2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "crypto/aes.h"
26 #include "helper_regs.h"
27 /*****************************************************************************/
28 /* Fixed point operations helpers */
30 target_ulong
helper_divweu(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
36 uint64_t dividend
= (uint64_t)ra
<< 32;
37 uint64_t divisor
= (uint32_t)rb
;
39 if (unlikely(divisor
== 0)) {
42 rt
= dividend
/ divisor
;
43 overflow
= rt
> UINT32_MAX
;
46 if (unlikely(overflow
)) {
47 rt
= 0; /* Undefined */
51 if (unlikely(overflow
)) {
52 env
->so
= env
->ov
= 1;
58 return (target_ulong
)rt
;
61 target_ulong
helper_divwe(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
67 int64_t dividend
= (int64_t)ra
<< 32;
68 int64_t divisor
= (int64_t)((int32_t)rb
);
70 if (unlikely((divisor
== 0) ||
71 ((divisor
== -1ull) && (dividend
== INT64_MIN
)))) {
74 rt
= dividend
/ divisor
;
75 overflow
= rt
!= (int32_t)rt
;
78 if (unlikely(overflow
)) {
79 rt
= 0; /* Undefined */
83 if (unlikely(overflow
)) {
84 env
->so
= env
->ov
= 1;
90 return (target_ulong
)rt
;
93 #if defined(TARGET_PPC64)
95 uint64_t helper_divdeu(CPUPPCState
*env
, uint64_t ra
, uint64_t rb
, uint32_t oe
)
100 overflow
= divu128(&rt
, &ra
, rb
);
102 if (unlikely(overflow
)) {
103 rt
= 0; /* Undefined */
107 if (unlikely(overflow
)) {
108 env
->so
= env
->ov
= 1;
117 uint64_t helper_divde(CPUPPCState
*env
, uint64_t rau
, uint64_t rbu
, uint32_t oe
)
120 int64_t ra
= (int64_t)rau
;
121 int64_t rb
= (int64_t)rbu
;
122 int overflow
= divs128(&rt
, &ra
, rb
);
124 if (unlikely(overflow
)) {
125 rt
= 0; /* Undefined */
130 if (unlikely(overflow
)) {
131 env
->so
= env
->ov
= 1;
143 target_ulong
helper_cntlzw(target_ulong t
)
148 target_ulong
helper_cnttzw(target_ulong t
)
153 #if defined(TARGET_PPC64)
154 /* if x = 0xab, returns 0xababababababababa */
155 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
157 /* substract 1 from each byte, and with inverse, check if MSB is set at each
159 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
160 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
162 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
164 /* When you XOR the pattern and there is a match, that byte will be zero */
165 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
167 uint32_t helper_cmpeqb(target_ulong ra
, target_ulong rb
)
169 return hasvalue(rb
, ra
) ? 1 << CRF_GT
: 0;
176 target_ulong
helper_cntlzd(target_ulong t
)
181 target_ulong
helper_cnttzd(target_ulong t
)
186 /* Return invalid random number.
188 * FIXME: Add rng backend or other mechanism to get cryptographically suitable
191 target_ulong
helper_darn32(void)
196 target_ulong
helper_darn64(void)
203 #if defined(TARGET_PPC64)
205 uint64_t helper_bpermd(uint64_t rs
, uint64_t rb
)
210 for (i
= 0; i
< 8; i
++) {
211 int index
= (rs
>> (i
*8)) & 0xFF;
213 if (rb
& (1ull << (63-index
))) {
223 target_ulong
helper_cmpb(target_ulong rs
, target_ulong rb
)
225 target_ulong mask
= 0xff;
229 for (i
= 0; i
< sizeof(target_ulong
); i
++) {
230 if ((rs
& mask
) == (rb
& mask
)) {
238 /* shift right arithmetic helper */
239 target_ulong
helper_sraw(CPUPPCState
*env
, target_ulong value
,
244 if (likely(!(shift
& 0x20))) {
245 if (likely((uint32_t)shift
!= 0)) {
247 ret
= (int32_t)value
>> shift
;
248 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
254 ret
= (int32_t)value
;
258 ret
= (int32_t)value
>> 31;
259 env
->ca
= (ret
!= 0);
261 return (target_long
)ret
;
264 #if defined(TARGET_PPC64)
265 target_ulong
helper_srad(CPUPPCState
*env
, target_ulong value
,
270 if (likely(!(shift
& 0x40))) {
271 if (likely((uint64_t)shift
!= 0)) {
273 ret
= (int64_t)value
>> shift
;
274 if (likely(ret
>= 0 || (value
& ((1ULL << shift
) - 1)) == 0)) {
280 ret
= (int64_t)value
;
284 ret
= (int64_t)value
>> 63;
285 env
->ca
= (ret
!= 0);
291 #if defined(TARGET_PPC64)
292 target_ulong
helper_popcntb(target_ulong val
)
294 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
295 0x5555555555555555ULL
);
296 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
297 0x3333333333333333ULL
);
298 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
299 0x0f0f0f0f0f0f0f0fULL
);
303 target_ulong
helper_popcntw(target_ulong val
)
305 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
306 0x5555555555555555ULL
);
307 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
308 0x3333333333333333ULL
);
309 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
310 0x0f0f0f0f0f0f0f0fULL
);
311 val
= (val
& 0x00ff00ff00ff00ffULL
) + ((val
>> 8) &
312 0x00ff00ff00ff00ffULL
);
313 val
= (val
& 0x0000ffff0000ffffULL
) + ((val
>> 16) &
314 0x0000ffff0000ffffULL
);
318 target_ulong
helper_popcntd(target_ulong val
)
323 target_ulong
helper_popcntb(target_ulong val
)
325 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
326 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
327 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
331 target_ulong
helper_popcntw(target_ulong val
)
333 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
334 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
335 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
336 val
= (val
& 0x00ff00ff) + ((val
>> 8) & 0x00ff00ff);
337 val
= (val
& 0x0000ffff) + ((val
>> 16) & 0x0000ffff);
342 /*****************************************************************************/
343 /* PowerPC 601 specific instructions (POWER bridge) */
344 target_ulong
helper_div(CPUPPCState
*env
, target_ulong arg1
, target_ulong arg2
)
346 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
348 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
349 (int32_t)arg2
== 0) {
350 env
->spr
[SPR_MQ
] = 0;
353 env
->spr
[SPR_MQ
] = tmp
% arg2
;
354 return tmp
/ (int32_t)arg2
;
358 target_ulong
helper_divo(CPUPPCState
*env
, target_ulong arg1
,
361 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
363 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
364 (int32_t)arg2
== 0) {
365 env
->so
= env
->ov
= 1;
366 env
->spr
[SPR_MQ
] = 0;
369 env
->spr
[SPR_MQ
] = tmp
% arg2
;
370 tmp
/= (int32_t)arg2
;
371 if ((int32_t)tmp
!= tmp
) {
372 env
->so
= env
->ov
= 1;
380 target_ulong
helper_divs(CPUPPCState
*env
, target_ulong arg1
,
383 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
384 (int32_t)arg2
== 0) {
385 env
->spr
[SPR_MQ
] = 0;
388 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
389 return (int32_t)arg1
/ (int32_t)arg2
;
393 target_ulong
helper_divso(CPUPPCState
*env
, target_ulong arg1
,
396 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
397 (int32_t)arg2
== 0) {
398 env
->so
= env
->ov
= 1;
399 env
->spr
[SPR_MQ
] = 0;
403 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
404 return (int32_t)arg1
/ (int32_t)arg2
;
408 /*****************************************************************************/
409 /* 602 specific instructions */
410 /* mfrom is the most crazy instruction ever seen, imho ! */
411 /* Real implementation uses a ROM table. Do the same */
412 /* Extremely decomposed:
414 * return 256 * log10(10 + 1.0) + 0.5
416 #if !defined(CONFIG_USER_ONLY)
417 target_ulong
helper_602_mfrom(target_ulong arg
)
419 if (likely(arg
< 602)) {
420 #include "mfrom_table.c"
421 return mfrom_ROM_table
[arg
];
428 /*****************************************************************************/
429 /* Altivec extension helpers */
430 #if defined(HOST_WORDS_BIGENDIAN)
433 #define AVRB(i) u8[i]
434 #define AVRW(i) u32[i]
438 #define AVRB(i) u8[15-(i)]
439 #define AVRW(i) u32[3-(i)]
442 #if defined(HOST_WORDS_BIGENDIAN)
443 #define VECTOR_FOR_INORDER_I(index, element) \
444 for (index = 0; index < ARRAY_SIZE(r->element); index++)
446 #define VECTOR_FOR_INORDER_I(index, element) \
447 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
450 /* Saturating arithmetic helpers. */
451 #define SATCVT(from, to, from_type, to_type, min, max) \
452 static inline to_type cvt##from##to(from_type x, int *sat) \
456 if (x < (from_type)min) { \
459 } else if (x > (from_type)max) { \
467 #define SATCVTU(from, to, from_type, to_type, min, max) \
468 static inline to_type cvt##from##to(from_type x, int *sat) \
472 if (x > (from_type)max) { \
480 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
481 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
482 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
484 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
485 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
486 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
487 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
488 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
489 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
493 void helper_lvsl(ppc_avr_t
*r
, target_ulong sh
)
495 int i
, j
= (sh
& 0xf);
497 VECTOR_FOR_INORDER_I(i
, u8
) {
502 void helper_lvsr(ppc_avr_t
*r
, target_ulong sh
)
504 int i
, j
= 0x10 - (sh
& 0xf);
506 VECTOR_FOR_INORDER_I(i
, u8
) {
511 void helper_mtvscr(CPUPPCState
*env
, ppc_avr_t
*r
)
513 #if defined(HOST_WORDS_BIGENDIAN)
514 env
->vscr
= r
->u32
[3];
516 env
->vscr
= r
->u32
[0];
518 set_flush_to_zero(vscr_nj
, &env
->vec_status
);
521 void helper_vaddcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
525 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
526 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
530 #define VARITH_DO(name, op, element) \
531 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
535 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
536 r->element[i] = a->element[i] op b->element[i]; \
539 #define VARITH(suffix, element) \
540 VARITH_DO(add##suffix, +, element) \
541 VARITH_DO(sub##suffix, -, element)
546 VARITH_DO(muluwm
, *, u32
)
550 #define VARITHFP(suffix, func) \
551 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
556 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
557 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
560 VARITHFP(addfp
, float32_add
)
561 VARITHFP(subfp
, float32_sub
)
562 VARITHFP(minfp
, float32_min
)
563 VARITHFP(maxfp
, float32_max
)
566 #define VARITHFPFMA(suffix, type) \
567 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
568 ppc_avr_t *b, ppc_avr_t *c) \
571 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
572 r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i], \
573 type, &env->vec_status); \
576 VARITHFPFMA(maddfp
, 0);
577 VARITHFPFMA(nmsubfp
, float_muladd_negate_result
| float_muladd_negate_c
);
580 #define VARITHSAT_CASE(type, op, cvt, element) \
582 type result = (type)a->element[i] op (type)b->element[i]; \
583 r->element[i] = cvt(result, &sat); \
586 #define VARITHSAT_DO(name, op, optype, cvt, element) \
587 void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
593 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
594 switch (sizeof(r->element[0])) { \
596 VARITHSAT_CASE(optype, op, cvt, element); \
599 VARITHSAT_CASE(optype, op, cvt, element); \
602 VARITHSAT_CASE(optype, op, cvt, element); \
607 env->vscr |= (1 << VSCR_SAT); \
610 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
611 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
612 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
613 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
614 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
615 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
616 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
617 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
618 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
619 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
620 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
621 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
622 #undef VARITHSAT_CASE
624 #undef VARITHSAT_SIGNED
625 #undef VARITHSAT_UNSIGNED
627 #define VAVG_DO(name, element, etype) \
628 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
632 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
633 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
634 r->element[i] = x >> 1; \
638 #define VAVG(type, signed_element, signed_type, unsigned_element, \
640 VAVG_DO(avgs##type, signed_element, signed_type) \
641 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
642 VAVG(b
, s8
, int16_t, u8
, uint16_t)
643 VAVG(h
, s16
, int32_t, u16
, uint32_t)
644 VAVG(w
, s32
, int64_t, u32
, uint64_t)
648 #define VABSDU_DO(name, element) \
649 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
653 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
654 r->element[i] = (a->element[i] > b->element[i]) ? \
655 (a->element[i] - b->element[i]) : \
656 (b->element[i] - a->element[i]); \
660 /* VABSDU - Vector absolute difference unsigned
661 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
662 * element - element type to access from vector
664 #define VABSDU(type, element) \
665 VABSDU_DO(absdu##type, element)
672 #define VCF(suffix, cvt, element) \
673 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
674 ppc_avr_t *b, uint32_t uim) \
678 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
679 float32 t = cvt(b->element[i], &env->vec_status); \
680 r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
683 VCF(ux
, uint32_to_float32
, u32
)
684 VCF(sx
, int32_to_float32
, s32
)
687 #define VCMP_DO(suffix, compare, element, record) \
688 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
689 ppc_avr_t *a, ppc_avr_t *b) \
691 uint64_t ones = (uint64_t)-1; \
692 uint64_t all = ones; \
696 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
697 uint64_t result = (a->element[i] compare b->element[i] ? \
699 switch (sizeof(a->element[0])) { \
701 r->u64[i] = result; \
704 r->u32[i] = result; \
707 r->u16[i] = result; \
717 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
720 #define VCMP(suffix, compare, element) \
721 VCMP_DO(suffix, compare, element, 0) \
722 VCMP_DO(suffix##_dot, compare, element, 1)
738 #define VCMPNEZ_DO(suffix, element, etype, record) \
739 void helper_vcmpnez##suffix(CPUPPCState *env, ppc_avr_t *r, \
740 ppc_avr_t *a, ppc_avr_t *b) \
742 etype ones = (etype)-1; \
747 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
748 etype result = ((a->element[i] == 0) \
749 || (b->element[i] == 0) \
750 || (a->element[i] != b->element[i]) ? \
752 r->element[i] = result; \
757 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
761 /* VCMPNEZ - Vector compare not equal to zero
762 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
763 * element - element type to access from vector
765 #define VCMPNEZ(suffix, element, etype) \
766 VCMPNEZ_DO(suffix, element, etype, 0) \
767 VCMPNEZ_DO(suffix##_dot, element, etype, 1)
768 VCMPNEZ(b
, u8
, uint8_t)
769 VCMPNEZ(h
, u16
, uint16_t)
770 VCMPNEZ(w
, u32
, uint32_t)
774 #define VCMPFP_DO(suffix, compare, order, record) \
775 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
776 ppc_avr_t *a, ppc_avr_t *b) \
778 uint32_t ones = (uint32_t)-1; \
779 uint32_t all = ones; \
783 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
785 int rel = float32_compare_quiet(a->f[i], b->f[i], \
787 if (rel == float_relation_unordered) { \
789 } else if (rel compare order) { \
794 r->u32[i] = result; \
799 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
802 #define VCMPFP(suffix, compare, order) \
803 VCMPFP_DO(suffix, compare, order, 0) \
804 VCMPFP_DO(suffix##_dot, compare, order, 1)
805 VCMPFP(eqfp
, ==, float_relation_equal
)
806 VCMPFP(gefp
, !=, float_relation_less
)
807 VCMPFP(gtfp
, ==, float_relation_greater
)
811 static inline void vcmpbfp_internal(CPUPPCState
*env
, ppc_avr_t
*r
,
812 ppc_avr_t
*a
, ppc_avr_t
*b
, int record
)
817 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
818 int le_rel
= float32_compare_quiet(a
->f
[i
], b
->f
[i
], &env
->vec_status
);
819 if (le_rel
== float_relation_unordered
) {
820 r
->u32
[i
] = 0xc0000000;
823 float32 bneg
= float32_chs(b
->f
[i
]);
824 int ge_rel
= float32_compare_quiet(a
->f
[i
], bneg
, &env
->vec_status
);
825 int le
= le_rel
!= float_relation_greater
;
826 int ge
= ge_rel
!= float_relation_less
;
828 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
829 all_in
|= (!le
| !ge
);
833 env
->crf
[6] = (all_in
== 0) << 1;
837 void helper_vcmpbfp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
839 vcmpbfp_internal(env
, r
, a
, b
, 0);
842 void helper_vcmpbfp_dot(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
845 vcmpbfp_internal(env
, r
, a
, b
, 1);
848 #define VCT(suffix, satcvt, element) \
849 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
850 ppc_avr_t *b, uint32_t uim) \
854 float_status s = env->vec_status; \
856 set_float_rounding_mode(float_round_to_zero, &s); \
857 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
858 if (float32_is_any_nan(b->f[i])) { \
861 float64 t = float32_to_float64(b->f[i], &s); \
864 t = float64_scalbn(t, uim, &s); \
865 j = float64_to_int64(t, &s); \
866 r->element[i] = satcvt(j, &sat); \
870 env->vscr |= (1 << VSCR_SAT); \
873 VCT(uxs
, cvtsduw
, u32
)
874 VCT(sxs
, cvtsdsw
, s32
)
877 void helper_vmhaddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
878 ppc_avr_t
*b
, ppc_avr_t
*c
)
883 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
884 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
885 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
887 r
->s16
[i
] = cvtswsh(t
, &sat
);
891 env
->vscr
|= (1 << VSCR_SAT
);
895 void helper_vmhraddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
896 ppc_avr_t
*b
, ppc_avr_t
*c
)
901 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
902 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
903 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
904 r
->s16
[i
] = cvtswsh(t
, &sat
);
908 env
->vscr
|= (1 << VSCR_SAT
);
912 #define VMINMAX_DO(name, compare, element) \
913 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
917 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
918 if (a->element[i] compare b->element[i]) { \
919 r->element[i] = b->element[i]; \
921 r->element[i] = a->element[i]; \
925 #define VMINMAX(suffix, element) \
926 VMINMAX_DO(min##suffix, >, element) \
927 VMINMAX_DO(max##suffix, <, element)
939 void helper_vmladduhm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
943 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
944 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
945 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
949 #define VMRG_DO(name, element, highp) \
950 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
954 size_t n_elems = ARRAY_SIZE(r->element); \
956 for (i = 0; i < n_elems / 2; i++) { \
958 result.element[i*2+HI_IDX] = a->element[i]; \
959 result.element[i*2+LO_IDX] = b->element[i]; \
961 result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
962 b->element[n_elems - i - 1]; \
963 result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
964 a->element[n_elems - i - 1]; \
969 #if defined(HOST_WORDS_BIGENDIAN)
976 #define VMRG(suffix, element) \
977 VMRG_DO(mrgl##suffix, element, MRGHI) \
978 VMRG_DO(mrgh##suffix, element, MRGLO)
987 void helper_vmsummbm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
988 ppc_avr_t
*b
, ppc_avr_t
*c
)
993 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
994 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
997 VECTOR_FOR_INORDER_I(i
, s32
) {
998 r
->s32
[i
] = c
->s32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
999 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1003 void helper_vmsumshm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1004 ppc_avr_t
*b
, ppc_avr_t
*c
)
1009 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1010 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
1013 VECTOR_FOR_INORDER_I(i
, s32
) {
1014 r
->s32
[i
] = c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1018 void helper_vmsumshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1019 ppc_avr_t
*b
, ppc_avr_t
*c
)
1025 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1026 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
1029 VECTOR_FOR_INORDER_I(i
, s32
) {
1030 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1032 r
->u32
[i
] = cvtsdsw(t
, &sat
);
1036 env
->vscr
|= (1 << VSCR_SAT
);
1040 void helper_vmsumubm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1041 ppc_avr_t
*b
, ppc_avr_t
*c
)
1046 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1047 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
1050 VECTOR_FOR_INORDER_I(i
, u32
) {
1051 r
->u32
[i
] = c
->u32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
1052 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1056 void helper_vmsumuhm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1057 ppc_avr_t
*b
, ppc_avr_t
*c
)
1062 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1063 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1066 VECTOR_FOR_INORDER_I(i
, u32
) {
1067 r
->u32
[i
] = c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1071 void helper_vmsumuhs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1072 ppc_avr_t
*b
, ppc_avr_t
*c
)
1078 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1079 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1082 VECTOR_FOR_INORDER_I(i
, s32
) {
1083 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1085 r
->u32
[i
] = cvtuduw(t
, &sat
);
1089 env
->vscr
|= (1 << VSCR_SAT
);
1093 #define VMUL_DO(name, mul_element, prod_element, cast, evenp) \
1094 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1098 VECTOR_FOR_INORDER_I(i, prod_element) { \
1100 r->prod_element[i] = \
1101 (cast)a->mul_element[i * 2 + HI_IDX] * \
1102 (cast)b->mul_element[i * 2 + HI_IDX]; \
1104 r->prod_element[i] = \
1105 (cast)a->mul_element[i * 2 + LO_IDX] * \
1106 (cast)b->mul_element[i * 2 + LO_IDX]; \
1110 #define VMUL(suffix, mul_element, prod_element, cast) \
1111 VMUL_DO(mule##suffix, mul_element, prod_element, cast, 1) \
1112 VMUL_DO(mulo##suffix, mul_element, prod_element, cast, 0)
1113 VMUL(sb
, s8
, s16
, int16_t)
1114 VMUL(sh
, s16
, s32
, int32_t)
1115 VMUL(sw
, s32
, s64
, int64_t)
1116 VMUL(ub
, u8
, u16
, uint16_t)
1117 VMUL(uh
, u16
, u32
, uint32_t)
1118 VMUL(uw
, u32
, u64
, uint64_t)
1122 void helper_vperm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1128 VECTOR_FOR_INORDER_I(i
, u8
) {
1129 int s
= c
->u8
[i
] & 0x1f;
1130 #if defined(HOST_WORDS_BIGENDIAN)
1131 int index
= s
& 0xf;
1133 int index
= 15 - (s
& 0xf);
1137 result
.u8
[i
] = b
->u8
[index
];
1139 result
.u8
[i
] = a
->u8
[index
];
1145 void helper_vpermr(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1151 VECTOR_FOR_INORDER_I(i
, u8
) {
1152 int s
= c
->u8
[i
] & 0x1f;
1153 #if defined(HOST_WORDS_BIGENDIAN)
1154 int index
= 15 - (s
& 0xf);
1156 int index
= s
& 0xf;
1160 result
.u8
[i
] = a
->u8
[index
];
1162 result
.u8
[i
] = b
->u8
[index
];
1168 #if defined(HOST_WORDS_BIGENDIAN)
1169 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1170 #define VBPERMD_INDEX(i) (i)
1171 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1172 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1174 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15-(i)])
1175 #define VBPERMD_INDEX(i) (1 - i)
1176 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1177 #define EXTRACT_BIT(avr, i, index) \
1178 (extract64((avr)->u64[1 - i], 63 - index, 1))
1181 void helper_vbpermd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1184 ppc_avr_t result
= { .u64
= { 0, 0 } };
1185 VECTOR_FOR_INORDER_I(i
, u64
) {
1186 for (j
= 0; j
< 8; j
++) {
1187 int index
= VBPERMQ_INDEX(b
, (i
* 8) + j
);
1188 if (index
< 64 && EXTRACT_BIT(a
, i
, index
)) {
1189 result
.u64
[VBPERMD_INDEX(i
)] |= (0x80 >> j
);
1196 void helper_vbpermq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1201 VECTOR_FOR_INORDER_I(i
, u8
) {
1202 int index
= VBPERMQ_INDEX(b
, i
);
1205 uint64_t mask
= (1ull << (63-(index
& 0x3F)));
1206 if (a
->u64
[VBPERMQ_DW(index
)] & mask
) {
1207 perm
|= (0x8000 >> i
);
1212 r
->u64
[HI_IDX
] = perm
;
1216 #undef VBPERMQ_INDEX
1219 static const uint64_t VGBBD_MASKS
[256] = {
1220 0x0000000000000000ull
, /* 00 */
1221 0x0000000000000080ull
, /* 01 */
1222 0x0000000000008000ull
, /* 02 */
1223 0x0000000000008080ull
, /* 03 */
1224 0x0000000000800000ull
, /* 04 */
1225 0x0000000000800080ull
, /* 05 */
1226 0x0000000000808000ull
, /* 06 */
1227 0x0000000000808080ull
, /* 07 */
1228 0x0000000080000000ull
, /* 08 */
1229 0x0000000080000080ull
, /* 09 */
1230 0x0000000080008000ull
, /* 0A */
1231 0x0000000080008080ull
, /* 0B */
1232 0x0000000080800000ull
, /* 0C */
1233 0x0000000080800080ull
, /* 0D */
1234 0x0000000080808000ull
, /* 0E */
1235 0x0000000080808080ull
, /* 0F */
1236 0x0000008000000000ull
, /* 10 */
1237 0x0000008000000080ull
, /* 11 */
1238 0x0000008000008000ull
, /* 12 */
1239 0x0000008000008080ull
, /* 13 */
1240 0x0000008000800000ull
, /* 14 */
1241 0x0000008000800080ull
, /* 15 */
1242 0x0000008000808000ull
, /* 16 */
1243 0x0000008000808080ull
, /* 17 */
1244 0x0000008080000000ull
, /* 18 */
1245 0x0000008080000080ull
, /* 19 */
1246 0x0000008080008000ull
, /* 1A */
1247 0x0000008080008080ull
, /* 1B */
1248 0x0000008080800000ull
, /* 1C */
1249 0x0000008080800080ull
, /* 1D */
1250 0x0000008080808000ull
, /* 1E */
1251 0x0000008080808080ull
, /* 1F */
1252 0x0000800000000000ull
, /* 20 */
1253 0x0000800000000080ull
, /* 21 */
1254 0x0000800000008000ull
, /* 22 */
1255 0x0000800000008080ull
, /* 23 */
1256 0x0000800000800000ull
, /* 24 */
1257 0x0000800000800080ull
, /* 25 */
1258 0x0000800000808000ull
, /* 26 */
1259 0x0000800000808080ull
, /* 27 */
1260 0x0000800080000000ull
, /* 28 */
1261 0x0000800080000080ull
, /* 29 */
1262 0x0000800080008000ull
, /* 2A */
1263 0x0000800080008080ull
, /* 2B */
1264 0x0000800080800000ull
, /* 2C */
1265 0x0000800080800080ull
, /* 2D */
1266 0x0000800080808000ull
, /* 2E */
1267 0x0000800080808080ull
, /* 2F */
1268 0x0000808000000000ull
, /* 30 */
1269 0x0000808000000080ull
, /* 31 */
1270 0x0000808000008000ull
, /* 32 */
1271 0x0000808000008080ull
, /* 33 */
1272 0x0000808000800000ull
, /* 34 */
1273 0x0000808000800080ull
, /* 35 */
1274 0x0000808000808000ull
, /* 36 */
1275 0x0000808000808080ull
, /* 37 */
1276 0x0000808080000000ull
, /* 38 */
1277 0x0000808080000080ull
, /* 39 */
1278 0x0000808080008000ull
, /* 3A */
1279 0x0000808080008080ull
, /* 3B */
1280 0x0000808080800000ull
, /* 3C */
1281 0x0000808080800080ull
, /* 3D */
1282 0x0000808080808000ull
, /* 3E */
1283 0x0000808080808080ull
, /* 3F */
1284 0x0080000000000000ull
, /* 40 */
1285 0x0080000000000080ull
, /* 41 */
1286 0x0080000000008000ull
, /* 42 */
1287 0x0080000000008080ull
, /* 43 */
1288 0x0080000000800000ull
, /* 44 */
1289 0x0080000000800080ull
, /* 45 */
1290 0x0080000000808000ull
, /* 46 */
1291 0x0080000000808080ull
, /* 47 */
1292 0x0080000080000000ull
, /* 48 */
1293 0x0080000080000080ull
, /* 49 */
1294 0x0080000080008000ull
, /* 4A */
1295 0x0080000080008080ull
, /* 4B */
1296 0x0080000080800000ull
, /* 4C */
1297 0x0080000080800080ull
, /* 4D */
1298 0x0080000080808000ull
, /* 4E */
1299 0x0080000080808080ull
, /* 4F */
1300 0x0080008000000000ull
, /* 50 */
1301 0x0080008000000080ull
, /* 51 */
1302 0x0080008000008000ull
, /* 52 */
1303 0x0080008000008080ull
, /* 53 */
1304 0x0080008000800000ull
, /* 54 */
1305 0x0080008000800080ull
, /* 55 */
1306 0x0080008000808000ull
, /* 56 */
1307 0x0080008000808080ull
, /* 57 */
1308 0x0080008080000000ull
, /* 58 */
1309 0x0080008080000080ull
, /* 59 */
1310 0x0080008080008000ull
, /* 5A */
1311 0x0080008080008080ull
, /* 5B */
1312 0x0080008080800000ull
, /* 5C */
1313 0x0080008080800080ull
, /* 5D */
1314 0x0080008080808000ull
, /* 5E */
1315 0x0080008080808080ull
, /* 5F */
1316 0x0080800000000000ull
, /* 60 */
1317 0x0080800000000080ull
, /* 61 */
1318 0x0080800000008000ull
, /* 62 */
1319 0x0080800000008080ull
, /* 63 */
1320 0x0080800000800000ull
, /* 64 */
1321 0x0080800000800080ull
, /* 65 */
1322 0x0080800000808000ull
, /* 66 */
1323 0x0080800000808080ull
, /* 67 */
1324 0x0080800080000000ull
, /* 68 */
1325 0x0080800080000080ull
, /* 69 */
1326 0x0080800080008000ull
, /* 6A */
1327 0x0080800080008080ull
, /* 6B */
1328 0x0080800080800000ull
, /* 6C */
1329 0x0080800080800080ull
, /* 6D */
1330 0x0080800080808000ull
, /* 6E */
1331 0x0080800080808080ull
, /* 6F */
1332 0x0080808000000000ull
, /* 70 */
1333 0x0080808000000080ull
, /* 71 */
1334 0x0080808000008000ull
, /* 72 */
1335 0x0080808000008080ull
, /* 73 */
1336 0x0080808000800000ull
, /* 74 */
1337 0x0080808000800080ull
, /* 75 */
1338 0x0080808000808000ull
, /* 76 */
1339 0x0080808000808080ull
, /* 77 */
1340 0x0080808080000000ull
, /* 78 */
1341 0x0080808080000080ull
, /* 79 */
1342 0x0080808080008000ull
, /* 7A */
1343 0x0080808080008080ull
, /* 7B */
1344 0x0080808080800000ull
, /* 7C */
1345 0x0080808080800080ull
, /* 7D */
1346 0x0080808080808000ull
, /* 7E */
1347 0x0080808080808080ull
, /* 7F */
1348 0x8000000000000000ull
, /* 80 */
1349 0x8000000000000080ull
, /* 81 */
1350 0x8000000000008000ull
, /* 82 */
1351 0x8000000000008080ull
, /* 83 */
1352 0x8000000000800000ull
, /* 84 */
1353 0x8000000000800080ull
, /* 85 */
1354 0x8000000000808000ull
, /* 86 */
1355 0x8000000000808080ull
, /* 87 */
1356 0x8000000080000000ull
, /* 88 */
1357 0x8000000080000080ull
, /* 89 */
1358 0x8000000080008000ull
, /* 8A */
1359 0x8000000080008080ull
, /* 8B */
1360 0x8000000080800000ull
, /* 8C */
1361 0x8000000080800080ull
, /* 8D */
1362 0x8000000080808000ull
, /* 8E */
1363 0x8000000080808080ull
, /* 8F */
1364 0x8000008000000000ull
, /* 90 */
1365 0x8000008000000080ull
, /* 91 */
1366 0x8000008000008000ull
, /* 92 */
1367 0x8000008000008080ull
, /* 93 */
1368 0x8000008000800000ull
, /* 94 */
1369 0x8000008000800080ull
, /* 95 */
1370 0x8000008000808000ull
, /* 96 */
1371 0x8000008000808080ull
, /* 97 */
1372 0x8000008080000000ull
, /* 98 */
1373 0x8000008080000080ull
, /* 99 */
1374 0x8000008080008000ull
, /* 9A */
1375 0x8000008080008080ull
, /* 9B */
1376 0x8000008080800000ull
, /* 9C */
1377 0x8000008080800080ull
, /* 9D */
1378 0x8000008080808000ull
, /* 9E */
1379 0x8000008080808080ull
, /* 9F */
1380 0x8000800000000000ull
, /* A0 */
1381 0x8000800000000080ull
, /* A1 */
1382 0x8000800000008000ull
, /* A2 */
1383 0x8000800000008080ull
, /* A3 */
1384 0x8000800000800000ull
, /* A4 */
1385 0x8000800000800080ull
, /* A5 */
1386 0x8000800000808000ull
, /* A6 */
1387 0x8000800000808080ull
, /* A7 */
1388 0x8000800080000000ull
, /* A8 */
1389 0x8000800080000080ull
, /* A9 */
1390 0x8000800080008000ull
, /* AA */
1391 0x8000800080008080ull
, /* AB */
1392 0x8000800080800000ull
, /* AC */
1393 0x8000800080800080ull
, /* AD */
1394 0x8000800080808000ull
, /* AE */
1395 0x8000800080808080ull
, /* AF */
1396 0x8000808000000000ull
, /* B0 */
1397 0x8000808000000080ull
, /* B1 */
1398 0x8000808000008000ull
, /* B2 */
1399 0x8000808000008080ull
, /* B3 */
1400 0x8000808000800000ull
, /* B4 */
1401 0x8000808000800080ull
, /* B5 */
1402 0x8000808000808000ull
, /* B6 */
1403 0x8000808000808080ull
, /* B7 */
1404 0x8000808080000000ull
, /* B8 */
1405 0x8000808080000080ull
, /* B9 */
1406 0x8000808080008000ull
, /* BA */
1407 0x8000808080008080ull
, /* BB */
1408 0x8000808080800000ull
, /* BC */
1409 0x8000808080800080ull
, /* BD */
1410 0x8000808080808000ull
, /* BE */
1411 0x8000808080808080ull
, /* BF */
1412 0x8080000000000000ull
, /* C0 */
1413 0x8080000000000080ull
, /* C1 */
1414 0x8080000000008000ull
, /* C2 */
1415 0x8080000000008080ull
, /* C3 */
1416 0x8080000000800000ull
, /* C4 */
1417 0x8080000000800080ull
, /* C5 */
1418 0x8080000000808000ull
, /* C6 */
1419 0x8080000000808080ull
, /* C7 */
1420 0x8080000080000000ull
, /* C8 */
1421 0x8080000080000080ull
, /* C9 */
1422 0x8080000080008000ull
, /* CA */
1423 0x8080000080008080ull
, /* CB */
1424 0x8080000080800000ull
, /* CC */
1425 0x8080000080800080ull
, /* CD */
1426 0x8080000080808000ull
, /* CE */
1427 0x8080000080808080ull
, /* CF */
1428 0x8080008000000000ull
, /* D0 */
1429 0x8080008000000080ull
, /* D1 */
1430 0x8080008000008000ull
, /* D2 */
1431 0x8080008000008080ull
, /* D3 */
1432 0x8080008000800000ull
, /* D4 */
1433 0x8080008000800080ull
, /* D5 */
1434 0x8080008000808000ull
, /* D6 */
1435 0x8080008000808080ull
, /* D7 */
1436 0x8080008080000000ull
, /* D8 */
1437 0x8080008080000080ull
, /* D9 */
1438 0x8080008080008000ull
, /* DA */
1439 0x8080008080008080ull
, /* DB */
1440 0x8080008080800000ull
, /* DC */
1441 0x8080008080800080ull
, /* DD */
1442 0x8080008080808000ull
, /* DE */
1443 0x8080008080808080ull
, /* DF */
1444 0x8080800000000000ull
, /* E0 */
1445 0x8080800000000080ull
, /* E1 */
1446 0x8080800000008000ull
, /* E2 */
1447 0x8080800000008080ull
, /* E3 */
1448 0x8080800000800000ull
, /* E4 */
1449 0x8080800000800080ull
, /* E5 */
1450 0x8080800000808000ull
, /* E6 */
1451 0x8080800000808080ull
, /* E7 */
1452 0x8080800080000000ull
, /* E8 */
1453 0x8080800080000080ull
, /* E9 */
1454 0x8080800080008000ull
, /* EA */
1455 0x8080800080008080ull
, /* EB */
1456 0x8080800080800000ull
, /* EC */
1457 0x8080800080800080ull
, /* ED */
1458 0x8080800080808000ull
, /* EE */
1459 0x8080800080808080ull
, /* EF */
1460 0x8080808000000000ull
, /* F0 */
1461 0x8080808000000080ull
, /* F1 */
1462 0x8080808000008000ull
, /* F2 */
1463 0x8080808000008080ull
, /* F3 */
1464 0x8080808000800000ull
, /* F4 */
1465 0x8080808000800080ull
, /* F5 */
1466 0x8080808000808000ull
, /* F6 */
1467 0x8080808000808080ull
, /* F7 */
1468 0x8080808080000000ull
, /* F8 */
1469 0x8080808080000080ull
, /* F9 */
1470 0x8080808080008000ull
, /* FA */
1471 0x8080808080008080ull
, /* FB */
1472 0x8080808080800000ull
, /* FC */
1473 0x8080808080800080ull
, /* FD */
1474 0x8080808080808000ull
, /* FE */
1475 0x8080808080808080ull
, /* FF */
1478 void helper_vgbbd(ppc_avr_t
*r
, ppc_avr_t
*b
)
1481 uint64_t t
[2] = { 0, 0 };
1483 VECTOR_FOR_INORDER_I(i
, u8
) {
1484 #if defined(HOST_WORDS_BIGENDIAN)
1485 t
[i
>>3] |= VGBBD_MASKS
[b
->u8
[i
]] >> (i
& 7);
1487 t
[i
>>3] |= VGBBD_MASKS
[b
->u8
[i
]] >> (7-(i
& 7));
1495 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1496 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1499 trgtyp prod[sizeof(ppc_avr_t)/sizeof(a->srcfld[0])]; \
1501 VECTOR_FOR_INORDER_I(i, srcfld) { \
1503 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1504 if (a->srcfld[i] & (1ull<<j)) { \
1505 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1510 VECTOR_FOR_INORDER_I(i, trgfld) { \
1511 r->trgfld[i] = prod[2*i] ^ prod[2*i+1]; \
1515 PMSUM(vpmsumb
, u8
, u16
, uint16_t)
1516 PMSUM(vpmsumh
, u16
, u32
, uint32_t)
1517 PMSUM(vpmsumw
, u32
, u64
, uint64_t)
1519 void helper_vpmsumd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1522 #ifdef CONFIG_INT128
1524 __uint128_t prod
[2];
1526 VECTOR_FOR_INORDER_I(i
, u64
) {
1528 for (j
= 0; j
< 64; j
++) {
1529 if (a
->u64
[i
] & (1ull<<j
)) {
1530 prod
[i
] ^= (((__uint128_t
)b
->u64
[i
]) << j
);
1535 r
->u128
= prod
[0] ^ prod
[1];
1541 VECTOR_FOR_INORDER_I(i
, u64
) {
1542 prod
[i
].u64
[LO_IDX
] = prod
[i
].u64
[HI_IDX
] = 0;
1543 for (j
= 0; j
< 64; j
++) {
1544 if (a
->u64
[i
] & (1ull<<j
)) {
1547 bshift
.u64
[HI_IDX
] = 0;
1548 bshift
.u64
[LO_IDX
] = b
->u64
[i
];
1550 bshift
.u64
[HI_IDX
] = b
->u64
[i
] >> (64-j
);
1551 bshift
.u64
[LO_IDX
] = b
->u64
[i
] << j
;
1553 prod
[i
].u64
[LO_IDX
] ^= bshift
.u64
[LO_IDX
];
1554 prod
[i
].u64
[HI_IDX
] ^= bshift
.u64
[HI_IDX
];
1559 r
->u64
[LO_IDX
] = prod
[0].u64
[LO_IDX
] ^ prod
[1].u64
[LO_IDX
];
1560 r
->u64
[HI_IDX
] = prod
[0].u64
[HI_IDX
] ^ prod
[1].u64
[HI_IDX
];
1565 #if defined(HOST_WORDS_BIGENDIAN)
1570 void helper_vpkpx(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1574 #if defined(HOST_WORDS_BIGENDIAN)
1575 const ppc_avr_t
*x
[2] = { a
, b
};
1577 const ppc_avr_t
*x
[2] = { b
, a
};
1580 VECTOR_FOR_INORDER_I(i
, u64
) {
1581 VECTOR_FOR_INORDER_I(j
, u32
) {
1582 uint32_t e
= x
[i
]->u32
[j
];
1584 result
.u16
[4*i
+j
] = (((e
>> 9) & 0xfc00) |
1585 ((e
>> 6) & 0x3e0) |
1592 #define VPK(suffix, from, to, cvt, dosat) \
1593 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1594 ppc_avr_t *a, ppc_avr_t *b) \
1599 ppc_avr_t *a0 = PKBIG ? a : b; \
1600 ppc_avr_t *a1 = PKBIG ? b : a; \
1602 VECTOR_FOR_INORDER_I(i, from) { \
1603 result.to[i] = cvt(a0->from[i], &sat); \
1604 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
1607 if (dosat && sat) { \
1608 env->vscr |= (1 << VSCR_SAT); \
1612 VPK(shss
, s16
, s8
, cvtshsb
, 1)
1613 VPK(shus
, s16
, u8
, cvtshub
, 1)
1614 VPK(swss
, s32
, s16
, cvtswsh
, 1)
1615 VPK(swus
, s32
, u16
, cvtswuh
, 1)
1616 VPK(sdss
, s64
, s32
, cvtsdsw
, 1)
1617 VPK(sdus
, s64
, u32
, cvtsduw
, 1)
1618 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
1619 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
1620 VPK(udus
, u64
, u32
, cvtuduw
, 1)
1621 VPK(uhum
, u16
, u8
, I
, 0)
1622 VPK(uwum
, u32
, u16
, I
, 0)
1623 VPK(udum
, u64
, u32
, I
, 0)
1628 void helper_vrefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1632 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1633 r
->f
[i
] = float32_div(float32_one
, b
->f
[i
], &env
->vec_status
);
1637 #define VRFI(suffix, rounding) \
1638 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1642 float_status s = env->vec_status; \
1644 set_float_rounding_mode(rounding, &s); \
1645 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
1646 r->f[i] = float32_round_to_int (b->f[i], &s); \
1649 VRFI(n
, float_round_nearest_even
)
1650 VRFI(m
, float_round_down
)
1651 VRFI(p
, float_round_up
)
1652 VRFI(z
, float_round_to_zero
)
1655 #define VROTATE(suffix, element, mask) \
1656 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1660 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1661 unsigned int shift = b->element[i] & mask; \
1662 r->element[i] = (a->element[i] << shift) | \
1663 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1667 VROTATE(h
, u16
, 0xF)
1668 VROTATE(w
, u32
, 0x1F)
1669 VROTATE(d
, u64
, 0x3F)
1672 void helper_vrsqrtefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1676 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1677 float32 t
= float32_sqrt(b
->f
[i
], &env
->vec_status
);
1679 r
->f
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
1683 void helper_vsel(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1686 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
1687 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
1690 void helper_vexptefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1694 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1695 r
->f
[i
] = float32_exp2(b
->f
[i
], &env
->vec_status
);
1699 void helper_vlogefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1703 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1704 r
->f
[i
] = float32_log2(b
->f
[i
], &env
->vec_status
);
1708 /* The specification says that the results are undefined if all of the
1709 * shift counts are not identical. We check to make sure that they are
1710 * to conform to what real hardware appears to do. */
1711 #define VSHIFT(suffix, leftp) \
1712 void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1714 int shift = b->u8[LO_IDX*15] & 0x7; \
1718 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
1719 doit = doit && ((b->u8[i] & 0x7) == shift); \
1724 } else if (leftp) { \
1725 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
1727 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
1728 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
1730 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
1732 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
1733 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
1741 #define VSL(suffix, element, mask) \
1742 void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1746 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1747 unsigned int shift = b->element[i] & mask; \
1749 r->element[i] = a->element[i] << shift; \
1758 void helper_vslv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1761 unsigned int shift
, bytes
, size
;
1763 size
= ARRAY_SIZE(r
->u8
);
1764 for (i
= 0; i
< size
; i
++) {
1765 shift
= b
->u8
[i
] & 0x7; /* extract shift value */
1766 bytes
= (a
->u8
[i
] << 8) + /* extract adjacent bytes */
1767 (((i
+ 1) < size
) ? a
->u8
[i
+ 1] : 0);
1768 r
->u8
[i
] = (bytes
<< shift
) >> 8; /* shift and store result */
1772 void helper_vsrv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1775 unsigned int shift
, bytes
;
1777 /* Use reverse order, as destination and source register can be same. Its
1778 * being modified in place saving temporary, reverse order will guarantee
1779 * that computed result is not fed back.
1781 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
1782 shift
= b
->u8
[i
] & 0x7; /* extract shift value */
1783 bytes
= ((i
? a
->u8
[i
- 1] : 0) << 8) + a
->u8
[i
];
1784 /* extract adjacent bytes */
1785 r
->u8
[i
] = (bytes
>> shift
) & 0xFF; /* shift and store result */
1789 void helper_vsldoi(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
1791 int sh
= shift
& 0xf;
1795 #if defined(HOST_WORDS_BIGENDIAN)
1796 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1799 result
.u8
[i
] = b
->u8
[index
- 0x10];
1801 result
.u8
[i
] = a
->u8
[index
];
1805 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1806 int index
= (16 - sh
) + i
;
1808 result
.u8
[i
] = a
->u8
[index
- 0x10];
1810 result
.u8
[i
] = b
->u8
[index
];
1817 void helper_vslo(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1819 int sh
= (b
->u8
[LO_IDX
*0xf] >> 3) & 0xf;
1821 #if defined(HOST_WORDS_BIGENDIAN)
1822 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1823 memset(&r
->u8
[16-sh
], 0, sh
);
1825 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1826 memset(&r
->u8
[0], 0, sh
);
1830 /* Experimental testing shows that hardware masks the immediate. */
1831 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
1832 #if defined(HOST_WORDS_BIGENDIAN)
1833 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
1835 #define SPLAT_ELEMENT(element) \
1836 (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
1838 #define VSPLT(suffix, element) \
1839 void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
1841 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
1844 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1845 r->element[i] = s; \
1852 #undef SPLAT_ELEMENT
1853 #undef _SPLAT_MASKED
1854 #if defined(HOST_WORDS_BIGENDIAN)
1855 #define VINSERT(suffix, element) \
1856 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1858 memmove(&r->u8[index], &b->u8[8 - sizeof(r->element)], \
1859 sizeof(r->element[0])); \
1862 #define VINSERT(suffix, element) \
1863 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1865 uint32_t d = (16 - index) - sizeof(r->element[0]); \
1866 memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \
1874 #if defined(HOST_WORDS_BIGENDIAN)
1875 #define VEXTRACT(suffix, element) \
1876 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1878 uint32_t es = sizeof(r->element[0]); \
1879 memmove(&r->u8[8 - es], &b->u8[index], es); \
1880 memset(&r->u8[8], 0, 8); \
1881 memset(&r->u8[0], 0, 8 - es); \
1884 #define VEXTRACT(suffix, element) \
1885 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1887 uint32_t es = sizeof(r->element[0]); \
1888 uint32_t s = (16 - index) - es; \
1889 memmove(&r->u8[8], &b->u8[s], es); \
1890 memset(&r->u8[0], 0, 8); \
1891 memset(&r->u8[8 + es], 0, 8 - es); \
1900 #define VSPLTI(suffix, element, splat_type) \
1901 void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
1903 splat_type x = (int8_t)(splat << 3) >> 3; \
1906 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1907 r->element[i] = x; \
1910 VSPLTI(b
, s8
, int8_t)
1911 VSPLTI(h
, s16
, int16_t)
1912 VSPLTI(w
, s32
, int32_t)
1915 #define VSR(suffix, element, mask) \
1916 void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1920 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1921 unsigned int shift = b->element[i] & mask; \
1922 r->element[i] = a->element[i] >> shift; \
1935 void helper_vsro(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1937 int sh
= (b
->u8
[LO_IDX
* 0xf] >> 3) & 0xf;
1939 #if defined(HOST_WORDS_BIGENDIAN)
1940 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1941 memset(&r
->u8
[0], 0, sh
);
1943 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1944 memset(&r
->u8
[16 - sh
], 0, sh
);
1948 void helper_vsubcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1952 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1953 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
1957 void helper_vsumsws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1964 #if defined(HOST_WORDS_BIGENDIAN)
1965 upper
= ARRAY_SIZE(r
->s32
)-1;
1969 t
= (int64_t)b
->s32
[upper
];
1970 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1974 result
.s32
[upper
] = cvtsdsw(t
, &sat
);
1978 env
->vscr
|= (1 << VSCR_SAT
);
1982 void helper_vsum2sws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1988 #if defined(HOST_WORDS_BIGENDIAN)
1993 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
1994 int64_t t
= (int64_t)b
->s32
[upper
+ i
* 2];
1997 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
1998 t
+= a
->s32
[2 * i
+ j
];
2000 result
.s32
[upper
+ i
* 2] = cvtsdsw(t
, &sat
);
2005 env
->vscr
|= (1 << VSCR_SAT
);
2009 void helper_vsum4sbs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2014 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2015 int64_t t
= (int64_t)b
->s32
[i
];
2017 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
2018 t
+= a
->s8
[4 * i
+ j
];
2020 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2024 env
->vscr
|= (1 << VSCR_SAT
);
2028 void helper_vsum4shs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2033 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2034 int64_t t
= (int64_t)b
->s32
[i
];
2036 t
+= a
->s16
[2 * i
] + a
->s16
[2 * i
+ 1];
2037 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2041 env
->vscr
|= (1 << VSCR_SAT
);
2045 void helper_vsum4ubs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2050 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2051 uint64_t t
= (uint64_t)b
->u32
[i
];
2053 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
2054 t
+= a
->u8
[4 * i
+ j
];
2056 r
->u32
[i
] = cvtuduw(t
, &sat
);
2060 env
->vscr
|= (1 << VSCR_SAT
);
2064 #if defined(HOST_WORDS_BIGENDIAN)
2071 #define VUPKPX(suffix, hi) \
2072 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2077 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2078 uint16_t e = b->u16[hi ? i : i+4]; \
2079 uint8_t a = (e >> 15) ? 0xff : 0; \
2080 uint8_t r = (e >> 10) & 0x1f; \
2081 uint8_t g = (e >> 5) & 0x1f; \
2082 uint8_t b = e & 0x1f; \
2084 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2092 #define VUPK(suffix, unpacked, packee, hi) \
2093 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2099 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2100 result.unpacked[i] = b->packee[i]; \
2103 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
2105 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2110 VUPK(hsb
, s16
, s8
, UPKHI
)
2111 VUPK(hsh
, s32
, s16
, UPKHI
)
2112 VUPK(hsw
, s64
, s32
, UPKHI
)
2113 VUPK(lsb
, s16
, s8
, UPKLO
)
2114 VUPK(lsh
, s32
, s16
, UPKLO
)
2115 VUPK(lsw
, s64
, s32
, UPKLO
)
2120 #define VGENERIC_DO(name, element) \
2121 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
2125 VECTOR_FOR_INORDER_I(i, element) { \
2126 r->element[i] = name(b->element[i]); \
2130 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
2131 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
2132 #define clzw(v) clz32((v))
2133 #define clzd(v) clz64((v))
2135 VGENERIC_DO(clzb
, u8
)
2136 VGENERIC_DO(clzh
, u16
)
2137 VGENERIC_DO(clzw
, u32
)
2138 VGENERIC_DO(clzd
, u64
)
2145 #define ctzb(v) ((v) ? ctz32(v) : 8)
2146 #define ctzh(v) ((v) ? ctz32(v) : 16)
2147 #define ctzw(v) ctz32((v))
2148 #define ctzd(v) ctz64((v))
2150 VGENERIC_DO(ctzb
, u8
)
2151 VGENERIC_DO(ctzh
, u16
)
2152 VGENERIC_DO(ctzw
, u32
)
2153 VGENERIC_DO(ctzd
, u64
)
2160 #define popcntb(v) ctpop8(v)
2161 #define popcnth(v) ctpop16(v)
2162 #define popcntw(v) ctpop32(v)
2163 #define popcntd(v) ctpop64(v)
2165 VGENERIC_DO(popcntb
, u8
)
2166 VGENERIC_DO(popcnth
, u16
)
2167 VGENERIC_DO(popcntw
, u32
)
2168 VGENERIC_DO(popcntd
, u64
)
2177 #if defined(HOST_WORDS_BIGENDIAN)
2178 #define QW_ONE { .u64 = { 0, 1 } }
2180 #define QW_ONE { .u64 = { 1, 0 } }
2183 #ifndef CONFIG_INT128
2185 static inline void avr_qw_not(ppc_avr_t
*t
, ppc_avr_t a
)
2187 t
->u64
[0] = ~a
.u64
[0];
2188 t
->u64
[1] = ~a
.u64
[1];
2191 static int avr_qw_cmpu(ppc_avr_t a
, ppc_avr_t b
)
2193 if (a
.u64
[HI_IDX
] < b
.u64
[HI_IDX
]) {
2195 } else if (a
.u64
[HI_IDX
] > b
.u64
[HI_IDX
]) {
2197 } else if (a
.u64
[LO_IDX
] < b
.u64
[LO_IDX
]) {
2199 } else if (a
.u64
[LO_IDX
] > b
.u64
[LO_IDX
]) {
2206 static void avr_qw_add(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2208 t
->u64
[LO_IDX
] = a
.u64
[LO_IDX
] + b
.u64
[LO_IDX
];
2209 t
->u64
[HI_IDX
] = a
.u64
[HI_IDX
] + b
.u64
[HI_IDX
] +
2210 (~a
.u64
[LO_IDX
] < b
.u64
[LO_IDX
]);
2213 static int avr_qw_addc(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2216 t
->u64
[LO_IDX
] = a
.u64
[LO_IDX
] + b
.u64
[LO_IDX
];
2217 t
->u64
[HI_IDX
] = a
.u64
[HI_IDX
] + b
.u64
[HI_IDX
] +
2218 (~a
.u64
[LO_IDX
] < b
.u64
[LO_IDX
]);
2219 avr_qw_not(¬_a
, a
);
2220 return avr_qw_cmpu(not_a
, b
) < 0;
2225 void helper_vadduqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2227 #ifdef CONFIG_INT128
2228 r
->u128
= a
->u128
+ b
->u128
;
2230 avr_qw_add(r
, *a
, *b
);
2234 void helper_vaddeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2236 #ifdef CONFIG_INT128
2237 r
->u128
= a
->u128
+ b
->u128
+ (c
->u128
& 1);
2240 if (c
->u64
[LO_IDX
] & 1) {
2243 tmp
.u64
[HI_IDX
] = 0;
2244 tmp
.u64
[LO_IDX
] = c
->u64
[LO_IDX
] & 1;
2245 avr_qw_add(&tmp
, *a
, tmp
);
2246 avr_qw_add(r
, tmp
, *b
);
2248 avr_qw_add(r
, *a
, *b
);
2253 void helper_vaddcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2255 #ifdef CONFIG_INT128
2256 r
->u128
= (~a
->u128
< b
->u128
);
2260 avr_qw_not(¬_a
, *a
);
2263 r
->u64
[LO_IDX
] = (avr_qw_cmpu(not_a
, *b
) < 0);
2267 void helper_vaddecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2269 #ifdef CONFIG_INT128
2270 int carry_out
= (~a
->u128
< b
->u128
);
2271 if (!carry_out
&& (c
->u128
& 1)) {
2272 carry_out
= ((a
->u128
+ b
->u128
+ 1) == 0) &&
2273 ((a
->u128
!= 0) || (b
->u128
!= 0));
2275 r
->u128
= carry_out
;
2278 int carry_in
= c
->u64
[LO_IDX
] & 1;
2282 carry_out
= avr_qw_addc(&tmp
, *a
, *b
);
2284 if (!carry_out
&& carry_in
) {
2285 ppc_avr_t one
= QW_ONE
;
2286 carry_out
= avr_qw_addc(&tmp
, tmp
, one
);
2289 r
->u64
[LO_IDX
] = carry_out
;
2293 void helper_vsubuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2295 #ifdef CONFIG_INT128
2296 r
->u128
= a
->u128
- b
->u128
;
2299 ppc_avr_t one
= QW_ONE
;
2301 avr_qw_not(&tmp
, *b
);
2302 avr_qw_add(&tmp
, *a
, tmp
);
2303 avr_qw_add(r
, tmp
, one
);
2307 void helper_vsubeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2309 #ifdef CONFIG_INT128
2310 r
->u128
= a
->u128
+ ~b
->u128
+ (c
->u128
& 1);
2314 avr_qw_not(&tmp
, *b
);
2315 avr_qw_add(&sum
, *a
, tmp
);
2317 tmp
.u64
[HI_IDX
] = 0;
2318 tmp
.u64
[LO_IDX
] = c
->u64
[LO_IDX
] & 1;
2319 avr_qw_add(r
, sum
, tmp
);
2323 void helper_vsubcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2325 #ifdef CONFIG_INT128
2326 r
->u128
= (~a
->u128
< ~b
->u128
) ||
2327 (a
->u128
+ ~b
->u128
== (__uint128_t
)-1);
2329 int carry
= (avr_qw_cmpu(*a
, *b
) > 0);
2332 avr_qw_not(&tmp
, *b
);
2333 avr_qw_add(&tmp
, *a
, tmp
);
2334 carry
= ((tmp
.s64
[HI_IDX
] == -1ull) && (tmp
.s64
[LO_IDX
] == -1ull));
2337 r
->u64
[LO_IDX
] = carry
;
2341 void helper_vsubecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2343 #ifdef CONFIG_INT128
2345 (~a
->u128
< ~b
->u128
) ||
2346 ((c
->u128
& 1) && (a
->u128
+ ~b
->u128
== (__uint128_t
)-1));
2348 int carry_in
= c
->u64
[LO_IDX
] & 1;
2349 int carry_out
= (avr_qw_cmpu(*a
, *b
) > 0);
2350 if (!carry_out
&& carry_in
) {
2352 avr_qw_not(&tmp
, *b
);
2353 avr_qw_add(&tmp
, *a
, tmp
);
2354 carry_out
= ((tmp
.u64
[HI_IDX
] == -1ull) && (tmp
.u64
[LO_IDX
] == -1ull));
2358 r
->u64
[LO_IDX
] = carry_out
;
2362 #define BCD_PLUS_PREF_1 0xC
2363 #define BCD_PLUS_PREF_2 0xF
2364 #define BCD_PLUS_ALT_1 0xA
2365 #define BCD_NEG_PREF 0xD
2366 #define BCD_NEG_ALT 0xB
2367 #define BCD_PLUS_ALT_2 0xE
2369 #if defined(HOST_WORDS_BIGENDIAN)
2370 #define BCD_DIG_BYTE(n) (15 - (n/2))
2372 #define BCD_DIG_BYTE(n) (n/2)
2375 static int bcd_get_sgn(ppc_avr_t
*bcd
)
2377 switch (bcd
->u8
[BCD_DIG_BYTE(0)] & 0xF) {
2378 case BCD_PLUS_PREF_1
:
2379 case BCD_PLUS_PREF_2
:
2380 case BCD_PLUS_ALT_1
:
2381 case BCD_PLUS_ALT_2
:
2399 static int bcd_preferred_sgn(int sgn
, int ps
)
2402 return (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
;
2404 return BCD_NEG_PREF
;
2408 static uint8_t bcd_get_digit(ppc_avr_t
*bcd
, int n
, int *invalid
)
2412 result
= bcd
->u8
[BCD_DIG_BYTE(n
)] >> 4;
2414 result
= bcd
->u8
[BCD_DIG_BYTE(n
)] & 0xF;
2417 if (unlikely(result
> 9)) {
2423 static void bcd_put_digit(ppc_avr_t
*bcd
, uint8_t digit
, int n
)
2426 bcd
->u8
[BCD_DIG_BYTE(n
)] &= 0x0F;
2427 bcd
->u8
[BCD_DIG_BYTE(n
)] |= (digit
<<4);
2429 bcd
->u8
[BCD_DIG_BYTE(n
)] &= 0xF0;
2430 bcd
->u8
[BCD_DIG_BYTE(n
)] |= digit
;
2434 static int bcd_cmp_mag(ppc_avr_t
*a
, ppc_avr_t
*b
)
2438 for (i
= 31; i
> 0; i
--) {
2439 uint8_t dig_a
= bcd_get_digit(a
, i
, &invalid
);
2440 uint8_t dig_b
= bcd_get_digit(b
, i
, &invalid
);
2441 if (unlikely(invalid
)) {
2442 return 0; /* doesn't matter */
2443 } else if (dig_a
> dig_b
) {
2445 } else if (dig_a
< dig_b
) {
2453 static int bcd_add_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2459 for (i
= 1; i
<= 31; i
++) {
2460 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) +
2461 bcd_get_digit(b
, i
, invalid
) + carry
;
2462 is_zero
&= (digit
== 0);
2470 bcd_put_digit(t
, digit
, i
);
2472 if (unlikely(*invalid
)) {
2481 static int bcd_sub_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2487 for (i
= 1; i
<= 31; i
++) {
2488 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) -
2489 bcd_get_digit(b
, i
, invalid
) + carry
;
2490 is_zero
&= (digit
== 0);
2498 bcd_put_digit(t
, digit
, i
);
2500 if (unlikely(*invalid
)) {
2509 uint32_t helper_bcdadd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2512 int sgna
= bcd_get_sgn(a
);
2513 int sgnb
= bcd_get_sgn(b
);
2514 int invalid
= (sgna
== 0) || (sgnb
== 0);
2518 ppc_avr_t result
= { .u64
= { 0, 0 } };
2522 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna
, ps
);
2523 zero
= bcd_add_mag(&result
, a
, b
, &invalid
, &overflow
);
2524 cr
= (sgna
> 0) ? 1 << CRF_GT
: 1 << CRF_LT
;
2525 } else if (bcd_cmp_mag(a
, b
) > 0) {
2526 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna
, ps
);
2527 zero
= bcd_sub_mag(&result
, a
, b
, &invalid
, &overflow
);
2528 cr
= (sgna
> 0) ? 1 << CRF_GT
: 1 << CRF_LT
;
2530 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb
, ps
);
2531 zero
= bcd_sub_mag(&result
, b
, a
, &invalid
, &overflow
);
2532 cr
= (sgnb
> 0) ? 1 << CRF_GT
: 1 << CRF_LT
;
2536 if (unlikely(invalid
)) {
2537 result
.u64
[HI_IDX
] = result
.u64
[LO_IDX
] = -1;
2539 } else if (overflow
) {
2550 uint32_t helper_bcdsub(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2552 ppc_avr_t bcopy
= *b
;
2553 int sgnb
= bcd_get_sgn(b
);
2555 bcd_put_digit(&bcopy
, BCD_PLUS_PREF_1
, 0);
2556 } else if (sgnb
> 0) {
2557 bcd_put_digit(&bcopy
, BCD_NEG_PREF
, 0);
2559 /* else invalid ... defer to bcdadd code for proper handling */
2561 return helper_bcdadd(r
, a
, &bcopy
, ps
);
2564 void helper_vsbox(ppc_avr_t
*r
, ppc_avr_t
*a
)
2567 VECTOR_FOR_INORDER_I(i
, u8
) {
2568 r
->u8
[i
] = AES_sbox
[a
->u8
[i
]];
2572 void helper_vcipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2577 VECTOR_FOR_INORDER_I(i
, u32
) {
2578 result
.AVRW(i
) = b
->AVRW(i
) ^
2579 (AES_Te0
[a
->AVRB(AES_shifts
[4*i
+ 0])] ^
2580 AES_Te1
[a
->AVRB(AES_shifts
[4*i
+ 1])] ^
2581 AES_Te2
[a
->AVRB(AES_shifts
[4*i
+ 2])] ^
2582 AES_Te3
[a
->AVRB(AES_shifts
[4*i
+ 3])]);
2587 void helper_vcipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2592 VECTOR_FOR_INORDER_I(i
, u8
) {
2593 result
.AVRB(i
) = b
->AVRB(i
) ^ (AES_sbox
[a
->AVRB(AES_shifts
[i
])]);
2598 void helper_vncipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2600 /* This differs from what is written in ISA V2.07. The RTL is */
2601 /* incorrect and will be fixed in V2.07B. */
2605 VECTOR_FOR_INORDER_I(i
, u8
) {
2606 tmp
.AVRB(i
) = b
->AVRB(i
) ^ AES_isbox
[a
->AVRB(AES_ishifts
[i
])];
2609 VECTOR_FOR_INORDER_I(i
, u32
) {
2611 AES_imc
[tmp
.AVRB(4*i
+ 0)][0] ^
2612 AES_imc
[tmp
.AVRB(4*i
+ 1)][1] ^
2613 AES_imc
[tmp
.AVRB(4*i
+ 2)][2] ^
2614 AES_imc
[tmp
.AVRB(4*i
+ 3)][3];
2618 void helper_vncipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2623 VECTOR_FOR_INORDER_I(i
, u8
) {
2624 result
.AVRB(i
) = b
->AVRB(i
) ^ (AES_isbox
[a
->AVRB(AES_ishifts
[i
])]);
2629 #define ROTRu32(v, n) (((v) >> (n)) | ((v) << (32-n)))
2630 #if defined(HOST_WORDS_BIGENDIAN)
2631 #define EL_IDX(i) (i)
2633 #define EL_IDX(i) (3 - (i))
2636 void helper_vshasigmaw(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
2638 int st
= (st_six
& 0x10) != 0;
2639 int six
= st_six
& 0xF;
2642 VECTOR_FOR_INORDER_I(i
, u32
) {
2644 if ((six
& (0x8 >> i
)) == 0) {
2645 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 7) ^
2646 ROTRu32(a
->u32
[EL_IDX(i
)], 18) ^
2647 (a
->u32
[EL_IDX(i
)] >> 3);
2648 } else { /* six.bit[i] == 1 */
2649 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 17) ^
2650 ROTRu32(a
->u32
[EL_IDX(i
)], 19) ^
2651 (a
->u32
[EL_IDX(i
)] >> 10);
2653 } else { /* st == 1 */
2654 if ((six
& (0x8 >> i
)) == 0) {
2655 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 2) ^
2656 ROTRu32(a
->u32
[EL_IDX(i
)], 13) ^
2657 ROTRu32(a
->u32
[EL_IDX(i
)], 22);
2658 } else { /* six.bit[i] == 1 */
2659 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 6) ^
2660 ROTRu32(a
->u32
[EL_IDX(i
)], 11) ^
2661 ROTRu32(a
->u32
[EL_IDX(i
)], 25);
2670 #define ROTRu64(v, n) (((v) >> (n)) | ((v) << (64-n)))
2671 #if defined(HOST_WORDS_BIGENDIAN)
2672 #define EL_IDX(i) (i)
2674 #define EL_IDX(i) (1 - (i))
2677 void helper_vshasigmad(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
2679 int st
= (st_six
& 0x10) != 0;
2680 int six
= st_six
& 0xF;
2683 VECTOR_FOR_INORDER_I(i
, u64
) {
2685 if ((six
& (0x8 >> (2*i
))) == 0) {
2686 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 1) ^
2687 ROTRu64(a
->u64
[EL_IDX(i
)], 8) ^
2688 (a
->u64
[EL_IDX(i
)] >> 7);
2689 } else { /* six.bit[2*i] == 1 */
2690 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 19) ^
2691 ROTRu64(a
->u64
[EL_IDX(i
)], 61) ^
2692 (a
->u64
[EL_IDX(i
)] >> 6);
2694 } else { /* st == 1 */
2695 if ((six
& (0x8 >> (2*i
))) == 0) {
2696 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 28) ^
2697 ROTRu64(a
->u64
[EL_IDX(i
)], 34) ^
2698 ROTRu64(a
->u64
[EL_IDX(i
)], 39);
2699 } else { /* six.bit[2*i] == 1 */
2700 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 14) ^
2701 ROTRu64(a
->u64
[EL_IDX(i
)], 18) ^
2702 ROTRu64(a
->u64
[EL_IDX(i
)], 41);
2711 void helper_vpermxor(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2716 VECTOR_FOR_INORDER_I(i
, u8
) {
2717 int indexA
= c
->u8
[i
] >> 4;
2718 int indexB
= c
->u8
[i
] & 0xF;
2719 #if defined(HOST_WORDS_BIGENDIAN)
2720 result
.u8
[i
] = a
->u8
[indexA
] ^ b
->u8
[indexB
];
2722 result
.u8
[i
] = a
->u8
[15-indexA
] ^ b
->u8
[15-indexB
];
2728 #undef VECTOR_FOR_INORDER_I
2732 /*****************************************************************************/
2733 /* SPE extension helpers */
2734 /* Use a table to make this quicker */
2735 static const uint8_t hbrev
[16] = {
2736 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2737 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2740 static inline uint8_t byte_reverse(uint8_t val
)
2742 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
2745 static inline uint32_t word_reverse(uint32_t val
)
2747 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
2748 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
2751 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
2752 target_ulong
helper_brinc(target_ulong arg1
, target_ulong arg2
)
2754 uint32_t a
, b
, d
, mask
;
2756 mask
= UINT32_MAX
>> (32 - MASKBITS
);
2759 d
= word_reverse(1 + word_reverse(a
| ~b
));
2760 return (arg1
& ~mask
) | (d
& b
);
2763 uint32_t helper_cntlsw32(uint32_t val
)
2765 if (val
& 0x80000000) {
2772 uint32_t helper_cntlzw32(uint32_t val
)
2778 target_ulong
helper_dlmzb(CPUPPCState
*env
, target_ulong high
,
2779 target_ulong low
, uint32_t update_Rc
)
2785 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
2786 if ((high
& mask
) == 0) {
2794 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
2795 if ((low
& mask
) == 0) {
2808 env
->xer
= (env
->xer
& ~0x7F) | i
;
2810 env
->crf
[0] |= xer_so
;