qapi: Inline gen_visit_members() into lone caller
[qemu/ar7.git] / target-ppc / mmu-hash64.c
blobd175fdad45c30d28d3b1c32a5c54ccbc263ecf53
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "qemu/error-report.h"
24 #include "sysemu/kvm.h"
25 #include "qemu/error-report.h"
26 #include "kvm_ppc.h"
27 #include "mmu-hash64.h"
28 #include "exec/log.h"
30 //#define DEBUG_SLB
32 #ifdef DEBUG_SLB
33 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
34 #else
35 # define LOG_SLB(...) do { } while (0)
36 #endif
39 * Used to indicate that a CPU has its hash page table (HPT) managed
40 * within the host kernel
42 #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
45 * SLB handling
48 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
50 CPUPPCState *env = &cpu->env;
51 uint64_t esid_256M, esid_1T;
52 int n;
54 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
56 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
57 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
59 for (n = 0; n < env->slb_nr; n++) {
60 ppc_slb_t *slb = &env->slb[n];
62 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
63 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
64 /* We check for 1T matches on all MMUs here - if the MMU
65 * doesn't have 1T segment support, we will have prevented 1T
66 * entries from being inserted in the slbmte code. */
67 if (((slb->esid == esid_256M) &&
68 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
69 || ((slb->esid == esid_1T) &&
70 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
71 return slb;
75 return NULL;
78 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
80 CPUPPCState *env = &cpu->env;
81 int i;
82 uint64_t slbe, slbv;
84 cpu_synchronize_state(CPU(cpu));
86 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
87 for (i = 0; i < env->slb_nr; i++) {
88 slbe = env->slb[i].esid;
89 slbv = env->slb[i].vsid;
90 if (slbe == 0 && slbv == 0) {
91 continue;
93 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
94 i, slbe, slbv);
98 void helper_slbia(CPUPPCState *env)
100 PowerPCCPU *cpu = ppc_env_get_cpu(env);
101 int n, do_invalidate;
103 do_invalidate = 0;
104 /* XXX: Warning: slbia never invalidates the first segment */
105 for (n = 1; n < env->slb_nr; n++) {
106 ppc_slb_t *slb = &env->slb[n];
108 if (slb->esid & SLB_ESID_V) {
109 slb->esid &= ~SLB_ESID_V;
110 /* XXX: given the fact that segment size is 256 MB or 1TB,
111 * and we still don't have a tlb_flush_mask(env, n, mask)
112 * in QEMU, we just invalidate all TLBs
114 do_invalidate = 1;
117 if (do_invalidate) {
118 tlb_flush(CPU(cpu), 1);
122 void helper_slbie(CPUPPCState *env, target_ulong addr)
124 PowerPCCPU *cpu = ppc_env_get_cpu(env);
125 ppc_slb_t *slb;
127 slb = slb_lookup(cpu, addr);
128 if (!slb) {
129 return;
132 if (slb->esid & SLB_ESID_V) {
133 slb->esid &= ~SLB_ESID_V;
135 /* XXX: given the fact that segment size is 256 MB or 1TB,
136 * and we still don't have a tlb_flush_mask(env, n, mask)
137 * in QEMU, we just invalidate all TLBs
139 tlb_flush(CPU(cpu), 1);
143 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
144 target_ulong esid, target_ulong vsid)
146 CPUPPCState *env = &cpu->env;
147 ppc_slb_t *slb = &env->slb[slot];
148 const struct ppc_one_seg_page_size *sps = NULL;
149 int i;
151 if (slot >= env->slb_nr) {
152 return -1; /* Bad slot number */
154 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
155 return -1; /* Reserved bits set */
157 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
158 return -1; /* Bad segment size */
160 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
161 return -1; /* 1T segment on MMU that doesn't support it */
164 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
165 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
167 if (!sps1->page_shift) {
168 break;
171 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
172 sps = sps1;
173 break;
177 if (!sps) {
178 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
179 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
180 slot, esid, vsid);
181 return -1;
184 slb->esid = esid;
185 slb->vsid = vsid;
186 slb->sps = sps;
188 LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
189 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
190 slb->esid, slb->vsid);
192 return 0;
195 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
196 target_ulong *rt)
198 CPUPPCState *env = &cpu->env;
199 int slot = rb & 0xfff;
200 ppc_slb_t *slb = &env->slb[slot];
202 if (slot >= env->slb_nr) {
203 return -1;
206 *rt = slb->esid;
207 return 0;
210 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
211 target_ulong *rt)
213 CPUPPCState *env = &cpu->env;
214 int slot = rb & 0xfff;
215 ppc_slb_t *slb = &env->slb[slot];
217 if (slot >= env->slb_nr) {
218 return -1;
221 *rt = slb->vsid;
222 return 0;
225 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
227 PowerPCCPU *cpu = ppc_env_get_cpu(env);
229 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
230 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
231 POWERPC_EXCP_INVAL);
235 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
237 PowerPCCPU *cpu = ppc_env_get_cpu(env);
238 target_ulong rt = 0;
240 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
241 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
242 POWERPC_EXCP_INVAL);
244 return rt;
247 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
249 PowerPCCPU *cpu = ppc_env_get_cpu(env);
250 target_ulong rt = 0;
252 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
253 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
254 POWERPC_EXCP_INVAL);
256 return rt;
260 * 64-bit hash table MMU handling
262 void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
263 Error **errp)
265 CPUPPCState *env = &cpu->env;
266 target_ulong htabsize = value & SDR_64_HTABSIZE;
268 env->spr[SPR_SDR1] = value;
269 if (htabsize > 28) {
270 error_setg(errp,
271 "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
272 htabsize);
273 htabsize = 28;
275 env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
276 env->htab_base = value & SDR_64_HTABORG;
279 void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
280 Error **errp)
282 CPUPPCState *env = &cpu->env;
283 Error *local_err = NULL;
285 cpu_synchronize_state(CPU(cpu));
287 if (hpt) {
288 env->external_htab = hpt;
289 } else {
290 env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
292 ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
293 &local_err);
294 if (local_err) {
295 error_propagate(errp, local_err);
296 return;
299 /* Not strictly necessary, but makes it clearer that an external
300 * htab is in use when debugging */
301 env->htab_base = -1;
303 if (kvm_enabled()) {
304 if (kvmppc_put_books_sregs(cpu) < 0) {
305 error_setg(errp, "Unable to update SDR1 in KVM");
310 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
311 ppc_slb_t *slb, ppc_hash_pte64_t pte)
313 CPUPPCState *env = &cpu->env;
314 unsigned pp, key;
315 /* Some pp bit combinations have undefined behaviour, so default
316 * to no access in those cases */
317 int prot = 0;
319 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
320 : (slb->vsid & SLB_VSID_KS));
321 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
323 if (key == 0) {
324 switch (pp) {
325 case 0x0:
326 case 0x1:
327 case 0x2:
328 prot = PAGE_READ | PAGE_WRITE;
329 break;
331 case 0x3:
332 case 0x6:
333 prot = PAGE_READ;
334 break;
336 } else {
337 switch (pp) {
338 case 0x0:
339 case 0x6:
340 prot = 0;
341 break;
343 case 0x1:
344 case 0x3:
345 prot = PAGE_READ;
346 break;
348 case 0x2:
349 prot = PAGE_READ | PAGE_WRITE;
350 break;
354 /* No execute if either noexec or guarded bits set */
355 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
356 || (slb->vsid & SLB_VSID_N)) {
357 prot |= PAGE_EXEC;
360 return prot;
363 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
365 CPUPPCState *env = &cpu->env;
366 int key, amrbits;
367 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
369 /* Only recent MMUs implement Virtual Page Class Key Protection */
370 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
371 return prot;
374 key = HPTE64_R_KEY(pte.pte1);
375 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
377 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
378 /* env->spr[SPR_AMR]); */
381 * A store is permitted if the AMR bit is 0. Remove write
382 * protection if it is set.
384 if (amrbits & 0x2) {
385 prot &= ~PAGE_WRITE;
388 * A load is permitted if the AMR bit is 0. Remove read
389 * protection if it is set.
391 if (amrbits & 0x1) {
392 prot &= ~PAGE_READ;
395 return prot;
398 uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
400 uint64_t token = 0;
401 hwaddr pte_offset;
403 pte_offset = pte_index * HASH_PTE_SIZE_64;
404 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
406 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
408 token = kvmppc_hash64_read_pteg(cpu, pte_index);
409 } else if (cpu->env.external_htab) {
411 * HTAB is controlled by QEMU. Just point to the internally
412 * accessible PTEG.
414 token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
415 } else if (cpu->env.htab_base) {
416 token = cpu->env.htab_base + pte_offset;
418 return token;
421 void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
423 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
424 kvmppc_hash64_free_pteg(token);
428 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
429 bool secondary, target_ulong ptem,
430 ppc_hash_pte64_t *pte)
432 CPUPPCState *env = &cpu->env;
433 int i;
434 uint64_t token;
435 target_ulong pte0, pte1;
436 target_ulong pte_index;
438 pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
439 token = ppc_hash64_start_access(cpu, pte_index);
440 if (!token) {
441 return -1;
443 for (i = 0; i < HPTES_PER_GROUP; i++) {
444 pte0 = ppc_hash64_load_hpte0(cpu, token, i);
445 pte1 = ppc_hash64_load_hpte1(cpu, token, i);
447 if ((pte0 & HPTE64_V_VALID)
448 && (secondary == !!(pte0 & HPTE64_V_SECONDARY))
449 && HPTE64_V_COMPARE(pte0, ptem)) {
450 pte->pte0 = pte0;
451 pte->pte1 = pte1;
452 ppc_hash64_stop_access(cpu, token);
453 return (pte_index + i) * HASH_PTE_SIZE_64;
456 ppc_hash64_stop_access(cpu, token);
458 * We didn't find a valid entry.
460 return -1;
463 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
464 ppc_slb_t *slb, target_ulong eaddr,
465 ppc_hash_pte64_t *pte)
467 CPUPPCState *env = &cpu->env;
468 hwaddr pte_offset;
469 hwaddr hash;
470 uint64_t vsid, epnmask, epn, ptem;
472 /* The SLB store path should prevent any bad page size encodings
473 * getting in there, so: */
474 assert(slb->sps);
476 epnmask = ~((1ULL << slb->sps->page_shift) - 1);
478 if (slb->vsid & SLB_VSID_B) {
479 /* 1TB segment */
480 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
481 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
482 hash = vsid ^ (vsid << 25) ^ (epn >> slb->sps->page_shift);
483 } else {
484 /* 256M segment */
485 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
486 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
487 hash = vsid ^ (epn >> slb->sps->page_shift);
489 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
491 /* Page address translation */
492 qemu_log_mask(CPU_LOG_MMU,
493 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
494 " hash " TARGET_FMT_plx "\n",
495 env->htab_base, env->htab_mask, hash);
497 /* Primary PTEG lookup */
498 qemu_log_mask(CPU_LOG_MMU,
499 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
500 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
501 " hash=" TARGET_FMT_plx "\n",
502 env->htab_base, env->htab_mask, vsid, ptem, hash);
503 pte_offset = ppc_hash64_pteg_search(cpu, hash, 0, ptem, pte);
505 if (pte_offset == -1) {
506 /* Secondary PTEG lookup */
507 qemu_log_mask(CPU_LOG_MMU,
508 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
509 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
510 " hash=" TARGET_FMT_plx "\n", env->htab_base,
511 env->htab_mask, vsid, ptem, ~hash);
513 pte_offset = ppc_hash64_pteg_search(cpu, ~hash, 1, ptem, pte);
516 return pte_offset;
519 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
520 uint64_t pte0, uint64_t pte1)
522 int i;
524 if (!(pte0 & HPTE64_V_LARGE)) {
525 if (sps->page_shift != 12) {
526 /* 4kiB page in a non 4kiB segment */
527 return 0;
529 /* Normal 4kiB page */
530 return 12;
533 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
534 const struct ppc_one_page_size *ps = &sps->enc[i];
535 uint64_t mask;
537 if (!ps->page_shift) {
538 break;
541 if (ps->page_shift == 12) {
542 /* L bit is set so this can't be a 4kiB page */
543 continue;
546 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
548 if ((pte1 & mask) == (ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
549 return ps->page_shift;
553 return 0; /* Bad page size encoding */
556 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
557 uint64_t pte0, uint64_t pte1,
558 unsigned *seg_page_shift)
560 CPUPPCState *env = &cpu->env;
561 int i;
563 if (!(pte0 & HPTE64_V_LARGE)) {
564 *seg_page_shift = 12;
565 return 12;
569 * The encodings in env->sps need to be carefully chosen so that
570 * this gives an unambiguous result.
572 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
573 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
574 unsigned shift;
576 if (!sps->page_shift) {
577 break;
580 shift = hpte_page_shift(sps, pte0, pte1);
581 if (shift) {
582 *seg_page_shift = sps->page_shift;
583 return shift;
587 *seg_page_shift = 0;
588 return 0;
591 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr,
592 int rwx, int mmu_idx)
594 CPUState *cs = CPU(cpu);
595 CPUPPCState *env = &cpu->env;
596 ppc_slb_t *slb;
597 unsigned apshift;
598 hwaddr pte_offset;
599 ppc_hash_pte64_t pte;
600 int pp_prot, amr_prot, prot;
601 uint64_t new_pte1;
602 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
603 hwaddr raddr;
605 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
607 /* 1. Handle real mode accesses */
608 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
609 /* Translation is off */
610 /* In real mode the top 4 effective address bits are ignored */
611 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
612 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
613 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
614 TARGET_PAGE_SIZE);
615 return 0;
618 /* 2. Translation is on, so look up the SLB */
619 slb = slb_lookup(cpu, eaddr);
621 if (!slb) {
622 if (rwx == 2) {
623 cs->exception_index = POWERPC_EXCP_ISEG;
624 env->error_code = 0;
625 } else {
626 cs->exception_index = POWERPC_EXCP_DSEG;
627 env->error_code = 0;
628 env->spr[SPR_DAR] = eaddr;
630 return 1;
633 /* 3. Check for segment level no-execute violation */
634 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
635 cs->exception_index = POWERPC_EXCP_ISI;
636 env->error_code = 0x10000000;
637 return 1;
640 /* 4. Locate the PTE in the hash table */
641 pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte);
642 if (pte_offset == -1) {
643 if (rwx == 2) {
644 cs->exception_index = POWERPC_EXCP_ISI;
645 env->error_code = 0x40000000;
646 } else {
647 cs->exception_index = POWERPC_EXCP_DSI;
648 env->error_code = 0;
649 env->spr[SPR_DAR] = eaddr;
650 if (rwx == 1) {
651 env->spr[SPR_DSISR] = 0x42000000;
652 } else {
653 env->spr[SPR_DSISR] = 0x40000000;
656 return 1;
658 qemu_log_mask(CPU_LOG_MMU,
659 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
661 /* Validate page size encoding */
662 apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
663 if (!apshift) {
664 error_report("Bad page size encoding in HPTE 0x%"PRIx64" - 0x%"PRIx64
665 " @ 0x%"HWADDR_PRIx, pte.pte0, pte.pte1, pte_offset);
666 /* Not entirely sure what the right action here, but machine
667 * check seems reasonable */
668 cs->exception_index = POWERPC_EXCP_MCHECK;
669 env->error_code = 0;
670 return 1;
673 /* 5. Check access permissions */
675 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
676 amr_prot = ppc_hash64_amr_prot(cpu, pte);
677 prot = pp_prot & amr_prot;
679 if ((need_prot[rwx] & ~prot) != 0) {
680 /* Access right violation */
681 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
682 if (rwx == 2) {
683 cs->exception_index = POWERPC_EXCP_ISI;
684 env->error_code = 0x08000000;
685 } else {
686 target_ulong dsisr = 0;
688 cs->exception_index = POWERPC_EXCP_DSI;
689 env->error_code = 0;
690 env->spr[SPR_DAR] = eaddr;
691 if (need_prot[rwx] & ~pp_prot) {
692 dsisr |= 0x08000000;
694 if (rwx == 1) {
695 dsisr |= 0x02000000;
697 if (need_prot[rwx] & ~amr_prot) {
698 dsisr |= 0x00200000;
700 env->spr[SPR_DSISR] = dsisr;
702 return 1;
705 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
707 /* 6. Update PTE referenced and changed bits if necessary */
709 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
710 if (rwx == 1) {
711 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
712 } else {
713 /* Treat the page as read-only for now, so that a later write
714 * will pass through this function again to set the C bit */
715 prot &= ~PAGE_WRITE;
718 if (new_pte1 != pte.pte1) {
719 ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
720 pte.pte0, new_pte1);
723 /* 7. Determine the real address from the PTE */
725 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
727 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
728 prot, mmu_idx, 1ULL << apshift);
730 return 0;
733 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
735 CPUPPCState *env = &cpu->env;
736 ppc_slb_t *slb;
737 hwaddr pte_offset;
738 ppc_hash_pte64_t pte;
739 unsigned apshift;
741 if (msr_dr == 0) {
742 /* In real mode the top 4 effective address bits are ignored */
743 return addr & 0x0FFFFFFFFFFFFFFFULL;
746 slb = slb_lookup(cpu, addr);
747 if (!slb) {
748 return -1;
751 pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte);
752 if (pte_offset == -1) {
753 return -1;
756 apshift = hpte_page_shift(slb->sps, pte.pte0, pte.pte1);
757 if (!apshift) {
758 return -1;
761 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
762 & TARGET_PAGE_MASK;
765 void ppc_hash64_store_hpte(PowerPCCPU *cpu,
766 target_ulong pte_index,
767 target_ulong pte0, target_ulong pte1)
769 CPUPPCState *env = &cpu->env;
771 if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
772 kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
773 return;
776 pte_index *= HASH_PTE_SIZE_64;
777 if (env->external_htab) {
778 stq_p(env->external_htab + pte_index, pte0);
779 stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
780 } else {
781 stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
782 stq_phys(CPU(cpu)->as,
783 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
787 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
788 target_ulong pte_index,
789 target_ulong pte0, target_ulong pte1)
792 * XXX: given the fact that there are too many segments to
793 * invalidate, and we still don't have a tlb_flush_mask(env, n,
794 * mask) in QEMU, we just invalidate all TLBs
796 tlb_flush(CPU(cpu), 1);