tests: acpi: tolerate "virt/SSDT.memhp" mismatch temporarily
[qemu/ar7.git] / hw / intc / spapr_xive.c
blob1fa09f287ac0e7925631054ffa8d7c83fe1cd6c5
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
42 * These identifiers are never returned to the OS.
45 #define SPAPR_XIVE_NVT_BASE 0x400
48 * sPAPR NVT and END indexing helpers
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
58 assert(cpu);
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
72 PowerPCCPU *cpu = spapr_find_cpu(target);
74 if (!cpu) {
75 return -1;
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
92 if (out_server) {
93 *out_server = end_idx >> 3;
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
99 return 0;
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
105 assert(cpu);
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
119 PowerPCCPU *cpu = spapr_find_cpu(target);
121 if (!cpu) {
122 return -1;
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 Monitor *mon)
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
144 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
148 xive_end_queue_pic_print_info(end, 6, mon);
152 * kvm_irqchip_in_kernel() will cause the compiler to turn this
153 * info a nop if CONFIG_KVM isn't defined.
155 #define spapr_xive_in_kernel(xive) \
156 (kvm_irqchip_in_kernel() && (xive)->fd != -1)
158 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
160 XiveSource *xsrc = &xive->source;
161 int i;
163 if (spapr_xive_in_kernel(xive)) {
164 Error *local_err = NULL;
166 kvmppc_xive_synchronize_state(xive, &local_err);
167 if (local_err) {
168 error_report_err(local_err);
169 return;
173 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
175 for (i = 0; i < xive->nr_irqs; i++) {
176 uint8_t pq = xive_source_esb_get(xsrc, i);
177 XiveEAS *eas = &xive->eat[i];
179 if (!xive_eas_is_valid(eas)) {
180 continue;
183 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
184 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
185 pq & XIVE_ESB_VAL_P ? 'P' : '-',
186 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
187 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
188 xive_eas_is_masked(eas) ? "M" : " ",
189 (int) xive_get_field64(EAS_END_DATA, eas->w));
191 if (!xive_eas_is_masked(eas)) {
192 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
193 XiveEND *end;
195 assert(end_idx < xive->nr_ends);
196 end = &xive->endt[end_idx];
198 if (xive_end_is_valid(end)) {
199 spapr_xive_end_pic_print_info(xive, end, mon);
202 monitor_printf(mon, "\n");
206 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
208 memory_region_set_enabled(&xive->source.esb_mmio, enable);
209 memory_region_set_enabled(&xive->tm_mmio, enable);
211 /* Disable the END ESBs until a guest OS makes use of them */
212 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
215 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
216 uint64_t value, unsigned size)
218 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
220 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
223 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
225 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
227 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
230 const MemoryRegionOps spapr_xive_tm_ops = {
231 .read = spapr_xive_tm_read,
232 .write = spapr_xive_tm_write,
233 .endianness = DEVICE_BIG_ENDIAN,
234 .valid = {
235 .min_access_size = 1,
236 .max_access_size = 8,
238 .impl = {
239 .min_access_size = 1,
240 .max_access_size = 8,
244 static void spapr_xive_end_reset(XiveEND *end)
246 memset(end, 0, sizeof(*end));
248 /* switch off the escalation and notification ESBs */
249 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
252 static void spapr_xive_reset(void *dev)
254 SpaprXive *xive = SPAPR_XIVE(dev);
255 int i;
258 * The XiveSource has its own reset handler, which mask off all
259 * IRQs (!P|Q)
262 /* Mask all valid EASs in the IRQ number space. */
263 for (i = 0; i < xive->nr_irqs; i++) {
264 XiveEAS *eas = &xive->eat[i];
265 if (xive_eas_is_valid(eas)) {
266 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
267 } else {
268 eas->w = 0;
272 /* Clear all ENDs */
273 for (i = 0; i < xive->nr_ends; i++) {
274 spapr_xive_end_reset(&xive->endt[i]);
278 static void spapr_xive_instance_init(Object *obj)
280 SpaprXive *xive = SPAPR_XIVE(obj);
282 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
284 object_initialize_child(obj, "end_source", &xive->end_source,
285 TYPE_XIVE_END_SOURCE);
287 /* Not connected to the KVM XIVE device */
288 xive->fd = -1;
291 static void spapr_xive_realize(DeviceState *dev, Error **errp)
293 SpaprXive *xive = SPAPR_XIVE(dev);
294 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
295 XiveSource *xsrc = &xive->source;
296 XiveENDSource *end_xsrc = &xive->end_source;
297 Error *local_err = NULL;
299 sxc->parent_realize(dev, &local_err);
300 if (local_err) {
301 error_propagate(errp, local_err);
302 return;
305 if (!xive->nr_irqs) {
306 error_setg(errp, "Number of interrupt needs to be greater 0");
307 return;
310 if (!xive->nr_ends) {
311 error_setg(errp, "Number of interrupt needs to be greater 0");
312 return;
316 * Initialize the internal sources, for IPIs and virtual devices.
318 object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
319 &error_fatal);
320 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
321 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
322 return;
324 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
327 * Initialize the END ESB source
329 object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
330 &error_fatal);
331 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
332 &error_abort);
333 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
334 return;
336 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
338 /* Set the mapping address of the END ESB pages after the source ESBs */
339 xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
342 * Allocate the routing tables
344 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
345 xive->endt = g_new0(XiveEND, xive->nr_ends);
347 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
348 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
350 qemu_register_reset(spapr_xive_reset, dev);
352 /* TIMA initialization */
353 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
354 xive, "xive.tima", 4ull << TM_SHIFT);
355 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
358 * Map all regions. These will be enabled or disabled at reset and
359 * can also be overridden by KVM memory regions if active
361 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
362 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
363 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
366 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
367 uint32_t eas_idx, XiveEAS *eas)
369 SpaprXive *xive = SPAPR_XIVE(xrtr);
371 if (eas_idx >= xive->nr_irqs) {
372 return -1;
375 *eas = xive->eat[eas_idx];
376 return 0;
379 static int spapr_xive_get_end(XiveRouter *xrtr,
380 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
382 SpaprXive *xive = SPAPR_XIVE(xrtr);
384 if (end_idx >= xive->nr_ends) {
385 return -1;
388 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
389 return 0;
392 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
393 uint32_t end_idx, XiveEND *end,
394 uint8_t word_number)
396 SpaprXive *xive = SPAPR_XIVE(xrtr);
398 if (end_idx >= xive->nr_ends) {
399 return -1;
402 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
403 return 0;
406 static int spapr_xive_get_nvt(XiveRouter *xrtr,
407 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
409 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
410 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
412 if (!cpu) {
413 /* TODO: should we assert() if we can find a NVT ? */
414 return -1;
418 * sPAPR does not maintain a NVT table. Return that the NVT is
419 * valid if we have found a matching CPU
421 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
422 return 0;
425 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
426 uint32_t nvt_idx, XiveNVT *nvt,
427 uint8_t word_number)
430 * We don't need to write back to the NVTs because the sPAPR
431 * machine should never hit a non-scheduled NVT. It should never
432 * get called.
434 g_assert_not_reached();
437 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
438 uint8_t nvt_blk, uint32_t nvt_idx,
439 bool cam_ignore, uint8_t priority,
440 uint32_t logic_serv, XiveTCTXMatch *match)
442 CPUState *cs;
443 int count = 0;
445 CPU_FOREACH(cs) {
446 PowerPCCPU *cpu = POWERPC_CPU(cs);
447 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
448 int ring;
451 * Skip partially initialized vCPUs. This can happen when
452 * vCPUs are hotplugged.
454 if (!tctx) {
455 continue;
459 * Check the thread context CAM lines and record matches.
461 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
462 cam_ignore, logic_serv);
464 * Save the matching thread interrupt context and follow on to
465 * check for duplicates which are invalid.
467 if (ring != -1) {
468 if (match->tctx) {
469 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
470 "context NVT %x/%x\n", nvt_blk, nvt_idx);
471 return -1;
474 match->ring = ring;
475 match->tctx = tctx;
476 count++;
480 return count;
483 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
485 return SPAPR_XIVE_BLOCK_ID;
488 static const VMStateDescription vmstate_spapr_xive_end = {
489 .name = TYPE_SPAPR_XIVE "/end",
490 .version_id = 1,
491 .minimum_version_id = 1,
492 .fields = (VMStateField []) {
493 VMSTATE_UINT32(w0, XiveEND),
494 VMSTATE_UINT32(w1, XiveEND),
495 VMSTATE_UINT32(w2, XiveEND),
496 VMSTATE_UINT32(w3, XiveEND),
497 VMSTATE_UINT32(w4, XiveEND),
498 VMSTATE_UINT32(w5, XiveEND),
499 VMSTATE_UINT32(w6, XiveEND),
500 VMSTATE_UINT32(w7, XiveEND),
501 VMSTATE_END_OF_LIST()
505 static const VMStateDescription vmstate_spapr_xive_eas = {
506 .name = TYPE_SPAPR_XIVE "/eas",
507 .version_id = 1,
508 .minimum_version_id = 1,
509 .fields = (VMStateField []) {
510 VMSTATE_UINT64(w, XiveEAS),
511 VMSTATE_END_OF_LIST()
515 static int vmstate_spapr_xive_pre_save(void *opaque)
517 SpaprXive *xive = SPAPR_XIVE(opaque);
519 if (spapr_xive_in_kernel(xive)) {
520 return kvmppc_xive_pre_save(xive);
523 return 0;
527 * Called by the sPAPR IRQ backend 'post_load' method at the machine
528 * level.
530 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
532 SpaprXive *xive = SPAPR_XIVE(intc);
534 if (spapr_xive_in_kernel(xive)) {
535 return kvmppc_xive_post_load(xive, version_id);
538 return 0;
541 static const VMStateDescription vmstate_spapr_xive = {
542 .name = TYPE_SPAPR_XIVE,
543 .version_id = 1,
544 .minimum_version_id = 1,
545 .pre_save = vmstate_spapr_xive_pre_save,
546 .post_load = NULL, /* handled at the machine level */
547 .fields = (VMStateField[]) {
548 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
549 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
550 vmstate_spapr_xive_eas, XiveEAS),
551 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
552 vmstate_spapr_xive_end, XiveEND),
553 VMSTATE_END_OF_LIST()
557 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
558 bool lsi, Error **errp)
560 SpaprXive *xive = SPAPR_XIVE(intc);
561 XiveSource *xsrc = &xive->source;
563 assert(lisn < xive->nr_irqs);
565 if (xive_eas_is_valid(&xive->eat[lisn])) {
566 error_setg(errp, "IRQ %d is not free", lisn);
567 return -EBUSY;
571 * Set default values when allocating an IRQ number
573 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
574 if (lsi) {
575 xive_source_irq_set_lsi(xsrc, lisn);
578 if (spapr_xive_in_kernel(xive)) {
579 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
582 return 0;
585 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
587 SpaprXive *xive = SPAPR_XIVE(intc);
588 assert(lisn < xive->nr_irqs);
590 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
593 static Property spapr_xive_properties[] = {
594 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
595 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
596 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
597 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
598 DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
599 DEFINE_PROP_END_OF_LIST(),
602 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
603 PowerPCCPU *cpu, Error **errp)
605 SpaprXive *xive = SPAPR_XIVE(intc);
606 Object *obj;
607 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
609 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
610 if (!obj) {
611 return -1;
614 spapr_cpu->tctx = XIVE_TCTX(obj);
615 return 0;
618 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
620 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
621 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
624 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
625 PowerPCCPU *cpu)
627 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
628 uint8_t nvt_blk;
629 uint32_t nvt_idx;
631 xive_tctx_reset(tctx);
634 * When a Virtual Processor is scheduled to run on a HW thread,
635 * the hypervisor pushes its identifier in the OS CAM line.
636 * Emulate the same behavior under QEMU.
638 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
640 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
643 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
644 PowerPCCPU *cpu)
646 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
648 xive_tctx_destroy(spapr_cpu->tctx);
649 spapr_cpu->tctx = NULL;
652 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
654 SpaprXive *xive = SPAPR_XIVE(intc);
656 if (spapr_xive_in_kernel(xive)) {
657 kvmppc_xive_source_set_irq(&xive->source, irq, val);
658 } else {
659 xive_source_set_irq(&xive->source, irq, val);
663 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
665 SpaprXive *xive = SPAPR_XIVE(intc);
666 CPUState *cs;
668 CPU_FOREACH(cs) {
669 PowerPCCPU *cpu = POWERPC_CPU(cs);
671 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
674 spapr_xive_pic_print_info(xive, mon);
677 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
678 void *fdt, uint32_t phandle)
680 SpaprXive *xive = SPAPR_XIVE(intc);
681 int node;
682 uint64_t timas[2 * 2];
683 /* Interrupt number ranges for the IPIs */
684 uint32_t lisn_ranges[] = {
685 cpu_to_be32(SPAPR_IRQ_IPI),
686 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
689 * EQ size - the sizes of pages supported by the system 4K, 64K,
690 * 2M, 16M. We only advertise 64K for the moment.
692 uint32_t eq_sizes[] = {
693 cpu_to_be32(16), /* 64K */
696 * QEMU/KVM only needs to define a single range to reserve the
697 * escalation priority. A priority bitmask would have been more
698 * appropriate.
700 uint32_t plat_res_int_priorities[] = {
701 cpu_to_be32(xive->hv_prio), /* start */
702 cpu_to_be32(0xff - xive->hv_prio), /* count */
705 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
706 timas[0] = cpu_to_be64(xive->tm_base +
707 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
708 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
709 timas[2] = cpu_to_be64(xive->tm_base +
710 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
711 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
713 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
715 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
716 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
718 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
719 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
720 sizeof(eq_sizes)));
721 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
722 sizeof(lisn_ranges)));
724 /* For Linux to link the LSIs to the interrupt controller. */
725 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
726 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
728 /* For SLOF */
729 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
730 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
733 * The "ibm,plat-res-int-priorities" property defines the priority
734 * ranges reserved by the hypervisor
736 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
737 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
740 static int spapr_xive_activate(SpaprInterruptController *intc,
741 uint32_t nr_servers, Error **errp)
743 SpaprXive *xive = SPAPR_XIVE(intc);
745 if (kvm_enabled()) {
746 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
747 errp);
748 if (rc < 0) {
749 return rc;
753 /* Activate the XIVE MMIOs */
754 spapr_xive_mmio_set_enabled(xive, true);
756 return 0;
759 static void spapr_xive_deactivate(SpaprInterruptController *intc)
761 SpaprXive *xive = SPAPR_XIVE(intc);
763 spapr_xive_mmio_set_enabled(xive, false);
765 if (spapr_xive_in_kernel(xive)) {
766 kvmppc_xive_disconnect(intc);
770 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
772 return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
775 static void spapr_xive_class_init(ObjectClass *klass, void *data)
777 DeviceClass *dc = DEVICE_CLASS(klass);
778 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
779 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
780 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
781 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
783 dc->desc = "sPAPR XIVE Interrupt Controller";
784 device_class_set_props(dc, spapr_xive_properties);
785 device_class_set_parent_realize(dc, spapr_xive_realize,
786 &sxc->parent_realize);
787 dc->vmsd = &vmstate_spapr_xive;
789 xrc->get_eas = spapr_xive_get_eas;
790 xrc->get_end = spapr_xive_get_end;
791 xrc->write_end = spapr_xive_write_end;
792 xrc->get_nvt = spapr_xive_get_nvt;
793 xrc->write_nvt = spapr_xive_write_nvt;
794 xrc->get_block_id = spapr_xive_get_block_id;
796 sicc->activate = spapr_xive_activate;
797 sicc->deactivate = spapr_xive_deactivate;
798 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
799 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
800 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
801 sicc->claim_irq = spapr_xive_claim_irq;
802 sicc->free_irq = spapr_xive_free_irq;
803 sicc->set_irq = spapr_xive_set_irq;
804 sicc->print_info = spapr_xive_print_info;
805 sicc->dt = spapr_xive_dt;
806 sicc->post_load = spapr_xive_post_load;
808 xpc->match_nvt = spapr_xive_match_nvt;
809 xpc->in_kernel = spapr_xive_in_kernel_xptr;
812 static const TypeInfo spapr_xive_info = {
813 .name = TYPE_SPAPR_XIVE,
814 .parent = TYPE_XIVE_ROUTER,
815 .instance_init = spapr_xive_instance_init,
816 .instance_size = sizeof(SpaprXive),
817 .class_init = spapr_xive_class_init,
818 .class_size = sizeof(SpaprXiveClass),
819 .interfaces = (InterfaceInfo[]) {
820 { TYPE_SPAPR_INTC },
825 static void spapr_xive_register_types(void)
827 type_register_static(&spapr_xive_info);
830 type_init(spapr_xive_register_types)
833 * XIVE hcalls
835 * The terminology used by the XIVE hcalls is the following :
837 * TARGET vCPU number
838 * EQ Event Queue assigned by OS to receive event data
839 * ESB page for source interrupt management
840 * LISN Logical Interrupt Source Number identifying a source in the
841 * machine
842 * EISN Effective Interrupt Source Number used by guest OS to
843 * identify source in the guest
845 * The EAS, END, NVT structures are not exposed.
849 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
850 * interrupts. So we only allow the guest to use priorities [0..6].
852 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
854 return priority >= xive->hv_prio;
858 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
859 * real address of the MMIO page through which the Event State Buffer
860 * entry associated with the value of the "lisn" parameter is managed.
862 * Parameters:
863 * Input
864 * - R4: "flags"
865 * Bits 0-63 reserved
866 * - R5: "lisn" is per "interrupts", "interrupt-map", or
867 * "ibm,xive-lisn-ranges" properties, or as returned by the
868 * ibm,query-interrupt-source-number RTAS call, or as returned
869 * by the H_ALLOCATE_VAS_WINDOW hcall
871 * Output
872 * - R4: "flags"
873 * Bits 0-59: Reserved
874 * Bit 60: H_INT_ESB must be used for Event State Buffer
875 * management
876 * Bit 61: 1 == LSI 0 == MSI
877 * Bit 62: the full function page supports trigger
878 * Bit 63: Store EOI Supported
879 * - R5: Logical Real address of full function Event State Buffer
880 * management page, -1 if H_INT_ESB hcall flag is set to 1.
881 * - R6: Logical Real Address of trigger only Event State Buffer
882 * management page or -1.
883 * - R7: Power of 2 page size for the ESB management pages returned in
884 * R5 and R6.
887 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
888 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
889 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
890 on same page */
891 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
893 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
894 SpaprMachineState *spapr,
895 target_ulong opcode,
896 target_ulong *args)
898 SpaprXive *xive = spapr->xive;
899 XiveSource *xsrc = &xive->source;
900 target_ulong flags = args[0];
901 target_ulong lisn = args[1];
903 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
904 return H_FUNCTION;
907 if (flags) {
908 return H_PARAMETER;
911 if (lisn >= xive->nr_irqs) {
912 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
913 lisn);
914 return H_P2;
917 if (!xive_eas_is_valid(&xive->eat[lisn])) {
918 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
919 lisn);
920 return H_P2;
924 * All sources are emulated under the main XIVE object and share
925 * the same characteristics.
927 args[0] = 0;
928 if (!xive_source_esb_has_2page(xsrc)) {
929 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
931 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
932 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
936 * Force the use of the H_INT_ESB hcall in case of an LSI
937 * interrupt. This is necessary under KVM to re-trigger the
938 * interrupt if the level is still asserted
940 if (xive_source_irq_is_lsi(xsrc, lisn)) {
941 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
944 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
945 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
946 } else {
947 args[1] = -1;
950 if (xive_source_esb_has_2page(xsrc) &&
951 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
952 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
953 } else {
954 args[2] = -1;
957 if (xive_source_esb_has_2page(xsrc)) {
958 args[3] = xsrc->esb_shift - 1;
959 } else {
960 args[3] = xsrc->esb_shift;
963 return H_SUCCESS;
967 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
968 * Interrupt Source to a target. The Logical Interrupt Source is
969 * designated with the "lisn" parameter and the target is designated
970 * with the "target" and "priority" parameters. Upon return from the
971 * hcall(), no additional interrupts will be directed to the old EQ.
973 * Parameters:
974 * Input:
975 * - R4: "flags"
976 * Bits 0-61: Reserved
977 * Bit 62: set the "eisn" in the EAS
978 * Bit 63: masks the interrupt source in the hardware interrupt
979 * control structure. An interrupt masked by this mechanism will
980 * be dropped, but it's source state bits will still be
981 * set. There is no race-free way of unmasking and restoring the
982 * source. Thus this should only be used in interrupts that are
983 * also masked at the source, and only in cases where the
984 * interrupt is not meant to be used for a large amount of time
985 * because no valid target exists for it for example
986 * - R5: "lisn" is per "interrupts", "interrupt-map", or
987 * "ibm,xive-lisn-ranges" properties, or as returned by the
988 * ibm,query-interrupt-source-number RTAS call, or as returned by
989 * the H_ALLOCATE_VAS_WINDOW hcall
990 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
991 * "ibm,ppc-interrupt-gserver#s"
992 * - R7: "priority" is a valid priority not in
993 * "ibm,plat-res-int-priorities"
994 * - R8: "eisn" is the guest EISN associated with the "lisn"
996 * Output:
997 * - None
1000 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1001 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
1003 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1004 SpaprMachineState *spapr,
1005 target_ulong opcode,
1006 target_ulong *args)
1008 SpaprXive *xive = spapr->xive;
1009 XiveEAS eas, new_eas;
1010 target_ulong flags = args[0];
1011 target_ulong lisn = args[1];
1012 target_ulong target = args[2];
1013 target_ulong priority = args[3];
1014 target_ulong eisn = args[4];
1015 uint8_t end_blk;
1016 uint32_t end_idx;
1018 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1019 return H_FUNCTION;
1022 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1023 return H_PARAMETER;
1026 if (lisn >= xive->nr_irqs) {
1027 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1028 lisn);
1029 return H_P2;
1032 eas = xive->eat[lisn];
1033 if (!xive_eas_is_valid(&eas)) {
1034 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1035 lisn);
1036 return H_P2;
1039 /* priority 0xff is used to reset the EAS */
1040 if (priority == 0xff) {
1041 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1042 goto out;
1045 if (flags & SPAPR_XIVE_SRC_MASK) {
1046 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1047 } else {
1048 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1051 if (spapr_xive_priority_is_reserved(xive, priority)) {
1052 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1053 " is reserved\n", priority);
1054 return H_P4;
1058 * Validate that "target" is part of the list of threads allocated
1059 * to the partition. For that, find the END corresponding to the
1060 * target.
1062 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1063 return H_P3;
1066 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1067 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1069 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1070 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1073 if (spapr_xive_in_kernel(xive)) {
1074 Error *local_err = NULL;
1076 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1077 if (local_err) {
1078 error_report_err(local_err);
1079 return H_HARDWARE;
1083 out:
1084 xive->eat[lisn] = new_eas;
1085 return H_SUCCESS;
1089 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1090 * target/priority pair is assigned to the specified Logical Interrupt
1091 * Source.
1093 * Parameters:
1094 * Input:
1095 * - R4: "flags"
1096 * Bits 0-63 Reserved
1097 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1098 * "ibm,xive-lisn-ranges" properties, or as returned by the
1099 * ibm,query-interrupt-source-number RTAS call, or as
1100 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1102 * Output:
1103 * - R4: Target to which the specified Logical Interrupt Source is
1104 * assigned
1105 * - R5: Priority to which the specified Logical Interrupt Source is
1106 * assigned
1107 * - R6: EISN for the specified Logical Interrupt Source (this will be
1108 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1110 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1111 SpaprMachineState *spapr,
1112 target_ulong opcode,
1113 target_ulong *args)
1115 SpaprXive *xive = spapr->xive;
1116 target_ulong flags = args[0];
1117 target_ulong lisn = args[1];
1118 XiveEAS eas;
1119 XiveEND *end;
1120 uint8_t nvt_blk;
1121 uint32_t end_idx, nvt_idx;
1123 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1124 return H_FUNCTION;
1127 if (flags) {
1128 return H_PARAMETER;
1131 if (lisn >= xive->nr_irqs) {
1132 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1133 lisn);
1134 return H_P2;
1137 eas = xive->eat[lisn];
1138 if (!xive_eas_is_valid(&eas)) {
1139 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1140 lisn);
1141 return H_P2;
1144 /* EAS_END_BLOCK is unused on sPAPR */
1145 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1147 assert(end_idx < xive->nr_ends);
1148 end = &xive->endt[end_idx];
1150 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1151 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1152 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1154 if (xive_eas_is_masked(&eas)) {
1155 args[1] = 0xff;
1156 } else {
1157 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1160 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1162 return H_SUCCESS;
1166 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1167 * address of the notification management page associated with the
1168 * specified target and priority.
1170 * Parameters:
1171 * Input:
1172 * - R4: "flags"
1173 * Bits 0-63 Reserved
1174 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1175 * "ibm,ppc-interrupt-gserver#s"
1176 * - R6: "priority" is a valid priority not in
1177 * "ibm,plat-res-int-priorities"
1179 * Output:
1180 * - R4: Logical real address of notification page
1181 * - R5: Power of 2 page size of the notification page
1183 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1184 SpaprMachineState *spapr,
1185 target_ulong opcode,
1186 target_ulong *args)
1188 SpaprXive *xive = spapr->xive;
1189 XiveENDSource *end_xsrc = &xive->end_source;
1190 target_ulong flags = args[0];
1191 target_ulong target = args[1];
1192 target_ulong priority = args[2];
1193 XiveEND *end;
1194 uint8_t end_blk;
1195 uint32_t end_idx;
1197 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1198 return H_FUNCTION;
1201 if (flags) {
1202 return H_PARAMETER;
1206 * H_STATE should be returned if a H_INT_RESET is in progress.
1207 * This is not needed when running the emulation under QEMU
1210 if (spapr_xive_priority_is_reserved(xive, priority)) {
1211 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1212 " is reserved\n", priority);
1213 return H_P3;
1217 * Validate that "target" is part of the list of threads allocated
1218 * to the partition. For that, find the END corresponding to the
1219 * target.
1221 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1222 return H_P2;
1225 assert(end_idx < xive->nr_ends);
1226 end = &xive->endt[end_idx];
1228 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1229 if (xive_end_is_enqueue(end)) {
1230 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1231 } else {
1232 args[1] = 0;
1235 return H_SUCCESS;
1239 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1240 * a given "target" and "priority". It is also used to set the
1241 * notification config associated with the EQ. An EQ size of 0 is
1242 * used to reset the EQ config for a given target and priority. If
1243 * resetting the EQ config, the END associated with the given "target"
1244 * and "priority" will be changed to disable queueing.
1246 * Upon return from the hcall(), no additional interrupts will be
1247 * directed to the old EQ (if one was set). The old EQ (if one was
1248 * set) should be investigated for interrupts that occurred prior to
1249 * or during the hcall().
1251 * Parameters:
1252 * Input:
1253 * - R4: "flags"
1254 * Bits 0-62: Reserved
1255 * Bit 63: Unconditional Notify (n) per the XIVE spec
1256 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1257 * "ibm,ppc-interrupt-gserver#s"
1258 * - R6: "priority" is a valid priority not in
1259 * "ibm,plat-res-int-priorities"
1260 * - R7: "eventQueue": The logical real address of the start of the EQ
1261 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1263 * Output:
1264 * - None
1267 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1269 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1270 SpaprMachineState *spapr,
1271 target_ulong opcode,
1272 target_ulong *args)
1274 SpaprXive *xive = spapr->xive;
1275 target_ulong flags = args[0];
1276 target_ulong target = args[1];
1277 target_ulong priority = args[2];
1278 target_ulong qpage = args[3];
1279 target_ulong qsize = args[4];
1280 XiveEND end;
1281 uint8_t end_blk, nvt_blk;
1282 uint32_t end_idx, nvt_idx;
1284 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1285 return H_FUNCTION;
1288 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1289 return H_PARAMETER;
1293 * H_STATE should be returned if a H_INT_RESET is in progress.
1294 * This is not needed when running the emulation under QEMU
1297 if (spapr_xive_priority_is_reserved(xive, priority)) {
1298 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1299 " is reserved\n", priority);
1300 return H_P3;
1304 * Validate that "target" is part of the list of threads allocated
1305 * to the partition. For that, find the END corresponding to the
1306 * target.
1309 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1310 return H_P2;
1313 assert(end_idx < xive->nr_ends);
1314 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1316 switch (qsize) {
1317 case 12:
1318 case 16:
1319 case 21:
1320 case 24:
1321 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1322 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1323 " is not naturally aligned with %" HWADDR_PRIx "\n",
1324 qpage, (hwaddr)1 << qsize);
1325 return H_P4;
1327 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1328 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1329 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1330 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1331 break;
1332 case 0:
1333 /* reset queue and disable queueing */
1334 spapr_xive_end_reset(&end);
1335 goto out;
1337 default:
1338 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1339 qsize);
1340 return H_P5;
1343 if (qsize) {
1344 hwaddr plen = 1 << qsize;
1345 void *eq;
1348 * Validate the guest EQ. We should also check that the queue
1349 * has been zeroed by the OS.
1351 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1352 MEMTXATTRS_UNSPECIFIED);
1353 if (plen != 1 << qsize) {
1354 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1355 HWADDR_PRIx "\n", qpage);
1356 return H_P4;
1358 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1361 /* "target" should have been validated above */
1362 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1363 g_assert_not_reached();
1367 * Ensure the priority and target are correctly set (they will not
1368 * be right after allocation)
1370 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1371 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1372 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1374 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1375 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1376 } else {
1377 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1381 * The generation bit for the END starts at 1 and The END page
1382 * offset counter starts at 0.
1384 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1385 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1386 end.w0 |= cpu_to_be32(END_W0_VALID);
1389 * TODO: issue syncs required to ensure all in-flight interrupts
1390 * are complete on the old END
1393 out:
1394 if (spapr_xive_in_kernel(xive)) {
1395 Error *local_err = NULL;
1397 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1398 if (local_err) {
1399 error_report_err(local_err);
1400 return H_HARDWARE;
1404 /* Update END */
1405 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1406 return H_SUCCESS;
1410 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1411 * target and priority.
1413 * Parameters:
1414 * Input:
1415 * - R4: "flags"
1416 * Bits 0-62: Reserved
1417 * Bit 63: Debug: Return debug data
1418 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1419 * "ibm,ppc-interrupt-gserver#s"
1420 * - R6: "priority" is a valid priority not in
1421 * "ibm,plat-res-int-priorities"
1423 * Output:
1424 * - R4: "flags":
1425 * Bits 0-61: Reserved
1426 * Bit 62: The value of Event Queue Generation Number (g) per
1427 * the XIVE spec if "Debug" = 1
1428 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1429 * - R5: The logical real address of the start of the EQ
1430 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1431 * - R7: The value of Event Queue Offset Counter per XIVE spec
1432 * if "Debug" = 1, else 0
1436 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1438 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1439 SpaprMachineState *spapr,
1440 target_ulong opcode,
1441 target_ulong *args)
1443 SpaprXive *xive = spapr->xive;
1444 target_ulong flags = args[0];
1445 target_ulong target = args[1];
1446 target_ulong priority = args[2];
1447 XiveEND *end;
1448 uint8_t end_blk;
1449 uint32_t end_idx;
1451 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1452 return H_FUNCTION;
1455 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1456 return H_PARAMETER;
1460 * H_STATE should be returned if a H_INT_RESET is in progress.
1461 * This is not needed when running the emulation under QEMU
1464 if (spapr_xive_priority_is_reserved(xive, priority)) {
1465 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1466 " is reserved\n", priority);
1467 return H_P3;
1471 * Validate that "target" is part of the list of threads allocated
1472 * to the partition. For that, find the END corresponding to the
1473 * target.
1475 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1476 return H_P2;
1479 assert(end_idx < xive->nr_ends);
1480 end = &xive->endt[end_idx];
1482 args[0] = 0;
1483 if (xive_end_is_notify(end)) {
1484 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1487 if (xive_end_is_enqueue(end)) {
1488 args[1] = xive_end_qaddr(end);
1489 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1490 } else {
1491 args[1] = 0;
1492 args[2] = 0;
1495 if (spapr_xive_in_kernel(xive)) {
1496 Error *local_err = NULL;
1498 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1499 if (local_err) {
1500 error_report_err(local_err);
1501 return H_HARDWARE;
1505 /* TODO: do we need any locking on the END ? */
1506 if (flags & SPAPR_XIVE_END_DEBUG) {
1507 /* Load the event queue generation number into the return flags */
1508 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1510 /* Load R7 with the event queue offset counter */
1511 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1512 } else {
1513 args[3] = 0;
1516 return H_SUCCESS;
1520 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1521 * reporting cache line pair for the calling thread. The reporting
1522 * cache lines will contain the OS interrupt context when the OS
1523 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1524 * interrupt. The reporting cache lines can be reset by inputting -1
1525 * in "reportingLine". Issuing the CI store byte without reporting
1526 * cache lines registered will result in the data not being accessible
1527 * to the OS.
1529 * Parameters:
1530 * Input:
1531 * - R4: "flags"
1532 * Bits 0-63: Reserved
1533 * - R5: "reportingLine": The logical real address of the reporting cache
1534 * line pair
1536 * Output:
1537 * - None
1539 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1540 SpaprMachineState *spapr,
1541 target_ulong opcode,
1542 target_ulong *args)
1544 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1545 return H_FUNCTION;
1549 * H_STATE should be returned if a H_INT_RESET is in progress.
1550 * This is not needed when running the emulation under QEMU
1553 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1554 return H_FUNCTION;
1558 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1559 * real address of the reporting cache line pair set for the input
1560 * "target". If no reporting cache line pair has been set, -1 is
1561 * returned.
1563 * Parameters:
1564 * Input:
1565 * - R4: "flags"
1566 * Bits 0-63: Reserved
1567 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1568 * "ibm,ppc-interrupt-gserver#s"
1569 * - R6: "reportingLine": The logical real address of the reporting
1570 * cache line pair
1572 * Output:
1573 * - R4: The logical real address of the reporting line if set, else -1
1575 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1576 SpaprMachineState *spapr,
1577 target_ulong opcode,
1578 target_ulong *args)
1580 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1581 return H_FUNCTION;
1585 * H_STATE should be returned if a H_INT_RESET is in progress.
1586 * This is not needed when running the emulation under QEMU
1589 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1590 return H_FUNCTION;
1594 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1595 * page for the input "lisn". This hcall is only supported for LISNs
1596 * that have the ESB hcall flag set to 1 when returned from hcall()
1597 * H_INT_GET_SOURCE_INFO.
1599 * Parameters:
1600 * Input:
1601 * - R4: "flags"
1602 * Bits 0-62: Reserved
1603 * bit 63: Store: Store=1, store operation, else load operation
1604 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1605 * "ibm,xive-lisn-ranges" properties, or as returned by the
1606 * ibm,query-interrupt-source-number RTAS call, or as
1607 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1608 * - R6: "esbOffset" is the offset into the ESB page for the load or
1609 * store operation
1610 * - R7: "storeData" is the data to write for a store operation
1612 * Output:
1613 * - R4: The value of the load if load operation, else -1
1616 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1618 static target_ulong h_int_esb(PowerPCCPU *cpu,
1619 SpaprMachineState *spapr,
1620 target_ulong opcode,
1621 target_ulong *args)
1623 SpaprXive *xive = spapr->xive;
1624 XiveEAS eas;
1625 target_ulong flags = args[0];
1626 target_ulong lisn = args[1];
1627 target_ulong offset = args[2];
1628 target_ulong data = args[3];
1629 hwaddr mmio_addr;
1630 XiveSource *xsrc = &xive->source;
1632 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1633 return H_FUNCTION;
1636 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1637 return H_PARAMETER;
1640 if (lisn >= xive->nr_irqs) {
1641 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1642 lisn);
1643 return H_P2;
1646 eas = xive->eat[lisn];
1647 if (!xive_eas_is_valid(&eas)) {
1648 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1649 lisn);
1650 return H_P2;
1653 if (offset > (1ull << xsrc->esb_shift)) {
1654 return H_P3;
1657 if (spapr_xive_in_kernel(xive)) {
1658 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1659 flags & SPAPR_XIVE_ESB_STORE);
1660 } else {
1661 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1663 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1664 (flags & SPAPR_XIVE_ESB_STORE))) {
1665 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1666 HWADDR_PRIx "\n", mmio_addr);
1667 return H_HARDWARE;
1669 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1671 return H_SUCCESS;
1675 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1676 * ensure any in flight events for the input lisn are in the event
1677 * queue.
1679 * Parameters:
1680 * Input:
1681 * - R4: "flags"
1682 * Bits 0-63: Reserved
1683 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1684 * "ibm,xive-lisn-ranges" properties, or as returned by the
1685 * ibm,query-interrupt-source-number RTAS call, or as
1686 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1688 * Output:
1689 * - None
1691 static target_ulong h_int_sync(PowerPCCPU *cpu,
1692 SpaprMachineState *spapr,
1693 target_ulong opcode,
1694 target_ulong *args)
1696 SpaprXive *xive = spapr->xive;
1697 XiveEAS eas;
1698 target_ulong flags = args[0];
1699 target_ulong lisn = args[1];
1701 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1702 return H_FUNCTION;
1705 if (flags) {
1706 return H_PARAMETER;
1709 if (lisn >= xive->nr_irqs) {
1710 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1711 lisn);
1712 return H_P2;
1715 eas = xive->eat[lisn];
1716 if (!xive_eas_is_valid(&eas)) {
1717 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1718 lisn);
1719 return H_P2;
1723 * H_STATE should be returned if a H_INT_RESET is in progress.
1724 * This is not needed when running the emulation under QEMU
1728 * This is not real hardware. Nothing to be done unless when
1729 * under KVM
1732 if (spapr_xive_in_kernel(xive)) {
1733 Error *local_err = NULL;
1735 kvmppc_xive_sync_source(xive, lisn, &local_err);
1736 if (local_err) {
1737 error_report_err(local_err);
1738 return H_HARDWARE;
1741 return H_SUCCESS;
1745 * The H_INT_RESET hcall() is used to reset all of the partition's
1746 * interrupt exploitation structures to their initial state. This
1747 * means losing all previously set interrupt state set via
1748 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1750 * Parameters:
1751 * Input:
1752 * - R4: "flags"
1753 * Bits 0-63: Reserved
1755 * Output:
1756 * - None
1758 static target_ulong h_int_reset(PowerPCCPU *cpu,
1759 SpaprMachineState *spapr,
1760 target_ulong opcode,
1761 target_ulong *args)
1763 SpaprXive *xive = spapr->xive;
1764 target_ulong flags = args[0];
1766 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1767 return H_FUNCTION;
1770 if (flags) {
1771 return H_PARAMETER;
1774 device_legacy_reset(DEVICE(xive));
1776 if (spapr_xive_in_kernel(xive)) {
1777 Error *local_err = NULL;
1779 kvmppc_xive_reset(xive, &local_err);
1780 if (local_err) {
1781 error_report_err(local_err);
1782 return H_HARDWARE;
1785 return H_SUCCESS;
1788 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1790 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1791 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1792 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1793 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1794 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1795 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1796 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1797 h_int_set_os_reporting_line);
1798 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1799 h_int_get_os_reporting_line);
1800 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1801 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1802 spapr_register_hypercall(H_INT_RESET, h_int_reset);