spapr: introduce a new sPAPR IRQ backend supporting XIVE and XICS
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blob17bcaa3822c3918df94d9a64c51a2b0cd7036c7a
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "hw/ppc/spapr_cpu_core.h"
12 #include "mmu-hash64.h"
13 #include "cpu-models.h"
14 #include "trace.h"
15 #include "kvm_ppc.h"
16 #include "hw/ppc/spapr_ovec.h"
17 #include "mmu-book3s-v3.h"
18 #include "hw/mem/memory-device.h"
20 struct LPCRSyncState {
21 target_ulong value;
22 target_ulong mask;
25 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
27 struct LPCRSyncState *s = arg.host_ptr;
28 PowerPCCPU *cpu = POWERPC_CPU(cs);
29 CPUPPCState *env = &cpu->env;
30 target_ulong lpcr;
32 cpu_synchronize_state(cs);
33 lpcr = env->spr[SPR_LPCR];
34 lpcr &= ~s->mask;
35 lpcr |= s->value;
36 ppc_store_lpcr(cpu, lpcr);
39 static void set_all_lpcrs(target_ulong value, target_ulong mask)
41 CPUState *cs;
42 struct LPCRSyncState s = {
43 .value = value,
44 .mask = mask
46 CPU_FOREACH(cs) {
47 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
51 static bool has_spr(PowerPCCPU *cpu, int spr)
53 /* We can test whether the SPR is defined by checking for a valid name */
54 return cpu->env.spr_cb[spr].name != NULL;
57 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
60 * hash value/pteg group index is normalized by HPT mask
62 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
63 return false;
65 return true;
68 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
70 MachineState *machine = MACHINE(spapr);
71 DeviceMemoryState *dms = machine->device_memory;
73 if (addr < machine->ram_size) {
74 return true;
76 if ((addr >= dms->base)
77 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
78 return true;
81 return false;
84 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
85 target_ulong opcode, target_ulong *args)
87 target_ulong flags = args[0];
88 target_ulong ptex = args[1];
89 target_ulong pteh = args[2];
90 target_ulong ptel = args[3];
91 unsigned apshift;
92 target_ulong raddr;
93 target_ulong slot;
94 const ppc_hash_pte64_t *hptes;
96 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
97 if (!apshift) {
98 /* Bad page size encoding */
99 return H_PARAMETER;
102 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
104 if (is_ram_address(spapr, raddr)) {
105 /* Regular RAM - should have WIMG=0010 */
106 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
107 return H_PARAMETER;
109 } else {
110 target_ulong wimg_flags;
111 /* Looks like an IO address */
112 /* FIXME: What WIMG combinations could be sensible for IO?
113 * For now we allow WIMG=010x, but are there others? */
114 /* FIXME: Should we check against registered IO addresses? */
115 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
117 if (wimg_flags != HPTE64_R_I &&
118 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
119 return H_PARAMETER;
123 pteh &= ~0x60ULL;
125 if (!valid_ptex(cpu, ptex)) {
126 return H_PARAMETER;
129 slot = ptex & 7ULL;
130 ptex = ptex & ~7ULL;
132 if (likely((flags & H_EXACT) == 0)) {
133 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
134 for (slot = 0; slot < 8; slot++) {
135 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
136 break;
139 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
140 if (slot == 8) {
141 return H_PTEG_FULL;
143 } else {
144 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
145 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
146 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
147 return H_PTEG_FULL;
149 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
152 ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
154 args[0] = ptex + slot;
155 return H_SUCCESS;
158 typedef enum {
159 REMOVE_SUCCESS = 0,
160 REMOVE_NOT_FOUND = 1,
161 REMOVE_PARM = 2,
162 REMOVE_HW = 3,
163 } RemoveResult;
165 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
166 target_ulong avpn,
167 target_ulong flags,
168 target_ulong *vp, target_ulong *rp)
170 const ppc_hash_pte64_t *hptes;
171 target_ulong v, r;
173 if (!valid_ptex(cpu, ptex)) {
174 return REMOVE_PARM;
177 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
178 v = ppc_hash64_hpte0(cpu, hptes, 0);
179 r = ppc_hash64_hpte1(cpu, hptes, 0);
180 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
182 if ((v & HPTE64_V_VALID) == 0 ||
183 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
184 ((flags & H_ANDCOND) && (v & avpn) != 0)) {
185 return REMOVE_NOT_FOUND;
187 *vp = v;
188 *rp = r;
189 ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
190 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
191 return REMOVE_SUCCESS;
194 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
195 target_ulong opcode, target_ulong *args)
197 CPUPPCState *env = &cpu->env;
198 target_ulong flags = args[0];
199 target_ulong ptex = args[1];
200 target_ulong avpn = args[2];
201 RemoveResult ret;
203 ret = remove_hpte(cpu, ptex, avpn, flags,
204 &args[0], &args[1]);
206 switch (ret) {
207 case REMOVE_SUCCESS:
208 check_tlb_flush(env, true);
209 return H_SUCCESS;
211 case REMOVE_NOT_FOUND:
212 return H_NOT_FOUND;
214 case REMOVE_PARM:
215 return H_PARAMETER;
217 case REMOVE_HW:
218 return H_HARDWARE;
221 g_assert_not_reached();
224 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
225 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
226 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
227 #define H_BULK_REMOVE_END 0xc000000000000000ULL
228 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
229 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
230 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
231 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
232 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
233 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
234 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
235 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
236 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
237 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
238 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
240 #define H_BULK_REMOVE_MAX_BATCH 4
242 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
243 target_ulong opcode, target_ulong *args)
245 CPUPPCState *env = &cpu->env;
246 int i;
247 target_ulong rc = H_SUCCESS;
249 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
250 target_ulong *tsh = &args[i*2];
251 target_ulong tsl = args[i*2 + 1];
252 target_ulong v, r, ret;
254 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
255 break;
256 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
257 return H_PARAMETER;
260 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
261 *tsh |= H_BULK_REMOVE_RESPONSE;
263 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
264 *tsh |= H_BULK_REMOVE_PARM;
265 return H_PARAMETER;
268 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
269 (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
270 &v, &r);
272 *tsh |= ret << 60;
274 switch (ret) {
275 case REMOVE_SUCCESS:
276 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
277 break;
279 case REMOVE_PARM:
280 rc = H_PARAMETER;
281 goto exit;
283 case REMOVE_HW:
284 rc = H_HARDWARE;
285 goto exit;
288 exit:
289 check_tlb_flush(env, true);
291 return rc;
294 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
295 target_ulong opcode, target_ulong *args)
297 CPUPPCState *env = &cpu->env;
298 target_ulong flags = args[0];
299 target_ulong ptex = args[1];
300 target_ulong avpn = args[2];
301 const ppc_hash_pte64_t *hptes;
302 target_ulong v, r;
304 if (!valid_ptex(cpu, ptex)) {
305 return H_PARAMETER;
308 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
309 v = ppc_hash64_hpte0(cpu, hptes, 0);
310 r = ppc_hash64_hpte1(cpu, hptes, 0);
311 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
313 if ((v & HPTE64_V_VALID) == 0 ||
314 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
315 return H_NOT_FOUND;
318 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
319 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
320 r |= (flags << 55) & HPTE64_R_PP0;
321 r |= (flags << 48) & HPTE64_R_KEY_HI;
322 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
323 ppc_hash64_store_hpte(cpu, ptex,
324 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
325 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
326 /* Flush the tlb */
327 check_tlb_flush(env, true);
328 /* Don't need a memory barrier, due to qemu's global lock */
329 ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
330 return H_SUCCESS;
333 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
334 target_ulong opcode, target_ulong *args)
336 target_ulong flags = args[0];
337 target_ulong ptex = args[1];
338 uint8_t *hpte;
339 int i, ridx, n_entries = 1;
341 if (!valid_ptex(cpu, ptex)) {
342 return H_PARAMETER;
345 if (flags & H_READ_4) {
346 /* Clear the two low order bits */
347 ptex &= ~(3ULL);
348 n_entries = 4;
351 hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
353 for (i = 0, ridx = 0; i < n_entries; i++) {
354 args[ridx++] = ldq_p(hpte);
355 args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
356 hpte += HASH_PTE_SIZE_64;
359 return H_SUCCESS;
362 struct sPAPRPendingHPT {
363 /* These fields are read-only after initialization */
364 int shift;
365 QemuThread thread;
367 /* These fields are protected by the BQL */
368 bool complete;
370 /* These fields are private to the preparation thread if
371 * !complete, otherwise protected by the BQL */
372 int ret;
373 void *hpt;
376 static void free_pending_hpt(sPAPRPendingHPT *pending)
378 if (pending->hpt) {
379 qemu_vfree(pending->hpt);
382 g_free(pending);
385 static void *hpt_prepare_thread(void *opaque)
387 sPAPRPendingHPT *pending = opaque;
388 size_t size = 1ULL << pending->shift;
390 pending->hpt = qemu_memalign(size, size);
391 if (pending->hpt) {
392 memset(pending->hpt, 0, size);
393 pending->ret = H_SUCCESS;
394 } else {
395 pending->ret = H_NO_MEM;
398 qemu_mutex_lock_iothread();
400 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
401 /* Ready to go */
402 pending->complete = true;
403 } else {
404 /* We've been cancelled, clean ourselves up */
405 free_pending_hpt(pending);
408 qemu_mutex_unlock_iothread();
409 return NULL;
412 /* Must be called with BQL held */
413 static void cancel_hpt_prepare(sPAPRMachineState *spapr)
415 sPAPRPendingHPT *pending = spapr->pending_hpt;
417 /* Let the thread know it's cancelled */
418 spapr->pending_hpt = NULL;
420 if (!pending) {
421 /* Nothing to do */
422 return;
425 if (!pending->complete) {
426 /* thread will clean itself up */
427 return;
430 free_pending_hpt(pending);
433 /* Convert a return code from the KVM ioctl()s implementing resize HPT
434 * into a PAPR hypercall return code */
435 static target_ulong resize_hpt_convert_rc(int ret)
437 if (ret >= 100000) {
438 return H_LONG_BUSY_ORDER_100_SEC;
439 } else if (ret >= 10000) {
440 return H_LONG_BUSY_ORDER_10_SEC;
441 } else if (ret >= 1000) {
442 return H_LONG_BUSY_ORDER_1_SEC;
443 } else if (ret >= 100) {
444 return H_LONG_BUSY_ORDER_100_MSEC;
445 } else if (ret >= 10) {
446 return H_LONG_BUSY_ORDER_10_MSEC;
447 } else if (ret > 0) {
448 return H_LONG_BUSY_ORDER_1_MSEC;
451 switch (ret) {
452 case 0:
453 return H_SUCCESS;
454 case -EPERM:
455 return H_AUTHORITY;
456 case -EINVAL:
457 return H_PARAMETER;
458 case -ENXIO:
459 return H_CLOSED;
460 case -ENOSPC:
461 return H_PTEG_FULL;
462 case -EBUSY:
463 return H_BUSY;
464 case -ENOMEM:
465 return H_NO_MEM;
466 default:
467 return H_HARDWARE;
471 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
472 sPAPRMachineState *spapr,
473 target_ulong opcode,
474 target_ulong *args)
476 target_ulong flags = args[0];
477 int shift = args[1];
478 sPAPRPendingHPT *pending = spapr->pending_hpt;
479 uint64_t current_ram_size;
480 int rc;
482 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
483 return H_AUTHORITY;
486 if (!spapr->htab_shift) {
487 /* Radix guest, no HPT */
488 return H_NOT_AVAILABLE;
491 trace_spapr_h_resize_hpt_prepare(flags, shift);
493 if (flags != 0) {
494 return H_PARAMETER;
497 if (shift && ((shift < 18) || (shift > 46))) {
498 return H_PARAMETER;
501 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
503 /* We only allow the guest to allocate an HPT one order above what
504 * we'd normally give them (to stop a small guest claiming a huge
505 * chunk of resources in the HPT */
506 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
507 return H_RESOURCE;
510 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
511 if (rc != -ENOSYS) {
512 return resize_hpt_convert_rc(rc);
515 if (pending) {
516 /* something already in progress */
517 if (pending->shift == shift) {
518 /* and it's suitable */
519 if (pending->complete) {
520 return pending->ret;
521 } else {
522 return H_LONG_BUSY_ORDER_100_MSEC;
526 /* not suitable, cancel and replace */
527 cancel_hpt_prepare(spapr);
530 if (!shift) {
531 /* nothing to do */
532 return H_SUCCESS;
535 /* start new prepare */
537 pending = g_new0(sPAPRPendingHPT, 1);
538 pending->shift = shift;
539 pending->ret = H_HARDWARE;
541 qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
542 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
544 spapr->pending_hpt = pending;
546 /* In theory we could estimate the time more accurately based on
547 * the new size, but there's not much point */
548 return H_LONG_BUSY_ORDER_100_MSEC;
551 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
553 uint8_t *addr = htab;
555 addr += pteg * HASH_PTEG_SIZE_64;
556 addr += slot * HASH_PTE_SIZE_64;
557 return ldq_p(addr);
560 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
561 uint64_t pte0, uint64_t pte1)
563 uint8_t *addr = htab;
565 addr += pteg * HASH_PTEG_SIZE_64;
566 addr += slot * HASH_PTE_SIZE_64;
568 stq_p(addr, pte0);
569 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
572 static int rehash_hpte(PowerPCCPU *cpu,
573 const ppc_hash_pte64_t *hptes,
574 void *old_hpt, uint64_t oldsize,
575 void *new_hpt, uint64_t newsize,
576 uint64_t pteg, int slot)
578 uint64_t old_hash_mask = (oldsize >> 7) - 1;
579 uint64_t new_hash_mask = (newsize >> 7) - 1;
580 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
581 target_ulong pte1;
582 uint64_t avpn;
583 unsigned base_pg_shift;
584 uint64_t hash, new_pteg, replace_pte0;
586 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
587 return H_SUCCESS;
590 pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
592 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
593 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
594 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
596 if (pte0 & HPTE64_V_SECONDARY) {
597 pteg = ~pteg;
600 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
601 uint64_t offset, vsid;
603 /* We only have 28 - 23 bits of offset in avpn */
604 offset = (avpn & 0x1f) << 23;
605 vsid = avpn >> 5;
606 /* We can find more bits from the pteg value */
607 if (base_pg_shift < 23) {
608 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
611 hash = vsid ^ (offset >> base_pg_shift);
612 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
613 uint64_t offset, vsid;
615 /* We only have 40 - 23 bits of seg_off in avpn */
616 offset = (avpn & 0x1ffff) << 23;
617 vsid = avpn >> 17;
618 if (base_pg_shift < 23) {
619 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
620 << base_pg_shift;
623 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
624 } else {
625 error_report("rehash_pte: Bad segment size in HPTE");
626 return H_HARDWARE;
629 new_pteg = hash & new_hash_mask;
630 if (pte0 & HPTE64_V_SECONDARY) {
631 assert(~pteg == (hash & old_hash_mask));
632 new_pteg = ~new_pteg;
633 } else {
634 assert(pteg == (hash & old_hash_mask));
636 assert((oldsize != newsize) || (pteg == new_pteg));
637 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
639 * Strictly speaking, we don't need all these tests, since we only
640 * ever rehash bolted HPTEs. We might in future handle non-bolted
641 * HPTEs, though so make the logic correct for those cases as
642 * well.
644 if (replace_pte0 & HPTE64_V_VALID) {
645 assert(newsize < oldsize);
646 if (replace_pte0 & HPTE64_V_BOLTED) {
647 if (pte0 & HPTE64_V_BOLTED) {
648 /* Bolted collision, nothing we can do */
649 return H_PTEG_FULL;
650 } else {
651 /* Discard this hpte */
652 return H_SUCCESS;
657 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
658 return H_SUCCESS;
661 static int rehash_hpt(PowerPCCPU *cpu,
662 void *old_hpt, uint64_t oldsize,
663 void *new_hpt, uint64_t newsize)
665 uint64_t n_ptegs = oldsize >> 7;
666 uint64_t pteg;
667 int slot;
668 int rc;
670 for (pteg = 0; pteg < n_ptegs; pteg++) {
671 hwaddr ptex = pteg * HPTES_PER_GROUP;
672 const ppc_hash_pte64_t *hptes
673 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
675 if (!hptes) {
676 return H_HARDWARE;
679 for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
680 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
681 pteg, slot);
682 if (rc != H_SUCCESS) {
683 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
684 return rc;
687 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
690 return H_SUCCESS;
693 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
695 int ret;
697 cpu_synchronize_state(cs);
699 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
700 if (ret < 0) {
701 error_report("failed to push sregs to KVM: %s", strerror(-ret));
702 exit(1);
706 static void push_sregs_to_kvm_pr(sPAPRMachineState *spapr)
708 CPUState *cs;
711 * This is a hack for the benefit of KVM PR - it abuses the SDR1
712 * slot in kvm_sregs to communicate the userspace address of the
713 * HPT
715 if (!kvm_enabled() || !spapr->htab) {
716 return;
719 CPU_FOREACH(cs) {
720 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
724 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
725 sPAPRMachineState *spapr,
726 target_ulong opcode,
727 target_ulong *args)
729 target_ulong flags = args[0];
730 target_ulong shift = args[1];
731 sPAPRPendingHPT *pending = spapr->pending_hpt;
732 int rc;
733 size_t newsize;
735 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
736 return H_AUTHORITY;
739 if (!spapr->htab_shift) {
740 /* Radix guest, no HPT */
741 return H_NOT_AVAILABLE;
744 trace_spapr_h_resize_hpt_commit(flags, shift);
746 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
747 if (rc != -ENOSYS) {
748 rc = resize_hpt_convert_rc(rc);
749 if (rc == H_SUCCESS) {
750 /* Need to set the new htab_shift in the machine state */
751 spapr->htab_shift = shift;
753 return rc;
756 if (flags != 0) {
757 return H_PARAMETER;
760 if (!pending || (pending->shift != shift)) {
761 /* no matching prepare */
762 return H_CLOSED;
765 if (!pending->complete) {
766 /* prepare has not completed */
767 return H_BUSY;
770 /* Shouldn't have got past PREPARE without an HPT */
771 g_assert(spapr->htab_shift);
773 newsize = 1ULL << pending->shift;
774 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
775 pending->hpt, newsize);
776 if (rc == H_SUCCESS) {
777 qemu_vfree(spapr->htab);
778 spapr->htab = pending->hpt;
779 spapr->htab_shift = pending->shift;
781 push_sregs_to_kvm_pr(spapr);
783 pending->hpt = NULL; /* so it's not free()d */
786 /* Clean up */
787 spapr->pending_hpt = NULL;
788 free_pending_hpt(pending);
790 return rc;
793 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
794 target_ulong opcode, target_ulong *args)
796 cpu_synchronize_state(CPU(cpu));
797 cpu->env.spr[SPR_SPRG0] = args[0];
799 return H_SUCCESS;
802 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
803 target_ulong opcode, target_ulong *args)
805 if (!has_spr(cpu, SPR_DABR)) {
806 return H_HARDWARE; /* DABR register not available */
808 cpu_synchronize_state(CPU(cpu));
810 if (has_spr(cpu, SPR_DABRX)) {
811 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
812 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
813 return H_RESERVED_DABR;
816 cpu->env.spr[SPR_DABR] = args[0];
817 return H_SUCCESS;
820 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
821 target_ulong opcode, target_ulong *args)
823 target_ulong dabrx = args[1];
825 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
826 return H_HARDWARE;
829 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
830 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
831 return H_PARAMETER;
834 cpu_synchronize_state(CPU(cpu));
835 cpu->env.spr[SPR_DABRX] = dabrx;
836 cpu->env.spr[SPR_DABR] = args[0];
838 return H_SUCCESS;
841 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
842 target_ulong opcode, target_ulong *args)
844 target_ulong flags = args[0];
845 hwaddr dst = args[1];
846 hwaddr src = args[2];
847 hwaddr len = TARGET_PAGE_SIZE;
848 uint8_t *pdst, *psrc;
849 target_long ret = H_SUCCESS;
851 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
852 | H_COPY_PAGE | H_ZERO_PAGE)) {
853 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
854 flags);
855 return H_PARAMETER;
858 /* Map-in destination */
859 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
860 return H_PARAMETER;
862 pdst = cpu_physical_memory_map(dst, &len, 1);
863 if (!pdst || len != TARGET_PAGE_SIZE) {
864 return H_PARAMETER;
867 if (flags & H_COPY_PAGE) {
868 /* Map-in source, copy to destination, and unmap source again */
869 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
870 ret = H_PARAMETER;
871 goto unmap_out;
873 psrc = cpu_physical_memory_map(src, &len, 0);
874 if (!psrc || len != TARGET_PAGE_SIZE) {
875 ret = H_PARAMETER;
876 goto unmap_out;
878 memcpy(pdst, psrc, len);
879 cpu_physical_memory_unmap(psrc, len, 0, len);
880 } else if (flags & H_ZERO_PAGE) {
881 memset(pdst, 0, len); /* Just clear the destination page */
884 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
885 kvmppc_dcbst_range(cpu, pdst, len);
887 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
888 if (kvm_enabled()) {
889 kvmppc_icbi_range(cpu, pdst, len);
890 } else {
891 tb_flush(CPU(cpu));
895 unmap_out:
896 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
897 return ret;
900 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
901 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
902 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
903 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
904 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
905 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
907 #define VPA_MIN_SIZE 640
908 #define VPA_SIZE_OFFSET 0x4
909 #define VPA_SHARED_PROC_OFFSET 0x9
910 #define VPA_SHARED_PROC_VAL 0x2
912 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
914 CPUState *cs = CPU(cpu);
915 CPUPPCState *env = &cpu->env;
916 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
917 uint16_t size;
918 uint8_t tmp;
920 if (vpa == 0) {
921 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
922 return H_HARDWARE;
925 if (vpa % env->dcache_line_size) {
926 return H_PARAMETER;
928 /* FIXME: bounds check the address */
930 size = lduw_be_phys(cs->as, vpa + 0x4);
932 if (size < VPA_MIN_SIZE) {
933 return H_PARAMETER;
936 /* VPA is not allowed to cross a page boundary */
937 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
938 return H_PARAMETER;
941 spapr_cpu->vpa_addr = vpa;
943 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
944 tmp |= VPA_SHARED_PROC_VAL;
945 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
947 return H_SUCCESS;
950 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
952 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
954 if (spapr_cpu->slb_shadow_addr) {
955 return H_RESOURCE;
958 if (spapr_cpu->dtl_addr) {
959 return H_RESOURCE;
962 spapr_cpu->vpa_addr = 0;
963 return H_SUCCESS;
966 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
968 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
969 uint32_t size;
971 if (addr == 0) {
972 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
973 return H_HARDWARE;
976 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
977 if (size < 0x8) {
978 return H_PARAMETER;
981 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
982 return H_PARAMETER;
985 if (!spapr_cpu->vpa_addr) {
986 return H_RESOURCE;
989 spapr_cpu->slb_shadow_addr = addr;
990 spapr_cpu->slb_shadow_size = size;
992 return H_SUCCESS;
995 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
997 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
999 spapr_cpu->slb_shadow_addr = 0;
1000 spapr_cpu->slb_shadow_size = 0;
1001 return H_SUCCESS;
1004 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
1006 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
1007 uint32_t size;
1009 if (addr == 0) {
1010 hcall_dprintf("Can't cope with DTL at logical 0\n");
1011 return H_HARDWARE;
1014 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
1016 if (size < 48) {
1017 return H_PARAMETER;
1020 if (!spapr_cpu->vpa_addr) {
1021 return H_RESOURCE;
1024 spapr_cpu->dtl_addr = addr;
1025 spapr_cpu->dtl_size = size;
1027 return H_SUCCESS;
1030 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1032 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
1034 spapr_cpu->dtl_addr = 0;
1035 spapr_cpu->dtl_size = 0;
1037 return H_SUCCESS;
1040 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1041 target_ulong opcode, target_ulong *args)
1043 target_ulong flags = args[0];
1044 target_ulong procno = args[1];
1045 target_ulong vpa = args[2];
1046 target_ulong ret = H_PARAMETER;
1047 PowerPCCPU *tcpu;
1049 tcpu = spapr_find_cpu(procno);
1050 if (!tcpu) {
1051 return H_PARAMETER;
1054 switch (flags) {
1055 case FLAGS_REGISTER_VPA:
1056 ret = register_vpa(tcpu, vpa);
1057 break;
1059 case FLAGS_DEREGISTER_VPA:
1060 ret = deregister_vpa(tcpu, vpa);
1061 break;
1063 case FLAGS_REGISTER_SLBSHADOW:
1064 ret = register_slb_shadow(tcpu, vpa);
1065 break;
1067 case FLAGS_DEREGISTER_SLBSHADOW:
1068 ret = deregister_slb_shadow(tcpu, vpa);
1069 break;
1071 case FLAGS_REGISTER_DTL:
1072 ret = register_dtl(tcpu, vpa);
1073 break;
1075 case FLAGS_DEREGISTER_DTL:
1076 ret = deregister_dtl(tcpu, vpa);
1077 break;
1080 return ret;
1083 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1084 target_ulong opcode, target_ulong *args)
1086 CPUPPCState *env = &cpu->env;
1087 CPUState *cs = CPU(cpu);
1089 env->msr |= (1ULL << MSR_EE);
1090 hreg_compute_hflags(env);
1091 if (!cpu_has_work(cs)) {
1092 cs->halted = 1;
1093 cs->exception_index = EXCP_HLT;
1094 cs->exit_request = 1;
1096 return H_SUCCESS;
1099 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1100 target_ulong opcode, target_ulong *args)
1102 target_ulong rtas_r3 = args[0];
1103 uint32_t token = rtas_ld(rtas_r3, 0);
1104 uint32_t nargs = rtas_ld(rtas_r3, 1);
1105 uint32_t nret = rtas_ld(rtas_r3, 2);
1107 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1108 nret, rtas_r3 + 12 + 4*nargs);
1111 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1112 target_ulong opcode, target_ulong *args)
1114 CPUState *cs = CPU(cpu);
1115 target_ulong size = args[0];
1116 target_ulong addr = args[1];
1118 switch (size) {
1119 case 1:
1120 args[0] = ldub_phys(cs->as, addr);
1121 return H_SUCCESS;
1122 case 2:
1123 args[0] = lduw_phys(cs->as, addr);
1124 return H_SUCCESS;
1125 case 4:
1126 args[0] = ldl_phys(cs->as, addr);
1127 return H_SUCCESS;
1128 case 8:
1129 args[0] = ldq_phys(cs->as, addr);
1130 return H_SUCCESS;
1132 return H_PARAMETER;
1135 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1136 target_ulong opcode, target_ulong *args)
1138 CPUState *cs = CPU(cpu);
1140 target_ulong size = args[0];
1141 target_ulong addr = args[1];
1142 target_ulong val = args[2];
1144 switch (size) {
1145 case 1:
1146 stb_phys(cs->as, addr, val);
1147 return H_SUCCESS;
1148 case 2:
1149 stw_phys(cs->as, addr, val);
1150 return H_SUCCESS;
1151 case 4:
1152 stl_phys(cs->as, addr, val);
1153 return H_SUCCESS;
1154 case 8:
1155 stq_phys(cs->as, addr, val);
1156 return H_SUCCESS;
1158 return H_PARAMETER;
1161 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1162 target_ulong opcode, target_ulong *args)
1164 CPUState *cs = CPU(cpu);
1166 target_ulong dst = args[0]; /* Destination address */
1167 target_ulong src = args[1]; /* Source address */
1168 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1169 target_ulong count = args[3]; /* Element count */
1170 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
1171 uint64_t tmp;
1172 unsigned int mask = (1 << esize) - 1;
1173 int step = 1 << esize;
1175 if (count > 0x80000000) {
1176 return H_PARAMETER;
1179 if ((dst & mask) || (src & mask) || (op > 1)) {
1180 return H_PARAMETER;
1183 if (dst >= src && dst < (src + (count << esize))) {
1184 dst = dst + ((count - 1) << esize);
1185 src = src + ((count - 1) << esize);
1186 step = -step;
1189 while (count--) {
1190 switch (esize) {
1191 case 0:
1192 tmp = ldub_phys(cs->as, src);
1193 break;
1194 case 1:
1195 tmp = lduw_phys(cs->as, src);
1196 break;
1197 case 2:
1198 tmp = ldl_phys(cs->as, src);
1199 break;
1200 case 3:
1201 tmp = ldq_phys(cs->as, src);
1202 break;
1203 default:
1204 return H_PARAMETER;
1206 if (op == 1) {
1207 tmp = ~tmp;
1209 switch (esize) {
1210 case 0:
1211 stb_phys(cs->as, dst, tmp);
1212 break;
1213 case 1:
1214 stw_phys(cs->as, dst, tmp);
1215 break;
1216 case 2:
1217 stl_phys(cs->as, dst, tmp);
1218 break;
1219 case 3:
1220 stq_phys(cs->as, dst, tmp);
1221 break;
1223 dst = dst + step;
1224 src = src + step;
1227 return H_SUCCESS;
1230 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1231 target_ulong opcode, target_ulong *args)
1233 /* Nothing to do on emulation, KVM will trap this in the kernel */
1234 return H_SUCCESS;
1237 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1238 target_ulong opcode, target_ulong *args)
1240 /* Nothing to do on emulation, KVM will trap this in the kernel */
1241 return H_SUCCESS;
1244 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1245 target_ulong mflags,
1246 target_ulong value1,
1247 target_ulong value2)
1249 if (value1) {
1250 return H_P3;
1252 if (value2) {
1253 return H_P4;
1256 switch (mflags) {
1257 case H_SET_MODE_ENDIAN_BIG:
1258 set_all_lpcrs(0, LPCR_ILE);
1259 spapr_pci_switch_vga(true);
1260 return H_SUCCESS;
1262 case H_SET_MODE_ENDIAN_LITTLE:
1263 set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1264 spapr_pci_switch_vga(false);
1265 return H_SUCCESS;
1268 return H_UNSUPPORTED_FLAG;
1271 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1272 target_ulong mflags,
1273 target_ulong value1,
1274 target_ulong value2)
1276 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1278 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1279 return H_P2;
1281 if (value1) {
1282 return H_P3;
1284 if (value2) {
1285 return H_P4;
1288 if (mflags == AIL_RESERVED) {
1289 return H_UNSUPPORTED_FLAG;
1292 set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1294 return H_SUCCESS;
1297 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1298 target_ulong opcode, target_ulong *args)
1300 target_ulong resource = args[1];
1301 target_ulong ret = H_P2;
1303 switch (resource) {
1304 case H_SET_MODE_RESOURCE_LE:
1305 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1306 break;
1307 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1308 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1309 args[2], args[3]);
1310 break;
1313 return ret;
1316 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1317 target_ulong opcode, target_ulong *args)
1319 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1320 opcode, " (H_CLEAN_SLB)");
1321 return H_FUNCTION;
1324 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1325 target_ulong opcode, target_ulong *args)
1327 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1328 opcode, " (H_INVALIDATE_PID)");
1329 return H_FUNCTION;
1332 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1333 uint64_t patbe_old, uint64_t patbe_new)
1336 * We have 4 Options:
1337 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1338 * HASH->RADIX : Free HPT
1339 * RADIX->HASH : Allocate HPT
1340 * NOTHING->HASH : Allocate HPT
1341 * Note: NOTHING implies the case where we said the guest could choose
1342 * later and so assumed radix and now it's called H_REG_PROC_TBL
1345 if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1346 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1347 } else if (!(patbe_old & PATBE1_GR)) {
1348 /* HASH->RADIX : Free HPT */
1349 spapr_free_hpt(spapr);
1350 } else if (!(patbe_new & PATBE1_GR)) {
1351 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1352 spapr_setup_hpt_and_vrma(spapr);
1354 return;
1357 #define FLAGS_MASK 0x01FULL
1358 #define FLAG_MODIFY 0x10
1359 #define FLAG_REGISTER 0x08
1360 #define FLAG_RADIX 0x04
1361 #define FLAG_HASH_PROC_TBL 0x02
1362 #define FLAG_GTSE 0x01
1364 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1365 sPAPRMachineState *spapr,
1366 target_ulong opcode,
1367 target_ulong *args)
1369 target_ulong flags = args[0];
1370 target_ulong proc_tbl = args[1];
1371 target_ulong page_size = args[2];
1372 target_ulong table_size = args[3];
1373 uint64_t cproc;
1375 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1376 return H_PARAMETER;
1378 if (flags & FLAG_MODIFY) {
1379 if (flags & FLAG_REGISTER) {
1380 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1381 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1382 return H_P2;
1383 } else if (page_size) {
1384 return H_P3;
1385 } else if (table_size > 24) {
1386 return H_P4;
1388 cproc = PATBE1_GR | proc_tbl | table_size;
1389 } else { /* Register new HPT process table */
1390 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1391 /* TODO - Not Supported */
1392 /* Technically caused by flag bits => H_PARAMETER */
1393 return H_PARAMETER;
1394 } else { /* Hash with SLB */
1395 if (proc_tbl >> 38) {
1396 return H_P2;
1397 } else if (page_size & ~0x7) {
1398 return H_P3;
1399 } else if (table_size > 24) {
1400 return H_P4;
1403 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1406 } else { /* Deregister current process table */
1407 /* Set to benign value: (current GR) | 0. This allows
1408 * deregistration in KVM to succeed even if the radix bit in flags
1409 * doesn't match the radix bit in the old PATB. */
1410 cproc = spapr->patb_entry & PATBE1_GR;
1412 } else { /* Maintain current registration */
1413 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1414 /* Technically caused by flag bits => H_PARAMETER */
1415 return H_PARAMETER; /* Existing Process Table Mismatch */
1417 cproc = spapr->patb_entry;
1420 /* Check if we need to setup OR free the hpt */
1421 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1423 spapr->patb_entry = cproc; /* Save new process table */
1425 /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1426 set_all_lpcrs(((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1427 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1428 LPCR_UPRT | LPCR_GTSE);
1430 if (kvm_enabled()) {
1431 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1432 flags & FLAG_GTSE, cproc);
1434 return H_SUCCESS;
1437 #define H_SIGNAL_SYS_RESET_ALL -1
1438 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1440 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1441 sPAPRMachineState *spapr,
1442 target_ulong opcode, target_ulong *args)
1444 target_long target = args[0];
1445 CPUState *cs;
1447 if (target < 0) {
1448 /* Broadcast */
1449 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1450 return H_PARAMETER;
1453 CPU_FOREACH(cs) {
1454 PowerPCCPU *c = POWERPC_CPU(cs);
1456 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1457 if (c == cpu) {
1458 continue;
1461 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1463 return H_SUCCESS;
1465 } else {
1466 /* Unicast */
1467 cs = CPU(spapr_find_cpu(target));
1468 if (cs) {
1469 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1470 return H_SUCCESS;
1472 return H_PARAMETER;
1476 static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1477 target_ulong *addr, bool *raw_mode_supported,
1478 Error **errp)
1480 bool explicit_match = false; /* Matched the CPU's real PVR */
1481 uint32_t max_compat = spapr->max_compat_pvr;
1482 uint32_t best_compat = 0;
1483 int i;
1486 * We scan the supplied table of PVRs looking for two things
1487 * 1. Is our real CPU PVR in the list?
1488 * 2. What's the "best" listed logical PVR
1490 for (i = 0; i < 512; ++i) {
1491 uint32_t pvr, pvr_mask;
1493 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1494 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1495 *addr += 8;
1497 if (~pvr_mask & pvr) {
1498 break; /* Terminator record */
1501 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1502 explicit_match = true;
1503 } else {
1504 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1505 best_compat = pvr;
1510 if ((best_compat == 0) && (!explicit_match || max_compat)) {
1511 /* We couldn't find a suitable compatibility mode, and either
1512 * the guest doesn't support "raw" mode for this CPU, or raw
1513 * mode is disabled because a maximum compat mode is set */
1514 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1515 return 0;
1518 *raw_mode_supported = explicit_match;
1520 /* Parsing finished */
1521 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1523 return best_compat;
1526 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1527 sPAPRMachineState *spapr,
1528 target_ulong opcode,
1529 target_ulong *args)
1531 /* Working address in data buffer */
1532 target_ulong addr = ppc64_phys_to_real(args[0]);
1533 target_ulong ov_table;
1534 uint32_t cas_pvr;
1535 sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1536 bool guest_radix;
1537 Error *local_err = NULL;
1538 bool raw_mode_supported = false;
1540 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1541 if (local_err) {
1542 error_report_err(local_err);
1543 return H_HARDWARE;
1546 /* Update CPUs */
1547 if (cpu->compat_pvr != cas_pvr) {
1548 ppc_set_compat_all(cas_pvr, &local_err);
1549 if (local_err) {
1550 /* We fail to set compat mode (likely because running with KVM PR),
1551 * but maybe we can fallback to raw mode if the guest supports it.
1553 if (!raw_mode_supported) {
1554 error_report_err(local_err);
1555 return H_HARDWARE;
1557 error_free(local_err);
1558 local_err = NULL;
1562 /* For the future use: here @ov_table points to the first option vector */
1563 ov_table = addr;
1565 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1566 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1567 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1568 error_report("guest requested hash and radix MMU, which is invalid.");
1569 exit(EXIT_FAILURE);
1571 /* The radix/hash bit in byte 24 requires special handling: */
1572 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1573 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1576 * HPT resizing is a bit of a special case, because when enabled
1577 * we assume an HPT guest will support it until it says it
1578 * doesn't, instead of assuming it won't support it until it says
1579 * it does. Strictly speaking that approach could break for
1580 * guests which don't make a CAS call, but those are so old we
1581 * don't care about them. Without that assumption we'd have to
1582 * make at least a temporary allocation of an HPT sized for max
1583 * memory, which could be impossibly difficult under KVM HV if
1584 * maxram is large.
1586 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1587 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1589 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1590 error_report(
1591 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1592 exit(1);
1595 if (spapr->htab_shift < maxshift) {
1596 /* Guest doesn't know about HPT resizing, so we
1597 * pre-emptively resize for the maximum permitted RAM. At
1598 * the point this is called, nothing should have been
1599 * entered into the existing HPT */
1600 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1601 push_sregs_to_kvm_pr(spapr);
1605 /* NOTE: there are actually a number of ov5 bits where input from the
1606 * guest is always zero, and the platform/QEMU enables them independently
1607 * of guest input. To model these properly we'd want some sort of mask,
1608 * but since they only currently apply to memory migration as defined
1609 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1610 * to worry about this for now.
1612 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1614 /* also clear the radix/hash bit from the current ov5_cas bits to
1615 * be in sync with the newly ov5 bits. Else the radix bit will be
1616 * seen as being removed and this will generate a reset loop
1618 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1620 /* full range of negotiated ov5 capabilities */
1621 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1622 spapr_ovec_cleanup(ov5_guest);
1623 /* capabilities that have been added since CAS-generated guest reset.
1624 * if capabilities have since been removed, generate another reset
1626 ov5_updates = spapr_ovec_new();
1627 spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1628 ov5_cas_old, spapr->ov5_cas);
1629 /* Now that processing is finished, set the radix/hash bit for the
1630 * guest if it requested a valid mode; otherwise terminate the boot. */
1631 if (guest_radix) {
1632 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1633 error_report("Guest requested unavailable MMU mode (radix).");
1634 exit(EXIT_FAILURE);
1636 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1637 } else {
1638 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1639 && !kvmppc_has_cap_mmu_hash_v3()) {
1640 error_report("Guest requested unavailable MMU mode (hash).");
1641 exit(EXIT_FAILURE);
1644 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1645 OV1_PPC_3_00);
1646 if (!spapr->cas_reboot) {
1647 /* If spapr_machine_reset() did not set up a HPT but one is necessary
1648 * (because the guest isn't going to use radix) then set it up here. */
1649 if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1650 /* legacy hash or new hash: */
1651 spapr_setup_hpt_and_vrma(spapr);
1653 spapr->cas_reboot =
1654 (spapr_h_cas_compose_response(spapr, args[1], args[2],
1655 ov5_updates) != 0);
1659 * Generate a machine reset when we have an update of the
1660 * interrupt mode. Only required when the machine supports both
1661 * modes.
1663 if (!spapr->cas_reboot) {
1664 spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1665 && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1668 spapr_ovec_cleanup(ov5_updates);
1670 if (spapr->cas_reboot) {
1671 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1674 return H_SUCCESS;
1677 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1678 sPAPRMachineState *spapr,
1679 target_ulong opcode,
1680 target_ulong *args)
1682 target_ulong flags = args[0];
1683 target_ulong procno = args[1];
1684 PowerPCCPU *tcpu;
1685 int idx;
1687 /* only support procno from H_REGISTER_VPA */
1688 if (flags != 0x1) {
1689 return H_FUNCTION;
1692 tcpu = spapr_find_cpu(procno);
1693 if (tcpu == NULL) {
1694 return H_P2;
1697 /* sequence is the same as in the "ibm,associativity" property */
1699 idx = 0;
1700 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1701 ((uint64_t)(b) & 0xffffffff))
1702 args[idx++] = ASSOCIATIVITY(0, 0);
1703 args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1704 args[idx++] = ASSOCIATIVITY(procno, -1);
1705 for ( ; idx < 6; idx++) {
1706 args[idx] = -1;
1708 #undef ASSOCIATIVITY
1710 return H_SUCCESS;
1713 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1714 sPAPRMachineState *spapr,
1715 target_ulong opcode,
1716 target_ulong *args)
1718 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1719 ~H_CPU_CHAR_THR_RECONF_TRIG;
1720 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1721 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1722 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1723 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1725 switch (safe_cache) {
1726 case SPAPR_CAP_WORKAROUND:
1727 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1728 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1729 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1730 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1731 break;
1732 case SPAPR_CAP_FIXED:
1733 break;
1734 default: /* broken */
1735 assert(safe_cache == SPAPR_CAP_BROKEN);
1736 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1737 break;
1740 switch (safe_bounds_check) {
1741 case SPAPR_CAP_WORKAROUND:
1742 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1743 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1744 break;
1745 case SPAPR_CAP_FIXED:
1746 break;
1747 default: /* broken */
1748 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1749 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1750 break;
1753 switch (safe_indirect_branch) {
1754 case SPAPR_CAP_FIXED_CCD:
1755 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1756 break;
1757 case SPAPR_CAP_FIXED_IBS:
1758 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1759 break;
1760 default: /* broken */
1761 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1762 break;
1765 args[0] = characteristics;
1766 args[1] = behaviour;
1767 return H_SUCCESS;
1770 static target_ulong h_update_dt(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1771 target_ulong opcode, target_ulong *args)
1773 target_ulong dt = ppc64_phys_to_real(args[0]);
1774 struct fdt_header hdr = { 0 };
1775 unsigned cb;
1776 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1777 void *fdt;
1779 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1780 cb = fdt32_to_cpu(hdr.totalsize);
1782 if (!smc->update_dt_enabled) {
1783 return H_SUCCESS;
1786 /* Check that the fdt did not grow out of proportion */
1787 if (cb > spapr->fdt_initial_size * 2) {
1788 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1789 fdt32_to_cpu(hdr.magic));
1790 return H_PARAMETER;
1793 fdt = g_malloc0(cb);
1794 cpu_physical_memory_read(dt, fdt, cb);
1796 /* Check the fdt consistency */
1797 if (fdt_check_full(fdt, cb)) {
1798 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1799 fdt32_to_cpu(hdr.magic));
1800 return H_PARAMETER;
1803 g_free(spapr->fdt_blob);
1804 spapr->fdt_size = cb;
1805 spapr->fdt_blob = fdt;
1806 trace_spapr_update_dt(cb);
1808 return H_SUCCESS;
1811 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1812 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1814 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1816 spapr_hcall_fn *slot;
1818 if (opcode <= MAX_HCALL_OPCODE) {
1819 assert((opcode & 0x3) == 0);
1821 slot = &papr_hypercall_table[opcode / 4];
1822 } else {
1823 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1825 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1828 assert(!(*slot));
1829 *slot = fn;
1832 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1833 target_ulong *args)
1835 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1837 if ((opcode <= MAX_HCALL_OPCODE)
1838 && ((opcode & 0x3) == 0)) {
1839 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1841 if (fn) {
1842 return fn(cpu, spapr, opcode, args);
1844 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1845 (opcode <= KVMPPC_HCALL_MAX)) {
1846 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1848 if (fn) {
1849 return fn(cpu, spapr, opcode, args);
1853 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1854 opcode);
1855 return H_FUNCTION;
1858 static void hypercall_register_types(void)
1860 /* hcall-pft */
1861 spapr_register_hypercall(H_ENTER, h_enter);
1862 spapr_register_hypercall(H_REMOVE, h_remove);
1863 spapr_register_hypercall(H_PROTECT, h_protect);
1864 spapr_register_hypercall(H_READ, h_read);
1866 /* hcall-bulk */
1867 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1869 /* hcall-hpt-resize */
1870 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1871 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1873 /* hcall-splpar */
1874 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1875 spapr_register_hypercall(H_CEDE, h_cede);
1876 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1878 /* processor register resource access h-calls */
1879 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1880 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1881 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1882 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1883 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1885 /* In Memory Table MMU h-calls */
1886 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1887 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1888 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1890 /* hcall-get-cpu-characteristics */
1891 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1892 h_get_cpu_characteristics);
1894 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1895 * here between the "CI" and the "CACHE" variants, they will use whatever
1896 * mapping attributes qemu is using. When using KVM, the kernel will
1897 * enforce the attributes more strongly
1899 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1900 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1901 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1902 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1903 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1904 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1905 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1907 /* qemu/KVM-PPC specific hcalls */
1908 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1910 /* ibm,client-architecture-support support */
1911 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1913 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1915 /* Virtual Processor Home Node */
1916 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1917 h_home_node_associativity);
1920 type_init(hypercall_register_types)