target/arm/kvm64: max cpu: Enable SVE when available
[qemu/ar7.git] / target / arm / cpu64.c
bloba771a28daa56c5ed244b2192caf896bbfa60382e
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
32 static inline void set_feature(CPUARMState *env, int feature)
34 env->features |= 1ULL << feature;
37 static inline void unset_feature(CPUARMState *env, int feature)
39 env->features &= ~(1ULL << feature);
42 #ifndef CONFIG_USER_ONLY
43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
45 ARMCPU *cpu = env_archcpu(env);
47 /* Number of cores is in [25:24]; otherwise we RAZ */
48 return (cpu->core_count - 1) << 24;
50 #endif
52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
53 #ifndef CONFIG_USER_ONLY
54 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
55 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
56 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
57 .writefn = arm_cp_write_ignore },
58 { .name = "L2CTLR",
59 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
60 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
61 .writefn = arm_cp_write_ignore },
62 #endif
63 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
64 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
65 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66 { .name = "L2ECTLR",
67 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
68 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
70 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
71 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
73 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
74 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
75 { .name = "CPUACTLR",
76 .cp = 15, .opc1 = 0, .crm = 15,
77 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
78 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
79 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
80 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
81 { .name = "CPUECTLR",
82 .cp = 15, .opc1 = 1, .crm = 15,
83 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
84 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
85 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
86 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
87 { .name = "CPUMERRSR",
88 .cp = 15, .opc1 = 2, .crm = 15,
89 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
90 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
91 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
92 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
93 { .name = "L2MERRSR",
94 .cp = 15, .opc1 = 3, .crm = 15,
95 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
96 REGINFO_SENTINEL
99 static void aarch64_a57_initfn(Object *obj)
101 ARMCPU *cpu = ARM_CPU(obj);
103 cpu->dtb_compatible = "arm,cortex-a57";
104 set_feature(&cpu->env, ARM_FEATURE_V8);
105 set_feature(&cpu->env, ARM_FEATURE_VFP4);
106 set_feature(&cpu->env, ARM_FEATURE_NEON);
107 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
108 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
109 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
110 set_feature(&cpu->env, ARM_FEATURE_EL2);
111 set_feature(&cpu->env, ARM_FEATURE_EL3);
112 set_feature(&cpu->env, ARM_FEATURE_PMU);
113 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
114 cpu->midr = 0x411fd070;
115 cpu->revidr = 0x00000000;
116 cpu->reset_fpsid = 0x41034070;
117 cpu->isar.mvfr0 = 0x10110222;
118 cpu->isar.mvfr1 = 0x12111111;
119 cpu->isar.mvfr2 = 0x00000043;
120 cpu->ctr = 0x8444c004;
121 cpu->reset_sctlr = 0x00c50838;
122 cpu->id_pfr0 = 0x00000131;
123 cpu->id_pfr1 = 0x00011011;
124 cpu->id_dfr0 = 0x03010066;
125 cpu->id_afr0 = 0x00000000;
126 cpu->id_mmfr0 = 0x10101105;
127 cpu->id_mmfr1 = 0x40000000;
128 cpu->id_mmfr2 = 0x01260000;
129 cpu->id_mmfr3 = 0x02102211;
130 cpu->isar.id_isar0 = 0x02101110;
131 cpu->isar.id_isar1 = 0x13112111;
132 cpu->isar.id_isar2 = 0x21232042;
133 cpu->isar.id_isar3 = 0x01112131;
134 cpu->isar.id_isar4 = 0x00011142;
135 cpu->isar.id_isar5 = 0x00011121;
136 cpu->isar.id_isar6 = 0;
137 cpu->isar.id_aa64pfr0 = 0x00002222;
138 cpu->id_aa64dfr0 = 0x10305106;
139 cpu->isar.id_aa64isar0 = 0x00011120;
140 cpu->isar.id_aa64mmfr0 = 0x00001124;
141 cpu->dbgdidr = 0x3516d000;
142 cpu->clidr = 0x0a200023;
143 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
144 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
145 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
146 cpu->dcz_blocksize = 4; /* 64 bytes */
147 cpu->gic_num_lrs = 4;
148 cpu->gic_vpribits = 5;
149 cpu->gic_vprebits = 5;
150 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
153 static void aarch64_a53_initfn(Object *obj)
155 ARMCPU *cpu = ARM_CPU(obj);
157 cpu->dtb_compatible = "arm,cortex-a53";
158 set_feature(&cpu->env, ARM_FEATURE_V8);
159 set_feature(&cpu->env, ARM_FEATURE_VFP4);
160 set_feature(&cpu->env, ARM_FEATURE_NEON);
161 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
162 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
163 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
164 set_feature(&cpu->env, ARM_FEATURE_EL2);
165 set_feature(&cpu->env, ARM_FEATURE_EL3);
166 set_feature(&cpu->env, ARM_FEATURE_PMU);
167 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
168 cpu->midr = 0x410fd034;
169 cpu->revidr = 0x00000000;
170 cpu->reset_fpsid = 0x41034070;
171 cpu->isar.mvfr0 = 0x10110222;
172 cpu->isar.mvfr1 = 0x12111111;
173 cpu->isar.mvfr2 = 0x00000043;
174 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
175 cpu->reset_sctlr = 0x00c50838;
176 cpu->id_pfr0 = 0x00000131;
177 cpu->id_pfr1 = 0x00011011;
178 cpu->id_dfr0 = 0x03010066;
179 cpu->id_afr0 = 0x00000000;
180 cpu->id_mmfr0 = 0x10101105;
181 cpu->id_mmfr1 = 0x40000000;
182 cpu->id_mmfr2 = 0x01260000;
183 cpu->id_mmfr3 = 0x02102211;
184 cpu->isar.id_isar0 = 0x02101110;
185 cpu->isar.id_isar1 = 0x13112111;
186 cpu->isar.id_isar2 = 0x21232042;
187 cpu->isar.id_isar3 = 0x01112131;
188 cpu->isar.id_isar4 = 0x00011142;
189 cpu->isar.id_isar5 = 0x00011121;
190 cpu->isar.id_isar6 = 0;
191 cpu->isar.id_aa64pfr0 = 0x00002222;
192 cpu->id_aa64dfr0 = 0x10305106;
193 cpu->isar.id_aa64isar0 = 0x00011120;
194 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
195 cpu->dbgdidr = 0x3516d000;
196 cpu->clidr = 0x0a200023;
197 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
198 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
199 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
200 cpu->dcz_blocksize = 4; /* 64 bytes */
201 cpu->gic_num_lrs = 4;
202 cpu->gic_vpribits = 5;
203 cpu->gic_vprebits = 5;
204 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
207 static void aarch64_a72_initfn(Object *obj)
209 ARMCPU *cpu = ARM_CPU(obj);
211 cpu->dtb_compatible = "arm,cortex-a72";
212 set_feature(&cpu->env, ARM_FEATURE_V8);
213 set_feature(&cpu->env, ARM_FEATURE_VFP4);
214 set_feature(&cpu->env, ARM_FEATURE_NEON);
215 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
216 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
217 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
218 set_feature(&cpu->env, ARM_FEATURE_EL2);
219 set_feature(&cpu->env, ARM_FEATURE_EL3);
220 set_feature(&cpu->env, ARM_FEATURE_PMU);
221 cpu->midr = 0x410fd083;
222 cpu->revidr = 0x00000000;
223 cpu->reset_fpsid = 0x41034080;
224 cpu->isar.mvfr0 = 0x10110222;
225 cpu->isar.mvfr1 = 0x12111111;
226 cpu->isar.mvfr2 = 0x00000043;
227 cpu->ctr = 0x8444c004;
228 cpu->reset_sctlr = 0x00c50838;
229 cpu->id_pfr0 = 0x00000131;
230 cpu->id_pfr1 = 0x00011011;
231 cpu->id_dfr0 = 0x03010066;
232 cpu->id_afr0 = 0x00000000;
233 cpu->id_mmfr0 = 0x10201105;
234 cpu->id_mmfr1 = 0x40000000;
235 cpu->id_mmfr2 = 0x01260000;
236 cpu->id_mmfr3 = 0x02102211;
237 cpu->isar.id_isar0 = 0x02101110;
238 cpu->isar.id_isar1 = 0x13112111;
239 cpu->isar.id_isar2 = 0x21232042;
240 cpu->isar.id_isar3 = 0x01112131;
241 cpu->isar.id_isar4 = 0x00011142;
242 cpu->isar.id_isar5 = 0x00011121;
243 cpu->isar.id_aa64pfr0 = 0x00002222;
244 cpu->id_aa64dfr0 = 0x10305106;
245 cpu->isar.id_aa64isar0 = 0x00011120;
246 cpu->isar.id_aa64mmfr0 = 0x00001124;
247 cpu->dbgdidr = 0x3516d000;
248 cpu->clidr = 0x0a200023;
249 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
250 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
251 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
252 cpu->dcz_blocksize = 4; /* 64 bytes */
253 cpu->gic_num_lrs = 4;
254 cpu->gic_vpribits = 5;
255 cpu->gic_vprebits = 5;
256 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
259 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
262 * If any vector lengths are explicitly enabled with sve<N> properties,
263 * then all other lengths are implicitly disabled. If sve-max-vq is
264 * specified then it is the same as explicitly enabling all lengths
265 * up to and including the specified maximum, which means all larger
266 * lengths will be implicitly disabled. If no sve<N> properties
267 * are enabled and sve-max-vq is not specified, then all lengths not
268 * explicitly disabled will be enabled. Additionally, all power-of-two
269 * vector lengths less than the maximum enabled length will be
270 * automatically enabled and all vector lengths larger than the largest
271 * disabled power-of-two vector length will be automatically disabled.
272 * Errors are generated if the user provided input that interferes with
273 * any of the above. Finally, if SVE is not disabled, then at least one
274 * vector length must be enabled.
276 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
277 uint32_t vq, max_vq = 0;
280 * Process explicit sve<N> properties.
281 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
282 * Check first for any sve<N> enabled.
284 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
285 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
287 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
288 error_setg(errp, "cannot enable sve%d", max_vq * 128);
289 error_append_hint(errp, "sve%d is larger than the maximum vector "
290 "length, sve-max-vq=%d (%d bits)\n",
291 max_vq * 128, cpu->sve_max_vq,
292 cpu->sve_max_vq * 128);
293 return;
296 /* Propagate enabled bits down through required powers-of-two. */
297 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
298 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
299 set_bit(vq - 1, cpu->sve_vq_map);
302 } else if (cpu->sve_max_vq == 0) {
304 * No explicit bits enabled, and no implicit bits from sve-max-vq.
306 if (!cpu_isar_feature(aa64_sve, cpu)) {
307 /* SVE is disabled and so are all vector lengths. Good. */
308 return;
311 /* Disabling a power-of-two disables all larger lengths. */
312 if (test_bit(0, cpu->sve_vq_init)) {
313 error_setg(errp, "cannot disable sve128");
314 error_append_hint(errp, "Disabling sve128 results in all vector "
315 "lengths being disabled.\n");
316 error_append_hint(errp, "With SVE enabled, at least one vector "
317 "length must be enabled.\n");
318 return;
320 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
321 if (test_bit(vq - 1, cpu->sve_vq_init)) {
322 break;
325 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
327 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
328 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
332 * Process the sve-max-vq property.
333 * Note that we know from the above that no bit above
334 * sve-max-vq is currently set.
336 if (cpu->sve_max_vq != 0) {
337 max_vq = cpu->sve_max_vq;
339 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
340 test_bit(max_vq - 1, cpu->sve_vq_init)) {
341 error_setg(errp, "cannot disable sve%d", max_vq * 128);
342 error_append_hint(errp, "The maximum vector length must be "
343 "enabled, sve-max-vq=%d (%d bits)\n",
344 max_vq, max_vq * 128);
345 return;
348 /* Set all bits not explicitly set within sve-max-vq. */
349 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
350 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
354 * We should know what max-vq is now. Also, as we're done
355 * manipulating sve-vq-map, we ensure any bits above max-vq
356 * are clear, just in case anybody looks.
358 assert(max_vq != 0);
359 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
361 /* Ensure all required powers-of-two are enabled. */
362 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
363 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
364 error_setg(errp, "cannot disable sve%d", vq * 128);
365 error_append_hint(errp, "sve%d is required as it "
366 "is a power-of-two length smaller than "
367 "the maximum, sve%d\n",
368 vq * 128, max_vq * 128);
369 return;
374 * Now that we validated all our vector lengths, the only question
375 * left to answer is if we even want SVE at all.
377 if (!cpu_isar_feature(aa64_sve, cpu)) {
378 error_setg(errp, "cannot enable sve%d", max_vq * 128);
379 error_append_hint(errp, "SVE must be enabled to enable vector "
380 "lengths.\n");
381 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
382 return;
385 /* From now on sve_max_vq is the actual maximum supported length. */
386 cpu->sve_max_vq = max_vq;
389 uint32_t arm_cpu_vq_map_next_smaller(ARMCPU *cpu, uint32_t vq)
391 uint32_t bitnum;
394 * We allow vq == ARM_MAX_VQ + 1 to be input because the caller may want
395 * to find the maximum vq enabled, which may be ARM_MAX_VQ, but this
396 * function always returns the next smaller than the input.
398 assert(vq && vq <= ARM_MAX_VQ + 1);
400 bitnum = find_last_bit(cpu->sve_vq_map, vq - 1);
401 return bitnum == vq - 1 ? 0 : bitnum + 1;
404 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
405 void *opaque, Error **errp)
407 ARMCPU *cpu = ARM_CPU(obj);
408 uint32_t value;
410 /* All vector lengths are disabled when SVE is off. */
411 if (!cpu_isar_feature(aa64_sve, cpu)) {
412 value = 0;
413 } else {
414 value = cpu->sve_max_vq;
416 visit_type_uint32(v, name, &value, errp);
419 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
420 void *opaque, Error **errp)
422 ARMCPU *cpu = ARM_CPU(obj);
423 Error *err = NULL;
425 visit_type_uint32(v, name, &cpu->sve_max_vq, &err);
427 if (!err && (cpu->sve_max_vq == 0 || cpu->sve_max_vq > ARM_MAX_VQ)) {
428 error_setg(&err, "unsupported SVE vector length");
429 error_append_hint(&err, "Valid sve-max-vq in range [1-%d]\n",
430 ARM_MAX_VQ);
432 error_propagate(errp, err);
435 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
436 void *opaque, Error **errp)
438 ARMCPU *cpu = ARM_CPU(obj);
439 uint32_t vq = atoi(&name[3]) / 128;
440 bool value;
442 /* All vector lengths are disabled when SVE is off. */
443 if (!cpu_isar_feature(aa64_sve, cpu)) {
444 value = false;
445 } else {
446 value = test_bit(vq - 1, cpu->sve_vq_map);
448 visit_type_bool(v, name, &value, errp);
451 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
452 void *opaque, Error **errp)
454 ARMCPU *cpu = ARM_CPU(obj);
455 uint32_t vq = atoi(&name[3]) / 128;
456 Error *err = NULL;
457 bool value;
459 visit_type_bool(v, name, &value, &err);
460 if (err) {
461 error_propagate(errp, err);
462 return;
465 if (value) {
466 set_bit(vq - 1, cpu->sve_vq_map);
467 } else {
468 clear_bit(vq - 1, cpu->sve_vq_map);
470 set_bit(vq - 1, cpu->sve_vq_init);
473 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
474 void *opaque, Error **errp)
476 ARMCPU *cpu = ARM_CPU(obj);
477 bool value = cpu_isar_feature(aa64_sve, cpu);
479 visit_type_bool(v, name, &value, errp);
482 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
483 void *opaque, Error **errp)
485 ARMCPU *cpu = ARM_CPU(obj);
486 Error *err = NULL;
487 bool value;
488 uint64_t t;
490 visit_type_bool(v, name, &value, &err);
491 if (err) {
492 error_propagate(errp, err);
493 return;
496 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
497 error_setg(errp, "'sve' feature not supported by KVM on this host");
498 return;
501 t = cpu->isar.id_aa64pfr0;
502 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
503 cpu->isar.id_aa64pfr0 = t;
506 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
507 * otherwise, a CPU with as many features enabled as our emulation supports.
508 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
509 * this only needs to handle 64 bits.
511 static void aarch64_max_initfn(Object *obj)
513 ARMCPU *cpu = ARM_CPU(obj);
514 uint32_t vq;
515 uint64_t t;
517 if (kvm_enabled()) {
518 kvm_arm_set_cpu_features_from_host(cpu);
519 if (kvm_arm_sve_supported(CPU(cpu))) {
520 t = cpu->isar.id_aa64pfr0;
521 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
522 cpu->isar.id_aa64pfr0 = t;
524 } else {
525 uint32_t u;
526 aarch64_a57_initfn(obj);
529 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
530 * one and try to apply errata workarounds or use impdef features we
531 * don't provide.
532 * An IMPLEMENTER field of 0 means "reserved for software use";
533 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
534 * to see which features are present";
535 * the VARIANT, PARTNUM and REVISION fields are all implementation
536 * defined and we choose to define PARTNUM just in case guest
537 * code needs to distinguish this QEMU CPU from other software
538 * implementations, though this shouldn't be needed.
540 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
541 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
542 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
543 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
544 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
545 cpu->midr = t;
547 t = cpu->isar.id_aa64isar0;
548 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
549 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
550 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
551 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
552 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
553 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
554 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
555 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
556 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
557 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
558 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
559 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
560 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
561 cpu->isar.id_aa64isar0 = t;
563 t = cpu->isar.id_aa64isar1;
564 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
565 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
566 t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
567 t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
568 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
569 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
570 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
571 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
572 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
573 cpu->isar.id_aa64isar1 = t;
575 t = cpu->isar.id_aa64pfr0;
576 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
577 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
578 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
579 cpu->isar.id_aa64pfr0 = t;
581 t = cpu->isar.id_aa64pfr1;
582 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
583 cpu->isar.id_aa64pfr1 = t;
585 t = cpu->isar.id_aa64mmfr1;
586 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
587 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
588 cpu->isar.id_aa64mmfr1 = t;
590 /* Replicate the same data to the 32-bit id registers. */
591 u = cpu->isar.id_isar5;
592 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
593 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
594 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
595 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
596 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
597 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
598 cpu->isar.id_isar5 = u;
600 u = cpu->isar.id_isar6;
601 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
602 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
603 u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
604 u = FIELD_DP32(u, ID_ISAR6, SB, 1);
605 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
606 cpu->isar.id_isar6 = u;
609 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
610 * so do not set MVFR1.FPHP. Strictly speaking this is not legal,
611 * but it is also not legal to enable SVE without support for FP16,
612 * and enabling SVE in system mode is more useful in the short term.
615 #ifdef CONFIG_USER_ONLY
616 /* For usermode -cpu max we can use a larger and more efficient DCZ
617 * blocksize since we don't have to follow what the hardware does.
619 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
620 cpu->dcz_blocksize = 7; /* 512 bytes */
621 #endif
623 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
624 cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal);
626 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
627 char name[8];
628 sprintf(name, "sve%d", vq * 128);
629 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
630 cpu_arm_set_sve_vq, NULL, NULL, &error_fatal);
634 object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
635 cpu_arm_set_sve, NULL, NULL, &error_fatal);
638 struct ARMCPUInfo {
639 const char *name;
640 void (*initfn)(Object *obj);
641 void (*class_init)(ObjectClass *oc, void *data);
644 static const ARMCPUInfo aarch64_cpus[] = {
645 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
646 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
647 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
648 { .name = "max", .initfn = aarch64_max_initfn },
649 { .name = NULL }
652 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
654 ARMCPU *cpu = ARM_CPU(obj);
656 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
659 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
661 ARMCPU *cpu = ARM_CPU(obj);
663 /* At this time, this property is only allowed if KVM is enabled. This
664 * restriction allows us to avoid fixing up functionality that assumes a
665 * uniform execution state like do_interrupt.
667 if (value == false) {
668 if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) {
669 error_setg(errp, "'aarch64' feature cannot be disabled "
670 "unless KVM is enabled and 32-bit EL1 "
671 "is supported");
672 return;
674 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
675 } else {
676 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
680 static void aarch64_cpu_initfn(Object *obj)
682 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
683 aarch64_cpu_set_aarch64, NULL);
684 object_property_set_description(obj, "aarch64",
685 "Set on/off to enable/disable aarch64 "
686 "execution state ",
687 NULL);
690 static void aarch64_cpu_finalizefn(Object *obj)
694 static gchar *aarch64_gdb_arch_name(CPUState *cs)
696 return g_strdup("aarch64");
699 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
701 CPUClass *cc = CPU_CLASS(oc);
703 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
704 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
705 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
706 cc->gdb_num_core_regs = 34;
707 cc->gdb_core_xml_file = "aarch64-core.xml";
708 cc->gdb_arch_name = aarch64_gdb_arch_name;
711 static void aarch64_cpu_instance_init(Object *obj)
713 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
715 acc->info->initfn(obj);
716 arm_cpu_post_init(obj);
719 static void cpu_register_class_init(ObjectClass *oc, void *data)
721 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
723 acc->info = data;
726 static void aarch64_cpu_register(const ARMCPUInfo *info)
728 TypeInfo type_info = {
729 .parent = TYPE_AARCH64_CPU,
730 .instance_size = sizeof(ARMCPU),
731 .instance_init = aarch64_cpu_instance_init,
732 .class_size = sizeof(ARMCPUClass),
733 .class_init = info->class_init ?: cpu_register_class_init,
734 .class_data = (void *)info,
737 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
738 type_register(&type_info);
739 g_free((void *)type_info.name);
742 static const TypeInfo aarch64_cpu_type_info = {
743 .name = TYPE_AARCH64_CPU,
744 .parent = TYPE_ARM_CPU,
745 .instance_size = sizeof(ARMCPU),
746 .instance_init = aarch64_cpu_initfn,
747 .instance_finalize = aarch64_cpu_finalizefn,
748 .abstract = true,
749 .class_size = sizeof(AArch64CPUClass),
750 .class_init = aarch64_cpu_class_init,
753 static void aarch64_cpu_register_types(void)
755 const ARMCPUInfo *info = aarch64_cpus;
757 type_register_static(&aarch64_cpu_type_info);
759 while (info->name) {
760 aarch64_cpu_register(info);
761 info++;
765 type_init(aarch64_cpu_register_types)