audio: add -audiodev pa,in|out.latency= to documentation
[qemu/ar7.git] / qemu-options.hx
blobee4a099e252f2b62a5dab666c1c1dbee35590425
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
46 " memory-encryption=@var{} memory encryption object to use (default=none)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines.
54 For architectures which aim to support live migration compatibility
55 across releases, each release will introduce a new versioned machine
56 type. For example, the 2.8.0 release introduced machine types
57 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
59 To allow live migration of guests from QEMU version 2.8.0, to QEMU
60 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
61 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
62 to skip multiple intermediate releases when upgrading, new releases
63 of QEMU will support machine types from many previous versions.
65 Supported machine properties are:
66 @table @option
67 @item accel=@var{accels1}[:@var{accels2}[:...]]
68 This is used to enable an accelerator. Depending on the target architecture,
69 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
70 more than one accelerator specified, the next one is used if the previous one
71 fails to initialize.
72 @item kernel_irqchip=on|off
73 Controls in-kernel irqchip support for the chosen accelerator when available.
74 @item gfx_passthru=on|off
75 Enables IGD GFX passthrough support for the chosen machine when available.
76 @item vmport=on|off|auto
77 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
78 value based on accel. For accel=xen the default is off otherwise the default
79 is on.
80 @item kvm_shadow_mem=size
81 Defines the size of the KVM shadow MMU.
82 @item dump-guest-core=on|off
83 Include guest memory in a core dump. The default is on.
84 @item mem-merge=on|off
85 Enables or disables memory merge support. This feature, when supported by
86 the host, de-duplicates identical memory pages among VMs instances
87 (enabled by default).
88 @item aes-key-wrap=on|off
89 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
90 controls whether AES wrapping keys will be created to allow
91 execution of AES cryptographic functions. The default is on.
92 @item dea-key-wrap=on|off
93 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
94 controls whether DEA wrapping keys will be created to allow
95 execution of DEA cryptographic functions. The default is on.
96 @item nvdimm=on|off
97 Enables or disables NVDIMM support. The default is off.
98 @item enforce-config-section=on|off
99 If @option{enforce-config-section} is set to @var{on}, force migration
100 code to send configuration section even if the machine-type sets the
101 @option{migration.send-configuration} property to @var{off}.
102 NOTE: this parameter is deprecated. Please use @option{-global}
103 @option{migration.send-configuration}=@var{on|off} instead.
104 @item memory-encryption=@var{}
105 Memory encryption object to use. The default is none.
106 @end table
107 ETEXI
109 HXCOMM Deprecated by -machine
110 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
112 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
114 STEXI
115 @item -cpu @var{model}
116 @findex -cpu
117 Select CPU model (@code{-cpu help} for list and additional feature selection)
118 ETEXI
120 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
121 "-accel [accel=]accelerator[,thread=single|multi]\n"
122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
123 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -accel @var{name}[,prop=@var{value}[,...]]
126 @findex -accel
127 This is used to enable an accelerator. Depending on the target architecture,
128 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
129 more than one accelerator specified, the next one is used if the previous one
130 fails to initialize.
131 @table @option
132 @item thread=single|multi
133 Controls number of TCG threads. When the TCG is multi-threaded there will be one
134 thread per vCPU therefor taking advantage of additional host cores. The default
135 is to enable multi-threading where both the back-end and front-ends support it and
136 no incompatible TCG features have been enabled (e.g. icount/replay).
137 @end table
138 ETEXI
140 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
141 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
142 " set the number of CPUs to 'n' [default=1]\n"
143 " maxcpus= maximum number of total cpus, including\n"
144 " offline CPUs for hotplug, etc\n"
145 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
146 " threads= number of threads on one CPU core\n"
147 " dies= number of CPU dies on one socket (for PC only)\n"
148 " sockets= number of discrete sockets in the system\n",
149 QEMU_ARCH_ALL)
150 STEXI
151 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,dies=dies][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
152 @findex -smp
153 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
154 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
155 to 4.
156 For the PC target, the number of @var{cores} per die, the number of @var{threads}
157 per cores, the number of @var{dies} per packages and the total number of
158 @var{sockets} can be specified. Missing values will be computed.
159 If any on the three values is given, the total number of CPUs @var{n} can be omitted.
160 @var{maxcpus} specifies the maximum number of hotpluggable CPUs.
161 ETEXI
163 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
164 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
165 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
166 "-numa dist,src=source,dst=destination,val=distance\n"
167 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
168 QEMU_ARCH_ALL)
169 STEXI
170 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
171 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
172 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
173 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
174 @findex -numa
175 Define a NUMA node and assign RAM and VCPUs to it.
176 Set the NUMA distance from a source node to a destination node.
178 Legacy VCPU assignment uses @samp{cpus} option where
179 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
180 @samp{cpus} option represent a contiguous range of CPU indexes
181 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
182 set of VCPUs can be represented by providing multiple @samp{cpus}
183 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
184 split between them.
186 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
187 a NUMA node:
188 @example
189 -numa node,cpus=0-2,cpus=5
190 @end example
192 @samp{cpu} option is a new alternative to @samp{cpus} option
193 which uses @samp{socket-id|core-id|thread-id} properties to assign
194 CPU objects to a @var{node} using topology layout properties of CPU.
195 The set of properties is machine specific, and depends on used
196 machine type/@samp{smp} options. It could be queried with
197 @samp{hotpluggable-cpus} monitor command.
198 @samp{node-id} property specifies @var{node} to which CPU object
199 will be assigned, it's required for @var{node} to be declared
200 with @samp{node} option before it's used with @samp{cpu} option.
202 For example:
203 @example
204 -M pc \
205 -smp 1,sockets=2,maxcpus=2 \
206 -numa node,nodeid=0 -numa node,nodeid=1 \
207 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
208 @end example
210 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
211 assigns RAM from a given memory backend device to a node. If
212 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
213 split equally between them.
215 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
216 if one node uses @samp{memdev}, all of them have to use it.
218 @var{source} and @var{destination} are NUMA node IDs.
219 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
220 The distance from a node to itself is always 10. If any pair of nodes is
221 given a distance, then all pairs must be given distances. Although, when
222 distances are only given in one direction for each pair of nodes, then
223 the distances in the opposite directions are assumed to be the same. If,
224 however, an asymmetrical pair of distances is given for even one node
225 pair, then all node pairs must be provided distance values for both
226 directions, even when they are symmetrical. When a node is unreachable
227 from another node, set the pair's distance to 255.
229 Note that the -@option{numa} option doesn't allocate any of the
230 specified resources, it just assigns existing resources to NUMA
231 nodes. This means that one still has to use the @option{-m},
232 @option{-smp} options to allocate RAM and VCPUs respectively.
234 ETEXI
236 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
237 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
238 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
239 STEXI
240 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
241 @findex -add-fd
243 Add a file descriptor to an fd set. Valid options are:
245 @table @option
246 @item fd=@var{fd}
247 This option defines the file descriptor of which a duplicate is added to fd set.
248 The file descriptor cannot be stdin, stdout, or stderr.
249 @item set=@var{set}
250 This option defines the ID of the fd set to add the file descriptor to.
251 @item opaque=@var{opaque}
252 This option defines a free-form string that can be used to describe @var{fd}.
253 @end table
255 You can open an image using pre-opened file descriptors from an fd set:
256 @example
257 @value{qemu_system} \
258 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
259 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
260 -drive file=/dev/fdset/2,index=0,media=disk
261 @end example
262 ETEXI
264 DEF("set", HAS_ARG, QEMU_OPTION_set,
265 "-set group.id.arg=value\n"
266 " set <arg> parameter for item <id> of type <group>\n"
267 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
268 STEXI
269 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
270 @findex -set
271 Set parameter @var{arg} for item @var{id} of type @var{group}
272 ETEXI
274 DEF("global", HAS_ARG, QEMU_OPTION_global,
275 "-global driver.property=value\n"
276 "-global driver=driver,property=property,value=value\n"
277 " set a global default for a driver property\n",
278 QEMU_ARCH_ALL)
279 STEXI
280 @item -global @var{driver}.@var{prop}=@var{value}
281 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
282 @findex -global
283 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
285 @example
286 @value{qemu_system_x86} -global ide-hd.physical_block_size=4096 disk-image.img
287 @end example
289 In particular, you can use this to set driver properties for devices which are
290 created automatically by the machine model. To create a device which is not
291 created automatically and set properties on it, use -@option{device}.
293 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
294 driver=@var{driver},property=@var{prop},value=@var{value}. The
295 longhand syntax works even when @var{driver} contains a dot.
296 ETEXI
298 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
299 "-boot [order=drives][,once=drives][,menu=on|off]\n"
300 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
301 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
302 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
303 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
304 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
305 QEMU_ARCH_ALL)
306 STEXI
307 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
308 @findex -boot
309 Specify boot order @var{drives} as a string of drive letters. Valid
310 drive letters depend on the target architecture. The x86 PC uses: a, b
311 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
312 from network adapter 1-4), hard disk boot is the default. To apply a
313 particular boot order only on the first startup, specify it via
314 @option{once}. Note that the @option{order} or @option{once} parameter
315 should not be used together with the @option{bootindex} property of
316 devices, since the firmware implementations normally do not support both
317 at the same time.
319 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
320 as firmware/BIOS supports them. The default is non-interactive boot.
322 A splash picture could be passed to bios, enabling user to show it as logo,
323 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
324 supports them. Currently Seabios for X86 system support it.
325 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
326 format(true color). The resolution should be supported by the SVGA mode, so
327 the recommended is 320x240, 640x480, 800x640.
329 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
330 when boot failed, then reboot. If @option{reboot-timeout} is not set,
331 guest will not reboot by default. Currently Seabios for X86
332 system support it.
334 Do strict boot via @option{strict=on} as far as firmware/BIOS
335 supports it. This only effects when boot priority is changed by
336 bootindex options. The default is non-strict boot.
338 @example
339 # try to boot from network first, then from hard disk
340 @value{qemu_system_x86} -boot order=nc
341 # boot from CD-ROM first, switch back to default order after reboot
342 @value{qemu_system_x86} -boot once=d
343 # boot with a splash picture for 5 seconds.
344 @value{qemu_system_x86} -boot menu=on,splash=/root/boot.bmp,splash-time=5000
345 @end example
347 Note: The legacy format '-boot @var{drives}' is still supported but its
348 use is discouraged as it may be removed from future versions.
349 ETEXI
351 DEF("m", HAS_ARG, QEMU_OPTION_m,
352 "-m [size=]megs[,slots=n,maxmem=size]\n"
353 " configure guest RAM\n"
354 " size: initial amount of guest memory\n"
355 " slots: number of hotplug slots (default: none)\n"
356 " maxmem: maximum amount of guest memory (default: none)\n"
357 "NOTE: Some architectures might enforce a specific granularity\n",
358 QEMU_ARCH_ALL)
359 STEXI
360 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
361 @findex -m
362 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
363 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
364 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
365 could be used to set amount of hotpluggable memory slots and maximum amount of
366 memory. Note that @var{maxmem} must be aligned to the page size.
368 For example, the following command-line sets the guest startup RAM size to
369 1GB, creates 3 slots to hotplug additional memory and sets the maximum
370 memory the guest can reach to 4GB:
372 @example
373 @value{qemu_system} -m 1G,slots=3,maxmem=4G
374 @end example
376 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
377 be enabled and the guest startup RAM will never increase.
378 ETEXI
380 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
381 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
382 STEXI
383 @item -mem-path @var{path}
384 @findex -mem-path
385 Allocate guest RAM from a temporarily created file in @var{path}.
386 ETEXI
388 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
389 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
390 QEMU_ARCH_ALL)
391 STEXI
392 @item -mem-prealloc
393 @findex -mem-prealloc
394 Preallocate memory when using -mem-path.
395 ETEXI
397 DEF("k", HAS_ARG, QEMU_OPTION_k,
398 "-k language use keyboard layout (for example 'fr' for French)\n",
399 QEMU_ARCH_ALL)
400 STEXI
401 @item -k @var{language}
402 @findex -k
403 Use keyboard layout @var{language} (for example @code{fr} for
404 French). This option is only needed where it is not easy to get raw PC
405 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
406 display). You don't normally need to use it on PC/Linux or PC/Windows
407 hosts.
409 The available layouts are:
410 @example
411 ar de-ch es fo fr-ca hu ja mk no pt-br sv
412 da en-gb et fr fr-ch is lt nl pl ru th
413 de en-us fi fr-be hr it lv nl-be pt sl tr
414 @end example
416 The default is @code{en-us}.
417 ETEXI
420 HXCOMM Deprecated by -audiodev
421 DEF("audio-help", 0, QEMU_OPTION_audio_help,
422 "-audio-help show -audiodev equivalent of the currently specified audio settings\n",
423 QEMU_ARCH_ALL)
424 STEXI
425 @item -audio-help
426 @findex -audio-help
427 Will show the -audiodev equivalent of the currently specified
428 (deprecated) environment variables.
429 ETEXI
431 DEF("audiodev", HAS_ARG, QEMU_OPTION_audiodev,
432 "-audiodev [driver=]driver,id=id[,prop[=value][,...]]\n"
433 " specifies the audio backend to use\n"
434 " id= identifier of the backend\n"
435 " timer-period= timer period in microseconds\n"
436 " in|out.mixing-engine= use mixing engine to mix streams inside QEMU\n"
437 " in|out.fixed-settings= use fixed settings for host audio\n"
438 " in|out.frequency= frequency to use with fixed settings\n"
439 " in|out.channels= number of channels to use with fixed settings\n"
440 " in|out.format= sample format to use with fixed settings\n"
441 " valid values: s8, s16, s32, u8, u16, u32\n"
442 " in|out.voices= number of voices to use\n"
443 " in|out.buffer-length= length of buffer in microseconds\n"
444 "-audiodev none,id=id,[,prop[=value][,...]]\n"
445 " dummy driver that discards all output\n"
446 #ifdef CONFIG_AUDIO_ALSA
447 "-audiodev alsa,id=id[,prop[=value][,...]]\n"
448 " in|out.dev= name of the audio device to use\n"
449 " in|out.period-length= length of period in microseconds\n"
450 " in|out.try-poll= attempt to use poll mode\n"
451 " threshold= threshold (in microseconds) when playback starts\n"
452 #endif
453 #ifdef CONFIG_AUDIO_COREAUDIO
454 "-audiodev coreaudio,id=id[,prop[=value][,...]]\n"
455 " in|out.buffer-count= number of buffers\n"
456 #endif
457 #ifdef CONFIG_AUDIO_DSOUND
458 "-audiodev dsound,id=id[,prop[=value][,...]]\n"
459 " latency= add extra latency to playback in microseconds\n"
460 #endif
461 #ifdef CONFIG_AUDIO_OSS
462 "-audiodev oss,id=id[,prop[=value][,...]]\n"
463 " in|out.dev= path of the audio device to use\n"
464 " in|out.buffer-count= number of buffers\n"
465 " in|out.try-poll= attempt to use poll mode\n"
466 " try-mmap= try using memory mapped access\n"
467 " exclusive= open device in exclusive mode\n"
468 " dsp-policy= set timing policy (0..10), -1 to use fragment mode\n"
469 #endif
470 #ifdef CONFIG_AUDIO_PA
471 "-audiodev pa,id=id[,prop[=value][,...]]\n"
472 " server= PulseAudio server address\n"
473 " in|out.name= source/sink device name\n"
474 " in|out.latency= desired latency in microseconds\n"
475 #endif
476 #ifdef CONFIG_AUDIO_SDL
477 "-audiodev sdl,id=id[,prop[=value][,...]]\n"
478 #endif
479 #ifdef CONFIG_SPICE
480 "-audiodev spice,id=id[,prop[=value][,...]]\n"
481 #endif
482 "-audiodev wav,id=id[,prop[=value][,...]]\n"
483 " path= path of wav file to record\n",
484 QEMU_ARCH_ALL)
485 STEXI
486 @item -audiodev [driver=]@var{driver},id=@var{id}[,@var{prop}[=@var{value}][,...]]
487 @findex -audiodev
488 Adds a new audio backend @var{driver} identified by @var{id}. There are
489 global and driver specific properties. Some values can be set
490 differently for input and output, they're marked with @code{in|out.}.
491 You can set the input's property with @code{in.@var{prop}} and the
492 output's property with @code{out.@var{prop}}. For example:
493 @example
494 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
495 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
496 @end example
498 NOTE: parameter validation is known to be incomplete, in many cases
499 specifying an invalid option causes QEMU to print an error message and
500 continue emulation without sound.
502 Valid global options are:
504 @table @option
505 @item id=@var{identifier}
506 Identifies the audio backend.
508 @item timer-period=@var{period}
509 Sets the timer @var{period} used by the audio subsystem in microseconds.
510 Default is 10000 (10 ms).
512 @item in|out.mixing-engine=on|off
513 Use QEMU's mixing engine to mix all streams inside QEMU and convert
514 audio formats when not supported by the backend. When off,
515 @var{fixed-settings} must be off too. Note that disabling this option
516 means that the selected backend must support multiple streams and the
517 audio formats used by the virtual cards, otherwise you'll get no sound.
518 It's not recommended to disable this option unless you want to use 5.1
519 or 7.1 audio, as mixing engine only supports mono and stereo audio.
520 Default is on.
522 @item in|out.fixed-settings=on|off
523 Use fixed settings for host audio. When off, it will change based on
524 how the guest opens the sound card. In this case you must not specify
525 @var{frequency}, @var{channels} or @var{format}. Default is on.
527 @item in|out.frequency=@var{frequency}
528 Specify the @var{frequency} to use when using @var{fixed-settings}.
529 Default is 44100Hz.
531 @item in|out.channels=@var{channels}
532 Specify the number of @var{channels} to use when using
533 @var{fixed-settings}. Default is 2 (stereo).
535 @item in|out.format=@var{format}
536 Specify the sample @var{format} to use when using @var{fixed-settings}.
537 Valid values are: @code{s8}, @code{s16}, @code{s32}, @code{u8},
538 @code{u16}, @code{u32}. Default is @code{s16}.
540 @item in|out.voices=@var{voices}
541 Specify the number of @var{voices} to use. Default is 1.
543 @item in|out.buffer-length=@var{usecs}
544 Sets the size of the buffer in microseconds.
546 @end table
548 @item -audiodev none,id=@var{id}[,@var{prop}[=@var{value}][,...]]
549 Creates a dummy backend that discards all outputs. This backend has no
550 backend specific properties.
552 @item -audiodev alsa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
553 Creates backend using the ALSA. This backend is only available on
554 Linux.
556 ALSA specific options are:
558 @table @option
560 @item in|out.dev=@var{device}
561 Specify the ALSA @var{device} to use for input and/or output. Default
562 is @code{default}.
564 @item in|out.period-length=@var{usecs}
565 Sets the period length in microseconds.
567 @item in|out.try-poll=on|off
568 Attempt to use poll mode with the device. Default is on.
570 @item threshold=@var{threshold}
571 Threshold (in microseconds) when playback starts. Default is 0.
573 @end table
575 @item -audiodev coreaudio,id=@var{id}[,@var{prop}[=@var{value}][,...]]
576 Creates a backend using Apple's Core Audio. This backend is only
577 available on Mac OS and only supports playback.
579 Core Audio specific options are:
581 @table @option
583 @item in|out.buffer-count=@var{count}
584 Sets the @var{count} of the buffers.
586 @end table
588 @item -audiodev dsound,id=@var{id}[,@var{prop}[=@var{value}][,...]]
589 Creates a backend using Microsoft's DirectSound. This backend is only
590 available on Windows and only supports playback.
592 DirectSound specific options are:
594 @table @option
596 @item latency=@var{usecs}
597 Add extra @var{usecs} microseconds latency to playback. Default is
598 10000 (10 ms).
600 @end table
602 @item -audiodev oss,id=@var{id}[,@var{prop}[=@var{value}][,...]]
603 Creates a backend using OSS. This backend is available on most
604 Unix-like systems.
606 OSS specific options are:
608 @table @option
610 @item in|out.dev=@var{device}
611 Specify the file name of the OSS @var{device} to use. Default is
612 @code{/dev/dsp}.
614 @item in|out.buffer-count=@var{count}
615 Sets the @var{count} of the buffers.
617 @item in|out.try-poll=on|of
618 Attempt to use poll mode with the device. Default is on.
620 @item try-mmap=on|off
621 Try using memory mapped device access. Default is off.
623 @item exclusive=on|off
624 Open the device in exclusive mode (vmix won't work in this case).
625 Default is off.
627 @item dsp-policy=@var{policy}
628 Sets the timing policy (between 0 and 10, where smaller number means
629 smaller latency but higher CPU usage). Use -1 to use buffer sizes
630 specified by @code{buffer} and @code{buffer-count}. This option is
631 ignored if you do not have OSS 4. Default is 5.
633 @end table
635 @item -audiodev pa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
636 Creates a backend using PulseAudio. This backend is available on most
637 systems.
639 PulseAudio specific options are:
641 @table @option
643 @item server=@var{server}
644 Sets the PulseAudio @var{server} to connect to.
646 @item in|out.name=@var{sink}
647 Use the specified source/sink for recording/playback.
649 @item in|out.latency=@var{usecs}
650 Desired latency in microseconds. The PulseAudio server will try to honor this
651 value but actual latencies may be lower or higher.
653 @end table
655 @item -audiodev sdl,id=@var{id}[,@var{prop}[=@var{value}][,...]]
656 Creates a backend using SDL. This backend is available on most systems,
657 but you should use your platform's native backend if possible. This
658 backend has no backend specific properties.
660 @item -audiodev spice,id=@var{id}[,@var{prop}[=@var{value}][,...]]
661 Creates a backend that sends audio through SPICE. This backend requires
662 @code{-spice} and automatically selected in that case, so usually you
663 can ignore this option. This backend has no backend specific
664 properties.
666 @item -audiodev wav,id=@var{id}[,@var{prop}[=@var{value}][,...]]
667 Creates a backend that writes audio to a WAV file.
669 Backend specific options are:
671 @table @option
673 @item path=@var{path}
674 Write recorded audio into the specified file. Default is
675 @code{qemu.wav}.
677 @end table
678 ETEXI
680 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
681 "-soundhw c1,... enable audio support\n"
682 " and only specified sound cards (comma separated list)\n"
683 " use '-soundhw help' to get the list of supported cards\n"
684 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
685 STEXI
686 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
687 @findex -soundhw
688 Enable audio and selected sound hardware. Use 'help' to print all
689 available sound hardware. For example:
691 @example
692 @value{qemu_system_x86} -soundhw sb16,adlib disk.img
693 @value{qemu_system_x86} -soundhw es1370 disk.img
694 @value{qemu_system_x86} -soundhw ac97 disk.img
695 @value{qemu_system_x86} -soundhw hda disk.img
696 @value{qemu_system_x86} -soundhw all disk.img
697 @value{qemu_system_x86} -soundhw help
698 @end example
700 Note that Linux's i810_audio OSS kernel (for AC97) module might
701 require manually specifying clocking.
703 @example
704 modprobe i810_audio clocking=48000
705 @end example
706 ETEXI
708 DEF("device", HAS_ARG, QEMU_OPTION_device,
709 "-device driver[,prop[=value][,...]]\n"
710 " add device (based on driver)\n"
711 " prop=value,... sets driver properties\n"
712 " use '-device help' to print all possible drivers\n"
713 " use '-device driver,help' to print all possible properties\n",
714 QEMU_ARCH_ALL)
715 STEXI
716 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
717 @findex -device
718 Add device @var{driver}. @var{prop}=@var{value} sets driver
719 properties. Valid properties depend on the driver. To get help on
720 possible drivers and properties, use @code{-device help} and
721 @code{-device @var{driver},help}.
723 Some drivers are:
724 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}][,guid=@var{uuid}]
726 Add an IPMI BMC. This is a simulation of a hardware management
727 interface processor that normally sits on a system. It provides
728 a watchdog and the ability to reset and power control the system.
729 You need to connect this to an IPMI interface to make it useful
731 The IPMI slave address to use for the BMC. The default is 0x20.
732 This address is the BMC's address on the I2C network of management
733 controllers. If you don't know what this means, it is safe to ignore
736 @table @option
737 @item id=@var{id}
738 The BMC id for interfaces to use this device.
739 @item slave_addr=@var{val}
740 Define slave address to use for the BMC. The default is 0x20.
741 @item sdrfile=@var{file}
742 file containing raw Sensor Data Records (SDR) data. The default is none.
743 @item fruareasize=@var{val}
744 size of a Field Replaceable Unit (FRU) area. The default is 1024.
745 @item frudatafile=@var{file}
746 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
747 @item guid=@var{uuid}
748 value for the GUID for the BMC, in standard UUID format. If this is set,
749 get "Get GUID" command to the BMC will return it. Otherwise "Get GUID"
750 will return an error.
751 @end table
753 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
755 Add a connection to an external IPMI BMC simulator. Instead of
756 locally emulating the BMC like the above item, instead connect
757 to an external entity that provides the IPMI services.
759 A connection is made to an external BMC simulator. If you do this, it
760 is strongly recommended that you use the "reconnect=" chardev option
761 to reconnect to the simulator if the connection is lost. Note that if
762 this is not used carefully, it can be a security issue, as the
763 interface has the ability to send resets, NMIs, and power off the VM.
764 It's best if QEMU makes a connection to an external simulator running
765 on a secure port on localhost, so neither the simulator nor QEMU is
766 exposed to any outside network.
768 See the "lanserv/README.vm" file in the OpenIPMI library for more
769 details on the external interface.
771 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
773 Add a KCS IPMI interafce on the ISA bus. This also adds a
774 corresponding ACPI and SMBIOS entries, if appropriate.
776 @table @option
777 @item bmc=@var{id}
778 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
779 @item ioport=@var{val}
780 Define the I/O address of the interface. The default is 0xca0 for KCS.
781 @item irq=@var{val}
782 Define the interrupt to use. The default is 5. To disable interrupts,
783 set this to 0.
784 @end table
786 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
788 Like the KCS interface, but defines a BT interface. The default port is
789 0xe4 and the default interrupt is 5.
791 ETEXI
793 DEF("name", HAS_ARG, QEMU_OPTION_name,
794 "-name string1[,process=string2][,debug-threads=on|off]\n"
795 " set the name of the guest\n"
796 " string1 sets the window title and string2 the process name\n"
797 " When debug-threads is enabled, individual threads are given a separate name\n"
798 " NOTE: The thread names are for debugging and not a stable API.\n",
799 QEMU_ARCH_ALL)
800 STEXI
801 @item -name @var{name}
802 @findex -name
803 Sets the @var{name} of the guest.
804 This name will be displayed in the SDL window caption.
805 The @var{name} will also be used for the VNC server.
806 Also optionally set the top visible process name in Linux.
807 Naming of individual threads can also be enabled on Linux to aid debugging.
808 ETEXI
810 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
811 "-uuid %08x-%04x-%04x-%04x-%012x\n"
812 " specify machine UUID\n", QEMU_ARCH_ALL)
813 STEXI
814 @item -uuid @var{uuid}
815 @findex -uuid
816 Set system UUID.
817 ETEXI
819 STEXI
820 @end table
821 ETEXI
822 DEFHEADING()
824 DEFHEADING(Block device options:)
825 STEXI
826 @table @option
827 ETEXI
829 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
830 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
831 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
832 STEXI
833 @item -fda @var{file}
834 @itemx -fdb @var{file}
835 @findex -fda
836 @findex -fdb
837 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
838 ETEXI
840 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
841 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
842 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
843 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
844 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
845 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
846 STEXI
847 @item -hda @var{file}
848 @itemx -hdb @var{file}
849 @itemx -hdc @var{file}
850 @itemx -hdd @var{file}
851 @findex -hda
852 @findex -hdb
853 @findex -hdc
854 @findex -hdd
855 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
856 ETEXI
858 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
859 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
860 QEMU_ARCH_ALL)
861 STEXI
862 @item -cdrom @var{file}
863 @findex -cdrom
864 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
865 @option{-cdrom} at the same time). You can use the host CD-ROM by
866 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
867 ETEXI
869 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
870 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
871 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
872 " [,read-only=on|off][,auto-read-only=on|off]\n"
873 " [,force-share=on|off][,detect-zeroes=on|off|unmap]\n"
874 " [,driver specific parameters...]\n"
875 " configure a block backend\n", QEMU_ARCH_ALL)
876 STEXI
877 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
878 @findex -blockdev
880 Define a new block driver node. Some of the options apply to all block drivers,
881 other options are only accepted for a specific block driver. See below for a
882 list of generic options and options for the most common block drivers.
884 Options that expect a reference to another node (e.g. @code{file}) can be
885 given in two ways. Either you specify the node name of an already existing node
886 (file=@var{node-name}), or you define a new node inline, adding options
887 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
889 A block driver node created with @option{-blockdev} can be used for a guest
890 device by specifying its node name for the @code{drive} property in a
891 @option{-device} argument that defines a block device.
893 @table @option
894 @item Valid options for any block driver node:
896 @table @code
897 @item driver
898 Specifies the block driver to use for the given node.
899 @item node-name
900 This defines the name of the block driver node by which it will be referenced
901 later. The name must be unique, i.e. it must not match the name of a different
902 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
904 If no node name is specified, it is automatically generated. The generated node
905 name is not intended to be predictable and changes between QEMU invocations.
906 For the top level, an explicit node name must be specified.
907 @item read-only
908 Open the node read-only. Guest write attempts will fail.
910 Note that some block drivers support only read-only access, either generally or
911 in certain configurations. In this case, the default value
912 @option{read-only=off} does not work and the option must be specified
913 explicitly.
914 @item auto-read-only
915 If @option{auto-read-only=on} is set, QEMU may fall back to read-only usage
916 even when @option{read-only=off} is requested, or even switch between modes as
917 needed, e.g. depending on whether the image file is writable or whether a
918 writing user is attached to the node.
919 @item force-share
920 Override the image locking system of QEMU by forcing the node to utilize
921 weaker shared access for permissions where it would normally request exclusive
922 access. When there is the potential for multiple instances to have the same
923 file open (whether this invocation of QEMU is the first or the second
924 instance), both instances must permit shared access for the second instance to
925 succeed at opening the file.
927 Enabling @option{force-share=on} requires @option{read-only=on}.
928 @item cache.direct
929 The host page cache can be avoided with @option{cache.direct=on}. This will
930 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
931 internal copy of the data.
932 @item cache.no-flush
933 In case you don't care about data integrity over host failures, you can use
934 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
935 any data to the disk but can instead keep things in cache. If anything goes
936 wrong, like your host losing power, the disk storage getting disconnected
937 accidentally, etc. your image will most probably be rendered unusable.
938 @item discard=@var{discard}
939 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
940 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
941 ignored or passed to the filesystem. Some machine types may not support
942 discard requests.
943 @item detect-zeroes=@var{detect-zeroes}
944 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
945 conversion of plain zero writes by the OS to driver specific optimized
946 zero write commands. You may even choose "unmap" if @var{discard} is set
947 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
948 @end table
950 @item Driver-specific options for @code{file}
952 This is the protocol-level block driver for accessing regular files.
954 @table @code
955 @item filename
956 The path to the image file in the local filesystem
957 @item aio
958 Specifies the AIO backend (threads/native, default: threads)
959 @item locking
960 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
961 default is to use the Linux Open File Descriptor API if available, otherwise no
962 lock is applied. (auto/on/off, default: auto)
963 @end table
964 Example:
965 @example
966 -blockdev driver=file,node-name=disk,filename=disk.img
967 @end example
969 @item Driver-specific options for @code{raw}
971 This is the image format block driver for raw images. It is usually
972 stacked on top of a protocol level block driver such as @code{file}.
974 @table @code
975 @item file
976 Reference to or definition of the data source block driver node
977 (e.g. a @code{file} driver node)
978 @end table
979 Example 1:
980 @example
981 -blockdev driver=file,node-name=disk_file,filename=disk.img
982 -blockdev driver=raw,node-name=disk,file=disk_file
983 @end example
984 Example 2:
985 @example
986 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
987 @end example
989 @item Driver-specific options for @code{qcow2}
991 This is the image format block driver for qcow2 images. It is usually
992 stacked on top of a protocol level block driver such as @code{file}.
994 @table @code
995 @item file
996 Reference to or definition of the data source block driver node
997 (e.g. a @code{file} driver node)
999 @item backing
1000 Reference to or definition of the backing file block device (default is taken
1001 from the image file). It is allowed to pass @code{null} here in order to disable
1002 the default backing file.
1004 @item lazy-refcounts
1005 Whether to enable the lazy refcounts feature (on/off; default is taken from the
1006 image file)
1008 @item cache-size
1009 The maximum total size of the L2 table and refcount block caches in bytes
1010 (default: the sum of l2-cache-size and refcount-cache-size)
1012 @item l2-cache-size
1013 The maximum size of the L2 table cache in bytes
1014 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
1015 non-Linux platforms; otherwise, as large as possible within the cache-size,
1016 while permitting the requested or the minimal refcount cache size)
1018 @item refcount-cache-size
1019 The maximum size of the refcount block cache in bytes
1020 (default: 4 times the cluster size; or if cache-size is specified, the part of
1021 it which is not used for the L2 cache)
1023 @item cache-clean-interval
1024 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
1025 The default value is 600 on supporting platforms, and 0 on other platforms.
1026 Setting it to 0 disables this feature.
1028 @item pass-discard-request
1029 Whether discard requests to the qcow2 device should be forwarded to the data
1030 source (on/off; default: on if discard=unmap is specified, off otherwise)
1032 @item pass-discard-snapshot
1033 Whether discard requests for the data source should be issued when a snapshot
1034 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
1035 default: on)
1037 @item pass-discard-other
1038 Whether discard requests for the data source should be issued on other
1039 occasions where a cluster gets freed (on/off; default: off)
1041 @item overlap-check
1042 Which overlap checks to perform for writes to the image
1043 (none/constant/cached/all; default: cached). For details or finer
1044 granularity control refer to the QAPI documentation of @code{blockdev-add}.
1045 @end table
1047 Example 1:
1048 @example
1049 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1050 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1051 @end example
1052 Example 2:
1053 @example
1054 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1055 @end example
1057 @item Driver-specific options for other drivers
1058 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
1060 @end table
1062 ETEXI
1064 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
1065 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
1066 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
1067 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
1068 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
1069 " [,readonly=on|off][,copy-on-read=on|off]\n"
1070 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
1071 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
1072 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
1073 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
1074 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
1075 " [[,iops_size=is]]\n"
1076 " [[,group=g]]\n"
1077 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
1078 STEXI
1079 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
1080 @findex -drive
1082 Define a new drive. This includes creating a block driver node (the backend) as
1083 well as a guest device, and is mostly a shortcut for defining the corresponding
1084 @option{-blockdev} and @option{-device} options.
1086 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
1087 addition, it knows the following options:
1089 @table @option
1090 @item file=@var{file}
1091 This option defines which disk image (@pxref{disk_images}) to use with
1092 this drive. If the filename contains comma, you must double it
1093 (for instance, "file=my,,file" to use file "my,file").
1095 Special files such as iSCSI devices can be specified using protocol
1096 specific URLs. See the section for "Device URL Syntax" for more information.
1097 @item if=@var{interface}
1098 This option defines on which type on interface the drive is connected.
1099 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
1100 @item bus=@var{bus},unit=@var{unit}
1101 These options define where is connected the drive by defining the bus number and
1102 the unit id.
1103 @item index=@var{index}
1104 This option defines where is connected the drive by using an index in the list
1105 of available connectors of a given interface type.
1106 @item media=@var{media}
1107 This option defines the type of the media: disk or cdrom.
1108 @item snapshot=@var{snapshot}
1109 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
1110 (see @option{-snapshot}).
1111 @item cache=@var{cache}
1112 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
1113 and controls how the host cache is used to access block data. This is a
1114 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
1115 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
1116 which provides a default for the @option{write-cache} option of block guest
1117 devices (as in @option{-device}). The modes correspond to the following
1118 settings:
1120 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
1121 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
1122 @c and the HTML output.
1123 @example
1124 @ │ cache.writeback cache.direct cache.no-flush
1125 ─────────────┼─────────────────────────────────────────────────
1126 writeback │ on off off
1127 none │ on on off
1128 writethrough │ off off off
1129 directsync │ off on off
1130 unsafe │ on off on
1131 @end example
1133 The default mode is @option{cache=writeback}.
1135 @item aio=@var{aio}
1136 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
1137 @item format=@var{format}
1138 Specify which disk @var{format} will be used rather than detecting
1139 the format. Can be used to specify format=raw to avoid interpreting
1140 an untrusted format header.
1141 @item werror=@var{action},rerror=@var{action}
1142 Specify which @var{action} to take on write and read errors. Valid actions are:
1143 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
1144 "report" (report the error to the guest), "enospc" (pause QEMU only if the
1145 host disk is full; report the error to the guest otherwise).
1146 The default setting is @option{werror=enospc} and @option{rerror=report}.
1147 @item copy-on-read=@var{copy-on-read}
1148 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
1149 file sectors into the image file.
1150 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
1151 Specify bandwidth throttling limits in bytes per second, either for all request
1152 types or for reads or writes only. Small values can lead to timeouts or hangs
1153 inside the guest. A safe minimum for disks is 2 MB/s.
1154 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
1155 Specify bursts in bytes per second, either for all request types or for reads
1156 or writes only. Bursts allow the guest I/O to spike above the limit
1157 temporarily.
1158 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
1159 Specify request rate limits in requests per second, either for all request
1160 types or for reads or writes only.
1161 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
1162 Specify bursts in requests per second, either for all request types or for reads
1163 or writes only. Bursts allow the guest I/O to spike above the limit
1164 temporarily.
1165 @item iops_size=@var{is}
1166 Let every @var{is} bytes of a request count as a new request for iops
1167 throttling purposes. Use this option to prevent guests from circumventing iops
1168 limits by sending fewer but larger requests.
1169 @item group=@var{g}
1170 Join a throttling quota group with given name @var{g}. All drives that are
1171 members of the same group are accounted for together. Use this option to
1172 prevent guests from circumventing throttling limits by using many small disks
1173 instead of a single larger disk.
1174 @end table
1176 By default, the @option{cache.writeback=on} mode is used. It will report data
1177 writes as completed as soon as the data is present in the host page cache.
1178 This is safe as long as your guest OS makes sure to correctly flush disk caches
1179 where needed. If your guest OS does not handle volatile disk write caches
1180 correctly and your host crashes or loses power, then the guest may experience
1181 data corruption.
1183 For such guests, you should consider using @option{cache.writeback=off}. This
1184 means that the host page cache will be used to read and write data, but write
1185 notification will be sent to the guest only after QEMU has made sure to flush
1186 each write to the disk. Be aware that this has a major impact on performance.
1188 When using the @option{-snapshot} option, unsafe caching is always used.
1190 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
1191 useful when the backing file is over a slow network. By default copy-on-read
1192 is off.
1194 Instead of @option{-cdrom} you can use:
1195 @example
1196 @value{qemu_system} -drive file=file,index=2,media=cdrom
1197 @end example
1199 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
1200 use:
1201 @example
1202 @value{qemu_system} -drive file=file,index=0,media=disk
1203 @value{qemu_system} -drive file=file,index=1,media=disk
1204 @value{qemu_system} -drive file=file,index=2,media=disk
1205 @value{qemu_system} -drive file=file,index=3,media=disk
1206 @end example
1208 You can open an image using pre-opened file descriptors from an fd set:
1209 @example
1210 @value{qemu_system} \
1211 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
1212 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
1213 -drive file=/dev/fdset/2,index=0,media=disk
1214 @end example
1216 You can connect a CDROM to the slave of ide0:
1217 @example
1218 @value{qemu_system_x86} -drive file=file,if=ide,index=1,media=cdrom
1219 @end example
1221 If you don't specify the "file=" argument, you define an empty drive:
1222 @example
1223 @value{qemu_system_x86} -drive if=ide,index=1,media=cdrom
1224 @end example
1226 Instead of @option{-fda}, @option{-fdb}, you can use:
1227 @example
1228 @value{qemu_system_x86} -drive file=file,index=0,if=floppy
1229 @value{qemu_system_x86} -drive file=file,index=1,if=floppy
1230 @end example
1232 By default, @var{interface} is "ide" and @var{index} is automatically
1233 incremented:
1234 @example
1235 @value{qemu_system_x86} -drive file=a -drive file=b"
1236 @end example
1237 is interpreted like:
1238 @example
1239 @value{qemu_system_x86} -hda a -hdb b
1240 @end example
1241 ETEXI
1243 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
1244 "-mtdblock file use 'file' as on-board Flash memory image\n",
1245 QEMU_ARCH_ALL)
1246 STEXI
1247 @item -mtdblock @var{file}
1248 @findex -mtdblock
1249 Use @var{file} as on-board Flash memory image.
1250 ETEXI
1252 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1253 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1254 STEXI
1255 @item -sd @var{file}
1256 @findex -sd
1257 Use @var{file} as SecureDigital card image.
1258 ETEXI
1260 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1261 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1262 STEXI
1263 @item -pflash @var{file}
1264 @findex -pflash
1265 Use @var{file} as a parallel flash image.
1266 ETEXI
1268 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1269 "-snapshot write to temporary files instead of disk image files\n",
1270 QEMU_ARCH_ALL)
1271 STEXI
1272 @item -snapshot
1273 @findex -snapshot
1274 Write to temporary files instead of disk image files. In this case,
1275 the raw disk image you use is not written back. You can however force
1276 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1277 ETEXI
1279 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1280 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1281 " [,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode]\n"
1282 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1283 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1284 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1285 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1286 " [[,throttling.iops-size=is]]\n"
1287 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly]\n"
1288 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly]\n"
1289 "-fsdev synth,id=id\n",
1290 QEMU_ARCH_ALL)
1292 STEXI
1294 @item -fsdev local,id=@var{id},path=@var{path},security_model=@var{security_model} [,writeout=@var{writeout}][,readonly][,fmode=@var{fmode}][,dmode=@var{dmode}] [,throttling.@var{option}=@var{value}[,throttling.@var{option}=@var{value}[,...]]]
1295 @itemx -fsdev proxy,id=@var{id},socket=@var{socket}[,writeout=@var{writeout}][,readonly]
1296 @itemx -fsdev proxy,id=@var{id},sock_fd=@var{sock_fd}[,writeout=@var{writeout}][,readonly]
1297 @itemx -fsdev synth,id=@var{id}[,readonly]
1298 @findex -fsdev
1299 Define a new file system device. Valid options are:
1300 @table @option
1301 @item local
1302 Accesses to the filesystem are done by QEMU.
1303 @item proxy
1304 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1305 @item synth
1306 Synthetic filesystem, only used by QTests.
1307 @item id=@var{id}
1308 Specifies identifier for this device.
1309 @item path=@var{path}
1310 Specifies the export path for the file system device. Files under
1311 this path will be available to the 9p client on the guest.
1312 @item security_model=@var{security_model}
1313 Specifies the security model to be used for this export path.
1314 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1315 In "passthrough" security model, files are stored using the same
1316 credentials as they are created on the guest. This requires QEMU
1317 to run as root. In "mapped-xattr" security model, some of the file
1318 attributes like uid, gid, mode bits and link target are stored as
1319 file attributes. For "mapped-file" these attributes are stored in the
1320 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1321 interact with other unix tools. "none" security model is same as
1322 passthrough except the sever won't report failures if it fails to
1323 set file attributes like ownership. Security model is mandatory
1324 only for local fsdriver. Other fsdrivers (like proxy) don't take
1325 security model as a parameter.
1326 @item writeout=@var{writeout}
1327 This is an optional argument. The only supported value is "immediate".
1328 This means that host page cache will be used to read and write data but
1329 write notification will be sent to the guest only when the data has been
1330 reported as written by the storage subsystem.
1331 @item readonly
1332 Enables exporting 9p share as a readonly mount for guests. By default
1333 read-write access is given.
1334 @item socket=@var{socket}
1335 Enables proxy filesystem driver to use passed socket file for communicating
1336 with virtfs-proxy-helper(1).
1337 @item sock_fd=@var{sock_fd}
1338 Enables proxy filesystem driver to use passed socket descriptor for
1339 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1340 will create socketpair and pass one of the fds as sock_fd.
1341 @item fmode=@var{fmode}
1342 Specifies the default mode for newly created files on the host. Works only
1343 with security models "mapped-xattr" and "mapped-file".
1344 @item dmode=@var{dmode}
1345 Specifies the default mode for newly created directories on the host. Works
1346 only with security models "mapped-xattr" and "mapped-file".
1347 @item throttling.bps-total=@var{b},throttling.bps-read=@var{r},throttling.bps-write=@var{w}
1348 Specify bandwidth throttling limits in bytes per second, either for all request
1349 types or for reads or writes only.
1350 @item throttling.bps-total-max=@var{bm},bps-read-max=@var{rm},bps-write-max=@var{wm}
1351 Specify bursts in bytes per second, either for all request types or for reads
1352 or writes only. Bursts allow the guest I/O to spike above the limit
1353 temporarily.
1354 @item throttling.iops-total=@var{i},throttling.iops-read=@var{r}, throttling.iops-write=@var{w}
1355 Specify request rate limits in requests per second, either for all request
1356 types or for reads or writes only.
1357 @item throttling.iops-total-max=@var{im},throttling.iops-read-max=@var{irm}, throttling.iops-write-max=@var{iwm}
1358 Specify bursts in requests per second, either for all request types or for reads
1359 or writes only. Bursts allow the guest I/O to spike above the limit temporarily.
1360 @item throttling.iops-size=@var{is}
1361 Let every @var{is} bytes of a request count as a new request for iops
1362 throttling purposes.
1363 @end table
1365 -fsdev option is used along with -device driver "virtio-9p-...".
1366 @item -device virtio-9p-@var{type},fsdev=@var{id},mount_tag=@var{mount_tag}
1367 Options for virtio-9p-... driver are:
1368 @table @option
1369 @item @var{type}
1370 Specifies the variant to be used. Supported values are "pci", "ccw" or "device",
1371 depending on the machine type.
1372 @item fsdev=@var{id}
1373 Specifies the id value specified along with -fsdev option.
1374 @item mount_tag=@var{mount_tag}
1375 Specifies the tag name to be used by the guest to mount this export point.
1376 @end table
1378 ETEXI
1380 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1381 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1382 " [,id=id][,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1383 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly]\n"
1384 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly]\n"
1385 "-virtfs synth,mount_tag=tag[,id=id][,readonly]\n",
1386 QEMU_ARCH_ALL)
1388 STEXI
1390 @item -virtfs local,path=@var{path},mount_tag=@var{mount_tag} ,security_model=@var{security_model}[,writeout=@var{writeout}][,readonly] [,fmode=@var{fmode}][,dmode=@var{dmode}][,multidevs=@var{multidevs}]
1391 @itemx -virtfs proxy,socket=@var{socket},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1392 @itemx -virtfs proxy,sock_fd=@var{sock_fd},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1393 @itemx -virtfs synth,mount_tag=@var{mount_tag}
1394 @findex -virtfs
1396 Define a new filesystem device and expose it to the guest using a virtio-9p-device. The general form of a Virtual File system pass-through options are:
1397 @table @option
1398 @item local
1399 Accesses to the filesystem are done by QEMU.
1400 @item proxy
1401 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1402 @item synth
1403 Synthetic filesystem, only used by QTests.
1404 @item id=@var{id}
1405 Specifies identifier for the filesystem device
1406 @item path=@var{path}
1407 Specifies the export path for the file system device. Files under
1408 this path will be available to the 9p client on the guest.
1409 @item security_model=@var{security_model}
1410 Specifies the security model to be used for this export path.
1411 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1412 In "passthrough" security model, files are stored using the same
1413 credentials as they are created on the guest. This requires QEMU
1414 to run as root. In "mapped-xattr" security model, some of the file
1415 attributes like uid, gid, mode bits and link target are stored as
1416 file attributes. For "mapped-file" these attributes are stored in the
1417 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1418 interact with other unix tools. "none" security model is same as
1419 passthrough except the sever won't report failures if it fails to
1420 set file attributes like ownership. Security model is mandatory only
1421 for local fsdriver. Other fsdrivers (like proxy) don't take security
1422 model as a parameter.
1423 @item writeout=@var{writeout}
1424 This is an optional argument. The only supported value is "immediate".
1425 This means that host page cache will be used to read and write data but
1426 write notification will be sent to the guest only when the data has been
1427 reported as written by the storage subsystem.
1428 @item readonly
1429 Enables exporting 9p share as a readonly mount for guests. By default
1430 read-write access is given.
1431 @item socket=@var{socket}
1432 Enables proxy filesystem driver to use passed socket file for
1433 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1434 will create socketpair and pass one of the fds as sock_fd.
1435 @item sock_fd
1436 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1437 descriptor for interfacing with virtfs-proxy-helper(1).
1438 @item fmode=@var{fmode}
1439 Specifies the default mode for newly created files on the host. Works only
1440 with security models "mapped-xattr" and "mapped-file".
1441 @item dmode=@var{dmode}
1442 Specifies the default mode for newly created directories on the host. Works
1443 only with security models "mapped-xattr" and "mapped-file".
1444 @item mount_tag=@var{mount_tag}
1445 Specifies the tag name to be used by the guest to mount this export point.
1446 @item multidevs=@var{multidevs}
1447 Specifies how to deal with multiple devices being shared with a 9p export.
1448 Supported behaviours are either "remap", "forbid" or "warn". The latter is
1449 the default behaviour on which virtfs 9p expects only one device to be
1450 shared with the same export, and if more than one device is shared and
1451 accessed via the same 9p export then only a warning message is logged
1452 (once) by qemu on host side. In order to avoid file ID collisions on guest
1453 you should either create a separate virtfs export for each device to be
1454 shared with guests (recommended way) or you might use "remap" instead which
1455 allows you to share multiple devices with only one export instead, which is
1456 achieved by remapping the original inode numbers from host to guest in a
1457 way that would prevent such collisions. Remapping inodes in such use cases
1458 is required because the original device IDs from host are never passed and
1459 exposed on guest. Instead all files of an export shared with virtfs always
1460 share the same device id on guest. So two files with identical inode
1461 numbers but from actually different devices on host would otherwise cause a
1462 file ID collision and hence potential misbehaviours on guest. "forbid" on
1463 the other hand assumes like "warn" that only one device is shared by the
1464 same export, however it will not only log a warning message but also
1465 deny access to additional devices on guest. Note though that "forbid" does
1466 currently not block all possible file access operations (e.g. readdir()
1467 would still return entries from other devices).
1468 @end table
1469 ETEXI
1471 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
1472 "-virtfs_synth Create synthetic file system image\n",
1473 QEMU_ARCH_ALL)
1474 STEXI
1475 @item -virtfs_synth
1476 @findex -virtfs_synth
1477 Create synthetic file system image. Note that this option is now deprecated.
1478 Please use @code{-fsdev synth} and @code{-device virtio-9p-...} instead.
1479 ETEXI
1481 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1482 "-iscsi [user=user][,password=password]\n"
1483 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1484 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1485 " [,timeout=timeout]\n"
1486 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1488 STEXI
1489 @item -iscsi
1490 @findex -iscsi
1491 Configure iSCSI session parameters.
1492 ETEXI
1494 STEXI
1495 @end table
1496 ETEXI
1497 DEFHEADING()
1499 DEFHEADING(USB options:)
1500 STEXI
1501 @table @option
1502 ETEXI
1504 DEF("usb", 0, QEMU_OPTION_usb,
1505 "-usb enable on-board USB host controller (if not enabled by default)\n",
1506 QEMU_ARCH_ALL)
1507 STEXI
1508 @item -usb
1509 @findex -usb
1510 Enable USB emulation on machine types with an on-board USB host controller (if
1511 not enabled by default). Note that on-board USB host controllers may not
1512 support USB 3.0. In this case @option{-device qemu-xhci} can be used instead
1513 on machines with PCI.
1514 ETEXI
1516 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1517 "-usbdevice name add the host or guest USB device 'name'\n",
1518 QEMU_ARCH_ALL)
1519 STEXI
1521 @item -usbdevice @var{devname}
1522 @findex -usbdevice
1523 Add the USB device @var{devname}. Note that this option is deprecated,
1524 please use @code{-device usb-...} instead. @xref{usb_devices}.
1526 @table @option
1528 @item mouse
1529 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1531 @item tablet
1532 Pointer device that uses absolute coordinates (like a touchscreen). This
1533 means QEMU is able to report the mouse position without having to grab the
1534 mouse. Also overrides the PS/2 mouse emulation when activated.
1536 @item braille
1537 Braille device. This will use BrlAPI to display the braille output on a real
1538 or fake device.
1540 @end table
1541 ETEXI
1543 STEXI
1544 @end table
1545 ETEXI
1546 DEFHEADING()
1548 DEFHEADING(Display options:)
1549 STEXI
1550 @table @option
1551 ETEXI
1553 DEF("display", HAS_ARG, QEMU_OPTION_display,
1554 "-display spice-app[,gl=on|off]\n"
1555 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1556 " [,window_close=on|off][,gl=on|core|es|off]\n"
1557 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1558 "-display vnc=<display>[,<optargs>]\n"
1559 "-display curses[,charset=<encoding>]\n"
1560 "-display none\n"
1561 "-display egl-headless[,rendernode=<file>]"
1562 " select display type\n"
1563 "The default display is equivalent to\n"
1564 #if defined(CONFIG_GTK)
1565 "\t\"-display gtk\"\n"
1566 #elif defined(CONFIG_SDL)
1567 "\t\"-display sdl\"\n"
1568 #elif defined(CONFIG_COCOA)
1569 "\t\"-display cocoa\"\n"
1570 #elif defined(CONFIG_VNC)
1571 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1572 #else
1573 "\t\"-display none\"\n"
1574 #endif
1575 , QEMU_ARCH_ALL)
1576 STEXI
1577 @item -display @var{type}
1578 @findex -display
1579 Select type of display to use. This option is a replacement for the
1580 old style -sdl/-curses/... options. Valid values for @var{type} are
1581 @table @option
1582 @item sdl
1583 Display video output via SDL (usually in a separate graphics
1584 window; see the SDL documentation for other possibilities).
1585 @item curses
1586 Display video output via curses. For graphics device models which
1587 support a text mode, QEMU can display this output using a
1588 curses/ncurses interface. Nothing is displayed when the graphics
1589 device is in graphical mode or if the graphics device does not support
1590 a text mode. Generally only the VGA device models support text mode.
1591 The font charset used by the guest can be specified with the
1592 @code{charset} option, for example @code{charset=CP850} for IBM CP850
1593 encoding. The default is @code{CP437}.
1594 @item none
1595 Do not display video output. The guest will still see an emulated
1596 graphics card, but its output will not be displayed to the QEMU
1597 user. This option differs from the -nographic option in that it
1598 only affects what is done with video output; -nographic also changes
1599 the destination of the serial and parallel port data.
1600 @item gtk
1601 Display video output in a GTK window. This interface provides drop-down
1602 menus and other UI elements to configure and control the VM during
1603 runtime.
1604 @item vnc
1605 Start a VNC server on display <arg>
1606 @item egl-headless
1607 Offload all OpenGL operations to a local DRI device. For any graphical display,
1608 this display needs to be paired with either VNC or SPICE displays.
1609 @item spice-app
1610 Start QEMU as a Spice server and launch the default Spice client
1611 application. The Spice server will redirect the serial consoles and
1612 QEMU monitors. (Since 4.0)
1613 @end table
1614 ETEXI
1616 DEF("nographic", 0, QEMU_OPTION_nographic,
1617 "-nographic disable graphical output and redirect serial I/Os to console\n",
1618 QEMU_ARCH_ALL)
1619 STEXI
1620 @item -nographic
1621 @findex -nographic
1622 Normally, if QEMU is compiled with graphical window support, it displays
1623 output such as guest graphics, guest console, and the QEMU monitor in a
1624 window. With this option, you can totally disable graphical output so
1625 that QEMU is a simple command line application. The emulated serial port
1626 is redirected on the console and muxed with the monitor (unless
1627 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1628 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1629 switching between the console and monitor.
1630 ETEXI
1632 DEF("curses", 0, QEMU_OPTION_curses,
1633 "-curses shorthand for -display curses\n",
1634 QEMU_ARCH_ALL)
1635 STEXI
1636 @item -curses
1637 @findex -curses
1638 Normally, if QEMU is compiled with graphical window support, it displays
1639 output such as guest graphics, guest console, and the QEMU monitor in a
1640 window. With this option, QEMU can display the VGA output when in text
1641 mode using a curses/ncurses interface. Nothing is displayed in graphical
1642 mode.
1643 ETEXI
1645 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1646 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1647 QEMU_ARCH_ALL)
1648 STEXI
1649 @item -alt-grab
1650 @findex -alt-grab
1651 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1652 affects the special keys (for fullscreen, monitor-mode switching, etc).
1653 ETEXI
1655 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1656 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1657 QEMU_ARCH_ALL)
1658 STEXI
1659 @item -ctrl-grab
1660 @findex -ctrl-grab
1661 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1662 affects the special keys (for fullscreen, monitor-mode switching, etc).
1663 ETEXI
1665 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1666 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1667 STEXI
1668 @item -no-quit
1669 @findex -no-quit
1670 Disable SDL window close capability.
1671 ETEXI
1673 DEF("sdl", 0, QEMU_OPTION_sdl,
1674 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1675 STEXI
1676 @item -sdl
1677 @findex -sdl
1678 Enable SDL.
1679 ETEXI
1681 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1682 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1683 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1684 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1685 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1686 " [,tls-ciphers=<list>]\n"
1687 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1688 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1689 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1690 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1691 " [,jpeg-wan-compression=[auto|never|always]]\n"
1692 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1693 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1694 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1695 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1696 " [,gl=[on|off]][,rendernode=<file>]\n"
1697 " enable spice\n"
1698 " at least one of {port, tls-port} is mandatory\n",
1699 QEMU_ARCH_ALL)
1700 STEXI
1701 @item -spice @var{option}[,@var{option}[,...]]
1702 @findex -spice
1703 Enable the spice remote desktop protocol. Valid options are
1705 @table @option
1707 @item port=<nr>
1708 Set the TCP port spice is listening on for plaintext channels.
1710 @item addr=<addr>
1711 Set the IP address spice is listening on. Default is any address.
1713 @item ipv4
1714 @itemx ipv6
1715 @itemx unix
1716 Force using the specified IP version.
1718 @item password=<secret>
1719 Set the password you need to authenticate.
1721 @item sasl
1722 Require that the client use SASL to authenticate with the spice.
1723 The exact choice of authentication method used is controlled from the
1724 system / user's SASL configuration file for the 'qemu' service. This
1725 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1726 unprivileged user, an environment variable SASL_CONF_PATH can be used
1727 to make it search alternate locations for the service config.
1728 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1729 it is recommended that SASL always be combined with the 'tls' and
1730 'x509' settings to enable use of SSL and server certificates. This
1731 ensures a data encryption preventing compromise of authentication
1732 credentials.
1734 @item disable-ticketing
1735 Allow client connects without authentication.
1737 @item disable-copy-paste
1738 Disable copy paste between the client and the guest.
1740 @item disable-agent-file-xfer
1741 Disable spice-vdagent based file-xfer between the client and the guest.
1743 @item tls-port=<nr>
1744 Set the TCP port spice is listening on for encrypted channels.
1746 @item x509-dir=<dir>
1747 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1749 @item x509-key-file=<file>
1750 @itemx x509-key-password=<file>
1751 @itemx x509-cert-file=<file>
1752 @itemx x509-cacert-file=<file>
1753 @itemx x509-dh-key-file=<file>
1754 The x509 file names can also be configured individually.
1756 @item tls-ciphers=<list>
1757 Specify which ciphers to use.
1759 @item tls-channel=[main|display|cursor|inputs|record|playback]
1760 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1761 Force specific channel to be used with or without TLS encryption. The
1762 options can be specified multiple times to configure multiple
1763 channels. The special name "default" can be used to set the default
1764 mode. For channels which are not explicitly forced into one mode the
1765 spice client is allowed to pick tls/plaintext as he pleases.
1767 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1768 Configure image compression (lossless).
1769 Default is auto_glz.
1771 @item jpeg-wan-compression=[auto|never|always]
1772 @itemx zlib-glz-wan-compression=[auto|never|always]
1773 Configure wan image compression (lossy for slow links).
1774 Default is auto.
1776 @item streaming-video=[off|all|filter]
1777 Configure video stream detection. Default is off.
1779 @item agent-mouse=[on|off]
1780 Enable/disable passing mouse events via vdagent. Default is on.
1782 @item playback-compression=[on|off]
1783 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1785 @item seamless-migration=[on|off]
1786 Enable/disable spice seamless migration. Default is off.
1788 @item gl=[on|off]
1789 Enable/disable OpenGL context. Default is off.
1791 @item rendernode=<file>
1792 DRM render node for OpenGL rendering. If not specified, it will pick
1793 the first available. (Since 2.9)
1795 @end table
1796 ETEXI
1798 DEF("portrait", 0, QEMU_OPTION_portrait,
1799 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1800 QEMU_ARCH_ALL)
1801 STEXI
1802 @item -portrait
1803 @findex -portrait
1804 Rotate graphical output 90 deg left (only PXA LCD).
1805 ETEXI
1807 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1808 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1809 QEMU_ARCH_ALL)
1810 STEXI
1811 @item -rotate @var{deg}
1812 @findex -rotate
1813 Rotate graphical output some deg left (only PXA LCD).
1814 ETEXI
1816 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1817 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1818 " select video card type\n", QEMU_ARCH_ALL)
1819 STEXI
1820 @item -vga @var{type}
1821 @findex -vga
1822 Select type of VGA card to emulate. Valid values for @var{type} are
1823 @table @option
1824 @item cirrus
1825 Cirrus Logic GD5446 Video card. All Windows versions starting from
1826 Windows 95 should recognize and use this graphic card. For optimal
1827 performances, use 16 bit color depth in the guest and the host OS.
1828 (This card was the default before QEMU 2.2)
1829 @item std
1830 Standard VGA card with Bochs VBE extensions. If your guest OS
1831 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1832 to use high resolution modes (>= 1280x1024x16) then you should use
1833 this option. (This card is the default since QEMU 2.2)
1834 @item vmware
1835 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1836 recent XFree86/XOrg server or Windows guest with a driver for this
1837 card.
1838 @item qxl
1839 QXL paravirtual graphic card. It is VGA compatible (including VESA
1840 2.0 VBE support). Works best with qxl guest drivers installed though.
1841 Recommended choice when using the spice protocol.
1842 @item tcx
1843 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1844 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1845 fixed resolution of 1024x768.
1846 @item cg3
1847 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1848 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1849 resolutions aimed at people wishing to run older Solaris versions.
1850 @item virtio
1851 Virtio VGA card.
1852 @item none
1853 Disable VGA card.
1854 @end table
1855 ETEXI
1857 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1858 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1859 STEXI
1860 @item -full-screen
1861 @findex -full-screen
1862 Start in full screen.
1863 ETEXI
1865 DEF("g", 1, QEMU_OPTION_g ,
1866 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1867 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
1868 STEXI
1869 @item -g @var{width}x@var{height}[x@var{depth}]
1870 @findex -g
1871 Set the initial graphical resolution and depth (PPC, SPARC only).
1872 ETEXI
1874 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1875 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1876 STEXI
1877 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1878 @findex -vnc
1879 Normally, if QEMU is compiled with graphical window support, it displays
1880 output such as guest graphics, guest console, and the QEMU monitor in a
1881 window. With this option, you can have QEMU listen on VNC display
1882 @var{display} and redirect the VGA display over the VNC session. It is
1883 very useful to enable the usb tablet device when using this option
1884 (option @option{-device usb-tablet}). When using the VNC display, you
1885 must use the @option{-k} parameter to set the keyboard layout if you are
1886 not using en-us. Valid syntax for the @var{display} is
1888 @table @option
1890 @item to=@var{L}
1892 With this option, QEMU will try next available VNC @var{display}s, until the
1893 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1894 available, e.g. port 5900+@var{display} is already used by another
1895 application. By default, to=0.
1897 @item @var{host}:@var{d}
1899 TCP connections will only be allowed from @var{host} on display @var{d}.
1900 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1901 be omitted in which case the server will accept connections from any host.
1903 @item unix:@var{path}
1905 Connections will be allowed over UNIX domain sockets where @var{path} is the
1906 location of a unix socket to listen for connections on.
1908 @item none
1910 VNC is initialized but not started. The monitor @code{change} command
1911 can be used to later start the VNC server.
1913 @end table
1915 Following the @var{display} value there may be one or more @var{option} flags
1916 separated by commas. Valid options are
1918 @table @option
1920 @item reverse
1922 Connect to a listening VNC client via a ``reverse'' connection. The
1923 client is specified by the @var{display}. For reverse network
1924 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1925 is a TCP port number, not a display number.
1927 @item websocket
1929 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1930 If a bare @var{websocket} option is given, the Websocket port is
1931 5700+@var{display}. An alternative port can be specified with the
1932 syntax @code{websocket}=@var{port}.
1934 If @var{host} is specified connections will only be allowed from this host.
1935 It is possible to control the websocket listen address independently, using
1936 the syntax @code{websocket}=@var{host}:@var{port}.
1938 If no TLS credentials are provided, the websocket connection runs in
1939 unencrypted mode. If TLS credentials are provided, the websocket connection
1940 requires encrypted client connections.
1942 @item password
1944 Require that password based authentication is used for client connections.
1946 The password must be set separately using the @code{set_password} command in
1947 the @ref{pcsys_monitor}. The syntax to change your password is:
1948 @code{set_password <protocol> <password>} where <protocol> could be either
1949 "vnc" or "spice".
1951 If you would like to change <protocol> password expiration, you should use
1952 @code{expire_password <protocol> <expiration-time>} where expiration time could
1953 be one of the following options: now, never, +seconds or UNIX time of
1954 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1955 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1956 date and time).
1958 You can also use keywords "now" or "never" for the expiration time to
1959 allow <protocol> password to expire immediately or never expire.
1961 @item tls-creds=@var{ID}
1963 Provides the ID of a set of TLS credentials to use to secure the
1964 VNC server. They will apply to both the normal VNC server socket
1965 and the websocket socket (if enabled). Setting TLS credentials
1966 will cause the VNC server socket to enable the VeNCrypt auth
1967 mechanism. The credentials should have been previously created
1968 using the @option{-object tls-creds} argument.
1970 @item tls-authz=@var{ID}
1972 Provides the ID of the QAuthZ authorization object against which
1973 the client's x509 distinguished name will validated. This object is
1974 only resolved at time of use, so can be deleted and recreated on the
1975 fly while the VNC server is active. If missing, it will default
1976 to denying access.
1978 @item sasl
1980 Require that the client use SASL to authenticate with the VNC server.
1981 The exact choice of authentication method used is controlled from the
1982 system / user's SASL configuration file for the 'qemu' service. This
1983 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1984 unprivileged user, an environment variable SASL_CONF_PATH can be used
1985 to make it search alternate locations for the service config.
1986 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1987 it is recommended that SASL always be combined with the 'tls' and
1988 'x509' settings to enable use of SSL and server certificates. This
1989 ensures a data encryption preventing compromise of authentication
1990 credentials. See the @ref{vnc_security} section for details on using
1991 SASL authentication.
1993 @item sasl-authz=@var{ID}
1995 Provides the ID of the QAuthZ authorization object against which
1996 the client's SASL username will validated. This object is
1997 only resolved at time of use, so can be deleted and recreated on the
1998 fly while the VNC server is active. If missing, it will default
1999 to denying access.
2001 @item acl
2003 Legacy method for enabling authorization of clients against the
2004 x509 distinguished name and SASL username. It results in the creation
2005 of two @code{authz-list} objects with IDs of @code{vnc.username} and
2006 @code{vnc.x509dname}. The rules for these objects must be configured
2007 with the HMP ACL commands.
2009 This option is deprecated and should no longer be used. The new
2010 @option{sasl-authz} and @option{tls-authz} options are a
2011 replacement.
2013 @item lossy
2015 Enable lossy compression methods (gradient, JPEG, ...). If this
2016 option is set, VNC client may receive lossy framebuffer updates
2017 depending on its encoding settings. Enabling this option can save
2018 a lot of bandwidth at the expense of quality.
2020 @item non-adaptive
2022 Disable adaptive encodings. Adaptive encodings are enabled by default.
2023 An adaptive encoding will try to detect frequently updated screen regions,
2024 and send updates in these regions using a lossy encoding (like JPEG).
2025 This can be really helpful to save bandwidth when playing videos. Disabling
2026 adaptive encodings restores the original static behavior of encodings
2027 like Tight.
2029 @item share=[allow-exclusive|force-shared|ignore]
2031 Set display sharing policy. 'allow-exclusive' allows clients to ask
2032 for exclusive access. As suggested by the rfb spec this is
2033 implemented by dropping other connections. Connecting multiple
2034 clients in parallel requires all clients asking for a shared session
2035 (vncviewer: -shared switch). This is the default. 'force-shared'
2036 disables exclusive client access. Useful for shared desktop sessions,
2037 where you don't want someone forgetting specify -shared disconnect
2038 everybody else. 'ignore' completely ignores the shared flag and
2039 allows everybody connect unconditionally. Doesn't conform to the rfb
2040 spec but is traditional QEMU behavior.
2042 @item key-delay-ms
2044 Set keyboard delay, for key down and key up events, in milliseconds.
2045 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
2046 can help the device and guest to keep up and not lose events in case
2047 events are arriving in bulk. Possible causes for the latter are flaky
2048 network connections, or scripts for automated testing.
2050 @item audiodev=@var{audiodev}
2052 Use the specified @var{audiodev} when the VNC client requests audio
2053 transmission. When not using an -audiodev argument, this option must
2054 be omitted, otherwise is must be present and specify a valid audiodev.
2056 @end table
2057 ETEXI
2059 STEXI
2060 @end table
2061 ETEXI
2062 ARCHHEADING(, QEMU_ARCH_I386)
2064 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
2065 STEXI
2066 @table @option
2067 ETEXI
2069 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
2070 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2071 QEMU_ARCH_I386)
2072 STEXI
2073 @item -win2k-hack
2074 @findex -win2k-hack
2075 Use it when installing Windows 2000 to avoid a disk full bug. After
2076 Windows 2000 is installed, you no longer need this option (this option
2077 slows down the IDE transfers).
2078 ETEXI
2080 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
2081 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2082 QEMU_ARCH_I386)
2083 STEXI
2084 @item -no-fd-bootchk
2085 @findex -no-fd-bootchk
2086 Disable boot signature checking for floppy disks in BIOS. May
2087 be needed to boot from old floppy disks.
2088 ETEXI
2090 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
2091 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2092 STEXI
2093 @item -no-acpi
2094 @findex -no-acpi
2095 Disable ACPI (Advanced Configuration and Power Interface) support. Use
2096 it if your guest OS complains about ACPI problems (PC target machine
2097 only).
2098 ETEXI
2100 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
2101 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
2102 STEXI
2103 @item -no-hpet
2104 @findex -no-hpet
2105 Disable HPET support.
2106 ETEXI
2108 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
2109 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2110 " ACPI table description\n", QEMU_ARCH_I386)
2111 STEXI
2112 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
2113 @findex -acpitable
2114 Add ACPI table with specified header fields and context from specified files.
2115 For file=, take whole ACPI table from the specified files, including all
2116 ACPI headers (possible overridden by other options).
2117 For data=, only data
2118 portion of the table is used, all header information is specified in the
2119 command line.
2120 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
2121 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
2122 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
2123 spec.
2124 ETEXI
2126 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2127 "-smbios file=binary\n"
2128 " load SMBIOS entry from binary file\n"
2129 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2130 " [,uefi=on|off]\n"
2131 " specify SMBIOS type 0 fields\n"
2132 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2133 " [,uuid=uuid][,sku=str][,family=str]\n"
2134 " specify SMBIOS type 1 fields\n"
2135 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2136 " [,asset=str][,location=str]\n"
2137 " specify SMBIOS type 2 fields\n"
2138 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2139 " [,sku=str]\n"
2140 " specify SMBIOS type 3 fields\n"
2141 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2142 " [,asset=str][,part=str]\n"
2143 " specify SMBIOS type 4 fields\n"
2144 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2145 " [,asset=str][,part=str][,speed=%d]\n"
2146 " specify SMBIOS type 17 fields\n",
2147 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2148 STEXI
2149 @item -smbios file=@var{binary}
2150 @findex -smbios
2151 Load SMBIOS entry from binary file.
2153 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
2154 Specify SMBIOS type 0 fields
2156 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
2157 Specify SMBIOS type 1 fields
2159 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}]
2160 Specify SMBIOS type 2 fields
2162 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
2163 Specify SMBIOS type 3 fields
2165 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
2166 Specify SMBIOS type 4 fields
2168 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
2169 Specify SMBIOS type 17 fields
2170 ETEXI
2172 STEXI
2173 @end table
2174 ETEXI
2175 DEFHEADING()
2177 DEFHEADING(Network options:)
2178 STEXI
2179 @table @option
2180 ETEXI
2182 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2183 #ifdef CONFIG_SLIRP
2184 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2185 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2186 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2187 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2188 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2189 #ifndef _WIN32
2190 "[,smb=dir[,smbserver=addr]]\n"
2191 #endif
2192 " configure a user mode network backend with ID 'str',\n"
2193 " its DHCP server and optional services\n"
2194 #endif
2195 #ifdef _WIN32
2196 "-netdev tap,id=str,ifname=name\n"
2197 " configure a host TAP network backend with ID 'str'\n"
2198 #else
2199 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2200 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2201 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2202 " [,poll-us=n]\n"
2203 " configure a host TAP network backend with ID 'str'\n"
2204 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2205 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2206 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2207 " to deconfigure it\n"
2208 " use '[down]script=no' to disable script execution\n"
2209 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2210 " configure it\n"
2211 " use 'fd=h' to connect to an already opened TAP interface\n"
2212 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
2213 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
2214 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
2215 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2216 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2217 " use vhost=on to enable experimental in kernel accelerator\n"
2218 " (only has effect for virtio guests which use MSIX)\n"
2219 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2220 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
2221 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
2222 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
2223 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
2224 " spent on busy polling for vhost net\n"
2225 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
2226 " configure a host TAP network backend with ID 'str' that is\n"
2227 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2228 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2229 #endif
2230 #ifdef __linux__
2231 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2232 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2233 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2234 " [,rxcookie=rxcookie][,offset=offset]\n"
2235 " configure a network backend with ID 'str' connected to\n"
2236 " an Ethernet over L2TPv3 pseudowire.\n"
2237 " Linux kernel 3.3+ as well as most routers can talk\n"
2238 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2239 " VM to a router and even VM to Host. It is a nearly-universal\n"
2240 " standard (RFC3391). Note - this implementation uses static\n"
2241 " pre-configured tunnels (same as the Linux kernel).\n"
2242 " use 'src=' to specify source address\n"
2243 " use 'dst=' to specify destination address\n"
2244 " use 'udp=on' to specify udp encapsulation\n"
2245 " use 'srcport=' to specify source udp port\n"
2246 " use 'dstport=' to specify destination udp port\n"
2247 " use 'ipv6=on' to force v6\n"
2248 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2249 " well as a weak security measure\n"
2250 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
2251 " use 'txcookie=0x012345678' to specify a txcookie\n"
2252 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
2253 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
2254 " use 'pincounter=on' to work around broken counter handling in peer\n"
2255 " use 'offset=X' to add an extra offset between header and data\n"
2256 #endif
2257 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2258 " configure a network backend to connect to another network\n"
2259 " using a socket connection\n"
2260 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2261 " configure a network backend to connect to a multicast maddr and port\n"
2262 " use 'localaddr=addr' to specify the host address to send packets from\n"
2263 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2264 " configure a network backend to connect to another network\n"
2265 " using an UDP tunnel\n"
2266 #ifdef CONFIG_VDE
2267 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2268 " configure a network backend to connect to port 'n' of a vde switch\n"
2269 " running on host and listening for incoming connections on 'socketpath'.\n"
2270 " Use group 'groupname' and mode 'octalmode' to change default\n"
2271 " ownership and permissions for communication port.\n"
2272 #endif
2273 #ifdef CONFIG_NETMAP
2274 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2275 " attach to the existing netmap-enabled network interface 'name', or to a\n"
2276 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
2277 " netmap device, defaults to '/dev/netmap')\n"
2278 #endif
2279 #ifdef CONFIG_POSIX
2280 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2281 " configure a vhost-user network, backed by a chardev 'dev'\n"
2282 #endif
2283 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2284 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
2285 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2286 "-nic [tap|bridge|"
2287 #ifdef CONFIG_SLIRP
2288 "user|"
2289 #endif
2290 #ifdef __linux__
2291 "l2tpv3|"
2292 #endif
2293 #ifdef CONFIG_VDE
2294 "vde|"
2295 #endif
2296 #ifdef CONFIG_NETMAP
2297 "netmap|"
2298 #endif
2299 #ifdef CONFIG_POSIX
2300 "vhost-user|"
2301 #endif
2302 "socket][,option][,...][mac=macaddr]\n"
2303 " initialize an on-board / default host NIC (using MAC address\n"
2304 " macaddr) and connect it to the given host network backend\n"
2305 "-nic none use it alone to have zero network devices (the default is to\n"
2306 " provided a 'user' network connection)\n",
2307 QEMU_ARCH_ALL)
2308 DEF("net", HAS_ARG, QEMU_OPTION_net,
2309 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2310 " configure or create an on-board (or machine default) NIC and\n"
2311 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2312 "-net ["
2313 #ifdef CONFIG_SLIRP
2314 "user|"
2315 #endif
2316 "tap|"
2317 "bridge|"
2318 #ifdef CONFIG_VDE
2319 "vde|"
2320 #endif
2321 #ifdef CONFIG_NETMAP
2322 "netmap|"
2323 #endif
2324 "socket][,option][,option][,...]\n"
2325 " old way to initialize a host network interface\n"
2326 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2327 STEXI
2328 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
2329 @findex -nic
2330 This option is a shortcut for configuring both the on-board (default) guest
2331 NIC hardware and the host network backend in one go. The host backend options
2332 are the same as with the corresponding @option{-netdev} options below.
2333 The guest NIC model can be set with @option{model=@var{modelname}}.
2334 Use @option{model=help} to list the available device types.
2335 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
2337 The following two example do exactly the same, to show how @option{-nic} can
2338 be used to shorten the command line length (note that the e1000 is the default
2339 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
2340 @example
2341 @value{qemu_system} -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2342 @value{qemu_system} -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2343 @end example
2345 @item -nic none
2346 Indicate that no network devices should be configured. It is used to override
2347 the default configuration (default NIC with ``user'' host network backend)
2348 which is activated if no other networking options are provided.
2350 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
2351 @findex -netdev
2352 Configure user mode host network backend which requires no administrator
2353 privilege to run. Valid options are:
2355 @table @option
2356 @item id=@var{id}
2357 Assign symbolic name for use in monitor commands.
2359 @item ipv4=on|off and ipv6=on|off
2360 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
2361 both protocols are enabled.
2363 @item net=@var{addr}[/@var{mask}]
2364 Set IP network address the guest will see. Optionally specify the netmask,
2365 either in the form a.b.c.d or as number of valid top-most bits. Default is
2366 10.0.2.0/24.
2368 @item host=@var{addr}
2369 Specify the guest-visible address of the host. Default is the 2nd IP in the
2370 guest network, i.e. x.x.x.2.
2372 @item ipv6-net=@var{addr}[/@var{int}]
2373 Set IPv6 network address the guest will see (default is fec0::/64). The
2374 network prefix is given in the usual hexadecimal IPv6 address
2375 notation. The prefix size is optional, and is given as the number of
2376 valid top-most bits (default is 64).
2378 @item ipv6-host=@var{addr}
2379 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2380 the guest network, i.e. xxxx::2.
2382 @item restrict=on|off
2383 If this option is enabled, the guest will be isolated, i.e. it will not be
2384 able to contact the host and no guest IP packets will be routed over the host
2385 to the outside. This option does not affect any explicitly set forwarding rules.
2387 @item hostname=@var{name}
2388 Specifies the client hostname reported by the built-in DHCP server.
2390 @item dhcpstart=@var{addr}
2391 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2392 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2394 @item dns=@var{addr}
2395 Specify the guest-visible address of the virtual nameserver. The address must
2396 be different from the host address. Default is the 3rd IP in the guest network,
2397 i.e. x.x.x.3.
2399 @item ipv6-dns=@var{addr}
2400 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2401 must be different from the host address. Default is the 3rd IP in the guest
2402 network, i.e. xxxx::3.
2404 @item dnssearch=@var{domain}
2405 Provides an entry for the domain-search list sent by the built-in
2406 DHCP server. More than one domain suffix can be transmitted by specifying
2407 this option multiple times. If supported, this will cause the guest to
2408 automatically try to append the given domain suffix(es) in case a domain name
2409 can not be resolved.
2411 Example:
2412 @example
2413 @value{qemu_system} -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2414 @end example
2416 @item domainname=@var{domain}
2417 Specifies the client domain name reported by the built-in DHCP server.
2419 @item tftp=@var{dir}
2420 When using the user mode network stack, activate a built-in TFTP
2421 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2422 The TFTP client on the guest must be configured in binary mode (use the command
2423 @code{bin} of the Unix TFTP client).
2425 @item tftp-server-name=@var{name}
2426 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2427 66). This can be used to advise the guest to load boot files or configurations
2428 from a different server than the host address.
2430 @item bootfile=@var{file}
2431 When using the user mode network stack, broadcast @var{file} as the BOOTP
2432 filename. In conjunction with @option{tftp}, this can be used to network boot
2433 a guest from a local directory.
2435 Example (using pxelinux):
2436 @example
2437 @value{qemu_system} -hda linux.img -boot n -device e1000,netdev=n1 \
2438 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2439 @end example
2441 @item smb=@var{dir}[,smbserver=@var{addr}]
2442 When using the user mode network stack, activate a built-in SMB
2443 server so that Windows OSes can access to the host files in @file{@var{dir}}
2444 transparently. The IP address of the SMB server can be set to @var{addr}. By
2445 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2447 In the guest Windows OS, the line:
2448 @example
2449 10.0.2.4 smbserver
2450 @end example
2451 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2452 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2454 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2456 Note that a SAMBA server must be installed on the host OS.
2458 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2459 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2460 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2461 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2462 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2463 be bound to a specific host interface. If no connection type is set, TCP is
2464 used. This option can be given multiple times.
2466 For example, to redirect host X11 connection from screen 1 to guest
2467 screen 0, use the following:
2469 @example
2470 # on the host
2471 @value{qemu_system} -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2472 # this host xterm should open in the guest X11 server
2473 xterm -display :1
2474 @end example
2476 To redirect telnet connections from host port 5555 to telnet port on
2477 the guest, use the following:
2479 @example
2480 # on the host
2481 @value{qemu_system} -nic user,hostfwd=tcp::5555-:23
2482 telnet localhost 5555
2483 @end example
2485 Then when you use on the host @code{telnet localhost 5555}, you
2486 connect to the guest telnet server.
2488 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2489 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2490 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2491 to the character device @var{dev} or to a program executed by @var{cmd:command}
2492 which gets spawned for each connection. This option can be given multiple times.
2494 You can either use a chardev directly and have that one used throughout QEMU's
2495 lifetime, like in the following example:
2497 @example
2498 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2499 # the guest accesses it
2500 @value{qemu_system} -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2501 @end example
2503 Or you can execute a command on every TCP connection established by the guest,
2504 so that QEMU behaves similar to an inetd process for that virtual server:
2506 @example
2507 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2508 # and connect the TCP stream to its stdin/stdout
2509 @value{qemu_system} -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2510 @end example
2512 @end table
2514 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2515 Configure a host TAP network backend with ID @var{id}.
2517 Use the network script @var{file} to configure it and the network script
2518 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2519 automatically provides one. The default network configure script is
2520 @file{/etc/qemu-ifup} and the default network deconfigure script is
2521 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2522 to disable script execution.
2524 If running QEMU as an unprivileged user, use the network helper
2525 @var{helper} to configure the TAP interface and attach it to the bridge.
2526 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2527 and the default bridge device is @file{br0}.
2529 @option{fd}=@var{h} can be used to specify the handle of an already
2530 opened host TAP interface.
2532 Examples:
2534 @example
2535 #launch a QEMU instance with the default network script
2536 @value{qemu_system} linux.img -nic tap
2537 @end example
2539 @example
2540 #launch a QEMU instance with two NICs, each one connected
2541 #to a TAP device
2542 @value{qemu_system} linux.img \
2543 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2544 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2545 @end example
2547 @example
2548 #launch a QEMU instance with the default network helper to
2549 #connect a TAP device to bridge br0
2550 @value{qemu_system} linux.img -device virtio-net-pci,netdev=n1 \
2551 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2552 @end example
2554 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2555 Connect a host TAP network interface to a host bridge device.
2557 Use the network helper @var{helper} to configure the TAP interface and
2558 attach it to the bridge. The default network helper executable is
2559 @file{/path/to/qemu-bridge-helper} and the default bridge
2560 device is @file{br0}.
2562 Examples:
2564 @example
2565 #launch a QEMU instance with the default network helper to
2566 #connect a TAP device to bridge br0
2567 @value{qemu_system} linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2568 @end example
2570 @example
2571 #launch a QEMU instance with the default network helper to
2572 #connect a TAP device to bridge qemubr0
2573 @value{qemu_system} linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2574 @end example
2576 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2578 This host network backend can be used to connect the guest's network to
2579 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2580 is specified, QEMU waits for incoming connections on @var{port}
2581 (@var{host} is optional). @option{connect} is used to connect to
2582 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2583 specifies an already opened TCP socket.
2585 Example:
2586 @example
2587 # launch a first QEMU instance
2588 @value{qemu_system} linux.img \
2589 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2590 -netdev socket,id=n1,listen=:1234
2591 # connect the network of this instance to the network of the first instance
2592 @value{qemu_system} linux.img \
2593 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2594 -netdev socket,id=n2,connect=127.0.0.1:1234
2595 @end example
2597 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2599 Configure a socket host network backend to share the guest's network traffic
2600 with another QEMU virtual machines using a UDP multicast socket, effectively
2601 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2602 NOTES:
2603 @enumerate
2604 @item
2605 Several QEMU can be running on different hosts and share same bus (assuming
2606 correct multicast setup for these hosts).
2607 @item
2608 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2609 @url{http://user-mode-linux.sf.net}.
2610 @item
2611 Use @option{fd=h} to specify an already opened UDP multicast socket.
2612 @end enumerate
2614 Example:
2615 @example
2616 # launch one QEMU instance
2617 @value{qemu_system} linux.img \
2618 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2619 -netdev socket,id=n1,mcast=230.0.0.1:1234
2620 # launch another QEMU instance on same "bus"
2621 @value{qemu_system} linux.img \
2622 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2623 -netdev socket,id=n2,mcast=230.0.0.1:1234
2624 # launch yet another QEMU instance on same "bus"
2625 @value{qemu_system} linux.img \
2626 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2627 -netdev socket,id=n3,mcast=230.0.0.1:1234
2628 @end example
2630 Example (User Mode Linux compat.):
2631 @example
2632 # launch QEMU instance (note mcast address selected is UML's default)
2633 @value{qemu_system} linux.img \
2634 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2635 -netdev socket,id=n1,mcast=239.192.168.1:1102
2636 # launch UML
2637 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2638 @end example
2640 Example (send packets from host's 1.2.3.4):
2641 @example
2642 @value{qemu_system} linux.img \
2643 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2644 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2645 @end example
2647 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2648 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2649 popular protocol to transport Ethernet (and other Layer 2) data frames between
2650 two systems. It is present in routers, firewalls and the Linux kernel
2651 (from version 3.3 onwards).
2653 This transport allows a VM to communicate to another VM, router or firewall directly.
2655 @table @option
2656 @item src=@var{srcaddr}
2657 source address (mandatory)
2658 @item dst=@var{dstaddr}
2659 destination address (mandatory)
2660 @item udp
2661 select udp encapsulation (default is ip).
2662 @item srcport=@var{srcport}
2663 source udp port.
2664 @item dstport=@var{dstport}
2665 destination udp port.
2666 @item ipv6
2667 force v6, otherwise defaults to v4.
2668 @item rxcookie=@var{rxcookie}
2669 @itemx txcookie=@var{txcookie}
2670 Cookies are a weak form of security in the l2tpv3 specification.
2671 Their function is mostly to prevent misconfiguration. By default they are 32
2672 bit.
2673 @item cookie64
2674 Set cookie size to 64 bit instead of the default 32
2675 @item counter=off
2676 Force a 'cut-down' L2TPv3 with no counter as in
2677 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2678 @item pincounter=on
2679 Work around broken counter handling in peer. This may also help on
2680 networks which have packet reorder.
2681 @item offset=@var{offset}
2682 Add an extra offset between header and data
2683 @end table
2685 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2686 on the remote Linux host 1.2.3.4:
2687 @example
2688 # Setup tunnel on linux host using raw ip as encapsulation
2689 # on 1.2.3.4
2690 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2691 encap udp udp_sport 16384 udp_dport 16384
2692 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2693 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2694 ifconfig vmtunnel0 mtu 1500
2695 ifconfig vmtunnel0 up
2696 brctl addif br-lan vmtunnel0
2699 # on 4.3.2.1
2700 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2702 @value{qemu_system} linux.img -device e1000,netdev=n1 \
2703 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2705 @end example
2707 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2708 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2709 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2710 and MODE @var{octalmode} to change default ownership and permissions for
2711 communication port. This option is only available if QEMU has been compiled
2712 with vde support enabled.
2714 Example:
2715 @example
2716 # launch vde switch
2717 vde_switch -F -sock /tmp/myswitch
2718 # launch QEMU instance
2719 @value{qemu_system} linux.img -nic vde,sock=/tmp/myswitch
2720 @end example
2722 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2724 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2725 be a unix domain socket backed one. The vhost-user uses a specifically defined
2726 protocol to pass vhost ioctl replacement messages to an application on the other
2727 end of the socket. On non-MSIX guests, the feature can be forced with
2728 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2729 be created for multiqueue vhost-user.
2731 Example:
2732 @example
2733 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2734 -numa node,memdev=mem \
2735 -chardev socket,id=chr0,path=/path/to/socket \
2736 -netdev type=vhost-user,id=net0,chardev=chr0 \
2737 -device virtio-net-pci,netdev=net0
2738 @end example
2740 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2742 Create a hub port on the emulated hub with ID @var{hubid}.
2744 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2745 single netdev. Alternatively, you can also connect the hubport to another
2746 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2748 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2749 @findex -net
2750 Legacy option to configure or create an on-board (or machine default) Network
2751 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2752 the default hub), or to the netdev @var{nd}.
2753 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2754 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2755 only), and a @var{name} can be assigned for use in monitor commands.
2756 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2757 that the card should have; this option currently only affects virtio cards; set
2758 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2759 NIC is created. QEMU can emulate several different models of network card.
2760 Use @code{-net nic,model=help} for a list of available devices for your target.
2762 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2763 Configure a host network backend (with the options corresponding to the same
2764 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2765 hub). Use @var{name} to specify the name of the hub port.
2766 ETEXI
2768 STEXI
2769 @end table
2770 ETEXI
2771 DEFHEADING()
2773 DEFHEADING(Character device options:)
2775 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2776 "-chardev help\n"
2777 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2778 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2779 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2780 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
2781 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2782 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2783 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2784 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2785 " [,logfile=PATH][,logappend=on|off]\n"
2786 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2787 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2788 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2789 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2790 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2791 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2792 #ifdef _WIN32
2793 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2794 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2795 #else
2796 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2797 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2798 #endif
2799 #ifdef CONFIG_BRLAPI
2800 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2801 #endif
2802 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2803 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2804 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2805 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2806 #endif
2807 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2808 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2809 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2810 #endif
2811 #if defined(CONFIG_SPICE)
2812 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2813 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2814 #endif
2815 , QEMU_ARCH_ALL
2818 STEXI
2820 The general form of a character device option is:
2821 @table @option
2822 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2823 @findex -chardev
2824 Backend is one of:
2825 @option{null},
2826 @option{socket},
2827 @option{udp},
2828 @option{msmouse},
2829 @option{vc},
2830 @option{ringbuf},
2831 @option{file},
2832 @option{pipe},
2833 @option{console},
2834 @option{serial},
2835 @option{pty},
2836 @option{stdio},
2837 @option{braille},
2838 @option{tty},
2839 @option{parallel},
2840 @option{parport},
2841 @option{spicevmc},
2842 @option{spiceport}.
2843 The specific backend will determine the applicable options.
2845 Use @code{-chardev help} to print all available chardev backend types.
2847 All devices must have an id, which can be any string up to 127 characters long.
2848 It is used to uniquely identify this device in other command line directives.
2850 A character device may be used in multiplexing mode by multiple front-ends.
2851 Specify @option{mux=on} to enable this mode.
2852 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2853 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2854 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2855 create a multiplexer with your specified ID, and you can then configure multiple
2856 front ends to use that chardev ID for their input/output. Up to four different
2857 front ends can be connected to a single multiplexed chardev. (Without
2858 multiplexing enabled, a chardev can only be used by a single front end.)
2859 For instance you could use this to allow a single stdio chardev to be used by
2860 two serial ports and the QEMU monitor:
2862 @example
2863 -chardev stdio,mux=on,id=char0 \
2864 -mon chardev=char0,mode=readline \
2865 -serial chardev:char0 \
2866 -serial chardev:char0
2867 @end example
2869 You can have more than one multiplexer in a system configuration; for instance
2870 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2871 multiplexed between the QEMU monitor and a parallel port:
2873 @example
2874 -chardev stdio,mux=on,id=char0 \
2875 -mon chardev=char0,mode=readline \
2876 -parallel chardev:char0 \
2877 -chardev tcp,...,mux=on,id=char1 \
2878 -serial chardev:char1 \
2879 -serial chardev:char1
2880 @end example
2882 When you're using a multiplexed character device, some escape sequences are
2883 interpreted in the input. @xref{mux_keys, Keys in the character backend
2884 multiplexer}.
2886 Note that some other command line options may implicitly create multiplexed
2887 character backends; for instance @option{-serial mon:stdio} creates a
2888 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2889 and @option{-nographic} also multiplexes the console and the monitor to
2890 stdio.
2892 There is currently no support for multiplexing in the other direction
2893 (where a single QEMU front end takes input and output from multiple chardevs).
2895 Every backend supports the @option{logfile} option, which supplies the path
2896 to a file to record all data transmitted via the backend. The @option{logappend}
2897 option controls whether the log file will be truncated or appended to when
2898 opened.
2900 @end table
2902 The available backends are:
2904 @table @option
2905 @item -chardev null,id=@var{id}
2906 A void device. This device will not emit any data, and will drop any data it
2907 receives. The null backend does not take any options.
2909 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}][,tls-authz=@var{id}]
2911 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2912 unix socket will be created if @option{path} is specified. Behaviour is
2913 undefined if TCP options are specified for a unix socket.
2915 @option{server} specifies that the socket shall be a listening socket.
2917 @option{nowait} specifies that QEMU should not block waiting for a client to
2918 connect to a listening socket.
2920 @option{telnet} specifies that traffic on the socket should interpret telnet
2921 escape sequences.
2923 @option{websocket} specifies that the socket uses WebSocket protocol for
2924 communication.
2926 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2927 the remote end goes away. qemu will delay this many seconds and then attempt
2928 to reconnect. Zero disables reconnecting, and is the default.
2930 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2931 and specifies the id of the TLS credentials to use for the handshake. The
2932 credentials must be previously created with the @option{-object tls-creds}
2933 argument.
2935 @option{tls-auth} provides the ID of the QAuthZ authorization object against
2936 which the client's x509 distinguished name will be validated. This object is
2937 only resolved at time of use, so can be deleted and recreated on the fly
2938 while the chardev server is active. If missing, it will default to denying
2939 access.
2941 TCP and unix socket options are given below:
2943 @table @option
2945 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
2947 @option{host} for a listening socket specifies the local address to be bound.
2948 For a connecting socket species the remote host to connect to. @option{host} is
2949 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2951 @option{port} for a listening socket specifies the local port to be bound. For a
2952 connecting socket specifies the port on the remote host to connect to.
2953 @option{port} can be given as either a port number or a service name.
2954 @option{port} is required.
2956 @option{to} is only relevant to listening sockets. If it is specified, and
2957 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2958 to and including @option{to} until it succeeds. @option{to} must be specified
2959 as a port number.
2961 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2962 If neither is specified the socket may use either protocol.
2964 @option{nodelay} disables the Nagle algorithm.
2966 @item unix options: path=@var{path}
2968 @option{path} specifies the local path of the unix socket. @option{path} is
2969 required.
2971 @end table
2973 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
2975 Sends all traffic from the guest to a remote host over UDP.
2977 @option{host} specifies the remote host to connect to. If not specified it
2978 defaults to @code{localhost}.
2980 @option{port} specifies the port on the remote host to connect to. @option{port}
2981 is required.
2983 @option{localaddr} specifies the local address to bind to. If not specified it
2984 defaults to @code{0.0.0.0}.
2986 @option{localport} specifies the local port to bind to. If not specified any
2987 available local port will be used.
2989 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2990 If neither is specified the device may use either protocol.
2992 @item -chardev msmouse,id=@var{id}
2994 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2995 take any options.
2997 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
2999 Connect to a QEMU text console. @option{vc} may optionally be given a specific
3000 size.
3002 @option{width} and @option{height} specify the width and height respectively of
3003 the console, in pixels.
3005 @option{cols} and @option{rows} specify that the console be sized to fit a text
3006 console with the given dimensions.
3008 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
3010 Create a ring buffer with fixed size @option{size}.
3011 @var{size} must be a power of two and defaults to @code{64K}.
3013 @item -chardev file,id=@var{id},path=@var{path}
3015 Log all traffic received from the guest to a file.
3017 @option{path} specifies the path of the file to be opened. This file will be
3018 created if it does not already exist, and overwritten if it does. @option{path}
3019 is required.
3021 @item -chardev pipe,id=@var{id},path=@var{path}
3023 Create a two-way connection to the guest. The behaviour differs slightly between
3024 Windows hosts and other hosts:
3026 On Windows, a single duplex pipe will be created at
3027 @file{\\.pipe\@option{path}}.
3029 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
3030 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
3031 received by the guest. Data written by the guest can be read from
3032 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
3033 be present.
3035 @option{path} forms part of the pipe path as described above. @option{path} is
3036 required.
3038 @item -chardev console,id=@var{id}
3040 Send traffic from the guest to QEMU's standard output. @option{console} does not
3041 take any options.
3043 @option{console} is only available on Windows hosts.
3045 @item -chardev serial,id=@var{id},path=@option{path}
3047 Send traffic from the guest to a serial device on the host.
3049 On Unix hosts serial will actually accept any tty device,
3050 not only serial lines.
3052 @option{path} specifies the name of the serial device to open.
3054 @item -chardev pty,id=@var{id}
3056 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
3057 not take any options.
3059 @option{pty} is not available on Windows hosts.
3061 @item -chardev stdio,id=@var{id}[,signal=on|off]
3062 Connect to standard input and standard output of the QEMU process.
3064 @option{signal} controls if signals are enabled on the terminal, that includes
3065 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
3066 default, use @option{signal=off} to disable it.
3068 @item -chardev braille,id=@var{id}
3070 Connect to a local BrlAPI server. @option{braille} does not take any options.
3072 @item -chardev tty,id=@var{id},path=@var{path}
3074 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
3075 DragonFlyBSD hosts. It is an alias for @option{serial}.
3077 @option{path} specifies the path to the tty. @option{path} is required.
3079 @item -chardev parallel,id=@var{id},path=@var{path}
3080 @itemx -chardev parport,id=@var{id},path=@var{path}
3082 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
3084 Connect to a local parallel port.
3086 @option{path} specifies the path to the parallel port device. @option{path} is
3087 required.
3089 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
3091 @option{spicevmc} is only available when spice support is built in.
3093 @option{debug} debug level for spicevmc
3095 @option{name} name of spice channel to connect to
3097 Connect to a spice virtual machine channel, such as vdiport.
3099 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
3101 @option{spiceport} is only available when spice support is built in.
3103 @option{debug} debug level for spicevmc
3105 @option{name} name of spice port to connect to
3107 Connect to a spice port, allowing a Spice client to handle the traffic
3108 identified by a name (preferably a fqdn).
3109 ETEXI
3111 STEXI
3112 @end table
3113 ETEXI
3114 DEFHEADING()
3116 DEFHEADING(Bluetooth(R) options:)
3117 STEXI
3118 @table @option
3119 ETEXI
3121 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
3122 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
3123 "-bt hci,host[:id]\n" \
3124 " use host's HCI with the given name\n" \
3125 "-bt hci[,vlan=n]\n" \
3126 " emulate a standard HCI in virtual scatternet 'n'\n" \
3127 "-bt vhci[,vlan=n]\n" \
3128 " add host computer to virtual scatternet 'n' using VHCI\n" \
3129 "-bt device:dev[,vlan=n]\n" \
3130 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
3131 QEMU_ARCH_ALL)
3132 STEXI
3133 @item -bt hci[...]
3134 @findex -bt
3135 Defines the function of the corresponding Bluetooth HCI. -bt options
3136 are matched with the HCIs present in the chosen machine type. For
3137 example when emulating a machine with only one HCI built into it, only
3138 the first @code{-bt hci[...]} option is valid and defines the HCI's
3139 logic. The Transport Layer is decided by the machine type. Currently
3140 the machines @code{n800} and @code{n810} have one HCI and all other
3141 machines have none.
3143 Note: This option and the whole bluetooth subsystem is considered as deprecated.
3144 If you still use it, please send a mail to @email{qemu-devel@@nongnu.org} where
3145 you describe your usecase.
3147 @anchor{bt-hcis}
3148 The following three types are recognized:
3150 @table @option
3151 @item -bt hci,null
3152 (default) The corresponding Bluetooth HCI assumes no internal logic
3153 and will not respond to any HCI commands or emit events.
3155 @item -bt hci,host[:@var{id}]
3156 (@code{bluez} only) The corresponding HCI passes commands / events
3157 to / from the physical HCI identified by the name @var{id} (default:
3158 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
3159 capable systems like Linux.
3161 @item -bt hci[,vlan=@var{n}]
3162 Add a virtual, standard HCI that will participate in the Bluetooth
3163 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
3164 VLANs, devices inside a bluetooth network @var{n} can only communicate
3165 with other devices in the same network (scatternet).
3166 @end table
3168 @item -bt vhci[,vlan=@var{n}]
3169 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
3170 to the host bluetooth stack instead of to the emulated target. This
3171 allows the host and target machines to participate in a common scatternet
3172 and communicate. Requires the Linux @code{vhci} driver installed. Can
3173 be used as following:
3175 @example
3176 @value{qemu_system} [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
3177 @end example
3179 @item -bt device:@var{dev}[,vlan=@var{n}]
3180 Emulate a bluetooth device @var{dev} and place it in network @var{n}
3181 (default @code{0}). QEMU can only emulate one type of bluetooth devices
3182 currently:
3184 @table @option
3185 @item keyboard
3186 Virtual wireless keyboard implementing the HIDP bluetooth profile.
3187 @end table
3188 ETEXI
3190 STEXI
3191 @end table
3192 ETEXI
3193 DEFHEADING()
3195 #ifdef CONFIG_TPM
3196 DEFHEADING(TPM device options:)
3198 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
3199 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3200 " use path to provide path to a character device; default is /dev/tpm0\n"
3201 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3202 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3203 "-tpmdev emulator,id=id,chardev=dev\n"
3204 " configure the TPM device using chardev backend\n",
3205 QEMU_ARCH_ALL)
3206 STEXI
3208 The general form of a TPM device option is:
3209 @table @option
3211 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
3212 @findex -tpmdev
3214 The specific backend type will determine the applicable options.
3215 The @code{-tpmdev} option creates the TPM backend and requires a
3216 @code{-device} option that specifies the TPM frontend interface model.
3218 Use @code{-tpmdev help} to print all available TPM backend types.
3220 @end table
3222 The available backends are:
3224 @table @option
3226 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
3228 (Linux-host only) Enable access to the host's TPM using the passthrough
3229 driver.
3231 @option{path} specifies the path to the host's TPM device, i.e., on
3232 a Linux host this would be @code{/dev/tpm0}.
3233 @option{path} is optional and by default @code{/dev/tpm0} is used.
3235 @option{cancel-path} specifies the path to the host TPM device's sysfs
3236 entry allowing for cancellation of an ongoing TPM command.
3237 @option{cancel-path} is optional and by default QEMU will search for the
3238 sysfs entry to use.
3240 Some notes about using the host's TPM with the passthrough driver:
3242 The TPM device accessed by the passthrough driver must not be
3243 used by any other application on the host.
3245 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
3246 the VM's firmware (BIOS/UEFI) will not be able to initialize the
3247 TPM again and may therefore not show a TPM-specific menu that would
3248 otherwise allow the user to configure the TPM, e.g., allow the user to
3249 enable/disable or activate/deactivate the TPM.
3250 Further, if TPM ownership is released from within a VM then the host's TPM
3251 will get disabled and deactivated. To enable and activate the
3252 TPM again afterwards, the host has to be rebooted and the user is
3253 required to enter the firmware's menu to enable and activate the TPM.
3254 If the TPM is left disabled and/or deactivated most TPM commands will fail.
3256 To create a passthrough TPM use the following two options:
3257 @example
3258 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
3259 @end example
3260 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
3261 @code{tpmdev=tpm0} in the device option.
3263 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
3265 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
3266 chardev backend.
3268 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
3270 To create a TPM emulator backend device with chardev socket backend:
3271 @example
3273 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
3275 @end example
3277 ETEXI
3279 STEXI
3280 @end table
3281 ETEXI
3282 DEFHEADING()
3284 #endif
3286 DEFHEADING(Linux/Multiboot boot specific:)
3287 STEXI
3289 When using these options, you can use a given Linux or Multiboot
3290 kernel without installing it in the disk image. It can be useful
3291 for easier testing of various kernels.
3293 @table @option
3294 ETEXI
3296 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3297 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3298 STEXI
3299 @item -kernel @var{bzImage}
3300 @findex -kernel
3301 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3302 or in multiboot format.
3303 ETEXI
3305 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3306 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3307 STEXI
3308 @item -append @var{cmdline}
3309 @findex -append
3310 Use @var{cmdline} as kernel command line
3311 ETEXI
3313 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3314 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3315 STEXI
3316 @item -initrd @var{file}
3317 @findex -initrd
3318 Use @var{file} as initial ram disk.
3320 @item -initrd "@var{file1} arg=foo,@var{file2}"
3322 This syntax is only available with multiboot.
3324 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3325 first module.
3326 ETEXI
3328 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3329 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3330 STEXI
3331 @item -dtb @var{file}
3332 @findex -dtb
3333 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3334 on boot.
3335 ETEXI
3337 STEXI
3338 @end table
3339 ETEXI
3340 DEFHEADING()
3342 DEFHEADING(Debug/Expert options:)
3343 STEXI
3344 @table @option
3345 ETEXI
3347 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3348 "-fw_cfg [name=]<name>,file=<file>\n"
3349 " add named fw_cfg entry with contents from file\n"
3350 "-fw_cfg [name=]<name>,string=<str>\n"
3351 " add named fw_cfg entry with contents from string\n",
3352 QEMU_ARCH_ALL)
3353 STEXI
3355 @item -fw_cfg [name=]@var{name},file=@var{file}
3356 @findex -fw_cfg
3357 Add named fw_cfg entry with contents from file @var{file}.
3359 @item -fw_cfg [name=]@var{name},string=@var{str}
3360 Add named fw_cfg entry with contents from string @var{str}.
3362 The terminating NUL character of the contents of @var{str} will not be
3363 included as part of the fw_cfg item data. To insert contents with
3364 embedded NUL characters, you have to use the @var{file} parameter.
3366 The fw_cfg entries are passed by QEMU through to the guest.
3368 Example:
3369 @example
3370 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3371 @end example
3372 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3373 from ./my_blob.bin.
3375 ETEXI
3377 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3378 "-serial dev redirect the serial port to char device 'dev'\n",
3379 QEMU_ARCH_ALL)
3380 STEXI
3381 @item -serial @var{dev}
3382 @findex -serial
3383 Redirect the virtual serial port to host character device
3384 @var{dev}. The default device is @code{vc} in graphical mode and
3385 @code{stdio} in non graphical mode.
3387 This option can be used several times to simulate up to 4 serial
3388 ports.
3390 Use @code{-serial none} to disable all serial ports.
3392 Available character devices are:
3393 @table @option
3394 @item vc[:@var{W}x@var{H}]
3395 Virtual console. Optionally, a width and height can be given in pixel with
3396 @example
3397 vc:800x600
3398 @end example
3399 It is also possible to specify width or height in characters:
3400 @example
3401 vc:80Cx24C
3402 @end example
3403 @item pty
3404 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3405 @item none
3406 No device is allocated.
3407 @item null
3408 void device
3409 @item chardev:@var{id}
3410 Use a named character device defined with the @code{-chardev} option.
3411 @item /dev/XXX
3412 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3413 parameters are set according to the emulated ones.
3414 @item /dev/parport@var{N}
3415 [Linux only, parallel port only] Use host parallel port
3416 @var{N}. Currently SPP and EPP parallel port features can be used.
3417 @item file:@var{filename}
3418 Write output to @var{filename}. No character can be read.
3419 @item stdio
3420 [Unix only] standard input/output
3421 @item pipe:@var{filename}
3422 name pipe @var{filename}
3423 @item COM@var{n}
3424 [Windows only] Use host serial port @var{n}
3425 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3426 This implements UDP Net Console.
3427 When @var{remote_host} or @var{src_ip} are not specified
3428 they default to @code{0.0.0.0}.
3429 When not using a specified @var{src_port} a random port is automatically chosen.
3431 If you just want a simple readonly console you can use @code{netcat} or
3432 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3433 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3434 will appear in the netconsole session.
3436 If you plan to send characters back via netconsole or you want to stop
3437 and start QEMU a lot of times, you should have QEMU use the same
3438 source port each time by using something like @code{-serial
3439 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3440 version of netcat which can listen to a TCP port and send and receive
3441 characters via udp. If you have a patched version of netcat which
3442 activates telnet remote echo and single char transfer, then you can
3443 use the following options to set up a netcat redirector to allow
3444 telnet on port 5555 to access the QEMU port.
3445 @table @code
3446 @item QEMU Options:
3447 -serial udp::4555@@:4556
3448 @item netcat options:
3449 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3450 @item telnet options:
3451 localhost 5555
3452 @end table
3454 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3455 The TCP Net Console has two modes of operation. It can send the serial
3456 I/O to a location or wait for a connection from a location. By default
3457 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3458 the @var{server} option QEMU will wait for a client socket application
3459 to connect to the port before continuing, unless the @code{nowait}
3460 option was specified. The @code{nodelay} option disables the Nagle buffering
3461 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3462 set, if the connection goes down it will attempt to reconnect at the
3463 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3464 one TCP connection at a time is accepted. You can use @code{telnet} to
3465 connect to the corresponding character device.
3466 @table @code
3467 @item Example to send tcp console to 192.168.0.2 port 4444
3468 -serial tcp:192.168.0.2:4444
3469 @item Example to listen and wait on port 4444 for connection
3470 -serial tcp::4444,server
3471 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3472 -serial tcp:192.168.0.100:4444,server,nowait
3473 @end table
3475 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3476 The telnet protocol is used instead of raw tcp sockets. The options
3477 work the same as if you had specified @code{-serial tcp}. The
3478 difference is that the port acts like a telnet server or client using
3479 telnet option negotiation. This will also allow you to send the
3480 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3481 sequence. Typically in unix telnet you do it with Control-] and then
3482 type "send break" followed by pressing the enter key.
3484 @item websocket:@var{host}:@var{port},server[,nowait][,nodelay]
3485 The WebSocket protocol is used instead of raw tcp socket. The port acts as
3486 a WebSocket server. Client mode is not supported.
3488 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3489 A unix domain socket is used instead of a tcp socket. The option works the
3490 same as if you had specified @code{-serial tcp} except the unix domain socket
3491 @var{path} is used for connections.
3493 @item mon:@var{dev_string}
3494 This is a special option to allow the monitor to be multiplexed onto
3495 another serial port. The monitor is accessed with key sequence of
3496 @key{Control-a} and then pressing @key{c}.
3497 @var{dev_string} should be any one of the serial devices specified
3498 above. An example to multiplex the monitor onto a telnet server
3499 listening on port 4444 would be:
3500 @table @code
3501 @item -serial mon:telnet::4444,server,nowait
3502 @end table
3503 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3504 QEMU any more but will be passed to the guest instead.
3506 @item braille
3507 Braille device. This will use BrlAPI to display the braille output on a real
3508 or fake device.
3510 @item msmouse
3511 Three button serial mouse. Configure the guest to use Microsoft protocol.
3512 @end table
3513 ETEXI
3515 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3516 "-parallel dev redirect the parallel port to char device 'dev'\n",
3517 QEMU_ARCH_ALL)
3518 STEXI
3519 @item -parallel @var{dev}
3520 @findex -parallel
3521 Redirect the virtual parallel port to host device @var{dev} (same
3522 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3523 be used to use hardware devices connected on the corresponding host
3524 parallel port.
3526 This option can be used several times to simulate up to 3 parallel
3527 ports.
3529 Use @code{-parallel none} to disable all parallel ports.
3530 ETEXI
3532 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3533 "-monitor dev redirect the monitor to char device 'dev'\n",
3534 QEMU_ARCH_ALL)
3535 STEXI
3536 @item -monitor @var{dev}
3537 @findex -monitor
3538 Redirect the monitor to host device @var{dev} (same devices as the
3539 serial port).
3540 The default device is @code{vc} in graphical mode and @code{stdio} in
3541 non graphical mode.
3542 Use @code{-monitor none} to disable the default monitor.
3543 ETEXI
3544 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3545 "-qmp dev like -monitor but opens in 'control' mode\n",
3546 QEMU_ARCH_ALL)
3547 STEXI
3548 @item -qmp @var{dev}
3549 @findex -qmp
3550 Like -monitor but opens in 'control' mode.
3551 ETEXI
3552 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3553 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3554 QEMU_ARCH_ALL)
3555 STEXI
3556 @item -qmp-pretty @var{dev}
3557 @findex -qmp-pretty
3558 Like -qmp but uses pretty JSON formatting.
3559 ETEXI
3561 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3562 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3563 STEXI
3564 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3565 @findex -mon
3566 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3567 easing human reading and debugging.
3568 ETEXI
3570 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3571 "-debugcon dev redirect the debug console to char device 'dev'\n",
3572 QEMU_ARCH_ALL)
3573 STEXI
3574 @item -debugcon @var{dev}
3575 @findex -debugcon
3576 Redirect the debug console to host device @var{dev} (same devices as the
3577 serial port). The debug console is an I/O port which is typically port
3578 0xe9; writing to that I/O port sends output to this device.
3579 The default device is @code{vc} in graphical mode and @code{stdio} in
3580 non graphical mode.
3581 ETEXI
3583 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3584 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3585 STEXI
3586 @item -pidfile @var{file}
3587 @findex -pidfile
3588 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3589 from a script.
3590 ETEXI
3592 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3593 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3594 STEXI
3595 @item -singlestep
3596 @findex -singlestep
3597 Run the emulation in single step mode.
3598 ETEXI
3600 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3601 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3602 QEMU_ARCH_ALL)
3603 STEXI
3604 @item --preconfig
3605 @findex --preconfig
3606 Pause QEMU for interactive configuration before the machine is created,
3607 which allows querying and configuring properties that will affect
3608 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3609 the preconfig state and move to the next state (i.e. run guest if -S
3610 isn't used or pause the second time if -S is used). This option is
3611 experimental.
3612 ETEXI
3614 DEF("S", 0, QEMU_OPTION_S, \
3615 "-S freeze CPU at startup (use 'c' to start execution)\n",
3616 QEMU_ARCH_ALL)
3617 STEXI
3618 @item -S
3619 @findex -S
3620 Do not start CPU at startup (you must type 'c' in the monitor).
3621 ETEXI
3623 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3624 "-realtime [mlock=on|off]\n"
3625 " run qemu with realtime features\n"
3626 " mlock=on|off controls mlock support (default: on)\n",
3627 QEMU_ARCH_ALL)
3628 STEXI
3629 @item -realtime mlock=on|off
3630 @findex -realtime
3631 Run qemu with realtime features.
3632 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3633 (enabled by default).
3634 ETEXI
3636 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3637 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3638 " run qemu with overcommit hints\n"
3639 " mem-lock=on|off controls memory lock support (default: off)\n"
3640 " cpu-pm=on|off controls cpu power management (default: off)\n",
3641 QEMU_ARCH_ALL)
3642 STEXI
3643 @item -overcommit mem-lock=on|off
3644 @item -overcommit cpu-pm=on|off
3645 @findex -overcommit
3646 Run qemu with hints about host resource overcommit. The default is
3647 to assume that host overcommits all resources.
3649 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3650 by default). This works when host memory is not overcommitted and reduces the
3651 worst-case latency for guest. This is equivalent to @option{realtime}.
3653 Guest ability to manage power state of host cpus (increasing latency for other
3654 processes on the same host cpu, but decreasing latency for guest) can be
3655 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3656 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3657 utilization will be incorrect, not taking into account guest idle time.
3658 ETEXI
3660 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3661 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3662 STEXI
3663 @item -gdb @var{dev}
3664 @findex -gdb
3665 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3666 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3667 stdio are reasonable use case. The latter is allowing to start QEMU from
3668 within gdb and establish the connection via a pipe:
3669 @example
3670 (gdb) target remote | exec @value{qemu_system} -gdb stdio ...
3671 @end example
3672 ETEXI
3674 DEF("s", 0, QEMU_OPTION_s, \
3675 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3676 QEMU_ARCH_ALL)
3677 STEXI
3678 @item -s
3679 @findex -s
3680 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3681 (@pxref{gdb_usage}).
3682 ETEXI
3684 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3685 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3686 QEMU_ARCH_ALL)
3687 STEXI
3688 @item -d @var{item1}[,...]
3689 @findex -d
3690 Enable logging of specified items. Use '-d help' for a list of log items.
3691 ETEXI
3693 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3694 "-D logfile output log to logfile (default stderr)\n",
3695 QEMU_ARCH_ALL)
3696 STEXI
3697 @item -D @var{logfile}
3698 @findex -D
3699 Output log in @var{logfile} instead of to stderr
3700 ETEXI
3702 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3703 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3704 QEMU_ARCH_ALL)
3705 STEXI
3706 @item -dfilter @var{range1}[,...]
3707 @findex -dfilter
3708 Filter debug output to that relevant to a range of target addresses. The filter
3709 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3710 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3711 addresses and sizes required. For example:
3712 @example
3713 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3714 @end example
3715 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3716 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3717 block starting at 0xffffffc00005f000.
3718 ETEXI
3720 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3721 "-seed number seed the pseudo-random number generator\n",
3722 QEMU_ARCH_ALL)
3723 STEXI
3724 @item -seed @var{number}
3725 @findex -seed
3726 Force the guest to use a deterministic pseudo-random number generator, seeded
3727 with @var{number}. This does not affect crypto routines within the host.
3728 ETEXI
3730 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3731 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3732 QEMU_ARCH_ALL)
3733 STEXI
3734 @item -L @var{path}
3735 @findex -L
3736 Set the directory for the BIOS, VGA BIOS and keymaps.
3738 To list all the data directories, use @code{-L help}.
3739 ETEXI
3741 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3742 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3743 STEXI
3744 @item -bios @var{file}
3745 @findex -bios
3746 Set the filename for the BIOS.
3747 ETEXI
3749 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3750 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3751 STEXI
3752 @item -enable-kvm
3753 @findex -enable-kvm
3754 Enable KVM full virtualization support. This option is only available
3755 if KVM support is enabled when compiling.
3756 ETEXI
3758 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3759 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3760 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3761 "-xen-attach attach to existing xen domain\n"
3762 " libxl will use this when starting QEMU\n",
3763 QEMU_ARCH_ALL)
3764 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3765 "-xen-domid-restrict restrict set of available xen operations\n"
3766 " to specified domain id. (Does not affect\n"
3767 " xenpv machine type).\n",
3768 QEMU_ARCH_ALL)
3769 STEXI
3770 @item -xen-domid @var{id}
3771 @findex -xen-domid
3772 Specify xen guest domain @var{id} (XEN only).
3773 @item -xen-attach
3774 @findex -xen-attach
3775 Attach to existing xen domain.
3776 libxl will use this when starting QEMU (XEN only).
3777 @findex -xen-domid-restrict
3778 Restrict set of available xen operations to specified domain id (XEN only).
3779 ETEXI
3781 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3782 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3783 STEXI
3784 @item -no-reboot
3785 @findex -no-reboot
3786 Exit instead of rebooting.
3787 ETEXI
3789 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3790 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3791 STEXI
3792 @item -no-shutdown
3793 @findex -no-shutdown
3794 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3795 This allows for instance switching to monitor to commit changes to the
3796 disk image.
3797 ETEXI
3799 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3800 "-loadvm [tag|id]\n" \
3801 " start right away with a saved state (loadvm in monitor)\n",
3802 QEMU_ARCH_ALL)
3803 STEXI
3804 @item -loadvm @var{file}
3805 @findex -loadvm
3806 Start right away with a saved state (@code{loadvm} in monitor)
3807 ETEXI
3809 #ifndef _WIN32
3810 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3811 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3812 #endif
3813 STEXI
3814 @item -daemonize
3815 @findex -daemonize
3816 Daemonize the QEMU process after initialization. QEMU will not detach from
3817 standard IO until it is ready to receive connections on any of its devices.
3818 This option is a useful way for external programs to launch QEMU without having
3819 to cope with initialization race conditions.
3820 ETEXI
3822 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3823 "-option-rom rom load a file, rom, into the option ROM space\n",
3824 QEMU_ARCH_ALL)
3825 STEXI
3826 @item -option-rom @var{file}
3827 @findex -option-rom
3828 Load the contents of @var{file} as an option ROM.
3829 This option is useful to load things like EtherBoot.
3830 ETEXI
3832 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3833 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3834 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3835 QEMU_ARCH_ALL)
3837 STEXI
3839 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3840 @findex -rtc
3841 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3842 UTC or local time, respectively. @code{localtime} is required for correct date in
3843 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3844 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3846 By default the RTC is driven by the host system time. This allows using of the
3847 RTC as accurate reference clock inside the guest, specifically if the host
3848 time is smoothly following an accurate external reference clock, e.g. via NTP.
3849 If you want to isolate the guest time from the host, you can set @option{clock}
3850 to @code{rt} instead, which provides a host monotonic clock if host support it.
3851 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3852 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3853 icount mode in order to preserve determinism; however, note that in icount mode
3854 the speed of the virtual clock is variable and can in general differ from the
3855 host clock.
3857 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3858 specifically with Windows' ACPI HAL. This option will try to figure out how
3859 many timer interrupts were not processed by the Windows guest and will
3860 re-inject them.
3861 ETEXI
3863 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3864 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3865 " enable virtual instruction counter with 2^N clock ticks per\n" \
3866 " instruction, enable aligning the host and virtual clocks\n" \
3867 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3868 STEXI
3869 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3870 @findex -icount
3871 Enable virtual instruction counter. The virtual cpu will execute one
3872 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3873 then the virtual cpu speed will be automatically adjusted to keep virtual
3874 time within a few seconds of real time.
3876 When the virtual cpu is sleeping, the virtual time will advance at default
3877 speed unless @option{sleep=on|off} is specified.
3878 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3879 instantly whenever the virtual cpu goes to sleep mode and will not advance
3880 if no timer is enabled. This behavior give deterministic execution times from
3881 the guest point of view.
3883 Note that while this option can give deterministic behavior, it does not
3884 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3885 order cores with complex cache hierarchies. The number of instructions
3886 executed often has little or no correlation with actual performance.
3888 @option{align=on} will activate the delay algorithm which will try
3889 to synchronise the host clock and the virtual clock. The goal is to
3890 have a guest running at the real frequency imposed by the shift option.
3891 Whenever the guest clock is behind the host clock and if
3892 @option{align=on} is specified then we print a message to the user
3893 to inform about the delay.
3894 Currently this option does not work when @option{shift} is @code{auto}.
3895 Note: The sync algorithm will work for those shift values for which
3896 the guest clock runs ahead of the host clock. Typically this happens
3897 when the shift value is high (how high depends on the host machine).
3899 When @option{rr} option is specified deterministic record/replay is enabled.
3900 Replay log is written into @var{filename} file in record mode and
3901 read from this file in replay mode.
3903 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3904 at the start of execution recording. In replay mode this option is used
3905 to load the initial VM state.
3906 ETEXI
3908 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3909 "-watchdog model\n" \
3910 " enable virtual hardware watchdog [default=none]\n",
3911 QEMU_ARCH_ALL)
3912 STEXI
3913 @item -watchdog @var{model}
3914 @findex -watchdog
3915 Create a virtual hardware watchdog device. Once enabled (by a guest
3916 action), the watchdog must be periodically polled by an agent inside
3917 the guest or else the guest will be restarted. Choose a model for
3918 which your guest has drivers.
3920 The @var{model} is the model of hardware watchdog to emulate. Use
3921 @code{-watchdog help} to list available hardware models. Only one
3922 watchdog can be enabled for a guest.
3924 The following models may be available:
3925 @table @option
3926 @item ib700
3927 iBASE 700 is a very simple ISA watchdog with a single timer.
3928 @item i6300esb
3929 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3930 dual-timer watchdog.
3931 @item diag288
3932 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3933 (currently KVM only).
3934 @end table
3935 ETEXI
3937 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3938 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3939 " action when watchdog fires [default=reset]\n",
3940 QEMU_ARCH_ALL)
3941 STEXI
3942 @item -watchdog-action @var{action}
3943 @findex -watchdog-action
3945 The @var{action} controls what QEMU will do when the watchdog timer
3946 expires.
3947 The default is
3948 @code{reset} (forcefully reset the guest).
3949 Other possible actions are:
3950 @code{shutdown} (attempt to gracefully shutdown the guest),
3951 @code{poweroff} (forcefully poweroff the guest),
3952 @code{inject-nmi} (inject a NMI into the guest),
3953 @code{pause} (pause the guest),
3954 @code{debug} (print a debug message and continue), or
3955 @code{none} (do nothing).
3957 Note that the @code{shutdown} action requires that the guest responds
3958 to ACPI signals, which it may not be able to do in the sort of
3959 situations where the watchdog would have expired, and thus
3960 @code{-watchdog-action shutdown} is not recommended for production use.
3962 Examples:
3964 @table @code
3965 @item -watchdog i6300esb -watchdog-action pause
3966 @itemx -watchdog ib700
3967 @end table
3968 ETEXI
3970 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3971 "-echr chr set terminal escape character instead of ctrl-a\n",
3972 QEMU_ARCH_ALL)
3973 STEXI
3975 @item -echr @var{numeric_ascii_value}
3976 @findex -echr
3977 Change the escape character used for switching to the monitor when using
3978 monitor and serial sharing. The default is @code{0x01} when using the
3979 @code{-nographic} option. @code{0x01} is equal to pressing
3980 @code{Control-a}. You can select a different character from the ascii
3981 control keys where 1 through 26 map to Control-a through Control-z. For
3982 instance you could use the either of the following to change the escape
3983 character to Control-t.
3984 @table @code
3985 @item -echr 0x14
3986 @itemx -echr 20
3987 @end table
3988 ETEXI
3990 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3991 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3992 STEXI
3993 @item -show-cursor
3994 @findex -show-cursor
3995 Show cursor.
3996 ETEXI
3998 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3999 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
4000 STEXI
4001 @item -tb-size @var{n}
4002 @findex -tb-size
4003 Set TB size.
4004 ETEXI
4006 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
4007 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
4008 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
4009 "-incoming unix:socketpath\n" \
4010 " prepare for incoming migration, listen on\n" \
4011 " specified protocol and socket address\n" \
4012 "-incoming fd:fd\n" \
4013 "-incoming exec:cmdline\n" \
4014 " accept incoming migration on given file descriptor\n" \
4015 " or from given external command\n" \
4016 "-incoming defer\n" \
4017 " wait for the URI to be specified via migrate_incoming\n",
4018 QEMU_ARCH_ALL)
4019 STEXI
4020 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
4021 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
4022 @findex -incoming
4023 Prepare for incoming migration, listen on a given tcp port.
4025 @item -incoming unix:@var{socketpath}
4026 Prepare for incoming migration, listen on a given unix socket.
4028 @item -incoming fd:@var{fd}
4029 Accept incoming migration from a given filedescriptor.
4031 @item -incoming exec:@var{cmdline}
4032 Accept incoming migration as an output from specified external command.
4034 @item -incoming defer
4035 Wait for the URI to be specified via migrate_incoming. The monitor can
4036 be used to change settings (such as migration parameters) prior to issuing
4037 the migrate_incoming to allow the migration to begin.
4038 ETEXI
4040 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
4041 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
4042 STEXI
4043 @item -only-migratable
4044 @findex -only-migratable
4045 Only allow migratable devices. Devices will not be allowed to enter an
4046 unmigratable state.
4047 ETEXI
4049 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
4050 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
4051 STEXI
4052 @item -nodefaults
4053 @findex -nodefaults
4054 Don't create default devices. Normally, QEMU sets the default devices like serial
4055 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
4056 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
4057 default devices.
4058 ETEXI
4060 #ifndef _WIN32
4061 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
4062 "-chroot dir chroot to dir just before starting the VM\n",
4063 QEMU_ARCH_ALL)
4064 #endif
4065 STEXI
4066 @item -chroot @var{dir}
4067 @findex -chroot
4068 Immediately before starting guest execution, chroot to the specified
4069 directory. Especially useful in combination with -runas.
4070 ETEXI
4072 #ifndef _WIN32
4073 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4074 "-runas user change to user id user just before starting the VM\n" \
4075 " user can be numeric uid:gid instead\n",
4076 QEMU_ARCH_ALL)
4077 #endif
4078 STEXI
4079 @item -runas @var{user}
4080 @findex -runas
4081 Immediately before starting guest execution, drop root privileges, switching
4082 to the specified user.
4083 ETEXI
4085 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4086 "-prom-env variable=value\n"
4087 " set OpenBIOS nvram variables\n",
4088 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4089 STEXI
4090 @item -prom-env @var{variable}=@var{value}
4091 @findex -prom-env
4092 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
4093 ETEXI
4094 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4095 "-semihosting semihosting mode\n",
4096 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4097 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4098 STEXI
4099 @item -semihosting
4100 @findex -semihosting
4101 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).
4102 ETEXI
4103 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4104 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4105 " semihosting configuration\n",
4106 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4107 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4108 STEXI
4109 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]
4110 @findex -semihosting-config
4111 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).
4112 @table @option
4113 @item target=@code{native|gdb|auto}
4114 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
4115 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
4116 during debug sessions and @code{native} otherwise.
4117 @item chardev=@var{str1}
4118 Send the output to a chardev backend output for native or auto output when not in gdb
4119 @item arg=@var{str1},arg=@var{str2},...
4120 Allows the user to pass input arguments, and can be used multiple times to build
4121 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
4122 command line is still supported for backward compatibility. If both the
4123 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
4124 specified, the former is passed to semihosting as it always takes precedence.
4125 @end table
4126 ETEXI
4127 DEF("old-param", 0, QEMU_OPTION_old_param,
4128 "-old-param old param mode\n", QEMU_ARCH_ARM)
4129 STEXI
4130 @item -old-param
4131 @findex -old-param (ARM)
4132 Old param mode (ARM only).
4133 ETEXI
4135 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4136 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4137 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4138 " Enable seccomp mode 2 system call filter (default 'off').\n" \
4139 " use 'obsolete' to allow obsolete system calls that are provided\n" \
4140 " by the kernel, but typically no longer used by modern\n" \
4141 " C library implementations.\n" \
4142 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
4143 " its privileges by blacklisting all set*uid|gid system calls.\n" \
4144 " The value 'children' will deny set*uid|gid system calls for\n" \
4145 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4146 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
4147 " blacklisting *fork and execve\n" \
4148 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
4149 QEMU_ARCH_ALL)
4150 STEXI
4151 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
4152 @findex -sandbox
4153 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
4154 disable it. The default is 'off'.
4155 @table @option
4156 @item obsolete=@var{string}
4157 Enable Obsolete system calls
4158 @item elevateprivileges=@var{string}
4159 Disable set*uid|gid system calls
4160 @item spawn=@var{string}
4161 Disable *fork and execve
4162 @item resourcecontrol=@var{string}
4163 Disable process affinity and schedular priority
4164 @end table
4165 ETEXI
4167 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4168 "-readconfig <file>\n", QEMU_ARCH_ALL)
4169 STEXI
4170 @item -readconfig @var{file}
4171 @findex -readconfig
4172 Read device configuration from @var{file}. This approach is useful when you want to spawn
4173 QEMU process with many command line options but you don't want to exceed the command line
4174 character limit.
4175 ETEXI
4176 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
4177 "-writeconfig <file>\n"
4178 " read/write config file\n", QEMU_ARCH_ALL)
4179 STEXI
4180 @item -writeconfig @var{file}
4181 @findex -writeconfig
4182 Write device configuration to @var{file}. The @var{file} can be either filename to save
4183 command line and device configuration into file or dash @code{-}) character to print the
4184 output to stdout. This can be later used as input file for @code{-readconfig} option.
4185 ETEXI
4187 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
4188 "-no-user-config\n"
4189 " do not load default user-provided config files at startup\n",
4190 QEMU_ARCH_ALL)
4191 STEXI
4192 @item -no-user-config
4193 @findex -no-user-config
4194 The @code{-no-user-config} option makes QEMU not load any of the user-provided
4195 config files on @var{sysconfdir}.
4196 ETEXI
4198 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4199 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4200 " specify tracing options\n",
4201 QEMU_ARCH_ALL)
4202 STEXI
4203 HXCOMM This line is not accurate, as some sub-options are backend-specific but
4204 HXCOMM HX does not support conditional compilation of text.
4205 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
4206 @findex -trace
4207 @include qemu-option-trace.texi
4208 ETEXI
4209 DEF("plugin", HAS_ARG, QEMU_OPTION_plugin,
4210 "-plugin [file=]<file>[,arg=<string>]\n"
4211 " load a plugin\n",
4212 QEMU_ARCH_ALL)
4213 STEXI
4214 @item -plugin file=@var{file}[,arg=@var{string}]
4215 @findex -plugin
4217 Load a plugin.
4219 @table @option
4220 @item file=@var{file}
4221 Load the given plugin from a shared library file.
4222 @item arg=@var{string}
4223 Argument string passed to the plugin. (Can be given multiple times.)
4224 @end table
4225 ETEXI
4227 HXCOMM Internal use
4228 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4229 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4231 #ifdef __linux__
4232 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
4233 "-enable-fips enable FIPS 140-2 compliance\n",
4234 QEMU_ARCH_ALL)
4235 #endif
4236 STEXI
4237 @item -enable-fips
4238 @findex -enable-fips
4239 Enable FIPS 140-2 compliance mode.
4240 ETEXI
4242 HXCOMM Deprecated by -accel tcg
4243 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
4245 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
4246 "-msg timestamp[=on|off]\n"
4247 " change the format of messages\n"
4248 " on|off controls leading timestamps (default:on)\n",
4249 QEMU_ARCH_ALL)
4250 STEXI
4251 @item -msg timestamp[=on|off]
4252 @findex -msg
4253 prepend a timestamp to each log message.(default:on)
4254 ETEXI
4256 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
4257 "-dump-vmstate <file>\n"
4258 " Output vmstate information in JSON format to file.\n"
4259 " Use the scripts/vmstate-static-checker.py file to\n"
4260 " check for possible regressions in migration code\n"
4261 " by comparing two such vmstate dumps.\n",
4262 QEMU_ARCH_ALL)
4263 STEXI
4264 @item -dump-vmstate @var{file}
4265 @findex -dump-vmstate
4266 Dump json-encoded vmstate information for current machine type to file
4267 in @var{file}
4268 ETEXI
4270 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
4271 "-enable-sync-profile\n"
4272 " enable synchronization profiling\n",
4273 QEMU_ARCH_ALL)
4274 STEXI
4275 @item -enable-sync-profile
4276 @findex -enable-sync-profile
4277 Enable synchronization profiling.
4278 ETEXI
4280 STEXI
4281 @end table
4282 ETEXI
4283 DEFHEADING()
4285 DEFHEADING(Generic object creation:)
4286 STEXI
4287 @table @option
4288 ETEXI
4290 DEF("object", HAS_ARG, QEMU_OPTION_object,
4291 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4292 " create a new object of type TYPENAME setting properties\n"
4293 " in the order they are specified. Note that the 'id'\n"
4294 " property must be set. These objects are placed in the\n"
4295 " '/objects' path.\n",
4296 QEMU_ARCH_ALL)
4297 STEXI
4298 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
4299 @findex -object
4300 Create a new object of type @var{typename} setting properties
4301 in the order they are specified. Note that the 'id'
4302 property must be set. These objects are placed in the
4303 '/objects' path.
4305 @table @option
4307 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
4309 Creates a memory file backend object, which can be used to back
4310 the guest RAM with huge pages.
4312 The @option{id} parameter is a unique ID that will be used to reference this
4313 memory region when configuring the @option{-numa} argument.
4315 The @option{size} option provides the size of the memory region, and accepts
4316 common suffixes, eg @option{500M}.
4318 The @option{mem-path} provides the path to either a shared memory or huge page
4319 filesystem mount.
4321 The @option{share} boolean option determines whether the memory
4322 region is marked as private to QEMU, or shared. The latter allows
4323 a co-operating external process to access the QEMU memory region.
4325 The @option{share} is also required for pvrdma devices due to
4326 limitations in the RDMA API provided by Linux.
4328 Setting share=on might affect the ability to configure NUMA
4329 bindings for the memory backend under some circumstances, see
4330 Documentation/vm/numa_memory_policy.txt on the Linux kernel
4331 source tree for additional details.
4333 Setting the @option{discard-data} boolean option to @var{on}
4334 indicates that file contents can be destroyed when QEMU exits,
4335 to avoid unnecessarily flushing data to the backing file. Note
4336 that @option{discard-data} is only an optimization, and QEMU
4337 might not discard file contents if it aborts unexpectedly or is
4338 terminated using SIGKILL.
4340 The @option{merge} boolean option enables memory merge, also known as
4341 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
4342 memory deduplication.
4344 Setting the @option{dump} boolean option to @var{off} excludes the memory from
4345 core dumps. This feature is also known as MADV_DONTDUMP.
4347 The @option{prealloc} boolean option enables memory preallocation.
4349 The @option{host-nodes} option binds the memory range to a list of NUMA host
4350 nodes.
4352 The @option{policy} option sets the NUMA policy to one of the following values:
4354 @table @option
4355 @item @var{default}
4356 default host policy
4358 @item @var{preferred}
4359 prefer the given host node list for allocation
4361 @item @var{bind}
4362 restrict memory allocation to the given host node list
4364 @item @var{interleave}
4365 interleave memory allocations across the given host node list
4366 @end table
4368 The @option{align} option specifies the base address alignment when
4369 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
4370 @option{2M}. Some backend store specified by @option{mem-path}
4371 requires an alignment different than the default one used by QEMU, eg
4372 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4373 such cases, users can specify the required alignment via this option.
4375 The @option{pmem} option specifies whether the backing file specified
4376 by @option{mem-path} is in host persistent memory that can be accessed
4377 using the SNIA NVM programming model (e.g. Intel NVDIMM).
4378 If @option{pmem} is set to 'on', QEMU will take necessary operations to
4379 guarantee the persistence of its own writes to @option{mem-path}
4380 (e.g. in vNVDIMM label emulation and live migration).
4381 Also, we will map the backend-file with MAP_SYNC flag, which ensures the
4382 file metadata is in sync for @option{mem-path} in case of host crash
4383 or a power failure. MAP_SYNC requires support from both the host kernel
4384 (since Linux kernel 4.15) and the filesystem of @option{mem-path} mounted
4385 with DAX option.
4387 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4389 Creates a memory backend object, which can be used to back the guest RAM.
4390 Memory backend objects offer more control than the @option{-m} option that is
4391 traditionally used to define guest RAM. Please refer to
4392 @option{memory-backend-file} for a description of the options.
4394 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4396 Creates an anonymous memory file backend object, which allows QEMU to
4397 share the memory with an external process (e.g. when using
4398 vhost-user). The memory is allocated with memfd and optional
4399 sealing. (Linux only)
4401 The @option{seal} option creates a sealed-file, that will block
4402 further resizing the memory ('on' by default).
4404 The @option{hugetlb} option specify the file to be created resides in
4405 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4406 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4407 the hugetlb page size on systems that support multiple hugetlb page
4408 sizes (it must be a power of 2 value supported by the system).
4410 In some versions of Linux, the @option{hugetlb} option is incompatible
4411 with the @option{seal} option (requires at least Linux 4.16).
4413 Please refer to @option{memory-backend-file} for a description of the
4414 other options.
4416 The @option{share} boolean option is @var{on} by default with memfd.
4418 @item -object rng-builtin,id=@var{id}
4420 Creates a random number generator backend which obtains entropy from
4421 QEMU builtin functions. The @option{id} parameter is a unique ID that
4422 will be used to reference this entropy backend from the @option{virtio-rng}
4423 device. By default, the @option{virtio-rng} device uses this RNG backend.
4425 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4427 Creates a random number generator backend which obtains entropy from
4428 a device on the host. The @option{id} parameter is a unique ID that
4429 will be used to reference this entropy backend from the @option{virtio-rng}
4430 device. The @option{filename} parameter specifies which file to obtain
4431 entropy from and if omitted defaults to @option{/dev/urandom}.
4433 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4435 Creates a random number generator backend which obtains entropy from
4436 an external daemon running on the host. The @option{id} parameter is
4437 a unique ID that will be used to reference this entropy backend from
4438 the @option{virtio-rng} device. The @option{chardev} parameter is
4439 the unique ID of a character device backend that provides the connection
4440 to the RNG daemon.
4442 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4444 Creates a TLS anonymous credentials object, which can be used to provide
4445 TLS support on network backends. The @option{id} parameter is a unique
4446 ID which network backends will use to access the credentials. The
4447 @option{endpoint} is either @option{server} or @option{client} depending
4448 on whether the QEMU network backend that uses the credentials will be
4449 acting as a client or as a server. If @option{verify-peer} is enabled
4450 (the default) then once the handshake is completed, the peer credentials
4451 will be verified, though this is a no-op for anonymous credentials.
4453 The @var{dir} parameter tells QEMU where to find the credential
4454 files. For server endpoints, this directory may contain a file
4455 @var{dh-params.pem} providing diffie-hellman parameters to use
4456 for the TLS server. If the file is missing, QEMU will generate
4457 a set of DH parameters at startup. This is a computationally
4458 expensive operation that consumes random pool entropy, so it is
4459 recommended that a persistent set of parameters be generated
4460 upfront and saved.
4462 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4464 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4465 TLS support on network backends. The @option{id} parameter is a unique
4466 ID which network backends will use to access the credentials. The
4467 @option{endpoint} is either @option{server} or @option{client} depending
4468 on whether the QEMU network backend that uses the credentials will be
4469 acting as a client or as a server. For clients only, @option{username}
4470 is the username which will be sent to the server. If omitted
4471 it defaults to ``qemu''.
4473 The @var{dir} parameter tells QEMU where to find the keys file.
4474 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4475 pairs. This file can most easily be created using the GnuTLS
4476 @code{psktool} program.
4478 For server endpoints, @var{dir} may also contain a file
4479 @var{dh-params.pem} providing diffie-hellman parameters to use
4480 for the TLS server. If the file is missing, QEMU will generate
4481 a set of DH parameters at startup. This is a computationally
4482 expensive operation that consumes random pool entropy, so it is
4483 recommended that a persistent set of parameters be generated
4484 up front and saved.
4486 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4488 Creates a TLS anonymous credentials object, which can be used to provide
4489 TLS support on network backends. The @option{id} parameter is a unique
4490 ID which network backends will use to access the credentials. The
4491 @option{endpoint} is either @option{server} or @option{client} depending
4492 on whether the QEMU network backend that uses the credentials will be
4493 acting as a client or as a server. If @option{verify-peer} is enabled
4494 (the default) then once the handshake is completed, the peer credentials
4495 will be verified. With x509 certificates, this implies that the clients
4496 must be provided with valid client certificates too.
4498 The @var{dir} parameter tells QEMU where to find the credential
4499 files. For server endpoints, this directory may contain a file
4500 @var{dh-params.pem} providing diffie-hellman parameters to use
4501 for the TLS server. If the file is missing, QEMU will generate
4502 a set of DH parameters at startup. This is a computationally
4503 expensive operation that consumes random pool entropy, so it is
4504 recommended that a persistent set of parameters be generated
4505 upfront and saved.
4507 For x509 certificate credentials the directory will contain further files
4508 providing the x509 certificates. The certificates must be stored
4509 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4510 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4511 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4513 For the @var{server-key.pem} and @var{client-key.pem} files which
4514 contain sensitive private keys, it is possible to use an encrypted
4515 version by providing the @var{passwordid} parameter. This provides
4516 the ID of a previously created @code{secret} object containing the
4517 password for decryption.
4519 The @var{priority} parameter allows to override the global default
4520 priority used by gnutls. This can be useful if the system administrator
4521 needs to use a weaker set of crypto priorities for QEMU without
4522 potentially forcing the weakness onto all applications. Or conversely
4523 if one wants wants a stronger default for QEMU than for all other
4524 applications, they can do this through this parameter. Its format is
4525 a gnutls priority string as described at
4526 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4528 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4530 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4531 packets arriving in a given interval on netdev @var{netdevid} are delayed
4532 until the end of the interval. Interval is in microseconds.
4533 @option{status} is optional that indicate whether the netfilter is
4534 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4536 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4538 @option{all}: the filter is attached both to the receive and the transmit
4539 queue of the netdev (default).
4541 @option{rx}: the filter is attached to the receive queue of the netdev,
4542 where it will receive packets sent to the netdev.
4544 @option{tx}: the filter is attached to the transmit queue of the netdev,
4545 where it will receive packets sent by the netdev.
4547 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4549 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4551 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4553 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4554 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4555 filter-redirector will redirect packet with vnet_hdr_len.
4556 Create a filter-redirector we need to differ outdev id from indev id, id can not
4557 be the same. we can just use indev or outdev, but at least one of indev or outdev
4558 need to be specified.
4560 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4562 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4563 secondary from primary to keep secondary tcp connection,and rewrite
4564 tcp packet to primary from secondary make tcp packet can be handled by
4565 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4567 usage:
4568 colo secondary:
4569 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4570 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4571 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4573 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4575 Dump the network traffic on netdev @var{dev} to the file specified by
4576 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4577 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4578 or Wireshark.
4580 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid},iothread=@var{id}[,vnet_hdr_support][,notify_dev=@var{id}]
4582 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4583 secondary packet. If the packets are same, we will output primary
4584 packet to outdev@var{chardevid}, else we will notify colo-frame
4585 do checkpoint and send primary packet to outdev@var{chardevid}.
4586 In order to improve efficiency, we need to put the task of comparison
4587 in another thread. If it has the vnet_hdr_support flag, colo compare
4588 will send/recv packet with vnet_hdr_len.
4589 If you want to use Xen COLO, will need the notify_dev to notify Xen
4590 colo-frame to do checkpoint.
4592 we must use it with the help of filter-mirror and filter-redirector.
4594 @example
4596 KVM COLO
4598 primary:
4599 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4600 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4601 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4602 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4603 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4604 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4605 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4606 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4607 -object iothread,id=iothread1
4608 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4609 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4610 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4611 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4613 secondary:
4614 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4615 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4616 -chardev socket,id=red0,host=3.3.3.3,port=9003
4617 -chardev socket,id=red1,host=3.3.3.3,port=9004
4618 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4619 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4622 Xen COLO
4624 primary:
4625 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4626 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4627 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4628 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4629 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4630 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4631 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4632 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4633 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4634 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4635 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4636 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4637 -object iothread,id=iothread1
4638 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4640 secondary:
4641 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4642 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4643 -chardev socket,id=red0,host=3.3.3.3,port=9003
4644 -chardev socket,id=red1,host=3.3.3.3,port=9004
4645 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4646 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4648 @end example
4650 If you want to know the detail of above command line, you can read
4651 the colo-compare git log.
4653 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4655 Creates a cryptodev backend which executes crypto opreation from
4656 the QEMU cipher APIS. The @var{id} parameter is
4657 a unique ID that will be used to reference this cryptodev backend from
4658 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4659 which specify the queue number of cryptodev backend, the default of
4660 @var{queues} is 1.
4662 @example
4664 # @value{qemu_system} \
4665 [...] \
4666 -object cryptodev-backend-builtin,id=cryptodev0 \
4667 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4668 [...]
4669 @end example
4671 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4673 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4674 The @var{id} parameter is a unique ID that will be used to reference this
4675 cryptodev backend from the @option{virtio-crypto} device.
4676 The chardev should be a unix domain socket backed one. The vhost-user uses
4677 a specifically defined protocol to pass vhost ioctl replacement messages
4678 to an application on the other end of the socket.
4679 The @var{queues} parameter is optional, which specify the queue number
4680 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4682 @example
4684 # @value{qemu_system} \
4685 [...] \
4686 -chardev socket,id=chardev0,path=/path/to/socket \
4687 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4688 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4689 [...]
4690 @end example
4692 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4693 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4695 Defines a secret to store a password, encryption key, or some other sensitive
4696 data. The sensitive data can either be passed directly via the @var{data}
4697 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4698 parameter is insecure unless the sensitive data is encrypted.
4700 The sensitive data can be provided in raw format (the default), or base64.
4701 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4702 so base64 is recommended for sending binary data. QEMU will convert from
4703 which ever format is provided to the format it needs internally. eg, an
4704 RBD password can be provided in raw format, even though it will be base64
4705 encoded when passed onto the RBD sever.
4707 For added protection, it is possible to encrypt the data associated with
4708 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4709 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4710 parameter provides the ID of a previously defined secret that contains
4711 the AES-256 decryption key. This key should be 32-bytes long and be
4712 base64 encoded. The @var{iv} parameter provides the random initialization
4713 vector used for encryption of this particular secret and should be a
4714 base64 encrypted string of the 16-byte IV.
4716 The simplest (insecure) usage is to provide the secret inline
4718 @example
4720 # @value{qemu_system} -object secret,id=sec0,data=letmein,format=raw
4722 @end example
4724 The simplest secure usage is to provide the secret via a file
4726 # printf "letmein" > mypasswd.txt
4727 # @value{qemu_system} -object secret,id=sec0,file=mypasswd.txt,format=raw
4729 For greater security, AES-256-CBC should be used. To illustrate usage,
4730 consider the openssl command line tool which can encrypt the data. Note
4731 that when encrypting, the plaintext must be padded to the cipher block
4732 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4734 First a master key needs to be created in base64 encoding:
4736 @example
4737 # openssl rand -base64 32 > key.b64
4738 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4739 @end example
4741 Each secret to be encrypted needs to have a random initialization vector
4742 generated. These do not need to be kept secret
4744 @example
4745 # openssl rand -base64 16 > iv.b64
4746 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4747 @end example
4749 The secret to be defined can now be encrypted, in this case we're
4750 telling openssl to base64 encode the result, but it could be left
4751 as raw bytes if desired.
4753 @example
4754 # SECRET=$(printf "letmein" |
4755 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4756 @end example
4758 When launching QEMU, create a master secret pointing to @code{key.b64}
4759 and specify that to be used to decrypt the user password. Pass the
4760 contents of @code{iv.b64} to the second secret
4762 @example
4763 # @value{qemu_system} \
4764 -object secret,id=secmaster0,format=base64,file=key.b64 \
4765 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4766 data=$SECRET,iv=$(<iv.b64)
4767 @end example
4769 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4771 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4772 to provide the guest memory encryption support on AMD processors.
4774 When memory encryption is enabled, one of the physical address bit (aka the
4775 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4776 is used to provide the C-bit position. The C-bit position is Host family dependent
4777 hence user must provide this value. On EPYC, the value should be 47.
4779 When memory encryption is enabled, we loose certain bits in physical address space.
4780 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4781 physical address space. Similar to C-bit, the value is Host family dependent.
4782 On EPYC, the value should be 5.
4784 The @option{sev-device} provides the device file to use for communicating with
4785 the SEV firmware running inside AMD Secure Processor. The default device is
4786 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4787 created by CCP driver.
4789 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4790 and restrict what configuration and operational commands can be performed on this
4791 guest by the hypervisor. The policy should be provided by the guest owner and is
4792 bound to the guest and cannot be changed throughout the lifetime of the guest.
4793 The default is 0.
4795 If guest @option{policy} allows sharing the key with another SEV guest then
4796 @option{handle} can be use to provide handle of the guest from which to share
4797 the key.
4799 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4800 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4801 are used for establishing a cryptographic session with the guest owner to
4802 negotiate keys used for attestation. The file must be encoded in base64.
4804 e.g to launch a SEV guest
4805 @example
4806 # @value{qemu_system_x86} \
4807 ......
4808 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4809 -machine ...,memory-encryption=sev0
4810 .....
4812 @end example
4815 @item -object authz-simple,id=@var{id},identity=@var{string}
4817 Create an authorization object that will control access to network services.
4819 The @option{identity} parameter is identifies the user and its format
4820 depends on the network service that authorization object is associated
4821 with. For authorizing based on TLS x509 certificates, the identity must
4822 be the x509 distinguished name. Note that care must be taken to escape
4823 any commas in the distinguished name.
4825 An example authorization object to validate a x509 distinguished name
4826 would look like:
4827 @example
4828 # @value{qemu_system} \
4830 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
4832 @end example
4834 Note the use of quotes due to the x509 distinguished name containing
4835 whitespace, and escaping of ','.
4837 @item -object authz-listfile,id=@var{id},filename=@var{path},refresh=@var{yes|no}
4839 Create an authorization object that will control access to network services.
4841 The @option{filename} parameter is the fully qualified path to a file
4842 containing the access control list rules in JSON format.
4844 An example set of rules that match against SASL usernames might look
4845 like:
4847 @example
4849 "rules": [
4850 @{ "match": "fred", "policy": "allow", "format": "exact" @},
4851 @{ "match": "bob", "policy": "allow", "format": "exact" @},
4852 @{ "match": "danb", "policy": "deny", "format": "glob" @},
4853 @{ "match": "dan*", "policy": "allow", "format": "exact" @},
4855 "policy": "deny"
4857 @end example
4859 When checking access the object will iterate over all the rules and
4860 the first rule to match will have its @option{policy} value returned
4861 as the result. If no rules match, then the default @option{policy}
4862 value is returned.
4864 The rules can either be an exact string match, or they can use the
4865 simple UNIX glob pattern matching to allow wildcards to be used.
4867 If @option{refresh} is set to true the file will be monitored
4868 and automatically reloaded whenever its content changes.
4870 As with the @code{authz-simple} object, the format of the identity
4871 strings being matched depends on the network service, but is usually
4872 a TLS x509 distinguished name, or a SASL username.
4874 An example authorization object to validate a SASL username
4875 would look like:
4876 @example
4877 # @value{qemu_system} \
4879 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
4881 @end example
4883 @item -object authz-pam,id=@var{id},service=@var{string}
4885 Create an authorization object that will control access to network services.
4887 The @option{service} parameter provides the name of a PAM service to use
4888 for authorization. It requires that a file @code{/etc/pam.d/@var{service}}
4889 exist to provide the configuration for the @code{account} subsystem.
4891 An example authorization object to validate a TLS x509 distinguished
4892 name would look like:
4894 @example
4895 # @value{qemu_system} \
4897 -object authz-pam,id=auth0,service=qemu-vnc
4899 @end example
4901 There would then be a corresponding config file for PAM at
4902 @code{/etc/pam.d/qemu-vnc} that contains:
4904 @example
4905 account requisite pam_listfile.so item=user sense=allow \
4906 file=/etc/qemu/vnc.allow
4907 @end example
4909 Finally the @code{/etc/qemu/vnc.allow} file would contain
4910 the list of x509 distingished names that are permitted
4911 access
4913 @example
4914 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
4915 @end example
4918 @end table
4920 ETEXI
4923 HXCOMM This is the last statement. Insert new options before this line!
4924 STEXI
4925 @end table
4926 ETEXI