qemu_real_host_page_size
;
1707 static int64_t get_file_size(int fd
)
1710 #if defined(__linux__)
1713 if (fstat(fd
, &st
) < 0) {
1717 /* Special handling for devdax character devices */
1718 if (S_ISCHR(st
.st_mode
)) {
1719 g_autofree
char *subsystem_path
= NULL
;
1720 g_autofree
char *subsystem
= NULL
;
1722 subsystem_path
= g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1723 major(st
.st_rdev
), minor(st
.st_rdev
));
1724 subsystem
= g_file_read_link(subsystem_path
, NULL
);
1726 if (subsystem
&& g_str_has_suffix(subsystem
, "/dax")) {
1727 g_autofree
char *size_path
= NULL
;
1728 g_autofree
char *size_str
= NULL
;
1730 size_path
= g_strdup_printf("/sys/dev/char/%d:%d/size",
1731 major(st
.st_rdev
), minor(st
.st_rdev
));
1733 if (g_file_get_contents(size_path
, &size_str
, NULL
, NULL
)) {
1734 return g_ascii_strtoll(size_str
, NULL
, 0);
1738 #endif /* defined(__linux__) */
1740 /* st.st_size may be zero for special files yet lseek(2) works */
1741 size
= lseek(fd
, 0, SEEK_END
);
1748 static int file_ram_open(const char *path
,
1749 const char *region_name
,
1754 char *sanitized_name
;
1760 fd
= open(path
, O_RDWR
);
1762 /* @path names an existing file, use it */
1765 if (errno
== ENOENT
) {
1766 /* @path names a file that doesn't exist, create it */
1767 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1772 } else if (errno
== EISDIR
) {
1773 /* @path names a directory, create a file there */
1774 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1775 sanitized_name
= g_strdup(region_name
);
1776 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1782 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1784 g_free(sanitized_name
);
1786 fd
= mkstemp(filename
);
1794 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1795 error_setg_errno(errp
, errno
,
1796 "can't open backing store %s for guest RAM",
1801 * Try again on EINTR and EEXIST. The latter happens when
1802 * something else creates the file between our two open().
1809 static void *file_ram_alloc(RAMBlock
*block
,
1817 block
->page_size
= qemu_fd_getpagesize(fd
);
1818 if (block
->mr
->align
% block
->page_size
) {
1819 error_setg(errp
, "alignment 0x%" PRIx64
1820 " must be multiples of page size 0x%zx",
1821 block
->mr
->align
, block
->page_size
);
1823 } else if (block
->mr
->align
&& !is_power_of_2(block
->mr
->align
)) {
1824 error_setg(errp
, "alignment 0x%" PRIx64
1825 " must be a power of two", block
->mr
->align
);
1828 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1829 #if defined(__s390x__)
1830 if (kvm_enabled()) {
1831 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1835 if (memory
< block
->page_size
) {
1836 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1837 "or larger than page size 0x%zx",
1838 memory
, block
->page_size
);
1842 memory
= ROUND_UP(memory
, block
->page_size
);
1845 * ftruncate is not supported by hugetlbfs in older
1846 * hosts, so don't bother bailing out on errors.
1847 * If anything goes wrong with it under other filesystems,
1850 * Do not truncate the non-empty backend file to avoid corrupting
1851 * the existing data in the file. Disabling shrinking is not
1852 * enough. For example, the current vNVDIMM implementation stores
1853 * the guest NVDIMM labels at the end of the backend file. If the
1854 * backend file is later extended, QEMU will not be able to find
1855 * those labels. Therefore, extending the non-empty backend file
1856 * is disabled as well.
1858 if (truncate
&& ftruncate(fd
, memory
)) {
1859 perror("ftruncate");
1862 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1863 block
->flags
& RAM_SHARED
, block
->flags
& RAM_PMEM
);
1864 if (area
== MAP_FAILED
) {
1865 error_setg_errno(errp
, errno
,
1866 "unable to map backing store for guest RAM");
1875 /* Allocate space within the ram_addr_t space that governs the
1877 * Called with the ramlist lock held.
1879 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1881 RAMBlock
*block
, *next_block
;
1882 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1884 assert(size
!= 0); /* it would hand out same offset multiple times */
1886 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1890 RAMBLOCK_FOREACH(block
) {
1891 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1893 /* Align blocks to start on a 'long' in the bitmap
1894 * which makes the bitmap sync'ing take the fast path.
1896 candidate
= block
->offset
+ block
->max_length
;
1897 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1899 /* Search for the closest following block
1902 RAMBLOCK_FOREACH(next_block
) {
1903 if (next_block
->offset
>= candidate
) {
1904 next
= MIN(next
, next_block
->offset
);
1908 /* If it fits remember our place and remember the size
1909 * of gap, but keep going so that we might find a smaller
1910 * gap to fill so avoiding fragmentation.
1912 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1914 mingap
= next
- candidate
;
1917 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1920 if (offset
== RAM_ADDR_MAX
) {
1921 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1926 trace_find_ram_offset(size
, offset
);
1931 static unsigned long last_ram_page(void)
1934 ram_addr_t last
= 0;
1936 RCU_READ_LOCK_GUARD();
1937 RAMBLOCK_FOREACH(block
) {
1938 last
= MAX(last
, block
->offset
+ block
->max_length
);
1940 return last
>> TARGET_PAGE_BITS
;
1943 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1947 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1948 if (!machine_dump_guest_core(current_machine
)) {
1949 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1951 perror("qemu_madvise");
1952 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1953 "but dump_guest_core=off specified\n");
1958 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1963 void *qemu_ram_get_host_addr(RAMBlock
*rb
)
1968 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
)
1973 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
)
1975 return rb
->used_length
;
1978 bool qemu_ram_is_shared(RAMBlock
*rb
)
1980 return rb
->flags
& RAM_SHARED
;
1983 /* Note: Only set at the start of postcopy */
1984 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1986 return rb
->flags
& RAM_UF_ZEROPAGE
;
1989 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1991 rb
->flags
|= RAM_UF_ZEROPAGE
;
1994 bool qemu_ram_is_migratable(RAMBlock
*rb
)
1996 return rb
->flags
& RAM_MIGRATABLE
;
1999 void qemu_ram_set_migratable(RAMBlock
*rb
)
2001 rb
->flags
|= RAM_MIGRATABLE
;
2004 void qemu_ram_unset_migratable(RAMBlock
*rb
)
2006 rb
->flags
&= ~RAM_MIGRATABLE
;
2009 /* Called with iothread lock held. */
2010 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
2015 assert(!new_block
->idstr
[0]);
2018 char *id
= qdev_get_dev_path(dev
);
2020 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2024 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2026 RCU_READ_LOCK_GUARD();
2027 RAMBLOCK_FOREACH(block
) {
2028 if (block
!= new_block
&&
2029 !strcmp(block
->idstr
, new_block
->idstr
)) {
2030 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2037 /* Called with iothread lock held. */
2038 void qemu_ram_unset_idstr(RAMBlock
*block
)
2040 /* FIXME: arch_init.c assumes that this is not called throughout
2041 * migration. Ignore the problem since hot-unplug during migration
2042 * does not work anyway.
2045 memset(block
->idstr
, 0, sizeof(block
->idstr
));
2049 size_t qemu_ram_pagesize(RAMBlock
*rb
)
2051 return rb
->page_size
;
2054 /* Returns the largest size of page in use */
2055 size_t qemu_ram_pagesize_largest(void)
2060 RAMBLOCK_FOREACH(block
) {
2061 largest
= MAX(largest
, qemu_ram_pagesize(block
));
2067 static int memory_try_enable_merging(void *addr
, size_t len
)
2069 if (!machine_mem_merge(current_machine
)) {
2070 /* disabled by the user */
2074 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2077 /* Only legal before guest might have detected the memory size: e.g. on
2078 * incoming migration, or right after reset.
2080 * As memory core doesn't know how is memory accessed, it is up to
2081 * resize callback to update device state and/or add assertions to detect
2082 * misuse, if necessary.
2084 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
2086 const ram_addr_t unaligned_size
= newsize
;
2090 newsize
= HOST_PAGE_ALIGN(newsize
);
2092 if (block
->used_length
== newsize
) {
2094 * We don't have to resize the ram block (which only knows aligned
2095 * sizes), however, we have to notify if the unaligned size changed.
2097 if (unaligned_size
!= memory_region_size(block
->mr
)) {
2098 memory_region_set_size(block
->mr
, unaligned_size
);
2099 if (block
->resized
) {
2100 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
2106 if (!(block
->flags
& RAM_RESIZEABLE
)) {
2107 error_setg_errno(errp
, EINVAL
,
2108 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2109 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
2110 newsize
, block
->used_length
);
2114 if (block
->max_length
< newsize
) {
2115 error_setg_errno(errp
, EINVAL
,
2116 "Length too large: %s: 0x" RAM_ADDR_FMT
2117 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
2118 newsize
, block
->max_length
);
2122 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
2123 block
->used_length
= newsize
;
2124 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
2126 memory_region_set_size(block
->mr
, unaligned_size
);
2127 if (block
->resized
) {
2128 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
2134 * Trigger sync on the given ram block for range [start, start + length]
2135 * with the backing store if one is available.
2137 * @Note: this is supposed to be a synchronous op.
2139 void qemu_ram_msync(RAMBlock
*block
, ram_addr_t start
, ram_addr_t length
)
2141 /* The requested range should fit in within the block range */
2142 g_assert((start
+ length
) <= block
->used_length
);
2144 #ifdef CONFIG_LIBPMEM
2145 /* The lack of support for pmem should not block the sync */
2146 if (ramblock_is_pmem(block
)) {
2147 void *addr
= ramblock_ptr(block
, start
);
2148 pmem_persist(addr
, length
);
2152 if (block
->fd
>= 0) {
2154 * Case there is no support for PMEM or the memory has not been
2155 * specified as persistent (or is not one) - use the msync.
2156 * Less optimal but still achieves the same goal
2158 void *addr
= ramblock_ptr(block
, start
);
2159 if (qemu_msync(addr
, length
, block
->fd
)) {
2160 warn_report("%s: failed to sync memory range: start: "
2161 RAM_ADDR_FMT
" length: " RAM_ADDR_FMT
,
2162 __func__
, start
, length
);
2167 /* Called with ram_list.mutex held */
2168 static void dirty_memory_extend(ram_addr_t old_ram_size
,
2169 ram_addr_t new_ram_size
)
2171 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
2172 DIRTY_MEMORY_BLOCK_SIZE
);
2173 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
2174 DIRTY_MEMORY_BLOCK_SIZE
);
2177 /* Only need to extend if block count increased */
2178 if (new_num_blocks
<= old_num_blocks
) {
2182 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
2183 DirtyMemoryBlocks
*old_blocks
;
2184 DirtyMemoryBlocks
*new_blocks
;
2187 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
2188 new_blocks
= g_malloc(sizeof(*new_blocks
) +
2189 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
2191 if (old_num_blocks
) {
2192 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
2193 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
2196 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
2197 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
2200 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
2203 g_free_rcu(old_blocks
, rcu
);
2208 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
2211 RAMBlock
*last_block
= NULL
;
2212 ram_addr_t old_ram_size
, new_ram_size
;
2215 old_ram_size
= last_ram_page();
2217 qemu_mutex_lock_ramlist();
2218 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2220 if (!new_block
->host
) {
2221 if (xen_enabled()) {
2222 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2223 new_block
->mr
, &err
);
2225 error_propagate(errp
, err
);
2226 qemu_mutex_unlock_ramlist();
2230 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2231 &new_block
->mr
->align
, shared
);
2232 if (!new_block
->host
) {
2233 error_setg_errno(errp
, errno
,
2234 "cannot set up guest memory '%s'",
2235 memory_region_name(new_block
->mr
));
2236 qemu_mutex_unlock_ramlist();
2239 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2243 new_ram_size
= MAX(old_ram_size
,
2244 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2245 if (new_ram_size
> old_ram_size
) {
2246 dirty_memory_extend(old_ram_size
, new_ram_size
);
2248 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2249 * QLIST (which has an RCU-friendly variant) does not have insertion at
2250 * tail, so save the last element in last_block.
2252 RAMBLOCK_FOREACH(block
) {
2254 if (block
->max_length
< new_block
->max_length
) {
2259 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2260 } else if (last_block
) {
2261 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2262 } else { /* list is empty */
2263 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2265 ram_list
.mru_block
= NULL
;
2267 /* Write list before version */
2270 qemu_mutex_unlock_ramlist();
2272 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2273 new_block
->used_length
,
2276 if (new_block
->host
) {
2277 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2278 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2280 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2281 * Configure it unless the machine is a qtest server, in which case
2282 * KVM is not used and it may be forked (eg for fuzzing purposes).
2284 if (!qtest_enabled()) {
2285 qemu_madvise(new_block
->host
, new_block
->max_length
,
2286 QEMU_MADV_DONTFORK
);
2288 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2293 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2294 uint32_t ram_flags
, int fd
,
2297 RAMBlock
*new_block
;
2298 Error
*local_err
= NULL
;
2301 /* Just support these ram flags by now. */
2302 assert((ram_flags
& ~(RAM_SHARED
| RAM_PMEM
)) == 0);
2304 if (xen_enabled()) {
2305 error_setg(errp
, "-mem-path not supported with Xen");
2309 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2311 "host lacks kvm mmu notifiers, -mem-path unsupported");
2315 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2317 * file_ram_alloc() needs to allocate just like
2318 * phys_mem_alloc, but we haven't bothered to provide
2322 "-mem-path not supported with this accelerator");
2326 size
= HOST_PAGE_ALIGN(size
);
2327 file_size
= get_file_size(fd
);
2328 if (file_size
> 0 && file_size
< size
) {
2329 error_setg(errp
, "backing store size 0x%" PRIx64
2330 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2335 new_block
= g_malloc0(sizeof(*new_block
));
2337 new_block
->used_length
= size
;
2338 new_block
->max_length
= size
;
2339 new_block
->flags
= ram_flags
;
2340 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2341 if (!new_block
->host
) {
2346 ram_block_add(new_block
, &local_err
, ram_flags
& RAM_SHARED
);
2349 error_propagate(errp
, local_err
);
2357 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2358 uint32_t ram_flags
, const char *mem_path
,
2365 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2370 block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, errp
);
2384 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2385 void (*resized
)(const char*,
2388 void *host
, bool resizeable
, bool share
,
2389 MemoryRegion
*mr
, Error
**errp
)
2391 RAMBlock
*new_block
;
2392 Error
*local_err
= NULL
;
2394 size
= HOST_PAGE_ALIGN(size
);
2395 max_size
= HOST_PAGE_ALIGN(max_size
);
2396 new_block
= g_malloc0(sizeof(*new_block
));
2398 new_block
->resized
= resized
;
2399 new_block
->used_length
= size
;
2400 new_block
->max_length
= max_size
;
2401 assert(max_size
>= size
);
2403 new_block
->page_size
= qemu_real_host_page_size
;
2404 new_block
->host
= host
;
2406 new_block
->flags
|= RAM_PREALLOC
;
2409 new_block
->flags
|= RAM_RESIZEABLE
;
2411 ram_block_add(new_block
, &local_err
, share
);
2414 error_propagate(errp
, local_err
);
2420 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2421 MemoryRegion
*mr
, Error
**errp
)
2423 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2427 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2428 MemoryRegion
*mr
, Error
**errp
)
2430 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2434 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2435 void (*resized
)(const char*,
2438 MemoryRegion
*mr
, Error
**errp
)
2440 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2444 static void reclaim_ramblock(RAMBlock
*block
)
2446 if (block
->flags
& RAM_PREALLOC
) {
2448 } else if (xen_enabled()) {
2449 xen_invalidate_map_cache_entry(block
->host
);
2451 } else if (block
->fd
>= 0) {
2452 qemu_ram_munmap(block
->fd
, block
->host
, block
->max_length
);
2456 qemu_anon_ram_free(block
->host
, block
->max_length
);
2461 void qemu_ram_free(RAMBlock
*block
)
2468 ram_block_notify_remove(block
->host
, block
->max_length
);
2471 qemu_mutex_lock_ramlist();
2472 QLIST_REMOVE_RCU(block
, next
);
2473 ram_list
.mru_block
= NULL
;
2474 /* Write list before version */
2477 call_rcu(block
, reclaim_ramblock
, rcu
);
2478 qemu_mutex_unlock_ramlist();
2482 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2489 RAMBLOCK_FOREACH(block
) {
2490 offset
= addr
- block
->offset
;
2491 if (offset
< block
->max_length
) {
2492 vaddr
= ramblock_ptr(block
, offset
);
2493 if (block
->flags
& RAM_PREALLOC
) {
2495 } else if (xen_enabled()) {
2499 if (block
->fd
>= 0) {
2500 flags
|= (block
->flags
& RAM_SHARED
?
2501 MAP_SHARED
: MAP_PRIVATE
);
2502 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2503 flags
, block
->fd
, offset
);
2506 * Remap needs to match alloc. Accelerators that
2507 * set phys_mem_alloc never remap. If they did,
2508 * we'd need a remap hook here.
2510 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2512 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2513 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2516 if (area
!= vaddr
) {
2517 error_report("Could not remap addr: "
2518 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2522 memory_try_enable_merging(vaddr
, length
);
2523 qemu_ram_setup_dump(vaddr
, length
);
2528 #endif /* !_WIN32 */
2530 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2531 * This should not be used for general purpose DMA. Use address_space_map
2532 * or address_space_rw instead. For local memory (e.g. video ram) that the
2533 * device owns, use memory_region_get_ram_ptr.
2535 * Called within RCU critical section.
2537 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2539 RAMBlock
*block
= ram_block
;
2541 if (block
== NULL
) {
2542 block
= qemu_get_ram_block(addr
);
2543 addr
-= block
->offset
;
2546 if (xen_enabled() && block
->host
== NULL
) {
2547 /* We need to check if the requested address is in the RAM
2548 * because we don't want to map the entire memory in QEMU.
2549 * In that case just map until the end of the page.
2551 if (block
->offset
== 0) {
2552 return xen_map_cache(addr
, 0, 0, false);
2555 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2557 return ramblock_ptr(block
, addr
);
2560 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2561 * but takes a size argument.
2563 * Called within RCU critical section.
2565 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2566 hwaddr
*size
, bool lock
)
2568 RAMBlock
*block
= ram_block
;
2573 if (block
== NULL
) {
2574 block
= qemu_get_ram_block(addr
);
2575 addr
-= block
->offset
;
2577 *size
= MIN(*size
, block
->max_length
- addr
);
2579 if (xen_enabled() && block
->host
== NULL
) {
2580 /* We need to check if the requested address is in the RAM
2581 * because we don't want to map the entire memory in QEMU.
2582 * In that case just map the requested area.
2584 if (block
->offset
== 0) {
2585 return xen_map_cache(addr
, *size
, lock
, lock
);
2588 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2591 return ramblock_ptr(block
, addr
);
2594 /* Return the offset of a hostpointer within a ramblock */
2595 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2597 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2598 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2599 assert(res
< rb
->max_length
);
2605 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2608 * ptr: Host pointer to look up
2609 * round_offset: If true round the result offset down to a page boundary
2610 * *ram_addr: set to result ram_addr
2611 * *offset: set to result offset within the RAMBlock
2613 * Returns: RAMBlock (or NULL if not found)
2615 * By the time this function returns, the returned pointer is not protected
2616 * by RCU anymore. If the caller is not within an RCU critical section and
2617 * does not hold the iothread lock, it must have other means of protecting the
2618 * pointer, such as a reference to the region that includes the incoming
2621 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2625 uint8_t *host
= ptr
;
2627 if (xen_enabled()) {
2628 ram_addr_t ram_addr
;
2629 RCU_READ_LOCK_GUARD();
2630 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2631 block
= qemu_get_ram_block(ram_addr
);
2633 *offset
= ram_addr
- block
->offset
;
2638 RCU_READ_LOCK_GUARD();
2639 block
= atomic_rcu_read(&ram_list
.mru_block
);
2640 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2644 RAMBLOCK_FOREACH(block
) {
2645 /* This case append when the block is not mapped. */
2646 if (block
->host
== NULL
) {
2649 if (host
- block
->host
< block
->max_length
) {
2657 *offset
= (host
- block
->host
);
2659 *offset
&= TARGET_PAGE_MASK
;
2665 * Finds the named RAMBlock
2667 * name: The name of RAMBlock to find
2669 * Returns: RAMBlock (or NULL if not found)
2671 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2675 RAMBLOCK_FOREACH(block
) {
2676 if (!strcmp(name
, block
->idstr
)) {
2684 /* Some of the softmmu routines need to translate from a host pointer
2685 (typically a TLB entry) back to a ram offset. */
2686 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2691 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2693 return RAM_ADDR_INVALID
;
2696 return block
->offset
+ offset
;
2699 /* Generate a debug exception if a watchpoint has been hit. */
2700 void cpu_check_watchpoint(CPUState
*cpu
, vaddr addr
, vaddr len
,
2701 MemTxAttrs attrs
, int flags
, uintptr_t ra
)
2703 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2706 assert(tcg_enabled());
2707 if (cpu
->watchpoint_hit
) {
2709 * We re-entered the check after replacing the TB.
2710 * Now raise the debug interrupt so that it will
2711 * trigger after the current instruction.
2713 qemu_mutex_lock_iothread();
2714 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2715 qemu_mutex_unlock_iothread();
2719 addr
= cc
->adjust_watchpoint_address(cpu
, addr
, len
);
2720 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2721 if (watchpoint_address_matches(wp
, addr
, len
)
2722 && (wp
->flags
& flags
)) {
2723 if (flags
== BP_MEM_READ
) {
2724 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2726 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2728 wp
->hitaddr
= MAX(addr
, wp
->vaddr
);
2729 wp
->hitattrs
= attrs
;
2730 if (!cpu
->watchpoint_hit
) {
2731 if (wp
->flags
& BP_CPU
&&
2732 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2733 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2736 cpu
->watchpoint_hit
= wp
;
2739 tb_check_watchpoint(cpu
, ra
);
2740 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2741 cpu
->exception_index
= EXCP_DEBUG
;
2743 cpu_loop_exit_restore(cpu
, ra
);
2745 /* Force execution of one insn next time. */
2746 cpu
->cflags_next_tb
= 1 | curr_cflags();
2749 cpu_restore_state(cpu
, ra
, true);
2751 cpu_loop_exit_noexc(cpu
);
2755 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2760 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2761 MemTxAttrs attrs
, void *buf
, hwaddr len
);
2762 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2763 const void *buf
, hwaddr len
);
2764 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
2765 bool is_write
, MemTxAttrs attrs
);
2767 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2768 unsigned len
, MemTxAttrs attrs
)
2770 subpage_t
*subpage
= opaque
;
2774 #if defined(DEBUG_SUBPAGE)
2775 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2776 subpage
, len
, addr
);
2778 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2782 *data
= ldn_p(buf
, len
);
2786 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2787 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2789 subpage_t
*subpage
= opaque
;
2792 #if defined(DEBUG_SUBPAGE)
2793 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2794 " value %"PRIx64
"\n",
2795 __func__
, subpage
, len
, addr
, value
);
2797 stn_p(buf
, len
, value
);
2798 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2801 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2802 unsigned len
, bool is_write
,
2805 subpage_t
*subpage
= opaque
;
2806 #if defined(DEBUG_SUBPAGE)
2807 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2808 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2811 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2812 len
, is_write
, attrs
);
2815 static const MemoryRegionOps subpage_ops
= {
2816 .read_with_attrs
= subpage_read
,
2817 .write_with_attrs
= subpage_write
,
2818 .impl
.min_access_size
= 1,
2819 .impl
.max_access_size
= 8,
2820 .valid
.min_access_size
= 1,
2821 .valid
.max_access_size
= 8,
2822 .valid
.accepts
= subpage_accepts
,
2823 .endianness
= DEVICE_NATIVE_ENDIAN
,
2826 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2831 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2833 idx
= SUBPAGE_IDX(start
);
2834 eidx
= SUBPAGE_IDX(end
);
2835 #if defined(DEBUG_SUBPAGE)
2836 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2837 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2839 for (; idx
<= eidx
; idx
++) {
2840 mmio
->sub_section
[idx
] = section
;
2846 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2850 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2851 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2854 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2855 NULL
, TARGET_PAGE_SIZE
);
2856 mmio
->iomem
.subpage
= true;
2857 #if defined(DEBUG_SUBPAGE)
2858 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2859 mmio
, base
, TARGET_PAGE_SIZE
);
2865 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2868 MemoryRegionSection section
= {
2871 .offset_within_address_space
= 0,
2872 .offset_within_region
= 0,
2873 .size
= int128_2_64(),
2876 return phys_section_add(map
, §ion
);
2879 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
2880 hwaddr index
, MemTxAttrs attrs
)
2882 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2883 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2884 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2885 MemoryRegionSection
*sections
= d
->map
.sections
;
2887 return §ions
[index
& ~TARGET_PAGE_MASK
];
2890 static void io_mem_init(void)
2892 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2896 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2898 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2901 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2902 assert(n
== PHYS_SECTION_UNASSIGNED
);
2904 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2909 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2911 phys_sections_free(&d
->map
);
2915 static void do_nothing(CPUState
*cpu
, run_on_cpu_data d
)
2919 static void tcg_log_global_after_sync(MemoryListener
*listener
)
2921 CPUAddressSpace
*cpuas
;
2923 /* Wait for the CPU to end the current TB. This avoids the following
2927 * ---------------------- -------------------------
2928 * TLB check -> slow path
2929 * notdirty_mem_write
2933 * TLB check -> fast path
2937 * by pushing the migration thread's memory read after the vCPU thread has
2938 * written the memory.
2940 if (replay_mode
== REPLAY_MODE_NONE
) {
2942 * VGA can make calls to this function while updating the screen.
2943 * In record/replay mode this causes a deadlock, because
2944 * run_on_cpu waits for rr mutex. Therefore no races are possible
2945 * in this case and no need for making run_on_cpu when
2946 * record/replay is not enabled.
2948 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2949 run_on_cpu(cpuas
->cpu
, do_nothing
, RUN_ON_CPU_NULL
);
2953 static void tcg_commit(MemoryListener
*listener
)
2955 CPUAddressSpace
*cpuas
;
2956 AddressSpaceDispatch
*d
;
2958 assert(tcg_enabled());
2959 /* since each CPU stores ram addresses in its TLB cache, we must
2960 reset the modified entries */
2961 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2962 cpu_reloading_memory_map();
2963 /* The CPU and TLB are protected by the iothread lock.
2964 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2965 * may have split the RCU critical section.
2967 d
= address_space_to_dispatch(cpuas
->as
);
2968 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2969 tlb_flush(cpuas
->cpu
);
2972 static void memory_map_init(void)
2974 system_memory
= g_malloc(sizeof(*system_memory
));
2976 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2977 address_space_init(&address_space_memory
, system_memory
, "memory");
2979 system_io
= g_malloc(sizeof(*system_io
));
2980 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2982 address_space_init(&address_space_io
, system_io
, "I/O");
2985 MemoryRegion
*get_system_memory(void)
2987 return system_memory
;
2990 MemoryRegion
*get_system_io(void)
2995 #endif /* !defined(CONFIG_USER_ONLY) */
2997 /* physical memory access (slow version, mainly for debug) */
2998 #if defined(CONFIG_USER_ONLY)
2999 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3000 void *ptr
, target_ulong len
, bool is_write
)
3003 target_ulong l
, page
;
3008 page
= addr
& TARGET_PAGE_MASK
;
3009 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3012 flags
= page_get_flags(page
);
3013 if (!(flags
& PAGE_VALID
))
3016 if (!(flags
& PAGE_WRITE
))
3018 /* XXX: this code should not depend on lock_user */
3019 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3022 unlock_user(p
, addr
, l
);
3024 if (!(flags
& PAGE_READ
))
3026 /* XXX: this code should not depend on lock_user */
3027 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3030 unlock_user(p
, addr
, 0);
3041 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3044 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3045 addr
+= memory_region_get_ram_addr(mr
);
3047 /* No early return if dirty_log_mask is or becomes 0, because
3048 * cpu_physical_memory_set_dirty_range will still call
3049 * xen_modified_memory.
3051 if (dirty_log_mask
) {
3053 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3055 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3056 assert(tcg_enabled());
3057 tb_invalidate_phys_range(addr
, addr
+ length
);
3058 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3060 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3063 void memory_region_flush_rom_device(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
3066 * In principle this function would work on other memory region types too,
3067 * but the ROM device use case is the only one where this operation is
3068 * necessary. Other memory regions should use the
3069 * address_space_read/write() APIs.
3071 assert(memory_region_is_romd(mr
));
3073 invalidate_and_set_dirty(mr
, addr
, size
);
3076 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3078 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3080 /* Regions are assumed to support 1-4 byte accesses unless
3081 otherwise specified. */
3082 if (access_size_max
== 0) {
3083 access_size_max
= 4;
3086 /* Bound the maximum access by the alignment of the address. */
3087 if (!mr
->ops
->impl
.unaligned
) {
3088 unsigned align_size_max
= addr
& -addr
;
3089 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3090 access_size_max
= align_size_max
;
3094 /* Don't attempt accesses larger than the maximum. */
3095 if (l
> access_size_max
) {
3096 l
= access_size_max
;
3103 static bool prepare_mmio_access(MemoryRegion
*mr
)
3105 bool unlocked
= !qemu_mutex_iothread_locked();
3106 bool release_lock
= false;
3108 if (unlocked
&& mr
->global_locking
) {
3109 qemu_mutex_lock_iothread();
3111 release_lock
= true;
3113 if (mr
->flush_coalesced_mmio
) {
3115 qemu_mutex_lock_iothread();
3117 qemu_flush_coalesced_mmio_buffer();
3119 qemu_mutex_unlock_iothread();
3123 return release_lock
;
3126 /* Called within RCU critical section. */
3127 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3130 hwaddr len
, hwaddr addr1
,
3131 hwaddr l
, MemoryRegion
*mr
)
3135 MemTxResult result
= MEMTX_OK
;
3136 bool release_lock
= false;
3137 const uint8_t *buf
= ptr
;
3140 if (!memory_access_is_direct(mr
, true)) {
3141 release_lock
|= prepare_mmio_access(mr
);
3142 l
= memory_access_size(mr
, l
, addr1
);
3143 /* XXX: could force current_cpu to NULL to avoid
3145 val
= ldn_he_p(buf
, l
);
3146 result
|= memory_region_dispatch_write(mr
, addr1
, val
,
3147 size_memop(l
), attrs
);
3150 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3151 memcpy(ram_ptr
, buf
, l
);
3152 invalidate_and_set_dirty(mr
, addr1
, l
);
3156 qemu_mutex_unlock_iothread();
3157 release_lock
= false;
3169 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3175 /* Called from RCU critical section. */
3176 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3177 const void *buf
, hwaddr len
)
3182 MemTxResult result
= MEMTX_OK
;
3185 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3186 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3192 /* Called within RCU critical section. */
3193 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3194 MemTxAttrs attrs
, void *ptr
,
3195 hwaddr len
, hwaddr addr1
, hwaddr l
,
3200 MemTxResult result
= MEMTX_OK
;
3201 bool release_lock
= false;
3205 if (!memory_access_is_direct(mr
, false)) {
3207 release_lock
|= prepare_mmio_access(mr
);
3208 l
= memory_access_size(mr
, l
, addr1
);
3209 result
|= memory_region_dispatch_read(mr
, addr1
, &val
,
3210 size_memop(l
), attrs
);
3211 stn_he_p(buf
, l
, val
);
3214 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3215 memcpy(buf
, ram_ptr
, l
);
3219 qemu_mutex_unlock_iothread();
3220 release_lock
= false;
3232 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3238 /* Called from RCU critical section. */
3239 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3240 MemTxAttrs attrs
, void *buf
, hwaddr len
)
3247 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3248 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3252 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3253 MemTxAttrs attrs
, void *buf
, hwaddr len
)
3255 MemTxResult result
= MEMTX_OK
;
3259 RCU_READ_LOCK_GUARD();
3260 fv
= address_space_to_flatview(as
);
3261 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3267 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3269 const void *buf
, hwaddr len
)
3271 MemTxResult result
= MEMTX_OK
;
3275 RCU_READ_LOCK_GUARD();
3276 fv
= address_space_to_flatview(as
);
3277 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3283 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3284 void *buf
, hwaddr len
, bool is_write
)
3287 return address_space_write(as
, addr
, attrs
, buf
, len
);
3289 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3293 void cpu_physical_memory_rw(hwaddr addr
, void *buf
,
3294 hwaddr len
, bool is_write
)
3296 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3297 buf
, len
, is_write
);
3300 enum write_rom_type
{
3305 static inline MemTxResult
address_space_write_rom_internal(AddressSpace
*as
,
3310 enum write_rom_type type
)
3316 const uint8_t *buf
= ptr
;
3318 RCU_READ_LOCK_GUARD();
3321 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true, attrs
);
3323 if (!(memory_region_is_ram(mr
) ||
3324 memory_region_is_romd(mr
))) {
3325 l
= memory_access_size(mr
, l
, addr1
);
3328 ram_ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3331 memcpy(ram_ptr
, buf
, l
);
3332 invalidate_and_set_dirty(mr
, addr1
, l
);
3335 flush_icache_range((uintptr_t)ram_ptr
, (uintptr_t)ram_ptr
+ l
);
3346 /* used for ROM loading : can write in RAM and ROM */
3347 MemTxResult
address_space_write_rom(AddressSpace
*as
, hwaddr addr
,
3349 const void *buf
, hwaddr len
)
3351 return address_space_write_rom_internal(as
, addr
, attrs
,
3352 buf
, len
, WRITE_DATA
);
3355 void cpu_flush_icache_range(hwaddr start
, hwaddr len
)
3358 * This function should do the same thing as an icache flush that was
3359 * triggered from within the guest. For TCG we are always cache coherent,
3360 * so there is no need to flush anything. For KVM / Xen we need to flush
3361 * the host's instruction cache at least.
3363 if (tcg_enabled()) {
3367 address_space_write_rom_internal(&address_space_memory
,
3368 start
, MEMTXATTRS_UNSPECIFIED
,
3369 NULL
, len
, FLUSH_CACHE
);
3380 static BounceBuffer bounce
;
3382 typedef struct MapClient
{
3384 QLIST_ENTRY(MapClient
) link
;
3387 QemuMutex map_client_list_lock
;
3388 static QLIST_HEAD(, MapClient
) map_client_list
3389 = QLIST_HEAD_INITIALIZER(map_client_list
);
3391 static void cpu_unregister_map_client_do(MapClient
*client
)
3393 QLIST_REMOVE(client
, link
);
3397 static void cpu_notify_map_clients_locked(void)
3401 while (!QLIST_EMPTY(&map_client_list
)) {
3402 client
= QLIST_FIRST(&map_client_list
);
3403 qemu_bh_schedule(client
->bh
);
3404 cpu_unregister_map_client_do(client
);
3408 void cpu_register_map_client(QEMUBH
*bh
)
3410 MapClient
*client
= g_malloc(sizeof(*client
));
3412 qemu_mutex_lock(&map_client_list_lock
);
3414 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3415 if (!atomic_read(&bounce
.in_use
)) {
3416 cpu_notify_map_clients_locked();
3418 qemu_mutex_unlock(&map_client_list_lock
);
3421 void cpu_exec_init_all(void)
3423 qemu_mutex_init(&ram_list
.mutex
);
3424 /* The data structures we set up here depend on knowing the page size,
3425 * so no more changes can be made after this point.
3426 * In an ideal world, nothing we did before we had finished the
3427 * machine setup would care about the target page size, and we could
3428 * do this much later, rather than requiring board models to state
3429 * up front what their requirements are.
3431 finalize_target_page_bits();
3434 qemu_mutex_init(&map_client_list_lock
);
3437 void cpu_unregister_map_client(QEMUBH
*bh
)
3441 qemu_mutex_lock(&map_client_list_lock
);
3442 QLIST_FOREACH(client
, &map_client_list
, link
) {
3443 if (client
->bh
== bh
) {
3444 cpu_unregister_map_client_do(client
);
3448 qemu_mutex_unlock(&map_client_list_lock
);
3451 static void cpu_notify_map_clients(void)
3453 qemu_mutex_lock(&map_client_list_lock
);
3454 cpu_notify_map_clients_locked();
3455 qemu_mutex_unlock(&map_client_list_lock
);
3458 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
3459 bool is_write
, MemTxAttrs attrs
)
3466 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3467 if (!memory_access_is_direct(mr
, is_write
)) {
3468 l
= memory_access_size(mr
, l
, addr
);
3469 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3480 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3481 hwaddr len
, bool is_write
,
3487 RCU_READ_LOCK_GUARD();
3488 fv
= address_space_to_flatview(as
);
3489 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3494 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3496 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3497 bool is_write
, MemTxAttrs attrs
)
3501 MemoryRegion
*this_mr
;
3507 if (target_len
== 0) {
3512 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3513 &len
, is_write
, attrs
);
3514 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3520 /* Map a physical memory region into a host virtual address.
3521 * May map a subset of the requested range, given by and returned in *plen.
3522 * May return NULL if resources needed to perform the mapping are exhausted.
3523 * Use only for reads OR writes - not for read-modify-write operations.
3524 * Use cpu_register_map_client() to know when retrying the map operation is
3525 * likely to succeed.
3527 void *address_space_map(AddressSpace
*as
,
3544 RCU_READ_LOCK_GUARD();
3545 fv
= address_space_to_flatview(as
);
3546 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3548 if (!memory_access_is_direct(mr
, is_write
)) {
3549 if (atomic_xchg(&bounce
.in_use
, true)) {
3553 /* Avoid unbounded allocations */
3554 l
= MIN(l
, TARGET_PAGE_SIZE
);
3555 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3559 memory_region_ref(mr
);
3562 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3567 return bounce
.buffer
;
3571 memory_region_ref(mr
);
3572 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3573 l
, is_write
, attrs
);
3574 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3579 /* Unmaps a memory region previously mapped by address_space_map().
3580 * Will also mark the memory as dirty if is_write is true. access_len gives
3581 * the amount of memory that was actually read or written by the caller.
3583 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3584 bool is_write
, hwaddr access_len
)
3586 if (buffer
!= bounce
.buffer
) {
3590 mr
= memory_region_from_host(buffer
, &addr1
);
3593 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3595 if (xen_enabled()) {
3596 xen_invalidate_map_cache_entry(buffer
);
3598 memory_region_unref(mr
);
3602 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3603 bounce
.buffer
, access_len
);
3605 qemu_vfree(bounce
.buffer
);
3606 bounce
.buffer
= NULL
;
3607 memory_region_unref(bounce
.mr
);
3608 atomic_mb_set(&bounce
.in_use
, false);
3609 cpu_notify_map_clients();
3612 void *cpu_physical_memory_map(hwaddr addr
,
3616 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3617 MEMTXATTRS_UNSPECIFIED
);
3620 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3621 bool is_write
, hwaddr access_len
)
3623 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3626 #define ARG1_DECL AddressSpace *as
3629 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3630 #define RCU_READ_LOCK(...) rcu_read_lock()
3631 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3632 #include "memory_ldst.inc.c"
3634 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3640 AddressSpaceDispatch
*d
;
3647 cache
->fv
= address_space_get_flatview(as
);
3648 d
= flatview_to_dispatch(cache
->fv
);
3649 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3652 memory_region_ref(mr
);
3653 if (memory_access_is_direct(mr
, is_write
)) {
3654 /* We don't care about the memory attributes here as we're only
3655 * doing this if we found actual RAM, which behaves the same
3656 * regardless of attributes; so UNSPECIFIED is fine.
3658 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3659 cache
->xlat
, l
, is_write
,
3660 MEMTXATTRS_UNSPECIFIED
);
3661 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3667 cache
->is_write
= is_write
;
3671 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3675 assert(cache
->is_write
);
3676 if (likely(cache
->ptr
)) {
3677 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3681 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3683 if (!cache
->mrs
.mr
) {
3687 if (xen_enabled()) {
3688 xen_invalidate_map_cache_entry(cache
->ptr
);
3690 memory_region_unref(cache
->mrs
.mr
);
3691 flatview_unref(cache
->fv
);
3692 cache
->mrs
.mr
= NULL
;
3696 /* Called from RCU critical section. This function has the same
3697 * semantics as address_space_translate, but it only works on a
3698 * predefined range of a MemoryRegion that was mapped with
3699 * address_space_cache_init.
3701 static inline MemoryRegion
*address_space_translate_cached(
3702 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3703 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3705 MemoryRegionSection section
;
3707 IOMMUMemoryRegion
*iommu_mr
;
3708 AddressSpace
*target_as
;
3710 assert(!cache
->ptr
);
3711 *xlat
= addr
+ cache
->xlat
;
3714 iommu_mr
= memory_region_get_iommu(mr
);
3720 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3721 NULL
, is_write
, true,
3726 /* Called from RCU critical section. address_space_read_cached uses this
3727 * out of line function when the target is an MMIO or IOMMU region.
3730 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3731 void *buf
, hwaddr len
)
3737 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3738 MEMTXATTRS_UNSPECIFIED
);
3739 return flatview_read_continue(cache
->fv
,
3740 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3744 /* Called from RCU critical section. address_space_write_cached uses this
3745 * out of line function when the target is an MMIO or IOMMU region.
3748 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3749 const void *buf
, hwaddr len
)
3755 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3756 MEMTXATTRS_UNSPECIFIED
);
3757 return flatview_write_continue(cache
->fv
,
3758 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3762 #define ARG1_DECL MemoryRegionCache *cache
3764 #define SUFFIX _cached_slow
3765 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3766 #define RCU_READ_LOCK() ((void)0)
3767 #define RCU_READ_UNLOCK() ((void)0)
3768 #include "memory_ldst.inc.c"
3770 /* virtual memory access for debug (includes writing to ROM) */
3771 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3772 void *ptr
, target_ulong len
, bool is_write
)
3775 target_ulong l
, page
;
3778 cpu_synchronize_state(cpu
);
3784 page
= addr
& TARGET_PAGE_MASK
;
3785 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3786 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3787 /* if no physical page mapped, return an error */
3788 if (phys_addr
== -1)
3790 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3793 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3795 res
= address_space_write_rom(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3798 res
= address_space_read(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3801 if (res
!= MEMTX_OK
) {
3812 * Allows code that needs to deal with migration bitmaps etc to still be built
3813 * target independent.
3815 size_t qemu_target_page_size(void)
3817 return TARGET_PAGE_SIZE
;
3820 int qemu_target_page_bits(void)
3822 return TARGET_PAGE_BITS
;
3825 int qemu_target_page_bits_min(void)
3827 return TARGET_PAGE_BITS_MIN
;
3831 bool target_words_bigendian(void)
3833 #if defined(TARGET_WORDS_BIGENDIAN)
3840 #ifndef CONFIG_USER_ONLY
3841 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3847 RCU_READ_LOCK_GUARD();
3848 mr
= address_space_translate(&address_space_memory
,
3849 phys_addr
, &phys_addr
, &l
, false,
3850 MEMTXATTRS_UNSPECIFIED
);
3852 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3856 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3861 RCU_READ_LOCK_GUARD();
3862 RAMBLOCK_FOREACH(block
) {
3863 ret
= func(block
, opaque
);
3872 * Unmap pages of memory from start to start+length such that
3873 * they a) read as 0, b) Trigger whatever fault mechanism
3874 * the OS provides for postcopy.
3875 * The pages must be unmapped by the end of the function.
3876 * Returns: 0 on success, none-0 on failure
3879 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3883 uint8_t *host_startaddr
= rb
->host
+ start
;
3885 if (!QEMU_PTR_IS_ALIGNED(host_startaddr
, rb
->page_size
)) {
3886 error_report("ram_block_discard_range: Unaligned start address: %p",
3891 if ((start
+ length
) <= rb
->used_length
) {
3892 bool need_madvise
, need_fallocate
;
3893 if (!QEMU_IS_ALIGNED(length
, rb
->page_size
)) {
3894 error_report("ram_block_discard_range: Unaligned length: %zx",
3899 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3901 /* The logic here is messy;
3902 * madvise DONTNEED fails for hugepages
3903 * fallocate works on hugepages and shmem
3905 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3906 need_fallocate
= rb
->fd
!= -1;
3907 if (need_fallocate
) {
3908 /* For a file, this causes the area of the file to be zero'd
3909 * if read, and for hugetlbfs also causes it to be unmapped
3910 * so a userfault will trigger.
3912 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3913 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3917 error_report("ram_block_discard_range: Failed to fallocate "
3918 "%s:%" PRIx64
" +%zx (%d)",
3919 rb
->idstr
, start
, length
, ret
);
3924 error_report("ram_block_discard_range: fallocate not available/file"
3925 "%s:%" PRIx64
" +%zx (%d)",
3926 rb
->idstr
, start
, length
, ret
);
3931 /* For normal RAM this causes it to be unmapped,
3932 * for shared memory it causes the local mapping to disappear
3933 * and to fall back on the file contents (which we just
3934 * fallocate'd away).
3936 #if defined(CONFIG_MADVISE)
3937 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3940 error_report("ram_block_discard_range: Failed to discard range "
3941 "%s:%" PRIx64
" +%zx (%d)",
3942 rb
->idstr
, start
, length
, ret
);
3947 error_report("ram_block_discard_range: MADVISE not available"
3948 "%s:%" PRIx64
" +%zx (%d)",
3949 rb
->idstr
, start
, length
, ret
);
3953 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3954 need_madvise
, need_fallocate
, ret
);
3956 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3957 "/%zx/" RAM_ADDR_FMT
")",
3958 rb
->idstr
, start
, length
, rb
->used_length
);
3965 bool ramblock_is_pmem(RAMBlock
*rb
)
3967 return rb
->flags
& RAM_PMEM
;
3972 void page_size_init(void)
3974 /* NOTE: we can always suppose that qemu_host_page_size >=
3976 if (qemu_host_page_size
== 0) {
3977 qemu_host_page_size
= qemu_real_host_page_size
;
3979 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3980 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3982 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
3985 #if !defined(CONFIG_USER_ONLY)
3987 static void mtree_print_phys_entries(int start
, int end
, int skip
, int ptr
)
3989 if (start
== end
- 1) {
3990 qemu_printf("\t%3d ", start
);
3992 qemu_printf("\t%3d..%-3d ", start
, end
- 1);
3994 qemu_printf(" skip=%d ", skip
);
3995 if (ptr
== PHYS_MAP_NODE_NIL
) {
3996 qemu_printf(" ptr=NIL");
3998 qemu_printf(" ptr=#%d", ptr
);
4000 qemu_printf(" ptr=[%d]", ptr
);
4005 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4006 int128_sub((size), int128_one())) : 0)
4008 void mtree_print_dispatch(AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4012 qemu_printf(" Dispatch\n");
4013 qemu_printf(" Physical sections\n");
4015 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4016 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4017 const char *names
[] = { " [unassigned]", " [not dirty]",
4018 " [ROM]", " [watch]" };
4020 qemu_printf(" #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
4023 s
->offset_within_address_space
,
4024 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4025 s
->mr
->name
? s
->mr
->name
: "(noname)",
4026 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4027 s
->mr
== root
? " [ROOT]" : "",
4028 s
== d
->mru_section
? " [MRU]" : "",
4029 s
->mr
->is_iommu
? " [iommu]" : "");
4032 qemu_printf(" alias=%s", s
->mr
->alias
->name
?
4033 s
->mr
->alias
->name
: "noname");
4038 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4039 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4040 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4043 Node
*n
= d
->map
.nodes
+ i
;
4045 qemu_printf(" [%d]\n", i
);
4047 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4048 PhysPageEntry
*pe
= *n
+ j
;
4050 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4054 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
4060 if (jprev
!= ARRAY_SIZE(*n
)) {
4061 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);