tests: acpi: tolerate "virt/SSDT.memhp" mismatch temporarily
[qemu/ar7.git] / hw / intc / xive.c
blob489e6256ef702cce8fb0fbbb975bf88655394b8a
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
26 * XIVE Thread Interrupt Management context
30 * Convert a priority number to an Interrupt Pending Buffer (IPB)
31 * register, which indicates a pending interrupt at the priority
32 * corresponding to the bit number
34 static uint8_t priority_to_ipb(uint8_t priority)
36 return priority > XIVE_PRIORITY_MAX ?
37 0 : 1 << (XIVE_PRIORITY_MAX - priority);
41 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42 * Interrupt Priority Register (PIPR), which contains the priority of
43 * the most favored pending notification.
45 static uint8_t ipb_to_pipr(uint8_t ibp)
47 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
50 static uint8_t exception_mask(uint8_t ring)
52 switch (ring) {
53 case TM_QW1_OS:
54 return TM_QW1_NSR_EO;
55 case TM_QW3_HV_PHYS:
56 return TM_QW3_NSR_HE;
57 default:
58 g_assert_not_reached();
62 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
64 switch (ring) {
65 case TM_QW0_USER:
66 return 0; /* Not supported */
67 case TM_QW1_OS:
68 return tctx->os_output;
69 case TM_QW2_HV_POOL:
70 case TM_QW3_HV_PHYS:
71 return tctx->hv_output;
72 default:
73 return 0;
77 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
79 uint8_t *regs = &tctx->regs[ring];
80 uint8_t nsr = regs[TM_NSR];
81 uint8_t mask = exception_mask(ring);
83 qemu_irq_lower(xive_tctx_output(tctx, ring));
85 if (regs[TM_NSR] & mask) {
86 uint8_t cppr = regs[TM_PIPR];
88 regs[TM_CPPR] = cppr;
90 /* Reset the pending buffer bit */
91 regs[TM_IPB] &= ~priority_to_ipb(cppr);
92 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
94 /* Drop Exception bit */
95 regs[TM_NSR] &= ~mask;
98 return (nsr << 8) | regs[TM_CPPR];
101 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
103 uint8_t *regs = &tctx->regs[ring];
105 if (regs[TM_PIPR] < regs[TM_CPPR]) {
106 switch (ring) {
107 case TM_QW1_OS:
108 regs[TM_NSR] |= TM_QW1_NSR_EO;
109 break;
110 case TM_QW3_HV_PHYS:
111 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
112 break;
113 default:
114 g_assert_not_reached();
116 qemu_irq_raise(xive_tctx_output(tctx, ring));
120 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
122 if (cppr > XIVE_PRIORITY_MAX) {
123 cppr = 0xff;
126 tctx->regs[ring + TM_CPPR] = cppr;
128 /* CPPR has changed, check if we need to raise a pending exception */
129 xive_tctx_notify(tctx, ring);
132 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
134 uint8_t *regs = &tctx->regs[ring];
136 regs[TM_IPB] |= ipb;
137 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
138 xive_tctx_notify(tctx, ring);
141 static inline uint32_t xive_tctx_word2(uint8_t *ring)
143 return *((uint32_t *) &ring[TM_WORD2]);
147 * XIVE Thread Interrupt Management Area (TIMA)
150 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
151 hwaddr offset, uint64_t value, unsigned size)
153 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
156 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
157 hwaddr offset, unsigned size)
159 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
162 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
163 hwaddr offset, unsigned size)
165 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
166 uint32_t qw2w2;
168 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
169 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
170 return qw2w2;
173 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
174 uint64_t value, unsigned size)
176 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
179 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
180 hwaddr offset, unsigned size)
182 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
186 * Define an access map for each page of the TIMA that we will use in
187 * the memory region ops to filter values when doing loads and stores
188 * of raw registers values
190 * Registers accessibility bits :
192 * 0x0 - no access
193 * 0x1 - write only
194 * 0x2 - read only
195 * 0x3 - read/write
198 static const uint8_t xive_tm_hw_view[] = {
199 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
200 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
201 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
202 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
205 static const uint8_t xive_tm_hv_view[] = {
206 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
207 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
208 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
209 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
212 static const uint8_t xive_tm_os_view[] = {
213 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
214 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
215 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
219 static const uint8_t xive_tm_user_view[] = {
220 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
222 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
227 * Overall TIMA access map for the thread interrupt management context
228 * registers
230 static const uint8_t *xive_tm_views[] = {
231 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
232 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
233 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
234 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
238 * Computes a register access mask for a given offset in the TIMA
240 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
242 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
243 uint8_t reg_offset = offset & 0x3F;
244 uint8_t reg_mask = write ? 0x1 : 0x2;
245 uint64_t mask = 0x0;
246 int i;
248 for (i = 0; i < size; i++) {
249 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
250 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
254 return mask;
257 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
258 unsigned size)
260 uint8_t ring_offset = offset & 0x30;
261 uint8_t reg_offset = offset & 0x3F;
262 uint64_t mask = xive_tm_mask(offset, size, true);
263 int i;
266 * Only 4 or 8 bytes stores are allowed and the User ring is
267 * excluded
269 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
270 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
271 HWADDR_PRIx"\n", offset);
272 return;
276 * Use the register offset for the raw values and filter out
277 * reserved values
279 for (i = 0; i < size; i++) {
280 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
281 if (byte_mask) {
282 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
283 byte_mask;
288 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
290 uint8_t ring_offset = offset & 0x30;
291 uint8_t reg_offset = offset & 0x3F;
292 uint64_t mask = xive_tm_mask(offset, size, false);
293 uint64_t ret;
294 int i;
297 * Only 4 or 8 bytes loads are allowed and the User ring is
298 * excluded
300 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
301 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
302 HWADDR_PRIx"\n", offset);
303 return -1;
306 /* Use the register offset for the raw values */
307 ret = 0;
308 for (i = 0; i < size; i++) {
309 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
312 /* filter out reserved values */
313 return ret & mask;
317 * The TM context is mapped twice within each page. Stores and loads
318 * to the first mapping below 2K write and read the specified values
319 * without modification. The second mapping above 2K performs specific
320 * state changes (side effects) in addition to setting/returning the
321 * interrupt management area context of the processor thread.
323 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
324 hwaddr offset, unsigned size)
326 return xive_tctx_accept(tctx, TM_QW1_OS);
329 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
330 hwaddr offset, uint64_t value, unsigned size)
332 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
336 * Adjust the IPB to allow a CPU to process event queues of other
337 * priorities during one physical interrupt cycle.
339 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
340 hwaddr offset, uint64_t value, unsigned size)
342 xive_tctx_ipb_update(tctx, TM_QW1_OS, priority_to_ipb(value & 0xff));
345 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
346 uint32_t *nvt_idx, bool *vo)
348 if (nvt_blk) {
349 *nvt_blk = xive_nvt_blk(cam);
351 if (nvt_idx) {
352 *nvt_idx = xive_nvt_idx(cam);
354 if (vo) {
355 *vo = !!(cam & TM_QW1W2_VO);
359 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
360 uint32_t *nvt_idx, bool *vo)
362 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
363 uint32_t cam = be32_to_cpu(qw1w2);
365 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
366 return qw1w2;
369 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
371 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
374 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
375 hwaddr offset, unsigned size)
377 uint32_t qw1w2;
378 uint32_t qw1w2_new;
379 uint8_t nvt_blk;
380 uint32_t nvt_idx;
381 bool vo;
383 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
385 if (!vo) {
386 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
387 nvt_blk, nvt_idx);
390 /* Invalidate CAM line */
391 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
392 xive_tctx_set_os_cam(tctx, qw1w2_new);
393 return qw1w2;
396 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
397 uint8_t nvt_blk, uint32_t nvt_idx)
399 XiveNVT nvt;
400 uint8_t ipb;
403 * Grab the associated NVT to pull the pending bits, and merge
404 * them with the IPB of the thread interrupt context registers
406 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
407 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
408 nvt_blk, nvt_idx);
409 return;
412 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
414 if (ipb) {
415 /* Reset the NVT value */
416 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
417 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
419 /* Merge in current context */
420 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
425 * Updating the OS CAM line can trigger a resend of interrupt
427 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
428 hwaddr offset, uint64_t value, unsigned size)
430 uint32_t cam = value;
431 uint32_t qw1w2 = cpu_to_be32(cam);
432 uint8_t nvt_blk;
433 uint32_t nvt_idx;
434 bool vo;
436 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
438 /* First update the registers */
439 xive_tctx_set_os_cam(tctx, qw1w2);
441 /* Check the interrupt pending bits */
442 if (vo) {
443 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
448 * Define a mapping of "special" operations depending on the TIMA page
449 * offset and the size of the operation.
451 typedef struct XiveTmOp {
452 uint8_t page_offset;
453 uint32_t op_offset;
454 unsigned size;
455 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
456 hwaddr offset,
457 uint64_t value, unsigned size);
458 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
459 unsigned size);
460 } XiveTmOp;
462 static const XiveTmOp xive_tm_operations[] = {
464 * MMIOs below 2K : raw values and special operations without side
465 * effects
467 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
468 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
469 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
470 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
471 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
473 /* MMIOs above 2K : special operations with side effects */
474 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
475 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
476 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
477 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
478 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
479 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
480 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
483 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
485 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
486 uint32_t op_offset = offset & 0xFFF;
487 int i;
489 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
490 const XiveTmOp *xto = &xive_tm_operations[i];
492 /* Accesses done from a more privileged TIMA page is allowed */
493 if (xto->page_offset >= page_offset &&
494 xto->op_offset == op_offset &&
495 xto->size == size &&
496 ((write && xto->write_handler) || (!write && xto->read_handler))) {
497 return xto;
500 return NULL;
504 * TIMA MMIO handlers
506 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
507 uint64_t value, unsigned size)
509 const XiveTmOp *xto;
512 * TODO: check V bit in Q[0-3]W2
516 * First, check for special operations in the 2K region
518 if (offset & 0x800) {
519 xto = xive_tm_find_op(offset, size, true);
520 if (!xto) {
521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
522 "@%"HWADDR_PRIx"\n", offset);
523 } else {
524 xto->write_handler(xptr, tctx, offset, value, size);
526 return;
530 * Then, for special operations in the region below 2K.
532 xto = xive_tm_find_op(offset, size, true);
533 if (xto) {
534 xto->write_handler(xptr, tctx, offset, value, size);
535 return;
539 * Finish with raw access to the register values
541 xive_tm_raw_write(tctx, offset, value, size);
544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
545 unsigned size)
547 const XiveTmOp *xto;
550 * TODO: check V bit in Q[0-3]W2
554 * First, check for special operations in the 2K region
556 if (offset & 0x800) {
557 xto = xive_tm_find_op(offset, size, false);
558 if (!xto) {
559 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
560 "@%"HWADDR_PRIx"\n", offset);
561 return -1;
563 return xto->read_handler(xptr, tctx, offset, size);
567 * Then, for special operations in the region below 2K.
569 xto = xive_tm_find_op(offset, size, false);
570 if (xto) {
571 return xto->read_handler(xptr, tctx, offset, size);
575 * Finish with raw access to the register values
577 return xive_tm_raw_read(tctx, offset, size);
580 static char *xive_tctx_ring_print(uint8_t *ring)
582 uint32_t w2 = xive_tctx_word2(ring);
584 return g_strdup_printf("%02x %02x %02x %02x %02x "
585 "%02x %02x %02x %08x",
586 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
587 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
588 be32_to_cpu(w2));
591 static const char * const xive_tctx_ring_names[] = {
592 "USER", "OS", "POOL", "PHYS",
596 * kvm_irqchip_in_kernel() will cause the compiler to turn this
597 * info a nop if CONFIG_KVM isn't defined.
599 #define xive_in_kernel(xptr) \
600 (kvm_irqchip_in_kernel() && \
601 ({ \
602 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
603 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
606 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
608 int cpu_index;
609 int i;
611 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
612 * are hot plugged or unplugged.
614 if (!tctx) {
615 return;
618 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
620 if (xive_in_kernel(tctx->xptr)) {
621 Error *local_err = NULL;
623 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
624 if (local_err) {
625 error_report_err(local_err);
626 return;
630 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
631 " W2\n", cpu_index);
633 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
634 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
635 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
636 xive_tctx_ring_names[i], s);
637 g_free(s);
641 void xive_tctx_reset(XiveTCTX *tctx)
643 memset(tctx->regs, 0, sizeof(tctx->regs));
645 /* Set some defaults */
646 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
647 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
648 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
651 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
652 * CPPR is first set.
654 tctx->regs[TM_QW1_OS + TM_PIPR] =
655 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
656 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
657 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
660 static void xive_tctx_realize(DeviceState *dev, Error **errp)
662 XiveTCTX *tctx = XIVE_TCTX(dev);
663 PowerPCCPU *cpu;
664 CPUPPCState *env;
666 assert(tctx->cs);
667 assert(tctx->xptr);
669 cpu = POWERPC_CPU(tctx->cs);
670 env = &cpu->env;
671 switch (PPC_INPUT(env)) {
672 case PPC_FLAGS_INPUT_POWER9:
673 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
674 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
675 break;
677 default:
678 error_setg(errp, "XIVE interrupt controller does not support "
679 "this CPU bus model");
680 return;
683 /* Connect the presenter to the VCPU (required for CPU hotplug) */
684 if (xive_in_kernel(tctx->xptr)) {
685 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
686 return;
691 static int vmstate_xive_tctx_pre_save(void *opaque)
693 XiveTCTX *tctx = XIVE_TCTX(opaque);
694 Error *local_err = NULL;
695 int ret;
697 if (xive_in_kernel(tctx->xptr)) {
698 ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
699 if (ret < 0) {
700 error_report_err(local_err);
701 return ret;
705 return 0;
708 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
710 XiveTCTX *tctx = XIVE_TCTX(opaque);
711 Error *local_err = NULL;
712 int ret;
714 if (xive_in_kernel(tctx->xptr)) {
716 * Required for hotplugged CPU, for which the state comes
717 * after all states of the machine.
719 ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
720 if (ret < 0) {
721 error_report_err(local_err);
722 return ret;
726 return 0;
729 static const VMStateDescription vmstate_xive_tctx = {
730 .name = TYPE_XIVE_TCTX,
731 .version_id = 1,
732 .minimum_version_id = 1,
733 .pre_save = vmstate_xive_tctx_pre_save,
734 .post_load = vmstate_xive_tctx_post_load,
735 .fields = (VMStateField[]) {
736 VMSTATE_BUFFER(regs, XiveTCTX),
737 VMSTATE_END_OF_LIST()
741 static Property xive_tctx_properties[] = {
742 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
743 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
744 XivePresenter *),
745 DEFINE_PROP_END_OF_LIST(),
748 static void xive_tctx_class_init(ObjectClass *klass, void *data)
750 DeviceClass *dc = DEVICE_CLASS(klass);
752 dc->desc = "XIVE Interrupt Thread Context";
753 dc->realize = xive_tctx_realize;
754 dc->vmsd = &vmstate_xive_tctx;
755 device_class_set_props(dc, xive_tctx_properties);
757 * Reason: part of XIVE interrupt controller, needs to be wired up
758 * by xive_tctx_create().
760 dc->user_creatable = false;
763 static const TypeInfo xive_tctx_info = {
764 .name = TYPE_XIVE_TCTX,
765 .parent = TYPE_DEVICE,
766 .instance_size = sizeof(XiveTCTX),
767 .class_init = xive_tctx_class_init,
770 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
772 Object *obj;
774 obj = object_new(TYPE_XIVE_TCTX);
775 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
776 object_unref(obj);
777 object_property_set_link(obj, "cpu", cpu, &error_abort);
778 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
779 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
780 object_unparent(obj);
781 return NULL;
783 return obj;
786 void xive_tctx_destroy(XiveTCTX *tctx)
788 Object *obj = OBJECT(tctx);
790 object_unparent(obj);
794 * XIVE ESB helpers
797 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
799 uint8_t old_pq = *pq & 0x3;
801 *pq &= ~0x3;
802 *pq |= value & 0x3;
804 return old_pq;
807 static bool xive_esb_trigger(uint8_t *pq)
809 uint8_t old_pq = *pq & 0x3;
811 switch (old_pq) {
812 case XIVE_ESB_RESET:
813 xive_esb_set(pq, XIVE_ESB_PENDING);
814 return true;
815 case XIVE_ESB_PENDING:
816 case XIVE_ESB_QUEUED:
817 xive_esb_set(pq, XIVE_ESB_QUEUED);
818 return false;
819 case XIVE_ESB_OFF:
820 xive_esb_set(pq, XIVE_ESB_OFF);
821 return false;
822 default:
823 g_assert_not_reached();
827 static bool xive_esb_eoi(uint8_t *pq)
829 uint8_t old_pq = *pq & 0x3;
831 switch (old_pq) {
832 case XIVE_ESB_RESET:
833 case XIVE_ESB_PENDING:
834 xive_esb_set(pq, XIVE_ESB_RESET);
835 return false;
836 case XIVE_ESB_QUEUED:
837 xive_esb_set(pq, XIVE_ESB_PENDING);
838 return true;
839 case XIVE_ESB_OFF:
840 xive_esb_set(pq, XIVE_ESB_OFF);
841 return false;
842 default:
843 g_assert_not_reached();
848 * XIVE Interrupt Source (or IVSE)
851 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
853 assert(srcno < xsrc->nr_irqs);
855 return xsrc->status[srcno] & 0x3;
858 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
860 assert(srcno < xsrc->nr_irqs);
862 return xive_esb_set(&xsrc->status[srcno], pq);
866 * Returns whether the event notification should be forwarded.
868 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
870 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
872 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
874 switch (old_pq) {
875 case XIVE_ESB_RESET:
876 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
877 return true;
878 default:
879 return false;
884 * Returns whether the event notification should be forwarded.
886 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
888 bool ret;
890 assert(srcno < xsrc->nr_irqs);
892 ret = xive_esb_trigger(&xsrc->status[srcno]);
894 if (xive_source_irq_is_lsi(xsrc, srcno) &&
895 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
896 qemu_log_mask(LOG_GUEST_ERROR,
897 "XIVE: queued an event on LSI IRQ %d\n", srcno);
900 return ret;
904 * Returns whether the event notification should be forwarded.
906 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
908 bool ret;
910 assert(srcno < xsrc->nr_irqs);
912 ret = xive_esb_eoi(&xsrc->status[srcno]);
915 * LSI sources do not set the Q bit but they can still be
916 * asserted, in which case we should forward a new event
917 * notification
919 if (xive_source_irq_is_lsi(xsrc, srcno) &&
920 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
921 ret = xive_source_lsi_trigger(xsrc, srcno);
924 return ret;
928 * Forward the source event notification to the Router
930 static void xive_source_notify(XiveSource *xsrc, int srcno)
932 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
934 if (xnc->notify) {
935 xnc->notify(xsrc->xive, srcno);
940 * In a two pages ESB MMIO setting, even page is the trigger page, odd
941 * page is for management
943 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
945 return !((addr >> shift) & 1);
948 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
950 return xive_source_esb_has_2page(xsrc) &&
951 addr_is_even(addr, xsrc->esb_shift - 1);
955 * ESB MMIO loads
956 * Trigger page Management/EOI page
958 * ESB MMIO setting 2 pages 1 or 2 pages
960 * 0x000 .. 0x3FF -1 EOI and return 0|1
961 * 0x400 .. 0x7FF -1 EOI and return 0|1
962 * 0x800 .. 0xBFF -1 return PQ
963 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
964 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
965 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
966 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
968 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
970 XiveSource *xsrc = XIVE_SOURCE(opaque);
971 uint32_t offset = addr & 0xFFF;
972 uint32_t srcno = addr >> xsrc->esb_shift;
973 uint64_t ret = -1;
975 /* In a two pages ESB MMIO setting, trigger page should not be read */
976 if (xive_source_is_trigger_page(xsrc, addr)) {
977 qemu_log_mask(LOG_GUEST_ERROR,
978 "XIVE: invalid load on IRQ %d trigger page at "
979 "0x%"HWADDR_PRIx"\n", srcno, addr);
980 return -1;
983 switch (offset) {
984 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
985 ret = xive_source_esb_eoi(xsrc, srcno);
987 /* Forward the source event notification for routing */
988 if (ret) {
989 xive_source_notify(xsrc, srcno);
991 break;
993 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
994 ret = xive_source_esb_get(xsrc, srcno);
995 break;
997 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
998 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
999 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1000 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1001 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1002 break;
1003 default:
1004 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1005 offset);
1008 return ret;
1012 * ESB MMIO stores
1013 * Trigger page Management/EOI page
1015 * ESB MMIO setting 2 pages 1 or 2 pages
1017 * 0x000 .. 0x3FF Trigger Trigger
1018 * 0x400 .. 0x7FF Trigger EOI
1019 * 0x800 .. 0xBFF Trigger undefined
1020 * 0xC00 .. 0xCFF Trigger PQ=00
1021 * 0xD00 .. 0xDFF Trigger PQ=01
1022 * 0xE00 .. 0xDFF Trigger PQ=10
1023 * 0xF00 .. 0xDFF Trigger PQ=11
1025 static void xive_source_esb_write(void *opaque, hwaddr addr,
1026 uint64_t value, unsigned size)
1028 XiveSource *xsrc = XIVE_SOURCE(opaque);
1029 uint32_t offset = addr & 0xFFF;
1030 uint32_t srcno = addr >> xsrc->esb_shift;
1031 bool notify = false;
1033 /* In a two pages ESB MMIO setting, trigger page only triggers */
1034 if (xive_source_is_trigger_page(xsrc, addr)) {
1035 notify = xive_source_esb_trigger(xsrc, srcno);
1036 goto out;
1039 switch (offset) {
1040 case 0 ... 0x3FF:
1041 notify = xive_source_esb_trigger(xsrc, srcno);
1042 break;
1044 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1045 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1046 qemu_log_mask(LOG_GUEST_ERROR,
1047 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1048 return;
1051 notify = xive_source_esb_eoi(xsrc, srcno);
1052 break;
1054 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1055 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1056 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1057 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1058 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1059 break;
1061 default:
1062 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1063 offset);
1064 return;
1067 out:
1068 /* Forward the source event notification for routing */
1069 if (notify) {
1070 xive_source_notify(xsrc, srcno);
1074 static const MemoryRegionOps xive_source_esb_ops = {
1075 .read = xive_source_esb_read,
1076 .write = xive_source_esb_write,
1077 .endianness = DEVICE_BIG_ENDIAN,
1078 .valid = {
1079 .min_access_size = 8,
1080 .max_access_size = 8,
1082 .impl = {
1083 .min_access_size = 8,
1084 .max_access_size = 8,
1088 void xive_source_set_irq(void *opaque, int srcno, int val)
1090 XiveSource *xsrc = XIVE_SOURCE(opaque);
1091 bool notify = false;
1093 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1094 if (val) {
1095 notify = xive_source_lsi_trigger(xsrc, srcno);
1096 } else {
1097 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1099 } else {
1100 if (val) {
1101 notify = xive_source_esb_trigger(xsrc, srcno);
1105 /* Forward the source event notification for routing */
1106 if (notify) {
1107 xive_source_notify(xsrc, srcno);
1111 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1113 int i;
1115 for (i = 0; i < xsrc->nr_irqs; i++) {
1116 uint8_t pq = xive_source_esb_get(xsrc, i);
1118 if (pq == XIVE_ESB_OFF) {
1119 continue;
1122 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1123 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1124 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1125 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1126 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1130 static void xive_source_reset(void *dev)
1132 XiveSource *xsrc = XIVE_SOURCE(dev);
1134 /* Do not clear the LSI bitmap */
1136 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1137 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1140 static void xive_source_realize(DeviceState *dev, Error **errp)
1142 XiveSource *xsrc = XIVE_SOURCE(dev);
1143 size_t esb_len = xive_source_esb_len(xsrc);
1145 assert(xsrc->xive);
1147 if (!xsrc->nr_irqs) {
1148 error_setg(errp, "Number of interrupt needs to be greater than 0");
1149 return;
1152 if (xsrc->esb_shift != XIVE_ESB_4K &&
1153 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1154 xsrc->esb_shift != XIVE_ESB_64K &&
1155 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1156 error_setg(errp, "Invalid ESB shift setting");
1157 return;
1160 xsrc->status = g_malloc0(xsrc->nr_irqs);
1161 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1163 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1164 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1165 &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1166 esb_len);
1167 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1169 qemu_register_reset(xive_source_reset, dev);
1172 static const VMStateDescription vmstate_xive_source = {
1173 .name = TYPE_XIVE_SOURCE,
1174 .version_id = 1,
1175 .minimum_version_id = 1,
1176 .fields = (VMStateField[]) {
1177 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1178 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1179 VMSTATE_END_OF_LIST()
1184 * The default XIVE interrupt source setting for the ESB MMIOs is two
1185 * 64k pages without Store EOI, to be in sync with KVM.
1187 static Property xive_source_properties[] = {
1188 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1189 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1190 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1191 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1192 XiveNotifier *),
1193 DEFINE_PROP_END_OF_LIST(),
1196 static void xive_source_class_init(ObjectClass *klass, void *data)
1198 DeviceClass *dc = DEVICE_CLASS(klass);
1200 dc->desc = "XIVE Interrupt Source";
1201 device_class_set_props(dc, xive_source_properties);
1202 dc->realize = xive_source_realize;
1203 dc->vmsd = &vmstate_xive_source;
1205 * Reason: part of XIVE interrupt controller, needs to be wired up,
1206 * e.g. by spapr_xive_instance_init().
1208 dc->user_creatable = false;
1211 static const TypeInfo xive_source_info = {
1212 .name = TYPE_XIVE_SOURCE,
1213 .parent = TYPE_DEVICE,
1214 .instance_size = sizeof(XiveSource),
1215 .class_init = xive_source_class_init,
1219 * XiveEND helpers
1222 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1224 uint64_t qaddr_base = xive_end_qaddr(end);
1225 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1226 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1227 uint32_t qentries = 1 << (qsize + 10);
1228 int i;
1231 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1233 monitor_printf(mon, " [ ");
1234 qindex = (qindex - (width - 1)) & (qentries - 1);
1235 for (i = 0; i < width; i++) {
1236 uint64_t qaddr = qaddr_base + (qindex << 2);
1237 uint32_t qdata = -1;
1239 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1240 sizeof(qdata))) {
1241 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1242 HWADDR_PRIx "\n", qaddr);
1243 return;
1245 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1246 be32_to_cpu(qdata));
1247 qindex = (qindex + 1) & (qentries - 1);
1249 monitor_printf(mon, "]");
1252 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1254 uint64_t qaddr_base = xive_end_qaddr(end);
1255 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1256 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1257 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1258 uint32_t qentries = 1 << (qsize + 10);
1260 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1261 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1262 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1263 uint8_t pq;
1265 if (!xive_end_is_valid(end)) {
1266 return;
1269 pq = xive_get_field32(END_W1_ESn, end->w1);
1271 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1272 end_idx,
1273 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1274 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1275 xive_end_is_valid(end) ? 'v' : '-',
1276 xive_end_is_enqueue(end) ? 'q' : '-',
1277 xive_end_is_notify(end) ? 'n' : '-',
1278 xive_end_is_backlog(end) ? 'b' : '-',
1279 xive_end_is_escalate(end) ? 'e' : '-',
1280 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1281 xive_end_is_silent_escalation(end) ? 's' : '-',
1282 priority, nvt_blk, nvt_idx);
1284 if (qaddr_base) {
1285 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1286 qaddr_base, qindex, qentries, qgen);
1287 xive_end_queue_pic_print_info(end, 6, mon);
1289 monitor_printf(mon, "\n");
1292 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1294 uint64_t qaddr_base = xive_end_qaddr(end);
1295 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1296 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1297 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1299 uint64_t qaddr = qaddr_base + (qindex << 2);
1300 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1301 uint32_t qentries = 1 << (qsize + 10);
1303 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1304 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1305 HWADDR_PRIx "\n", qaddr);
1306 return;
1309 qindex = (qindex + 1) & (qentries - 1);
1310 if (qindex == 0) {
1311 qgen ^= 1;
1312 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1314 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1317 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1318 Monitor *mon)
1320 XiveEAS *eas = (XiveEAS *) &end->w4;
1321 uint8_t pq;
1323 if (!xive_end_is_escalate(end)) {
1324 return;
1327 pq = xive_get_field32(END_W1_ESe, end->w1);
1329 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1330 end_idx,
1331 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1332 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1333 xive_eas_is_valid(eas) ? 'V' : ' ',
1334 xive_eas_is_masked(eas) ? 'M' : ' ',
1335 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1336 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1337 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1341 * XIVE Router (aka. Virtualization Controller or IVRE)
1344 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1345 XiveEAS *eas)
1347 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1349 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1352 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1353 XiveEND *end)
1355 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1357 return xrc->get_end(xrtr, end_blk, end_idx, end);
1360 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1361 XiveEND *end, uint8_t word_number)
1363 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1365 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1368 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1369 XiveNVT *nvt)
1371 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1373 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1376 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1377 XiveNVT *nvt, uint8_t word_number)
1379 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1381 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1384 static int xive_router_get_block_id(XiveRouter *xrtr)
1386 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1388 return xrc->get_block_id(xrtr);
1391 static void xive_router_realize(DeviceState *dev, Error **errp)
1393 XiveRouter *xrtr = XIVE_ROUTER(dev);
1395 assert(xrtr->xfb);
1399 * Encode the HW CAM line in the block group mode format :
1401 * chip << 19 | 0000000 0 0001 thread (7Bit)
1403 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1405 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1406 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1407 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1409 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1413 * The thread context register words are in big-endian format.
1415 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1416 uint8_t format,
1417 uint8_t nvt_blk, uint32_t nvt_idx,
1418 bool cam_ignore, uint32_t logic_serv)
1420 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1421 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1422 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1423 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1424 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1427 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1428 * identifier are ignored in the "CAM" match.
1431 if (format == 0) {
1432 if (cam_ignore == true) {
1434 * F=0 & i=1: Logical server notification (bits ignored at
1435 * the end of the NVT identifier)
1437 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1438 nvt_blk, nvt_idx);
1439 return -1;
1442 /* F=0 & i=0: Specific NVT notification */
1444 /* PHYS ring */
1445 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1446 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1447 return TM_QW3_HV_PHYS;
1450 /* HV POOL ring */
1451 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1452 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1453 return TM_QW2_HV_POOL;
1456 /* OS ring */
1457 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1458 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1459 return TM_QW1_OS;
1461 } else {
1462 /* F=1 : User level Event-Based Branch (EBB) notification */
1464 /* USER ring */
1465 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1466 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1467 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1468 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1469 return TM_QW0_USER;
1472 return -1;
1476 * This is our simple Xive Presenter Engine model. It is merged in the
1477 * Router as it does not require an extra object.
1479 * It receives notification requests sent by the IVRE to find one
1480 * matching NVT (or more) dispatched on the processor threads. In case
1481 * of a single NVT notification, the process is abreviated and the
1482 * thread is signaled if a match is found. In case of a logical server
1483 * notification (bits ignored at the end of the NVT identifier), the
1484 * IVPE and IVRE select a winning thread using different filters. This
1485 * involves 2 or 3 exchanges on the PowerBus that the model does not
1486 * support.
1488 * The parameters represent what is sent on the PowerBus
1490 static bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1491 uint8_t nvt_blk, uint32_t nvt_idx,
1492 bool cam_ignore, uint8_t priority,
1493 uint32_t logic_serv)
1495 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1496 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1497 int count;
1500 * Ask the machine to scan the interrupt controllers for a match
1502 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1503 priority, logic_serv, &match);
1504 if (count < 0) {
1505 return false;
1508 /* handle CPU exception delivery */
1509 if (count) {
1510 xive_tctx_ipb_update(match.tctx, match.ring, priority_to_ipb(priority));
1513 return !!count;
1517 * Notification using the END ESe/ESn bit (Event State Buffer for
1518 * escalation and notification). Provide further coalescing in the
1519 * Router.
1521 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1522 uint32_t end_idx, XiveEND *end,
1523 uint32_t end_esmask)
1525 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1526 bool notify = xive_esb_trigger(&pq);
1528 if (pq != xive_get_field32(end_esmask, end->w1)) {
1529 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1530 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1533 /* ESe/n[Q]=1 : end of notification */
1534 return notify;
1538 * An END trigger can come from an event trigger (IPI or HW) or from
1539 * another chip. We don't model the PowerBus but the END trigger
1540 * message has the same parameters than in the function below.
1542 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1543 uint32_t end_idx, uint32_t end_data)
1545 XiveEND end;
1546 uint8_t priority;
1547 uint8_t format;
1548 uint8_t nvt_blk;
1549 uint32_t nvt_idx;
1550 XiveNVT nvt;
1551 bool found;
1553 /* END cache lookup */
1554 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1555 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1556 end_idx);
1557 return;
1560 if (!xive_end_is_valid(&end)) {
1561 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1562 end_blk, end_idx);
1563 return;
1566 if (xive_end_is_enqueue(&end)) {
1567 xive_end_enqueue(&end, end_data);
1568 /* Enqueuing event data modifies the EQ toggle and index */
1569 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1573 * When the END is silent, we skip the notification part.
1575 if (xive_end_is_silent_escalation(&end)) {
1576 goto do_escalation;
1580 * The W7 format depends on the F bit in W6. It defines the type
1581 * of the notification :
1583 * F=0 : single or multiple NVT notification
1584 * F=1 : User level Event-Based Branch (EBB) notification, no
1585 * priority
1587 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1588 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1590 /* The END is masked */
1591 if (format == 0 && priority == 0xff) {
1592 return;
1596 * Check the END ESn (Event State Buffer for notification) for
1597 * even further coalescing in the Router
1599 if (!xive_end_is_notify(&end)) {
1600 /* ESn[Q]=1 : end of notification */
1601 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1602 &end, END_W1_ESn)) {
1603 return;
1608 * Follows IVPE notification
1610 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1611 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1613 /* NVT cache lookup */
1614 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1615 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1616 nvt_blk, nvt_idx);
1617 return;
1620 if (!xive_nvt_is_valid(&nvt)) {
1621 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1622 nvt_blk, nvt_idx);
1623 return;
1626 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1627 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1628 priority,
1629 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1631 /* TODO: Auto EOI. */
1633 if (found) {
1634 return;
1638 * If no matching NVT is dispatched on a HW thread :
1639 * - specific VP: update the NVT structure if backlog is activated
1640 * - logical server : forward request to IVPE (not supported)
1642 if (xive_end_is_backlog(&end)) {
1643 uint8_t ipb;
1645 if (format == 1) {
1646 qemu_log_mask(LOG_GUEST_ERROR,
1647 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1648 end_blk, end_idx);
1649 return;
1652 * Record the IPB in the associated NVT structure for later
1653 * use. The presenter will resend the interrupt when the vCPU
1654 * is dispatched again on a HW thread.
1656 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | priority_to_ipb(priority);
1657 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1658 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1661 * On HW, follows a "Broadcast Backlog" to IVPEs
1665 do_escalation:
1667 * If activated, escalate notification using the ESe PQ bits and
1668 * the EAS in w4-5
1670 if (!xive_end_is_escalate(&end)) {
1671 return;
1675 * Check the END ESe (Event State Buffer for escalation) for even
1676 * further coalescing in the Router
1678 if (!xive_end_is_uncond_escalation(&end)) {
1679 /* ESe[Q]=1 : end of notification */
1680 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1681 &end, END_W1_ESe)) {
1682 return;
1687 * The END trigger becomes an Escalation trigger
1689 xive_router_end_notify(xrtr,
1690 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1691 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1692 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1695 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1697 XiveRouter *xrtr = XIVE_ROUTER(xn);
1698 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1699 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1700 XiveEAS eas;
1702 /* EAS cache lookup */
1703 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1704 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1705 return;
1709 * The IVRE checks the State Bit Cache at this point. We skip the
1710 * SBC lookup because the state bits of the sources are modeled
1711 * internally in QEMU.
1714 if (!xive_eas_is_valid(&eas)) {
1715 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1716 return;
1719 if (xive_eas_is_masked(&eas)) {
1720 /* Notification completed */
1721 return;
1725 * The event trigger becomes an END trigger
1727 xive_router_end_notify(xrtr,
1728 xive_get_field64(EAS_END_BLOCK, eas.w),
1729 xive_get_field64(EAS_END_INDEX, eas.w),
1730 xive_get_field64(EAS_END_DATA, eas.w));
1733 static Property xive_router_properties[] = {
1734 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1735 TYPE_XIVE_FABRIC, XiveFabric *),
1736 DEFINE_PROP_END_OF_LIST(),
1739 static void xive_router_class_init(ObjectClass *klass, void *data)
1741 DeviceClass *dc = DEVICE_CLASS(klass);
1742 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1744 dc->desc = "XIVE Router Engine";
1745 device_class_set_props(dc, xive_router_properties);
1746 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1747 dc->realize = xive_router_realize;
1748 xnc->notify = xive_router_notify;
1751 static const TypeInfo xive_router_info = {
1752 .name = TYPE_XIVE_ROUTER,
1753 .parent = TYPE_SYS_BUS_DEVICE,
1754 .abstract = true,
1755 .instance_size = sizeof(XiveRouter),
1756 .class_size = sizeof(XiveRouterClass),
1757 .class_init = xive_router_class_init,
1758 .interfaces = (InterfaceInfo[]) {
1759 { TYPE_XIVE_NOTIFIER },
1760 { TYPE_XIVE_PRESENTER },
1765 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1767 if (!xive_eas_is_valid(eas)) {
1768 return;
1771 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1772 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1773 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1774 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1775 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1779 * END ESB MMIO loads
1781 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1783 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1784 uint32_t offset = addr & 0xFFF;
1785 uint8_t end_blk;
1786 uint32_t end_idx;
1787 XiveEND end;
1788 uint32_t end_esmask;
1789 uint8_t pq;
1790 uint64_t ret = -1;
1793 * The block id should be deduced from the load address on the END
1794 * ESB MMIO but our model only supports a single block per XIVE chip.
1796 end_blk = xive_router_get_block_id(xsrc->xrtr);
1797 end_idx = addr >> (xsrc->esb_shift + 1);
1799 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1800 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1801 end_idx);
1802 return -1;
1805 if (!xive_end_is_valid(&end)) {
1806 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1807 end_blk, end_idx);
1808 return -1;
1811 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1812 pq = xive_get_field32(end_esmask, end.w1);
1814 switch (offset) {
1815 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1816 ret = xive_esb_eoi(&pq);
1818 /* Forward the source event notification for routing ?? */
1819 break;
1821 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1822 ret = pq;
1823 break;
1825 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1826 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1827 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1828 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1829 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1830 break;
1831 default:
1832 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1833 offset);
1834 return -1;
1837 if (pq != xive_get_field32(end_esmask, end.w1)) {
1838 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1839 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1842 return ret;
1846 * END ESB MMIO stores are invalid
1848 static void xive_end_source_write(void *opaque, hwaddr addr,
1849 uint64_t value, unsigned size)
1851 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1852 HWADDR_PRIx"\n", addr);
1855 static const MemoryRegionOps xive_end_source_ops = {
1856 .read = xive_end_source_read,
1857 .write = xive_end_source_write,
1858 .endianness = DEVICE_BIG_ENDIAN,
1859 .valid = {
1860 .min_access_size = 8,
1861 .max_access_size = 8,
1863 .impl = {
1864 .min_access_size = 8,
1865 .max_access_size = 8,
1869 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1871 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1873 assert(xsrc->xrtr);
1875 if (!xsrc->nr_ends) {
1876 error_setg(errp, "Number of interrupt needs to be greater than 0");
1877 return;
1880 if (xsrc->esb_shift != XIVE_ESB_4K &&
1881 xsrc->esb_shift != XIVE_ESB_64K) {
1882 error_setg(errp, "Invalid ESB shift setting");
1883 return;
1887 * Each END is assigned an even/odd pair of MMIO pages, the even page
1888 * manages the ESn field while the odd page manages the ESe field.
1890 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1891 &xive_end_source_ops, xsrc, "xive.end",
1892 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1895 static Property xive_end_source_properties[] = {
1896 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1897 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1898 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1899 XiveRouter *),
1900 DEFINE_PROP_END_OF_LIST(),
1903 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1905 DeviceClass *dc = DEVICE_CLASS(klass);
1907 dc->desc = "XIVE END Source";
1908 device_class_set_props(dc, xive_end_source_properties);
1909 dc->realize = xive_end_source_realize;
1911 * Reason: part of XIVE interrupt controller, needs to be wired up,
1912 * e.g. by spapr_xive_instance_init().
1914 dc->user_creatable = false;
1917 static const TypeInfo xive_end_source_info = {
1918 .name = TYPE_XIVE_END_SOURCE,
1919 .parent = TYPE_DEVICE,
1920 .instance_size = sizeof(XiveENDSource),
1921 .class_init = xive_end_source_class_init,
1925 * XIVE Notifier
1927 static const TypeInfo xive_notifier_info = {
1928 .name = TYPE_XIVE_NOTIFIER,
1929 .parent = TYPE_INTERFACE,
1930 .class_size = sizeof(XiveNotifierClass),
1934 * XIVE Presenter
1936 static const TypeInfo xive_presenter_info = {
1937 .name = TYPE_XIVE_PRESENTER,
1938 .parent = TYPE_INTERFACE,
1939 .class_size = sizeof(XivePresenterClass),
1943 * XIVE Fabric
1945 static const TypeInfo xive_fabric_info = {
1946 .name = TYPE_XIVE_FABRIC,
1947 .parent = TYPE_INTERFACE,
1948 .class_size = sizeof(XiveFabricClass),
1951 static void xive_register_types(void)
1953 type_register_static(&xive_fabric_info);
1954 type_register_static(&xive_source_info);
1955 type_register_static(&xive_notifier_info);
1956 type_register_static(&xive_presenter_info);
1957 type_register_static(&xive_router_info);
1958 type_register_static(&xive_end_source_info);
1959 type_register_static(&xive_tctx_info);
1962 type_init(xive_register_types)