arm: Rename hw/arm/arm.h to hw/arm/boot.h
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blob6c16d2b12040ec708ff2ec3348ac9fb58ed2b667
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "hw/ppc/spapr_cpu_core.h"
12 #include "mmu-hash64.h"
13 #include "cpu-models.h"
14 #include "trace.h"
15 #include "kvm_ppc.h"
16 #include "hw/ppc/spapr_ovec.h"
17 #include "mmu-book3s-v3.h"
18 #include "hw/mem/memory-device.h"
20 static bool has_spr(PowerPCCPU *cpu, int spr)
22 /* We can test whether the SPR is defined by checking for a valid name */
23 return cpu->env.spr_cb[spr].name != NULL;
26 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
29 * hash value/pteg group index is normalized by HPT mask
31 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
32 return false;
34 return true;
37 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
39 MachineState *machine = MACHINE(spapr);
40 DeviceMemoryState *dms = machine->device_memory;
42 if (addr < machine->ram_size) {
43 return true;
45 if ((addr >= dms->base)
46 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
47 return true;
50 return false;
53 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
54 target_ulong opcode, target_ulong *args)
56 target_ulong flags = args[0];
57 target_ulong ptex = args[1];
58 target_ulong pteh = args[2];
59 target_ulong ptel = args[3];
60 unsigned apshift;
61 target_ulong raddr;
62 target_ulong slot;
63 const ppc_hash_pte64_t *hptes;
65 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
66 if (!apshift) {
67 /* Bad page size encoding */
68 return H_PARAMETER;
71 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
73 if (is_ram_address(spapr, raddr)) {
74 /* Regular RAM - should have WIMG=0010 */
75 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
76 return H_PARAMETER;
78 } else {
79 target_ulong wimg_flags;
80 /* Looks like an IO address */
81 /* FIXME: What WIMG combinations could be sensible for IO?
82 * For now we allow WIMG=010x, but are there others? */
83 /* FIXME: Should we check against registered IO addresses? */
84 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
86 if (wimg_flags != HPTE64_R_I &&
87 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
88 return H_PARAMETER;
92 pteh &= ~0x60ULL;
94 if (!valid_ptex(cpu, ptex)) {
95 return H_PARAMETER;
98 slot = ptex & 7ULL;
99 ptex = ptex & ~7ULL;
101 if (likely((flags & H_EXACT) == 0)) {
102 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
103 for (slot = 0; slot < 8; slot++) {
104 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
105 break;
108 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
109 if (slot == 8) {
110 return H_PTEG_FULL;
112 } else {
113 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
114 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
115 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
116 return H_PTEG_FULL;
118 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
121 spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
123 args[0] = ptex + slot;
124 return H_SUCCESS;
127 typedef enum {
128 REMOVE_SUCCESS = 0,
129 REMOVE_NOT_FOUND = 1,
130 REMOVE_PARM = 2,
131 REMOVE_HW = 3,
132 } RemoveResult;
134 static RemoveResult remove_hpte(PowerPCCPU *cpu
135 , target_ulong ptex,
136 target_ulong avpn,
137 target_ulong flags,
138 target_ulong *vp, target_ulong *rp)
140 const ppc_hash_pte64_t *hptes;
141 target_ulong v, r;
143 if (!valid_ptex(cpu, ptex)) {
144 return REMOVE_PARM;
147 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
148 v = ppc_hash64_hpte0(cpu, hptes, 0);
149 r = ppc_hash64_hpte1(cpu, hptes, 0);
150 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
152 if ((v & HPTE64_V_VALID) == 0 ||
153 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
154 ((flags & H_ANDCOND) && (v & avpn) != 0)) {
155 return REMOVE_NOT_FOUND;
157 *vp = v;
158 *rp = r;
159 spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
160 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
161 return REMOVE_SUCCESS;
164 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
165 target_ulong opcode, target_ulong *args)
167 CPUPPCState *env = &cpu->env;
168 target_ulong flags = args[0];
169 target_ulong ptex = args[1];
170 target_ulong avpn = args[2];
171 RemoveResult ret;
173 ret = remove_hpte(cpu, ptex, avpn, flags,
174 &args[0], &args[1]);
176 switch (ret) {
177 case REMOVE_SUCCESS:
178 check_tlb_flush(env, true);
179 return H_SUCCESS;
181 case REMOVE_NOT_FOUND:
182 return H_NOT_FOUND;
184 case REMOVE_PARM:
185 return H_PARAMETER;
187 case REMOVE_HW:
188 return H_HARDWARE;
191 g_assert_not_reached();
194 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
195 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
196 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
197 #define H_BULK_REMOVE_END 0xc000000000000000ULL
198 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
199 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
200 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
201 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
202 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
203 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
204 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
205 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
206 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
207 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
208 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
210 #define H_BULK_REMOVE_MAX_BATCH 4
212 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
213 target_ulong opcode, target_ulong *args)
215 CPUPPCState *env = &cpu->env;
216 int i;
217 target_ulong rc = H_SUCCESS;
219 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
220 target_ulong *tsh = &args[i*2];
221 target_ulong tsl = args[i*2 + 1];
222 target_ulong v, r, ret;
224 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
225 break;
226 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
227 return H_PARAMETER;
230 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
231 *tsh |= H_BULK_REMOVE_RESPONSE;
233 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
234 *tsh |= H_BULK_REMOVE_PARM;
235 return H_PARAMETER;
238 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
239 (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
240 &v, &r);
242 *tsh |= ret << 60;
244 switch (ret) {
245 case REMOVE_SUCCESS:
246 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
247 break;
249 case REMOVE_PARM:
250 rc = H_PARAMETER;
251 goto exit;
253 case REMOVE_HW:
254 rc = H_HARDWARE;
255 goto exit;
258 exit:
259 check_tlb_flush(env, true);
261 return rc;
264 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
265 target_ulong opcode, target_ulong *args)
267 CPUPPCState *env = &cpu->env;
268 target_ulong flags = args[0];
269 target_ulong ptex = args[1];
270 target_ulong avpn = args[2];
271 const ppc_hash_pte64_t *hptes;
272 target_ulong v, r;
274 if (!valid_ptex(cpu, ptex)) {
275 return H_PARAMETER;
278 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
279 v = ppc_hash64_hpte0(cpu, hptes, 0);
280 r = ppc_hash64_hpte1(cpu, hptes, 0);
281 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
283 if ((v & HPTE64_V_VALID) == 0 ||
284 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
285 return H_NOT_FOUND;
288 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
289 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
290 r |= (flags << 55) & HPTE64_R_PP0;
291 r |= (flags << 48) & HPTE64_R_KEY_HI;
292 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
293 spapr_store_hpte(cpu, ptex,
294 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
295 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
296 /* Flush the tlb */
297 check_tlb_flush(env, true);
298 /* Don't need a memory barrier, due to qemu's global lock */
299 spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
300 return H_SUCCESS;
303 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
304 target_ulong opcode, target_ulong *args)
306 target_ulong flags = args[0];
307 target_ulong ptex = args[1];
308 int i, ridx, n_entries = 1;
309 const ppc_hash_pte64_t *hptes;
311 if (!valid_ptex(cpu, ptex)) {
312 return H_PARAMETER;
315 if (flags & H_READ_4) {
316 /* Clear the two low order bits */
317 ptex &= ~(3ULL);
318 n_entries = 4;
321 hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
322 for (i = 0, ridx = 0; i < n_entries; i++) {
323 args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
324 args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
326 ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
328 return H_SUCCESS;
331 struct SpaprPendingHpt {
332 /* These fields are read-only after initialization */
333 int shift;
334 QemuThread thread;
336 /* These fields are protected by the BQL */
337 bool complete;
339 /* These fields are private to the preparation thread if
340 * !complete, otherwise protected by the BQL */
341 int ret;
342 void *hpt;
345 static void free_pending_hpt(SpaprPendingHpt *pending)
347 if (pending->hpt) {
348 qemu_vfree(pending->hpt);
351 g_free(pending);
354 static void *hpt_prepare_thread(void *opaque)
356 SpaprPendingHpt *pending = opaque;
357 size_t size = 1ULL << pending->shift;
359 pending->hpt = qemu_memalign(size, size);
360 if (pending->hpt) {
361 memset(pending->hpt, 0, size);
362 pending->ret = H_SUCCESS;
363 } else {
364 pending->ret = H_NO_MEM;
367 qemu_mutex_lock_iothread();
369 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
370 /* Ready to go */
371 pending->complete = true;
372 } else {
373 /* We've been cancelled, clean ourselves up */
374 free_pending_hpt(pending);
377 qemu_mutex_unlock_iothread();
378 return NULL;
381 /* Must be called with BQL held */
382 static void cancel_hpt_prepare(SpaprMachineState *spapr)
384 SpaprPendingHpt *pending = spapr->pending_hpt;
386 /* Let the thread know it's cancelled */
387 spapr->pending_hpt = NULL;
389 if (!pending) {
390 /* Nothing to do */
391 return;
394 if (!pending->complete) {
395 /* thread will clean itself up */
396 return;
399 free_pending_hpt(pending);
402 /* Convert a return code from the KVM ioctl()s implementing resize HPT
403 * into a PAPR hypercall return code */
404 static target_ulong resize_hpt_convert_rc(int ret)
406 if (ret >= 100000) {
407 return H_LONG_BUSY_ORDER_100_SEC;
408 } else if (ret >= 10000) {
409 return H_LONG_BUSY_ORDER_10_SEC;
410 } else if (ret >= 1000) {
411 return H_LONG_BUSY_ORDER_1_SEC;
412 } else if (ret >= 100) {
413 return H_LONG_BUSY_ORDER_100_MSEC;
414 } else if (ret >= 10) {
415 return H_LONG_BUSY_ORDER_10_MSEC;
416 } else if (ret > 0) {
417 return H_LONG_BUSY_ORDER_1_MSEC;
420 switch (ret) {
421 case 0:
422 return H_SUCCESS;
423 case -EPERM:
424 return H_AUTHORITY;
425 case -EINVAL:
426 return H_PARAMETER;
427 case -ENXIO:
428 return H_CLOSED;
429 case -ENOSPC:
430 return H_PTEG_FULL;
431 case -EBUSY:
432 return H_BUSY;
433 case -ENOMEM:
434 return H_NO_MEM;
435 default:
436 return H_HARDWARE;
440 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
441 SpaprMachineState *spapr,
442 target_ulong opcode,
443 target_ulong *args)
445 target_ulong flags = args[0];
446 int shift = args[1];
447 SpaprPendingHpt *pending = spapr->pending_hpt;
448 uint64_t current_ram_size;
449 int rc;
451 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
452 return H_AUTHORITY;
455 if (!spapr->htab_shift) {
456 /* Radix guest, no HPT */
457 return H_NOT_AVAILABLE;
460 trace_spapr_h_resize_hpt_prepare(flags, shift);
462 if (flags != 0) {
463 return H_PARAMETER;
466 if (shift && ((shift < 18) || (shift > 46))) {
467 return H_PARAMETER;
470 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
472 /* We only allow the guest to allocate an HPT one order above what
473 * we'd normally give them (to stop a small guest claiming a huge
474 * chunk of resources in the HPT */
475 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
476 return H_RESOURCE;
479 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
480 if (rc != -ENOSYS) {
481 return resize_hpt_convert_rc(rc);
484 if (pending) {
485 /* something already in progress */
486 if (pending->shift == shift) {
487 /* and it's suitable */
488 if (pending->complete) {
489 return pending->ret;
490 } else {
491 return H_LONG_BUSY_ORDER_100_MSEC;
495 /* not suitable, cancel and replace */
496 cancel_hpt_prepare(spapr);
499 if (!shift) {
500 /* nothing to do */
501 return H_SUCCESS;
504 /* start new prepare */
506 pending = g_new0(SpaprPendingHpt, 1);
507 pending->shift = shift;
508 pending->ret = H_HARDWARE;
510 qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
511 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
513 spapr->pending_hpt = pending;
515 /* In theory we could estimate the time more accurately based on
516 * the new size, but there's not much point */
517 return H_LONG_BUSY_ORDER_100_MSEC;
520 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
522 uint8_t *addr = htab;
524 addr += pteg * HASH_PTEG_SIZE_64;
525 addr += slot * HASH_PTE_SIZE_64;
526 return ldq_p(addr);
529 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
530 uint64_t pte0, uint64_t pte1)
532 uint8_t *addr = htab;
534 addr += pteg * HASH_PTEG_SIZE_64;
535 addr += slot * HASH_PTE_SIZE_64;
537 stq_p(addr, pte0);
538 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
541 static int rehash_hpte(PowerPCCPU *cpu,
542 const ppc_hash_pte64_t *hptes,
543 void *old_hpt, uint64_t oldsize,
544 void *new_hpt, uint64_t newsize,
545 uint64_t pteg, int slot)
547 uint64_t old_hash_mask = (oldsize >> 7) - 1;
548 uint64_t new_hash_mask = (newsize >> 7) - 1;
549 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
550 target_ulong pte1;
551 uint64_t avpn;
552 unsigned base_pg_shift;
553 uint64_t hash, new_pteg, replace_pte0;
555 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
556 return H_SUCCESS;
559 pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
561 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
562 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
563 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
565 if (pte0 & HPTE64_V_SECONDARY) {
566 pteg = ~pteg;
569 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
570 uint64_t offset, vsid;
572 /* We only have 28 - 23 bits of offset in avpn */
573 offset = (avpn & 0x1f) << 23;
574 vsid = avpn >> 5;
575 /* We can find more bits from the pteg value */
576 if (base_pg_shift < 23) {
577 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
580 hash = vsid ^ (offset >> base_pg_shift);
581 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
582 uint64_t offset, vsid;
584 /* We only have 40 - 23 bits of seg_off in avpn */
585 offset = (avpn & 0x1ffff) << 23;
586 vsid = avpn >> 17;
587 if (base_pg_shift < 23) {
588 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
589 << base_pg_shift;
592 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
593 } else {
594 error_report("rehash_pte: Bad segment size in HPTE");
595 return H_HARDWARE;
598 new_pteg = hash & new_hash_mask;
599 if (pte0 & HPTE64_V_SECONDARY) {
600 assert(~pteg == (hash & old_hash_mask));
601 new_pteg = ~new_pteg;
602 } else {
603 assert(pteg == (hash & old_hash_mask));
605 assert((oldsize != newsize) || (pteg == new_pteg));
606 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
608 * Strictly speaking, we don't need all these tests, since we only
609 * ever rehash bolted HPTEs. We might in future handle non-bolted
610 * HPTEs, though so make the logic correct for those cases as
611 * well.
613 if (replace_pte0 & HPTE64_V_VALID) {
614 assert(newsize < oldsize);
615 if (replace_pte0 & HPTE64_V_BOLTED) {
616 if (pte0 & HPTE64_V_BOLTED) {
617 /* Bolted collision, nothing we can do */
618 return H_PTEG_FULL;
619 } else {
620 /* Discard this hpte */
621 return H_SUCCESS;
626 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
627 return H_SUCCESS;
630 static int rehash_hpt(PowerPCCPU *cpu,
631 void *old_hpt, uint64_t oldsize,
632 void *new_hpt, uint64_t newsize)
634 uint64_t n_ptegs = oldsize >> 7;
635 uint64_t pteg;
636 int slot;
637 int rc;
639 for (pteg = 0; pteg < n_ptegs; pteg++) {
640 hwaddr ptex = pteg * HPTES_PER_GROUP;
641 const ppc_hash_pte64_t *hptes
642 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
644 if (!hptes) {
645 return H_HARDWARE;
648 for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
649 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
650 pteg, slot);
651 if (rc != H_SUCCESS) {
652 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
653 return rc;
656 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
659 return H_SUCCESS;
662 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
664 int ret;
666 cpu_synchronize_state(cs);
668 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
669 if (ret < 0) {
670 error_report("failed to push sregs to KVM: %s", strerror(-ret));
671 exit(1);
675 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
677 CPUState *cs;
680 * This is a hack for the benefit of KVM PR - it abuses the SDR1
681 * slot in kvm_sregs to communicate the userspace address of the
682 * HPT
684 if (!kvm_enabled() || !spapr->htab) {
685 return;
688 CPU_FOREACH(cs) {
689 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
693 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
694 SpaprMachineState *spapr,
695 target_ulong opcode,
696 target_ulong *args)
698 target_ulong flags = args[0];
699 target_ulong shift = args[1];
700 SpaprPendingHpt *pending = spapr->pending_hpt;
701 int rc;
702 size_t newsize;
704 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
705 return H_AUTHORITY;
708 if (!spapr->htab_shift) {
709 /* Radix guest, no HPT */
710 return H_NOT_AVAILABLE;
713 trace_spapr_h_resize_hpt_commit(flags, shift);
715 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
716 if (rc != -ENOSYS) {
717 rc = resize_hpt_convert_rc(rc);
718 if (rc == H_SUCCESS) {
719 /* Need to set the new htab_shift in the machine state */
720 spapr->htab_shift = shift;
722 return rc;
725 if (flags != 0) {
726 return H_PARAMETER;
729 if (!pending || (pending->shift != shift)) {
730 /* no matching prepare */
731 return H_CLOSED;
734 if (!pending->complete) {
735 /* prepare has not completed */
736 return H_BUSY;
739 /* Shouldn't have got past PREPARE without an HPT */
740 g_assert(spapr->htab_shift);
742 newsize = 1ULL << pending->shift;
743 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
744 pending->hpt, newsize);
745 if (rc == H_SUCCESS) {
746 qemu_vfree(spapr->htab);
747 spapr->htab = pending->hpt;
748 spapr->htab_shift = pending->shift;
750 push_sregs_to_kvm_pr(spapr);
752 pending->hpt = NULL; /* so it's not free()d */
755 /* Clean up */
756 spapr->pending_hpt = NULL;
757 free_pending_hpt(pending);
759 return rc;
762 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
763 target_ulong opcode, target_ulong *args)
765 cpu_synchronize_state(CPU(cpu));
766 cpu->env.spr[SPR_SPRG0] = args[0];
768 return H_SUCCESS;
771 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
772 target_ulong opcode, target_ulong *args)
774 if (!has_spr(cpu, SPR_DABR)) {
775 return H_HARDWARE; /* DABR register not available */
777 cpu_synchronize_state(CPU(cpu));
779 if (has_spr(cpu, SPR_DABRX)) {
780 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
781 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
782 return H_RESERVED_DABR;
785 cpu->env.spr[SPR_DABR] = args[0];
786 return H_SUCCESS;
789 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
790 target_ulong opcode, target_ulong *args)
792 target_ulong dabrx = args[1];
794 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
795 return H_HARDWARE;
798 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
799 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
800 return H_PARAMETER;
803 cpu_synchronize_state(CPU(cpu));
804 cpu->env.spr[SPR_DABRX] = dabrx;
805 cpu->env.spr[SPR_DABR] = args[0];
807 return H_SUCCESS;
810 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
811 target_ulong opcode, target_ulong *args)
813 target_ulong flags = args[0];
814 hwaddr dst = args[1];
815 hwaddr src = args[2];
816 hwaddr len = TARGET_PAGE_SIZE;
817 uint8_t *pdst, *psrc;
818 target_long ret = H_SUCCESS;
820 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
821 | H_COPY_PAGE | H_ZERO_PAGE)) {
822 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
823 flags);
824 return H_PARAMETER;
827 /* Map-in destination */
828 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
829 return H_PARAMETER;
831 pdst = cpu_physical_memory_map(dst, &len, 1);
832 if (!pdst || len != TARGET_PAGE_SIZE) {
833 return H_PARAMETER;
836 if (flags & H_COPY_PAGE) {
837 /* Map-in source, copy to destination, and unmap source again */
838 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
839 ret = H_PARAMETER;
840 goto unmap_out;
842 psrc = cpu_physical_memory_map(src, &len, 0);
843 if (!psrc || len != TARGET_PAGE_SIZE) {
844 ret = H_PARAMETER;
845 goto unmap_out;
847 memcpy(pdst, psrc, len);
848 cpu_physical_memory_unmap(psrc, len, 0, len);
849 } else if (flags & H_ZERO_PAGE) {
850 memset(pdst, 0, len); /* Just clear the destination page */
853 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
854 kvmppc_dcbst_range(cpu, pdst, len);
856 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
857 if (kvm_enabled()) {
858 kvmppc_icbi_range(cpu, pdst, len);
859 } else {
860 tb_flush(CPU(cpu));
864 unmap_out:
865 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
866 return ret;
869 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
870 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
871 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
872 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
873 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
874 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
876 #define VPA_MIN_SIZE 640
877 #define VPA_SIZE_OFFSET 0x4
878 #define VPA_SHARED_PROC_OFFSET 0x9
879 #define VPA_SHARED_PROC_VAL 0x2
881 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
883 CPUState *cs = CPU(cpu);
884 CPUPPCState *env = &cpu->env;
885 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
886 uint16_t size;
887 uint8_t tmp;
889 if (vpa == 0) {
890 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
891 return H_HARDWARE;
894 if (vpa % env->dcache_line_size) {
895 return H_PARAMETER;
897 /* FIXME: bounds check the address */
899 size = lduw_be_phys(cs->as, vpa + 0x4);
901 if (size < VPA_MIN_SIZE) {
902 return H_PARAMETER;
905 /* VPA is not allowed to cross a page boundary */
906 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
907 return H_PARAMETER;
910 spapr_cpu->vpa_addr = vpa;
912 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
913 tmp |= VPA_SHARED_PROC_VAL;
914 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
916 return H_SUCCESS;
919 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
921 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
923 if (spapr_cpu->slb_shadow_addr) {
924 return H_RESOURCE;
927 if (spapr_cpu->dtl_addr) {
928 return H_RESOURCE;
931 spapr_cpu->vpa_addr = 0;
932 return H_SUCCESS;
935 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
937 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
938 uint32_t size;
940 if (addr == 0) {
941 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
942 return H_HARDWARE;
945 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
946 if (size < 0x8) {
947 return H_PARAMETER;
950 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
951 return H_PARAMETER;
954 if (!spapr_cpu->vpa_addr) {
955 return H_RESOURCE;
958 spapr_cpu->slb_shadow_addr = addr;
959 spapr_cpu->slb_shadow_size = size;
961 return H_SUCCESS;
964 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
966 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
968 spapr_cpu->slb_shadow_addr = 0;
969 spapr_cpu->slb_shadow_size = 0;
970 return H_SUCCESS;
973 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
975 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
976 uint32_t size;
978 if (addr == 0) {
979 hcall_dprintf("Can't cope with DTL at logical 0\n");
980 return H_HARDWARE;
983 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
985 if (size < 48) {
986 return H_PARAMETER;
989 if (!spapr_cpu->vpa_addr) {
990 return H_RESOURCE;
993 spapr_cpu->dtl_addr = addr;
994 spapr_cpu->dtl_size = size;
996 return H_SUCCESS;
999 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1001 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1003 spapr_cpu->dtl_addr = 0;
1004 spapr_cpu->dtl_size = 0;
1006 return H_SUCCESS;
1009 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1010 target_ulong opcode, target_ulong *args)
1012 target_ulong flags = args[0];
1013 target_ulong procno = args[1];
1014 target_ulong vpa = args[2];
1015 target_ulong ret = H_PARAMETER;
1016 PowerPCCPU *tcpu;
1018 tcpu = spapr_find_cpu(procno);
1019 if (!tcpu) {
1020 return H_PARAMETER;
1023 switch (flags) {
1024 case FLAGS_REGISTER_VPA:
1025 ret = register_vpa(tcpu, vpa);
1026 break;
1028 case FLAGS_DEREGISTER_VPA:
1029 ret = deregister_vpa(tcpu, vpa);
1030 break;
1032 case FLAGS_REGISTER_SLBSHADOW:
1033 ret = register_slb_shadow(tcpu, vpa);
1034 break;
1036 case FLAGS_DEREGISTER_SLBSHADOW:
1037 ret = deregister_slb_shadow(tcpu, vpa);
1038 break;
1040 case FLAGS_REGISTER_DTL:
1041 ret = register_dtl(tcpu, vpa);
1042 break;
1044 case FLAGS_DEREGISTER_DTL:
1045 ret = deregister_dtl(tcpu, vpa);
1046 break;
1049 return ret;
1052 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1053 target_ulong opcode, target_ulong *args)
1055 CPUPPCState *env = &cpu->env;
1056 CPUState *cs = CPU(cpu);
1058 env->msr |= (1ULL << MSR_EE);
1059 hreg_compute_hflags(env);
1060 if (!cpu_has_work(cs)) {
1061 cs->halted = 1;
1062 cs->exception_index = EXCP_HLT;
1063 cs->exit_request = 1;
1065 return H_SUCCESS;
1068 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1069 target_ulong opcode, target_ulong *args)
1071 target_ulong rtas_r3 = args[0];
1072 uint32_t token = rtas_ld(rtas_r3, 0);
1073 uint32_t nargs = rtas_ld(rtas_r3, 1);
1074 uint32_t nret = rtas_ld(rtas_r3, 2);
1076 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1077 nret, rtas_r3 + 12 + 4*nargs);
1080 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1081 target_ulong opcode, target_ulong *args)
1083 CPUState *cs = CPU(cpu);
1084 target_ulong size = args[0];
1085 target_ulong addr = args[1];
1087 switch (size) {
1088 case 1:
1089 args[0] = ldub_phys(cs->as, addr);
1090 return H_SUCCESS;
1091 case 2:
1092 args[0] = lduw_phys(cs->as, addr);
1093 return H_SUCCESS;
1094 case 4:
1095 args[0] = ldl_phys(cs->as, addr);
1096 return H_SUCCESS;
1097 case 8:
1098 args[0] = ldq_phys(cs->as, addr);
1099 return H_SUCCESS;
1101 return H_PARAMETER;
1104 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1105 target_ulong opcode, target_ulong *args)
1107 CPUState *cs = CPU(cpu);
1109 target_ulong size = args[0];
1110 target_ulong addr = args[1];
1111 target_ulong val = args[2];
1113 switch (size) {
1114 case 1:
1115 stb_phys(cs->as, addr, val);
1116 return H_SUCCESS;
1117 case 2:
1118 stw_phys(cs->as, addr, val);
1119 return H_SUCCESS;
1120 case 4:
1121 stl_phys(cs->as, addr, val);
1122 return H_SUCCESS;
1123 case 8:
1124 stq_phys(cs->as, addr, val);
1125 return H_SUCCESS;
1127 return H_PARAMETER;
1130 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1131 target_ulong opcode, target_ulong *args)
1133 CPUState *cs = CPU(cpu);
1135 target_ulong dst = args[0]; /* Destination address */
1136 target_ulong src = args[1]; /* Source address */
1137 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1138 target_ulong count = args[3]; /* Element count */
1139 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
1140 uint64_t tmp;
1141 unsigned int mask = (1 << esize) - 1;
1142 int step = 1 << esize;
1144 if (count > 0x80000000) {
1145 return H_PARAMETER;
1148 if ((dst & mask) || (src & mask) || (op > 1)) {
1149 return H_PARAMETER;
1152 if (dst >= src && dst < (src + (count << esize))) {
1153 dst = dst + ((count - 1) << esize);
1154 src = src + ((count - 1) << esize);
1155 step = -step;
1158 while (count--) {
1159 switch (esize) {
1160 case 0:
1161 tmp = ldub_phys(cs->as, src);
1162 break;
1163 case 1:
1164 tmp = lduw_phys(cs->as, src);
1165 break;
1166 case 2:
1167 tmp = ldl_phys(cs->as, src);
1168 break;
1169 case 3:
1170 tmp = ldq_phys(cs->as, src);
1171 break;
1172 default:
1173 return H_PARAMETER;
1175 if (op == 1) {
1176 tmp = ~tmp;
1178 switch (esize) {
1179 case 0:
1180 stb_phys(cs->as, dst, tmp);
1181 break;
1182 case 1:
1183 stw_phys(cs->as, dst, tmp);
1184 break;
1185 case 2:
1186 stl_phys(cs->as, dst, tmp);
1187 break;
1188 case 3:
1189 stq_phys(cs->as, dst, tmp);
1190 break;
1192 dst = dst + step;
1193 src = src + step;
1196 return H_SUCCESS;
1199 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1200 target_ulong opcode, target_ulong *args)
1202 /* Nothing to do on emulation, KVM will trap this in the kernel */
1203 return H_SUCCESS;
1206 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1207 target_ulong opcode, target_ulong *args)
1209 /* Nothing to do on emulation, KVM will trap this in the kernel */
1210 return H_SUCCESS;
1213 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1214 target_ulong mflags,
1215 target_ulong value1,
1216 target_ulong value2)
1218 if (value1) {
1219 return H_P3;
1221 if (value2) {
1222 return H_P4;
1225 switch (mflags) {
1226 case H_SET_MODE_ENDIAN_BIG:
1227 spapr_set_all_lpcrs(0, LPCR_ILE);
1228 spapr_pci_switch_vga(true);
1229 return H_SUCCESS;
1231 case H_SET_MODE_ENDIAN_LITTLE:
1232 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1233 spapr_pci_switch_vga(false);
1234 return H_SUCCESS;
1237 return H_UNSUPPORTED_FLAG;
1240 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1241 target_ulong mflags,
1242 target_ulong value1,
1243 target_ulong value2)
1245 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1247 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1248 return H_P2;
1250 if (value1) {
1251 return H_P3;
1253 if (value2) {
1254 return H_P4;
1257 if (mflags == AIL_RESERVED) {
1258 return H_UNSUPPORTED_FLAG;
1261 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1263 return H_SUCCESS;
1266 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1267 target_ulong opcode, target_ulong *args)
1269 target_ulong resource = args[1];
1270 target_ulong ret = H_P2;
1272 switch (resource) {
1273 case H_SET_MODE_RESOURCE_LE:
1274 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1275 break;
1276 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1277 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1278 args[2], args[3]);
1279 break;
1282 return ret;
1285 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1286 target_ulong opcode, target_ulong *args)
1288 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1289 opcode, " (H_CLEAN_SLB)");
1290 return H_FUNCTION;
1293 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1294 target_ulong opcode, target_ulong *args)
1296 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1297 opcode, " (H_INVALIDATE_PID)");
1298 return H_FUNCTION;
1301 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1302 uint64_t patbe_old, uint64_t patbe_new)
1305 * We have 4 Options:
1306 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1307 * HASH->RADIX : Free HPT
1308 * RADIX->HASH : Allocate HPT
1309 * NOTHING->HASH : Allocate HPT
1310 * Note: NOTHING implies the case where we said the guest could choose
1311 * later and so assumed radix and now it's called H_REG_PROC_TBL
1314 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1315 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1316 } else if (!(patbe_old & PATE1_GR)) {
1317 /* HASH->RADIX : Free HPT */
1318 spapr_free_hpt(spapr);
1319 } else if (!(patbe_new & PATE1_GR)) {
1320 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1321 spapr_setup_hpt_and_vrma(spapr);
1323 return;
1326 #define FLAGS_MASK 0x01FULL
1327 #define FLAG_MODIFY 0x10
1328 #define FLAG_REGISTER 0x08
1329 #define FLAG_RADIX 0x04
1330 #define FLAG_HASH_PROC_TBL 0x02
1331 #define FLAG_GTSE 0x01
1333 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1334 SpaprMachineState *spapr,
1335 target_ulong opcode,
1336 target_ulong *args)
1338 target_ulong flags = args[0];
1339 target_ulong proc_tbl = args[1];
1340 target_ulong page_size = args[2];
1341 target_ulong table_size = args[3];
1342 target_ulong update_lpcr = 0;
1343 uint64_t cproc;
1345 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1346 return H_PARAMETER;
1348 if (flags & FLAG_MODIFY) {
1349 if (flags & FLAG_REGISTER) {
1350 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1351 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1352 return H_P2;
1353 } else if (page_size) {
1354 return H_P3;
1355 } else if (table_size > 24) {
1356 return H_P4;
1358 cproc = PATE1_GR | proc_tbl | table_size;
1359 } else { /* Register new HPT process table */
1360 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1361 /* TODO - Not Supported */
1362 /* Technically caused by flag bits => H_PARAMETER */
1363 return H_PARAMETER;
1364 } else { /* Hash with SLB */
1365 if (proc_tbl >> 38) {
1366 return H_P2;
1367 } else if (page_size & ~0x7) {
1368 return H_P3;
1369 } else if (table_size > 24) {
1370 return H_P4;
1373 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1376 } else { /* Deregister current process table */
1378 * Set to benign value: (current GR) | 0. This allows
1379 * deregistration in KVM to succeed even if the radix bit
1380 * in flags doesn't match the radix bit in the old PATE.
1382 cproc = spapr->patb_entry & PATE1_GR;
1384 } else { /* Maintain current registration */
1385 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1386 /* Technically caused by flag bits => H_PARAMETER */
1387 return H_PARAMETER; /* Existing Process Table Mismatch */
1389 cproc = spapr->patb_entry;
1392 /* Check if we need to setup OR free the hpt */
1393 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1395 spapr->patb_entry = cproc; /* Save new process table */
1397 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1398 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
1399 update_lpcr |= (LPCR_UPRT | LPCR_HR);
1400 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1401 update_lpcr |= LPCR_UPRT;
1402 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
1403 update_lpcr |= LPCR_GTSE;
1405 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1407 if (kvm_enabled()) {
1408 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1409 flags & FLAG_GTSE, cproc);
1411 return H_SUCCESS;
1414 #define H_SIGNAL_SYS_RESET_ALL -1
1415 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1417 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1418 SpaprMachineState *spapr,
1419 target_ulong opcode, target_ulong *args)
1421 target_long target = args[0];
1422 CPUState *cs;
1424 if (target < 0) {
1425 /* Broadcast */
1426 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1427 return H_PARAMETER;
1430 CPU_FOREACH(cs) {
1431 PowerPCCPU *c = POWERPC_CPU(cs);
1433 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1434 if (c == cpu) {
1435 continue;
1438 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1440 return H_SUCCESS;
1442 } else {
1443 /* Unicast */
1444 cs = CPU(spapr_find_cpu(target));
1445 if (cs) {
1446 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1447 return H_SUCCESS;
1449 return H_PARAMETER;
1453 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1454 target_ulong *addr, bool *raw_mode_supported,
1455 Error **errp)
1457 bool explicit_match = false; /* Matched the CPU's real PVR */
1458 uint32_t max_compat = spapr->max_compat_pvr;
1459 uint32_t best_compat = 0;
1460 int i;
1463 * We scan the supplied table of PVRs looking for two things
1464 * 1. Is our real CPU PVR in the list?
1465 * 2. What's the "best" listed logical PVR
1467 for (i = 0; i < 512; ++i) {
1468 uint32_t pvr, pvr_mask;
1470 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1471 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1472 *addr += 8;
1474 if (~pvr_mask & pvr) {
1475 break; /* Terminator record */
1478 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1479 explicit_match = true;
1480 } else {
1481 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1482 best_compat = pvr;
1487 if ((best_compat == 0) && (!explicit_match || max_compat)) {
1488 /* We couldn't find a suitable compatibility mode, and either
1489 * the guest doesn't support "raw" mode for this CPU, or raw
1490 * mode is disabled because a maximum compat mode is set */
1491 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1492 return 0;
1495 *raw_mode_supported = explicit_match;
1497 /* Parsing finished */
1498 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1500 return best_compat;
1503 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1504 SpaprMachineState *spapr,
1505 target_ulong opcode,
1506 target_ulong *args)
1508 /* Working address in data buffer */
1509 target_ulong addr = ppc64_phys_to_real(args[0]);
1510 target_ulong ov_table;
1511 uint32_t cas_pvr;
1512 SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1513 bool guest_radix;
1514 Error *local_err = NULL;
1515 bool raw_mode_supported = false;
1517 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1518 if (local_err) {
1519 error_report_err(local_err);
1520 return H_HARDWARE;
1523 /* Update CPUs */
1524 if (cpu->compat_pvr != cas_pvr) {
1525 ppc_set_compat_all(cas_pvr, &local_err);
1526 if (local_err) {
1527 /* We fail to set compat mode (likely because running with KVM PR),
1528 * but maybe we can fallback to raw mode if the guest supports it.
1530 if (!raw_mode_supported) {
1531 error_report_err(local_err);
1532 return H_HARDWARE;
1534 error_free(local_err);
1535 local_err = NULL;
1539 /* For the future use: here @ov_table points to the first option vector */
1540 ov_table = addr;
1542 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1543 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1544 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1545 error_report("guest requested hash and radix MMU, which is invalid.");
1546 exit(EXIT_FAILURE);
1548 /* The radix/hash bit in byte 24 requires special handling: */
1549 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1550 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1553 * HPT resizing is a bit of a special case, because when enabled
1554 * we assume an HPT guest will support it until it says it
1555 * doesn't, instead of assuming it won't support it until it says
1556 * it does. Strictly speaking that approach could break for
1557 * guests which don't make a CAS call, but those are so old we
1558 * don't care about them. Without that assumption we'd have to
1559 * make at least a temporary allocation of an HPT sized for max
1560 * memory, which could be impossibly difficult under KVM HV if
1561 * maxram is large.
1563 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1564 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1566 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1567 error_report(
1568 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1569 exit(1);
1572 if (spapr->htab_shift < maxshift) {
1573 /* Guest doesn't know about HPT resizing, so we
1574 * pre-emptively resize for the maximum permitted RAM. At
1575 * the point this is called, nothing should have been
1576 * entered into the existing HPT */
1577 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1578 push_sregs_to_kvm_pr(spapr);
1582 /* NOTE: there are actually a number of ov5 bits where input from the
1583 * guest is always zero, and the platform/QEMU enables them independently
1584 * of guest input. To model these properly we'd want some sort of mask,
1585 * but since they only currently apply to memory migration as defined
1586 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1587 * to worry about this for now.
1589 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1591 /* also clear the radix/hash bit from the current ov5_cas bits to
1592 * be in sync with the newly ov5 bits. Else the radix bit will be
1593 * seen as being removed and this will generate a reset loop
1595 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1597 /* full range of negotiated ov5 capabilities */
1598 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1599 spapr_ovec_cleanup(ov5_guest);
1600 /* capabilities that have been added since CAS-generated guest reset.
1601 * if capabilities have since been removed, generate another reset
1603 ov5_updates = spapr_ovec_new();
1604 spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1605 ov5_cas_old, spapr->ov5_cas);
1606 /* Now that processing is finished, set the radix/hash bit for the
1607 * guest if it requested a valid mode; otherwise terminate the boot. */
1608 if (guest_radix) {
1609 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1610 error_report("Guest requested unavailable MMU mode (radix).");
1611 exit(EXIT_FAILURE);
1613 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1614 } else {
1615 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1616 && !kvmppc_has_cap_mmu_hash_v3()) {
1617 error_report("Guest requested unavailable MMU mode (hash).");
1618 exit(EXIT_FAILURE);
1621 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1622 OV1_PPC_3_00);
1623 if (!spapr->cas_reboot) {
1624 /* If spapr_machine_reset() did not set up a HPT but one is necessary
1625 * (because the guest isn't going to use radix) then set it up here. */
1626 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1627 /* legacy hash or new hash: */
1628 spapr_setup_hpt_and_vrma(spapr);
1630 spapr->cas_reboot =
1631 (spapr_h_cas_compose_response(spapr, args[1], args[2],
1632 ov5_updates) != 0);
1636 * Generate a machine reset when we have an update of the
1637 * interrupt mode. Only required when the machine supports both
1638 * modes.
1640 if (!spapr->cas_reboot) {
1641 spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1642 && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1645 spapr_ovec_cleanup(ov5_updates);
1647 if (spapr->cas_reboot) {
1648 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1651 return H_SUCCESS;
1654 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1655 SpaprMachineState *spapr,
1656 target_ulong opcode,
1657 target_ulong *args)
1659 target_ulong flags = args[0];
1660 target_ulong procno = args[1];
1661 PowerPCCPU *tcpu;
1662 int idx;
1664 /* only support procno from H_REGISTER_VPA */
1665 if (flags != 0x1) {
1666 return H_FUNCTION;
1669 tcpu = spapr_find_cpu(procno);
1670 if (tcpu == NULL) {
1671 return H_P2;
1674 /* sequence is the same as in the "ibm,associativity" property */
1676 idx = 0;
1677 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1678 ((uint64_t)(b) & 0xffffffff))
1679 args[idx++] = ASSOCIATIVITY(0, 0);
1680 args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1681 args[idx++] = ASSOCIATIVITY(procno, -1);
1682 for ( ; idx < 6; idx++) {
1683 args[idx] = -1;
1685 #undef ASSOCIATIVITY
1687 return H_SUCCESS;
1690 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1691 SpaprMachineState *spapr,
1692 target_ulong opcode,
1693 target_ulong *args)
1695 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1696 ~H_CPU_CHAR_THR_RECONF_TRIG;
1697 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1698 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1699 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1700 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1701 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1702 SPAPR_CAP_CCF_ASSIST);
1704 switch (safe_cache) {
1705 case SPAPR_CAP_WORKAROUND:
1706 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1707 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1708 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1709 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1710 break;
1711 case SPAPR_CAP_FIXED:
1712 break;
1713 default: /* broken */
1714 assert(safe_cache == SPAPR_CAP_BROKEN);
1715 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1716 break;
1719 switch (safe_bounds_check) {
1720 case SPAPR_CAP_WORKAROUND:
1721 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1722 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1723 break;
1724 case SPAPR_CAP_FIXED:
1725 break;
1726 default: /* broken */
1727 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1728 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1729 break;
1732 switch (safe_indirect_branch) {
1733 case SPAPR_CAP_FIXED_NA:
1734 break;
1735 case SPAPR_CAP_FIXED_CCD:
1736 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1737 break;
1738 case SPAPR_CAP_FIXED_IBS:
1739 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1740 break;
1741 case SPAPR_CAP_WORKAROUND:
1742 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1743 if (count_cache_flush_assist) {
1744 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1746 break;
1747 default: /* broken */
1748 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1749 break;
1752 args[0] = characteristics;
1753 args[1] = behaviour;
1754 return H_SUCCESS;
1757 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1758 target_ulong opcode, target_ulong *args)
1760 target_ulong dt = ppc64_phys_to_real(args[0]);
1761 struct fdt_header hdr = { 0 };
1762 unsigned cb;
1763 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1764 void *fdt;
1766 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1767 cb = fdt32_to_cpu(hdr.totalsize);
1769 if (!smc->update_dt_enabled) {
1770 return H_SUCCESS;
1773 /* Check that the fdt did not grow out of proportion */
1774 if (cb > spapr->fdt_initial_size * 2) {
1775 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1776 fdt32_to_cpu(hdr.magic));
1777 return H_PARAMETER;
1780 fdt = g_malloc0(cb);
1781 cpu_physical_memory_read(dt, fdt, cb);
1783 /* Check the fdt consistency */
1784 if (fdt_check_full(fdt, cb)) {
1785 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1786 fdt32_to_cpu(hdr.magic));
1787 return H_PARAMETER;
1790 g_free(spapr->fdt_blob);
1791 spapr->fdt_size = cb;
1792 spapr->fdt_blob = fdt;
1793 trace_spapr_update_dt(cb);
1795 return H_SUCCESS;
1798 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1799 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1801 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1803 spapr_hcall_fn *slot;
1805 if (opcode <= MAX_HCALL_OPCODE) {
1806 assert((opcode & 0x3) == 0);
1808 slot = &papr_hypercall_table[opcode / 4];
1809 } else {
1810 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1812 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1815 assert(!(*slot));
1816 *slot = fn;
1819 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1820 target_ulong *args)
1822 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1824 if ((opcode <= MAX_HCALL_OPCODE)
1825 && ((opcode & 0x3) == 0)) {
1826 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1828 if (fn) {
1829 return fn(cpu, spapr, opcode, args);
1831 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1832 (opcode <= KVMPPC_HCALL_MAX)) {
1833 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1835 if (fn) {
1836 return fn(cpu, spapr, opcode, args);
1840 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1841 opcode);
1842 return H_FUNCTION;
1845 static void hypercall_register_types(void)
1847 /* hcall-pft */
1848 spapr_register_hypercall(H_ENTER, h_enter);
1849 spapr_register_hypercall(H_REMOVE, h_remove);
1850 spapr_register_hypercall(H_PROTECT, h_protect);
1851 spapr_register_hypercall(H_READ, h_read);
1853 /* hcall-bulk */
1854 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1856 /* hcall-hpt-resize */
1857 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1858 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1860 /* hcall-splpar */
1861 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1862 spapr_register_hypercall(H_CEDE, h_cede);
1863 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1865 /* processor register resource access h-calls */
1866 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1867 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1868 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1869 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1870 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1872 /* In Memory Table MMU h-calls */
1873 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1874 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1875 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1877 /* hcall-get-cpu-characteristics */
1878 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1879 h_get_cpu_characteristics);
1881 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1882 * here between the "CI" and the "CACHE" variants, they will use whatever
1883 * mapping attributes qemu is using. When using KVM, the kernel will
1884 * enforce the attributes more strongly
1886 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1887 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1888 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1889 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1890 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1891 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1892 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1894 /* qemu/KVM-PPC specific hcalls */
1895 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1897 /* ibm,client-architecture-support support */
1898 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1900 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1902 /* Virtual Processor Home Node */
1903 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1904 h_home_node_associativity);
1907 type_init(hypercall_register_types)