arm: Rename hw/arm/arm.h to hw/arm/boot.h
[qemu/ar7.git] / hw / ppc / spapr.c
blob2ef3ce4362de58e0a48b6a83ba05eed39f54165f
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
33 #include "hw/hw.h"
34 #include "qemu/log.h"
35 #include "hw/fw-path-provider.h"
36 #include "elf.h"
37 #include "net/net.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_INTC 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
125 return false;
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
153 int spapr_max_server_number(SpaprMachineState *spapr)
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
189 return ret;
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(SpaprMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
260 if (!pa_features) {
261 return;
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features[3] |= 0x20;
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
342 return ret;
345 static hwaddr spapr_node0_size(MachineState *machine)
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
356 return machine->ram_size;
359 static void add_str(GString *s, const gchar *s1)
361 g_string_append_len(s, s1, strlen(s1) + 1);
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
438 return 0;
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 SpaprMachineState *spapr)
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 SpaprDrc *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
563 * We set this property to let the guest know that it can use the large
564 * decrementer and its width in bits.
566 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
567 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
568 pcc->lrg_decr_bits)));
571 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
573 CPUState **rev;
574 CPUState *cs;
575 int n_cpus;
576 int cpus_offset;
577 char *nodename;
578 int i;
580 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
581 _FDT(cpus_offset);
582 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
583 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
586 * We walk the CPUs in reverse order to ensure that CPU DT nodes
587 * created by fdt_add_subnode() end up in the right order in FDT
588 * for the guest kernel the enumerate the CPUs correctly.
590 * The CPU list cannot be traversed in reverse order, so we need
591 * to do extra work.
593 n_cpus = 0;
594 rev = NULL;
595 CPU_FOREACH(cs) {
596 rev = g_renew(CPUState *, rev, n_cpus + 1);
597 rev[n_cpus++] = cs;
600 for (i = n_cpus - 1; i >= 0; i--) {
601 CPUState *cs = rev[i];
602 PowerPCCPU *cpu = POWERPC_CPU(cs);
603 int index = spapr_get_vcpu_id(cpu);
604 DeviceClass *dc = DEVICE_GET_CLASS(cs);
605 int offset;
607 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
608 continue;
611 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
612 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
613 g_free(nodename);
614 _FDT(offset);
615 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
618 g_free(rev);
621 static int spapr_rng_populate_dt(void *fdt)
623 int node;
624 int ret;
626 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
627 if (node <= 0) {
628 return -1;
630 ret = fdt_setprop_string(fdt, node, "device_type",
631 "ibm,platform-facilities");
632 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
633 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
635 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
636 if (node <= 0) {
637 return -1;
639 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
641 return ret ? -1 : 0;
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
646 MemoryDeviceInfoList *info;
648 for (info = list; info; info = info->next) {
649 MemoryDeviceInfo *value = info->value;
651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
654 if (addr >= pcdimm_info->addr &&
655 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656 return pcdimm_info->node;
661 return -1;
664 struct sPAPRDrconfCellV2 {
665 uint32_t seq_lmbs;
666 uint64_t base_addr;
667 uint32_t drc_index;
668 uint32_t aa_index;
669 uint32_t flags;
670 } QEMU_PACKED;
672 typedef struct DrconfCellQueue {
673 struct sPAPRDrconfCellV2 cell;
674 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
675 } DrconfCellQueue;
677 static DrconfCellQueue *
678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
679 uint32_t drc_index, uint32_t aa_index,
680 uint32_t flags)
682 DrconfCellQueue *elem;
684 elem = g_malloc0(sizeof(*elem));
685 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
686 elem->cell.base_addr = cpu_to_be64(base_addr);
687 elem->cell.drc_index = cpu_to_be32(drc_index);
688 elem->cell.aa_index = cpu_to_be32(aa_index);
689 elem->cell.flags = cpu_to_be32(flags);
691 return elem;
694 /* ibm,dynamic-memory-v2 */
695 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
696 int offset, MemoryDeviceInfoList *dimms)
698 MachineState *machine = MACHINE(spapr);
699 uint8_t *int_buf, *cur_index;
700 int ret;
701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
702 uint64_t addr, cur_addr, size;
703 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
704 uint64_t mem_end = machine->device_memory->base +
705 memory_region_size(&machine->device_memory->mr);
706 uint32_t node, buf_len, nr_entries = 0;
707 SpaprDrc *drc;
708 DrconfCellQueue *elem, *next;
709 MemoryDeviceInfoList *info;
710 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
713 /* Entry to cover RAM and the gap area */
714 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
715 SPAPR_LMB_FLAGS_RESERVED |
716 SPAPR_LMB_FLAGS_DRC_INVALID);
717 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
718 nr_entries++;
720 cur_addr = machine->device_memory->base;
721 for (info = dimms; info; info = info->next) {
722 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
724 addr = di->addr;
725 size = di->size;
726 node = di->node;
728 /* Entry for hot-pluggable area */
729 if (cur_addr < addr) {
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
733 cur_addr, spapr_drc_index(drc), -1, 0);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735 nr_entries++;
738 /* Entry for DIMM */
739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
740 g_assert(drc);
741 elem = spapr_get_drconf_cell(size / lmb_size, addr,
742 spapr_drc_index(drc), node,
743 SPAPR_LMB_FLAGS_ASSIGNED);
744 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
745 nr_entries++;
746 cur_addr = addr + size;
749 /* Entry for remaining hotpluggable area */
750 if (cur_addr < mem_end) {
751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
752 g_assert(drc);
753 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
754 cur_addr, spapr_drc_index(drc), -1, 0);
755 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
756 nr_entries++;
759 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
760 int_buf = cur_index = g_malloc0(buf_len);
761 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
762 cur_index += sizeof(nr_entries);
764 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
765 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
766 cur_index += sizeof(elem->cell);
767 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
768 g_free(elem);
771 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
772 g_free(int_buf);
773 if (ret < 0) {
774 return -1;
776 return 0;
779 /* ibm,dynamic-memory */
780 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
781 int offset, MemoryDeviceInfoList *dimms)
783 MachineState *machine = MACHINE(spapr);
784 int i, ret;
785 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
786 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
787 uint32_t nr_lmbs = (machine->device_memory->base +
788 memory_region_size(&machine->device_memory->mr)) /
789 lmb_size;
790 uint32_t *int_buf, *cur_index, buf_len;
793 * Allocate enough buffer size to fit in ibm,dynamic-memory
795 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
796 cur_index = int_buf = g_malloc0(buf_len);
797 int_buf[0] = cpu_to_be32(nr_lmbs);
798 cur_index++;
799 for (i = 0; i < nr_lmbs; i++) {
800 uint64_t addr = i * lmb_size;
801 uint32_t *dynamic_memory = cur_index;
803 if (i >= device_lmb_start) {
804 SpaprDrc *drc;
806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
807 g_assert(drc);
809 dynamic_memory[0] = cpu_to_be32(addr >> 32);
810 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
811 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
812 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
813 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
814 if (memory_region_present(get_system_memory(), addr)) {
815 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
816 } else {
817 dynamic_memory[5] = cpu_to_be32(0);
819 } else {
821 * LMB information for RMA, boot time RAM and gap b/n RAM and
822 * device memory region -- all these are marked as reserved
823 * and as having no valid DRC.
825 dynamic_memory[0] = cpu_to_be32(addr >> 32);
826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827 dynamic_memory[2] = cpu_to_be32(0);
828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829 dynamic_memory[4] = cpu_to_be32(-1);
830 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
831 SPAPR_LMB_FLAGS_DRC_INVALID);
834 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
836 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
837 g_free(int_buf);
838 if (ret < 0) {
839 return -1;
841 return 0;
845 * Adds ibm,dynamic-reconfiguration-memory node.
846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
847 * of this device tree node.
849 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
851 MachineState *machine = MACHINE(spapr);
852 int ret, i, offset;
853 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
854 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
855 uint32_t *int_buf, *cur_index, buf_len;
856 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
857 MemoryDeviceInfoList *dimms = NULL;
860 * Don't create the node if there is no device memory
862 if (machine->ram_size == machine->maxram_size) {
863 return 0;
866 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
868 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
869 sizeof(prop_lmb_size));
870 if (ret < 0) {
871 return ret;
874 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
875 if (ret < 0) {
876 return ret;
879 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
880 if (ret < 0) {
881 return ret;
884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
885 dimms = qmp_memory_device_list();
886 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
887 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
888 } else {
889 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
891 qapi_free_MemoryDeviceInfoList(dimms);
893 if (ret < 0) {
894 return ret;
897 /* ibm,associativity-lookup-arrays */
898 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
899 cur_index = int_buf = g_malloc0(buf_len);
900 int_buf[0] = cpu_to_be32(nr_nodes);
901 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
902 cur_index += 2;
903 for (i = 0; i < nr_nodes; i++) {
904 uint32_t associativity[] = {
905 cpu_to_be32(0x0),
906 cpu_to_be32(0x0),
907 cpu_to_be32(0x0),
908 cpu_to_be32(i)
910 memcpy(cur_index, associativity, sizeof(associativity));
911 cur_index += 4;
913 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
914 (cur_index - int_buf) * sizeof(uint32_t));
915 g_free(int_buf);
917 return ret;
920 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
921 SpaprOptionVector *ov5_updates)
923 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
924 int ret = 0, offset;
926 /* Generate ibm,dynamic-reconfiguration-memory node if required */
927 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
928 g_assert(smc->dr_lmb_enabled);
929 ret = spapr_populate_drconf_memory(spapr, fdt);
930 if (ret) {
931 goto out;
935 offset = fdt_path_offset(fdt, "/chosen");
936 if (offset < 0) {
937 offset = fdt_add_subnode(fdt, 0, "chosen");
938 if (offset < 0) {
939 return offset;
942 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
943 "ibm,architecture-vec-5");
945 out:
946 return ret;
949 static bool spapr_hotplugged_dev_before_cas(void)
951 Object *drc_container, *obj;
952 ObjectProperty *prop;
953 ObjectPropertyIterator iter;
955 drc_container = container_get(object_get_root(), "/dr-connector");
956 object_property_iter_init(&iter, drc_container);
957 while ((prop = object_property_iter_next(&iter))) {
958 if (!strstart(prop->type, "link<", NULL)) {
959 continue;
961 obj = object_property_get_link(drc_container, prop->name, NULL);
962 if (spapr_drc_needed(obj)) {
963 return true;
966 return false;
969 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
970 target_ulong addr, target_ulong size,
971 SpaprOptionVector *ov5_updates)
973 void *fdt, *fdt_skel;
974 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
976 if (spapr_hotplugged_dev_before_cas()) {
977 return 1;
980 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
981 error_report("SLOF provided an unexpected CAS buffer size "
982 TARGET_FMT_lu " (min: %zu, max: %u)",
983 size, sizeof(hdr), FW_MAX_SIZE);
984 exit(EXIT_FAILURE);
987 size -= sizeof(hdr);
989 /* Create skeleton */
990 fdt_skel = g_malloc0(size);
991 _FDT((fdt_create(fdt_skel, size)));
992 _FDT((fdt_finish_reservemap(fdt_skel)));
993 _FDT((fdt_begin_node(fdt_skel, "")));
994 _FDT((fdt_end_node(fdt_skel)));
995 _FDT((fdt_finish(fdt_skel)));
996 fdt = g_malloc0(size);
997 _FDT((fdt_open_into(fdt_skel, fdt, size)));
998 g_free(fdt_skel);
1000 /* Fixup cpu nodes */
1001 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1003 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1004 return -1;
1007 /* Pack resulting tree */
1008 _FDT((fdt_pack(fdt)));
1010 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1011 trace_spapr_cas_failed(size);
1012 return -1;
1015 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1016 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1017 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1018 g_free(fdt);
1020 return 0;
1023 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1025 int rtas;
1026 GString *hypertas = g_string_sized_new(256);
1027 GString *qemu_hypertas = g_string_sized_new(256);
1028 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1030 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1031 uint32_t lrdr_capacity[] = {
1032 cpu_to_be32(max_device_addr >> 32),
1033 cpu_to_be32(max_device_addr & 0xffffffff),
1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1035 cpu_to_be32(max_cpus / smp_threads),
1037 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1038 uint32_t maxdomains[] = {
1039 cpu_to_be32(4),
1040 maxdomain,
1041 maxdomain,
1042 maxdomain,
1043 cpu_to_be32(spapr->gpu_numa_id),
1046 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1048 /* hypertas */
1049 add_str(hypertas, "hcall-pft");
1050 add_str(hypertas, "hcall-term");
1051 add_str(hypertas, "hcall-dabr");
1052 add_str(hypertas, "hcall-interrupt");
1053 add_str(hypertas, "hcall-tce");
1054 add_str(hypertas, "hcall-vio");
1055 add_str(hypertas, "hcall-splpar");
1056 add_str(hypertas, "hcall-bulk");
1057 add_str(hypertas, "hcall-set-mode");
1058 add_str(hypertas, "hcall-sprg0");
1059 add_str(hypertas, "hcall-copy");
1060 add_str(hypertas, "hcall-debug");
1061 add_str(hypertas, "hcall-vphn");
1062 add_str(qemu_hypertas, "hcall-memop1");
1064 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1065 add_str(hypertas, "hcall-multi-tce");
1068 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1069 add_str(hypertas, "hcall-hpt-resize");
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1073 hypertas->str, hypertas->len));
1074 g_string_free(hypertas, TRUE);
1075 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1076 qemu_hypertas->str, qemu_hypertas->len));
1077 g_string_free(qemu_hypertas, TRUE);
1079 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1080 refpoints, sizeof(refpoints)));
1082 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1083 maxdomains, sizeof(maxdomains)));
1085 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1086 RTAS_ERROR_LOG_MAX));
1087 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1088 RTAS_EVENT_SCAN_RATE));
1090 g_assert(msi_nonbroken);
1091 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1094 * According to PAPR, rtas ibm,os-term does not guarantee a return
1095 * back to the guest cpu.
1097 * While an additional ibm,extended-os-term property indicates
1098 * that rtas call return will always occur. Set this property.
1100 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1102 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1103 lrdr_capacity, sizeof(lrdr_capacity)));
1105 spapr_dt_rtas_tokens(fdt, rtas);
1109 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1110 * and the XIVE features that the guest may request and thus the valid
1111 * values for bytes 23..26 of option vector 5:
1113 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1114 int chosen)
1116 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1118 char val[2 * 4] = {
1119 23, spapr->irq->ov5, /* Xive mode. */
1120 24, 0x00, /* Hash/Radix, filled in below. */
1121 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1122 26, 0x40, /* Radix options: GTSE == yes. */
1125 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1126 first_ppc_cpu->compat_pvr)) {
1128 * If we're in a pre POWER9 compat mode then the guest should
1129 * do hash and use the legacy interrupt mode
1131 val[1] = 0x00; /* XICS */
1132 val[3] = 0x00; /* Hash */
1133 } else if (kvm_enabled()) {
1134 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1135 val[3] = 0x80; /* OV5_MMU_BOTH */
1136 } else if (kvmppc_has_cap_mmu_radix()) {
1137 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1138 } else {
1139 val[3] = 0x00; /* Hash */
1141 } else {
1142 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1143 val[3] = 0xC0;
1145 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1146 val, sizeof(val)));
1149 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1151 MachineState *machine = MACHINE(spapr);
1152 int chosen;
1153 const char *boot_device = machine->boot_order;
1154 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1155 size_t cb = 0;
1156 char *bootlist = get_boot_devices_list(&cb);
1158 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1160 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1161 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1162 spapr->initrd_base));
1163 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1164 spapr->initrd_base + spapr->initrd_size));
1166 if (spapr->kernel_size) {
1167 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1168 cpu_to_be64(spapr->kernel_size) };
1170 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1171 &kprop, sizeof(kprop)));
1172 if (spapr->kernel_le) {
1173 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1176 if (boot_menu) {
1177 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1181 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1183 if (cb && bootlist) {
1184 int i;
1186 for (i = 0; i < cb; i++) {
1187 if (bootlist[i] == '\n') {
1188 bootlist[i] = ' ';
1191 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1194 if (boot_device && strlen(boot_device)) {
1195 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1198 if (!spapr->has_graphics && stdout_path) {
1200 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1201 * kernel. New platforms should only use the "stdout-path" property. Set
1202 * the new property and continue using older property to remain
1203 * compatible with the existing firmware.
1205 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1206 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1209 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1211 g_free(stdout_path);
1212 g_free(bootlist);
1215 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1217 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1218 * KVM to work under pHyp with some guest co-operation */
1219 int hypervisor;
1220 uint8_t hypercall[16];
1222 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1223 /* indicate KVM hypercall interface */
1224 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1225 if (kvmppc_has_cap_fixup_hcalls()) {
1227 * Older KVM versions with older guest kernels were broken
1228 * with the magic page, don't allow the guest to map it.
1230 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1231 sizeof(hypercall))) {
1232 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1233 hypercall, sizeof(hypercall)));
1238 static void *spapr_build_fdt(SpaprMachineState *spapr)
1240 MachineState *machine = MACHINE(spapr);
1241 MachineClass *mc = MACHINE_GET_CLASS(machine);
1242 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1243 int ret;
1244 void *fdt;
1245 SpaprPhbState *phb;
1246 char *buf;
1248 fdt = g_malloc0(FDT_MAX_SIZE);
1249 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1251 /* Root node */
1252 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1253 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1254 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1256 /* Guest UUID & Name*/
1257 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1258 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1259 if (qemu_uuid_set) {
1260 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1262 g_free(buf);
1264 if (qemu_get_vm_name()) {
1265 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1266 qemu_get_vm_name()));
1269 /* Host Model & Serial Number */
1270 if (spapr->host_model) {
1271 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1272 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1273 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1274 g_free(buf);
1277 if (spapr->host_serial) {
1278 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1279 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1280 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1281 g_free(buf);
1284 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1285 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1287 /* /interrupt controller */
1288 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1289 PHANDLE_INTC);
1291 ret = spapr_populate_memory(spapr, fdt);
1292 if (ret < 0) {
1293 error_report("couldn't setup memory nodes in fdt");
1294 exit(1);
1297 /* /vdevice */
1298 spapr_dt_vdevice(spapr->vio_bus, fdt);
1300 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1301 ret = spapr_rng_populate_dt(fdt);
1302 if (ret < 0) {
1303 error_report("could not set up rng device in the fdt");
1304 exit(1);
1308 QLIST_FOREACH(phb, &spapr->phbs, list) {
1309 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1310 spapr->irq->nr_msis, NULL);
1311 if (ret < 0) {
1312 error_report("couldn't setup PCI devices in fdt");
1313 exit(1);
1317 /* cpus */
1318 spapr_populate_cpus_dt_node(fdt, spapr);
1320 if (smc->dr_lmb_enabled) {
1321 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1324 if (mc->has_hotpluggable_cpus) {
1325 int offset = fdt_path_offset(fdt, "/cpus");
1326 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1327 SPAPR_DR_CONNECTOR_TYPE_CPU);
1328 if (ret < 0) {
1329 error_report("Couldn't set up CPU DR device tree properties");
1330 exit(1);
1334 /* /event-sources */
1335 spapr_dt_events(spapr, fdt);
1337 /* /rtas */
1338 spapr_dt_rtas(spapr, fdt);
1340 /* /chosen */
1341 spapr_dt_chosen(spapr, fdt);
1343 /* /hypervisor */
1344 if (kvm_enabled()) {
1345 spapr_dt_hypervisor(spapr, fdt);
1348 /* Build memory reserve map */
1349 if (spapr->kernel_size) {
1350 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1352 if (spapr->initrd_size) {
1353 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1356 /* ibm,client-architecture-support updates */
1357 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1358 if (ret < 0) {
1359 error_report("couldn't setup CAS properties fdt");
1360 exit(1);
1363 if (smc->dr_phb_enabled) {
1364 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1365 if (ret < 0) {
1366 error_report("Couldn't set up PHB DR device tree properties");
1367 exit(1);
1371 return fdt;
1374 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1376 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1379 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1380 PowerPCCPU *cpu)
1382 CPUPPCState *env = &cpu->env;
1384 /* The TCG path should also be holding the BQL at this point */
1385 g_assert(qemu_mutex_iothread_locked());
1387 if (msr_pr) {
1388 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1389 env->gpr[3] = H_PRIVILEGE;
1390 } else {
1391 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1395 struct LPCRSyncState {
1396 target_ulong value;
1397 target_ulong mask;
1400 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1402 struct LPCRSyncState *s = arg.host_ptr;
1403 PowerPCCPU *cpu = POWERPC_CPU(cs);
1404 CPUPPCState *env = &cpu->env;
1405 target_ulong lpcr;
1407 cpu_synchronize_state(cs);
1408 lpcr = env->spr[SPR_LPCR];
1409 lpcr &= ~s->mask;
1410 lpcr |= s->value;
1411 ppc_store_lpcr(cpu, lpcr);
1414 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1416 CPUState *cs;
1417 struct LPCRSyncState s = {
1418 .value = value,
1419 .mask = mask
1421 CPU_FOREACH(cs) {
1422 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1426 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1428 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430 /* Copy PATE1:GR into PATE0:HR */
1431 entry->dw0 = spapr->patb_entry & PATE0_HR;
1432 entry->dw1 = spapr->patb_entry;
1435 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1436 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1437 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1438 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1439 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1442 * Get the fd to access the kernel htab, re-opening it if necessary
1444 static int get_htab_fd(SpaprMachineState *spapr)
1446 Error *local_err = NULL;
1448 if (spapr->htab_fd >= 0) {
1449 return spapr->htab_fd;
1452 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1453 if (spapr->htab_fd < 0) {
1454 error_report_err(local_err);
1457 return spapr->htab_fd;
1460 void close_htab_fd(SpaprMachineState *spapr)
1462 if (spapr->htab_fd >= 0) {
1463 close(spapr->htab_fd);
1465 spapr->htab_fd = -1;
1468 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1472 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1475 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1477 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1479 assert(kvm_enabled());
1481 if (!spapr->htab) {
1482 return 0;
1485 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1488 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1489 hwaddr ptex, int n)
1491 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1492 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1494 if (!spapr->htab) {
1496 * HTAB is controlled by KVM. Fetch into temporary buffer
1498 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1499 kvmppc_read_hptes(hptes, ptex, n);
1500 return hptes;
1504 * HTAB is controlled by QEMU. Just point to the internally
1505 * accessible PTEG.
1507 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1510 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1511 const ppc_hash_pte64_t *hptes,
1512 hwaddr ptex, int n)
1514 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1516 if (!spapr->htab) {
1517 g_free((void *)hptes);
1520 /* Nothing to do for qemu managed HPT */
1523 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1524 uint64_t pte0, uint64_t pte1)
1526 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1527 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1529 if (!spapr->htab) {
1530 kvmppc_write_hpte(ptex, pte0, pte1);
1531 } else {
1532 if (pte0 & HPTE64_V_VALID) {
1533 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1535 * When setting valid, we write PTE1 first. This ensures
1536 * proper synchronization with the reading code in
1537 * ppc_hash64_pteg_search()
1539 smp_wmb();
1540 stq_p(spapr->htab + offset, pte0);
1541 } else {
1542 stq_p(spapr->htab + offset, pte0);
1544 * When clearing it we set PTE0 first. This ensures proper
1545 * synchronization with the reading code in
1546 * ppc_hash64_pteg_search()
1548 smp_wmb();
1549 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1554 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1555 uint64_t pte1)
1557 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1558 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1560 if (!spapr->htab) {
1561 /* There should always be a hash table when this is called */
1562 error_report("spapr_hpte_set_c called with no hash table !");
1563 return;
1566 /* The HW performs a non-atomic byte update */
1567 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1570 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1571 uint64_t pte1)
1573 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1574 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1576 if (!spapr->htab) {
1577 /* There should always be a hash table when this is called */
1578 error_report("spapr_hpte_set_r called with no hash table !");
1579 return;
1582 /* The HW performs a non-atomic byte update */
1583 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1586 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1588 int shift;
1590 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1591 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1592 * that's much more than is needed for Linux guests */
1593 shift = ctz64(pow2ceil(ramsize)) - 7;
1594 shift = MAX(shift, 18); /* Minimum architected size */
1595 shift = MIN(shift, 46); /* Maximum architected size */
1596 return shift;
1599 void spapr_free_hpt(SpaprMachineState *spapr)
1601 g_free(spapr->htab);
1602 spapr->htab = NULL;
1603 spapr->htab_shift = 0;
1604 close_htab_fd(spapr);
1607 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1608 Error **errp)
1610 long rc;
1612 /* Clean up any HPT info from a previous boot */
1613 spapr_free_hpt(spapr);
1615 rc = kvmppc_reset_htab(shift);
1616 if (rc < 0) {
1617 /* kernel-side HPT needed, but couldn't allocate one */
1618 error_setg_errno(errp, errno,
1619 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1620 shift);
1621 /* This is almost certainly fatal, but if the caller really
1622 * wants to carry on with shift == 0, it's welcome to try */
1623 } else if (rc > 0) {
1624 /* kernel-side HPT allocated */
1625 if (rc != shift) {
1626 error_setg(errp,
1627 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1628 shift, rc);
1631 spapr->htab_shift = shift;
1632 spapr->htab = NULL;
1633 } else {
1634 /* kernel-side HPT not needed, allocate in userspace instead */
1635 size_t size = 1ULL << shift;
1636 int i;
1638 spapr->htab = qemu_memalign(size, size);
1639 if (!spapr->htab) {
1640 error_setg_errno(errp, errno,
1641 "Could not allocate HPT of order %d", shift);
1642 return;
1645 memset(spapr->htab, 0, size);
1646 spapr->htab_shift = shift;
1648 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1649 DIRTY_HPTE(HPTE(spapr->htab, i));
1652 /* We're setting up a hash table, so that means we're not radix */
1653 spapr->patb_entry = 0;
1654 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1657 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1659 int hpt_shift;
1661 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1662 || (spapr->cas_reboot
1663 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1664 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1665 } else {
1666 uint64_t current_ram_size;
1668 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1669 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1671 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1673 if (spapr->vrma_adjust) {
1674 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1675 spapr->htab_shift);
1679 static int spapr_reset_drcs(Object *child, void *opaque)
1681 SpaprDrc *drc =
1682 (SpaprDrc *) object_dynamic_cast(child,
1683 TYPE_SPAPR_DR_CONNECTOR);
1685 if (drc) {
1686 spapr_drc_reset(drc);
1689 return 0;
1692 static void spapr_machine_reset(void)
1694 MachineState *machine = MACHINE(qdev_get_machine());
1695 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1696 PowerPCCPU *first_ppc_cpu;
1697 uint32_t rtas_limit;
1698 hwaddr rtas_addr, fdt_addr;
1699 void *fdt;
1700 int rc;
1702 spapr_caps_apply(spapr);
1704 first_ppc_cpu = POWERPC_CPU(first_cpu);
1705 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1706 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1707 spapr->max_compat_pvr)) {
1709 * If using KVM with radix mode available, VCPUs can be started
1710 * without a HPT because KVM will start them in radix mode.
1711 * Set the GR bit in PATE so that we know there is no HPT.
1713 spapr->patb_entry = PATE1_GR;
1714 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1715 } else {
1716 spapr_setup_hpt_and_vrma(spapr);
1720 * If this reset wasn't generated by CAS, we should reset our
1721 * negotiated options and start from scratch
1723 if (!spapr->cas_reboot) {
1724 spapr_ovec_cleanup(spapr->ov5_cas);
1725 spapr->ov5_cas = spapr_ovec_new();
1727 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1730 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1731 spapr_irq_msi_reset(spapr);
1735 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1736 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1737 * called from vPHB reset handler so we initialize the counter here.
1738 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1739 * must be equally distant from any other node.
1740 * The final value of spapr->gpu_numa_id is going to be written to
1741 * max-associativity-domains in spapr_build_fdt().
1743 spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1744 qemu_devices_reset();
1747 * This is fixing some of the default configuration of the XIVE
1748 * devices. To be called after the reset of the machine devices.
1750 spapr_irq_reset(spapr, &error_fatal);
1753 * There is no CAS under qtest. Simulate one to please the code that
1754 * depends on spapr->ov5_cas. This is especially needed to test device
1755 * unplug, so we do that before resetting the DRCs.
1757 if (qtest_enabled()) {
1758 spapr_ovec_cleanup(spapr->ov5_cas);
1759 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1762 /* DRC reset may cause a device to be unplugged. This will cause troubles
1763 * if this device is used by another device (eg, a running vhost backend
1764 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1765 * situations, we reset DRCs after all devices have been reset.
1767 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1769 spapr_clear_pending_events(spapr);
1772 * We place the device tree and RTAS just below either the top of the RMA,
1773 * or just below 2GB, whichever is lower, so that it can be
1774 * processed with 32-bit real mode code if necessary
1776 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1777 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1778 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1780 fdt = spapr_build_fdt(spapr);
1782 spapr_load_rtas(spapr, fdt, rtas_addr);
1784 rc = fdt_pack(fdt);
1786 /* Should only fail if we've built a corrupted tree */
1787 assert(rc == 0);
1789 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1790 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1791 fdt_totalsize(fdt), FDT_MAX_SIZE);
1792 exit(1);
1795 /* Load the fdt */
1796 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1797 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1798 g_free(spapr->fdt_blob);
1799 spapr->fdt_size = fdt_totalsize(fdt);
1800 spapr->fdt_initial_size = spapr->fdt_size;
1801 spapr->fdt_blob = fdt;
1803 /* Set up the entry state */
1804 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1805 first_ppc_cpu->env.gpr[5] = 0;
1807 spapr->cas_reboot = false;
1810 static void spapr_create_nvram(SpaprMachineState *spapr)
1812 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1813 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1815 if (dinfo) {
1816 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1817 &error_fatal);
1820 qdev_init_nofail(dev);
1822 spapr->nvram = (struct SpaprNvram *)dev;
1825 static void spapr_rtc_create(SpaprMachineState *spapr)
1827 object_initialize_child(OBJECT(spapr), "rtc",
1828 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1829 &error_fatal, NULL);
1830 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1831 &error_fatal);
1832 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1833 "date", &error_fatal);
1836 /* Returns whether we want to use VGA or not */
1837 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1839 switch (vga_interface_type) {
1840 case VGA_NONE:
1841 return false;
1842 case VGA_DEVICE:
1843 return true;
1844 case VGA_STD:
1845 case VGA_VIRTIO:
1846 case VGA_CIRRUS:
1847 return pci_vga_init(pci_bus) != NULL;
1848 default:
1849 error_setg(errp,
1850 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1851 return false;
1855 static int spapr_pre_load(void *opaque)
1857 int rc;
1859 rc = spapr_caps_pre_load(opaque);
1860 if (rc) {
1861 return rc;
1864 return 0;
1867 static int spapr_post_load(void *opaque, int version_id)
1869 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1870 int err = 0;
1872 err = spapr_caps_post_migration(spapr);
1873 if (err) {
1874 return err;
1878 * In earlier versions, there was no separate qdev for the PAPR
1879 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1880 * So when migrating from those versions, poke the incoming offset
1881 * value into the RTC device
1883 if (version_id < 3) {
1884 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1885 if (err) {
1886 return err;
1890 if (kvm_enabled() && spapr->patb_entry) {
1891 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1892 bool radix = !!(spapr->patb_entry & PATE1_GR);
1893 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1896 * Update LPCR:HR and UPRT as they may not be set properly in
1897 * the stream
1899 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1900 LPCR_HR | LPCR_UPRT);
1902 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1903 if (err) {
1904 error_report("Process table config unsupported by the host");
1905 return -EINVAL;
1909 err = spapr_irq_post_load(spapr, version_id);
1910 if (err) {
1911 return err;
1914 return err;
1917 static int spapr_pre_save(void *opaque)
1919 int rc;
1921 rc = spapr_caps_pre_save(opaque);
1922 if (rc) {
1923 return rc;
1926 return 0;
1929 static bool version_before_3(void *opaque, int version_id)
1931 return version_id < 3;
1934 static bool spapr_pending_events_needed(void *opaque)
1936 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1937 return !QTAILQ_EMPTY(&spapr->pending_events);
1940 static const VMStateDescription vmstate_spapr_event_entry = {
1941 .name = "spapr_event_log_entry",
1942 .version_id = 1,
1943 .minimum_version_id = 1,
1944 .fields = (VMStateField[]) {
1945 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1946 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1947 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1948 NULL, extended_length),
1949 VMSTATE_END_OF_LIST()
1953 static const VMStateDescription vmstate_spapr_pending_events = {
1954 .name = "spapr_pending_events",
1955 .version_id = 1,
1956 .minimum_version_id = 1,
1957 .needed = spapr_pending_events_needed,
1958 .fields = (VMStateField[]) {
1959 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1960 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1961 VMSTATE_END_OF_LIST()
1965 static bool spapr_ov5_cas_needed(void *opaque)
1967 SpaprMachineState *spapr = opaque;
1968 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1969 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1970 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1971 bool cas_needed;
1973 /* Prior to the introduction of SpaprOptionVector, we had two option
1974 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1975 * Both of these options encode machine topology into the device-tree
1976 * in such a way that the now-booted OS should still be able to interact
1977 * appropriately with QEMU regardless of what options were actually
1978 * negotiatied on the source side.
1980 * As such, we can avoid migrating the CAS-negotiated options if these
1981 * are the only options available on the current machine/platform.
1982 * Since these are the only options available for pseries-2.7 and
1983 * earlier, this allows us to maintain old->new/new->old migration
1984 * compatibility.
1986 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1987 * via default pseries-2.8 machines and explicit command-line parameters.
1988 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1989 * of the actual CAS-negotiated values to continue working properly. For
1990 * example, availability of memory unplug depends on knowing whether
1991 * OV5_HP_EVT was negotiated via CAS.
1993 * Thus, for any cases where the set of available CAS-negotiatable
1994 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1995 * include the CAS-negotiated options in the migration stream, unless
1996 * if they affect boot time behaviour only.
1998 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1999 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2000 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2002 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2003 * the mask itself since in the future it's possible "legacy" bits may be
2004 * removed via machine options, which could generate a false positive
2005 * that breaks migration.
2007 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2008 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2010 spapr_ovec_cleanup(ov5_mask);
2011 spapr_ovec_cleanup(ov5_legacy);
2012 spapr_ovec_cleanup(ov5_removed);
2014 return cas_needed;
2017 static const VMStateDescription vmstate_spapr_ov5_cas = {
2018 .name = "spapr_option_vector_ov5_cas",
2019 .version_id = 1,
2020 .minimum_version_id = 1,
2021 .needed = spapr_ov5_cas_needed,
2022 .fields = (VMStateField[]) {
2023 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2024 vmstate_spapr_ovec, SpaprOptionVector),
2025 VMSTATE_END_OF_LIST()
2029 static bool spapr_patb_entry_needed(void *opaque)
2031 SpaprMachineState *spapr = opaque;
2033 return !!spapr->patb_entry;
2036 static const VMStateDescription vmstate_spapr_patb_entry = {
2037 .name = "spapr_patb_entry",
2038 .version_id = 1,
2039 .minimum_version_id = 1,
2040 .needed = spapr_patb_entry_needed,
2041 .fields = (VMStateField[]) {
2042 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2043 VMSTATE_END_OF_LIST()
2047 static bool spapr_irq_map_needed(void *opaque)
2049 SpaprMachineState *spapr = opaque;
2051 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2054 static const VMStateDescription vmstate_spapr_irq_map = {
2055 .name = "spapr_irq_map",
2056 .version_id = 1,
2057 .minimum_version_id = 1,
2058 .needed = spapr_irq_map_needed,
2059 .fields = (VMStateField[]) {
2060 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2061 VMSTATE_END_OF_LIST()
2065 static bool spapr_dtb_needed(void *opaque)
2067 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2069 return smc->update_dt_enabled;
2072 static int spapr_dtb_pre_load(void *opaque)
2074 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2076 g_free(spapr->fdt_blob);
2077 spapr->fdt_blob = NULL;
2078 spapr->fdt_size = 0;
2080 return 0;
2083 static const VMStateDescription vmstate_spapr_dtb = {
2084 .name = "spapr_dtb",
2085 .version_id = 1,
2086 .minimum_version_id = 1,
2087 .needed = spapr_dtb_needed,
2088 .pre_load = spapr_dtb_pre_load,
2089 .fields = (VMStateField[]) {
2090 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2091 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2092 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2093 fdt_size),
2094 VMSTATE_END_OF_LIST()
2098 static const VMStateDescription vmstate_spapr = {
2099 .name = "spapr",
2100 .version_id = 3,
2101 .minimum_version_id = 1,
2102 .pre_load = spapr_pre_load,
2103 .post_load = spapr_post_load,
2104 .pre_save = spapr_pre_save,
2105 .fields = (VMStateField[]) {
2106 /* used to be @next_irq */
2107 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2109 /* RTC offset */
2110 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2112 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2113 VMSTATE_END_OF_LIST()
2115 .subsections = (const VMStateDescription*[]) {
2116 &vmstate_spapr_ov5_cas,
2117 &vmstate_spapr_patb_entry,
2118 &vmstate_spapr_pending_events,
2119 &vmstate_spapr_cap_htm,
2120 &vmstate_spapr_cap_vsx,
2121 &vmstate_spapr_cap_dfp,
2122 &vmstate_spapr_cap_cfpc,
2123 &vmstate_spapr_cap_sbbc,
2124 &vmstate_spapr_cap_ibs,
2125 &vmstate_spapr_irq_map,
2126 &vmstate_spapr_cap_nested_kvm_hv,
2127 &vmstate_spapr_dtb,
2128 &vmstate_spapr_cap_large_decr,
2129 &vmstate_spapr_cap_ccf_assist,
2130 NULL
2134 static int htab_save_setup(QEMUFile *f, void *opaque)
2136 SpaprMachineState *spapr = opaque;
2138 /* "Iteration" header */
2139 if (!spapr->htab_shift) {
2140 qemu_put_be32(f, -1);
2141 } else {
2142 qemu_put_be32(f, spapr->htab_shift);
2145 if (spapr->htab) {
2146 spapr->htab_save_index = 0;
2147 spapr->htab_first_pass = true;
2148 } else {
2149 if (spapr->htab_shift) {
2150 assert(kvm_enabled());
2155 return 0;
2158 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2159 int chunkstart, int n_valid, int n_invalid)
2161 qemu_put_be32(f, chunkstart);
2162 qemu_put_be16(f, n_valid);
2163 qemu_put_be16(f, n_invalid);
2164 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2165 HASH_PTE_SIZE_64 * n_valid);
2168 static void htab_save_end_marker(QEMUFile *f)
2170 qemu_put_be32(f, 0);
2171 qemu_put_be16(f, 0);
2172 qemu_put_be16(f, 0);
2175 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2176 int64_t max_ns)
2178 bool has_timeout = max_ns != -1;
2179 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2180 int index = spapr->htab_save_index;
2181 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2183 assert(spapr->htab_first_pass);
2185 do {
2186 int chunkstart;
2188 /* Consume invalid HPTEs */
2189 while ((index < htabslots)
2190 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2191 CLEAN_HPTE(HPTE(spapr->htab, index));
2192 index++;
2195 /* Consume valid HPTEs */
2196 chunkstart = index;
2197 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2198 && HPTE_VALID(HPTE(spapr->htab, index))) {
2199 CLEAN_HPTE(HPTE(spapr->htab, index));
2200 index++;
2203 if (index > chunkstart) {
2204 int n_valid = index - chunkstart;
2206 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2208 if (has_timeout &&
2209 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2210 break;
2213 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2215 if (index >= htabslots) {
2216 assert(index == htabslots);
2217 index = 0;
2218 spapr->htab_first_pass = false;
2220 spapr->htab_save_index = index;
2223 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2224 int64_t max_ns)
2226 bool final = max_ns < 0;
2227 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2228 int examined = 0, sent = 0;
2229 int index = spapr->htab_save_index;
2230 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2232 assert(!spapr->htab_first_pass);
2234 do {
2235 int chunkstart, invalidstart;
2237 /* Consume non-dirty HPTEs */
2238 while ((index < htabslots)
2239 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2240 index++;
2241 examined++;
2244 chunkstart = index;
2245 /* Consume valid dirty HPTEs */
2246 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2247 && HPTE_DIRTY(HPTE(spapr->htab, index))
2248 && HPTE_VALID(HPTE(spapr->htab, index))) {
2249 CLEAN_HPTE(HPTE(spapr->htab, index));
2250 index++;
2251 examined++;
2254 invalidstart = index;
2255 /* Consume invalid dirty HPTEs */
2256 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2257 && HPTE_DIRTY(HPTE(spapr->htab, index))
2258 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2259 CLEAN_HPTE(HPTE(spapr->htab, index));
2260 index++;
2261 examined++;
2264 if (index > chunkstart) {
2265 int n_valid = invalidstart - chunkstart;
2266 int n_invalid = index - invalidstart;
2268 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2269 sent += index - chunkstart;
2271 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2272 break;
2276 if (examined >= htabslots) {
2277 break;
2280 if (index >= htabslots) {
2281 assert(index == htabslots);
2282 index = 0;
2284 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2286 if (index >= htabslots) {
2287 assert(index == htabslots);
2288 index = 0;
2291 spapr->htab_save_index = index;
2293 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2296 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2297 #define MAX_KVM_BUF_SIZE 2048
2299 static int htab_save_iterate(QEMUFile *f, void *opaque)
2301 SpaprMachineState *spapr = opaque;
2302 int fd;
2303 int rc = 0;
2305 /* Iteration header */
2306 if (!spapr->htab_shift) {
2307 qemu_put_be32(f, -1);
2308 return 1;
2309 } else {
2310 qemu_put_be32(f, 0);
2313 if (!spapr->htab) {
2314 assert(kvm_enabled());
2316 fd = get_htab_fd(spapr);
2317 if (fd < 0) {
2318 return fd;
2321 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2322 if (rc < 0) {
2323 return rc;
2325 } else if (spapr->htab_first_pass) {
2326 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2327 } else {
2328 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2331 htab_save_end_marker(f);
2333 return rc;
2336 static int htab_save_complete(QEMUFile *f, void *opaque)
2338 SpaprMachineState *spapr = opaque;
2339 int fd;
2341 /* Iteration header */
2342 if (!spapr->htab_shift) {
2343 qemu_put_be32(f, -1);
2344 return 0;
2345 } else {
2346 qemu_put_be32(f, 0);
2349 if (!spapr->htab) {
2350 int rc;
2352 assert(kvm_enabled());
2354 fd = get_htab_fd(spapr);
2355 if (fd < 0) {
2356 return fd;
2359 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2360 if (rc < 0) {
2361 return rc;
2363 } else {
2364 if (spapr->htab_first_pass) {
2365 htab_save_first_pass(f, spapr, -1);
2367 htab_save_later_pass(f, spapr, -1);
2370 /* End marker */
2371 htab_save_end_marker(f);
2373 return 0;
2376 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2378 SpaprMachineState *spapr = opaque;
2379 uint32_t section_hdr;
2380 int fd = -1;
2381 Error *local_err = NULL;
2383 if (version_id < 1 || version_id > 1) {
2384 error_report("htab_load() bad version");
2385 return -EINVAL;
2388 section_hdr = qemu_get_be32(f);
2390 if (section_hdr == -1) {
2391 spapr_free_hpt(spapr);
2392 return 0;
2395 if (section_hdr) {
2396 /* First section gives the htab size */
2397 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2398 if (local_err) {
2399 error_report_err(local_err);
2400 return -EINVAL;
2402 return 0;
2405 if (!spapr->htab) {
2406 assert(kvm_enabled());
2408 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2409 if (fd < 0) {
2410 error_report_err(local_err);
2411 return fd;
2415 while (true) {
2416 uint32_t index;
2417 uint16_t n_valid, n_invalid;
2419 index = qemu_get_be32(f);
2420 n_valid = qemu_get_be16(f);
2421 n_invalid = qemu_get_be16(f);
2423 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2424 /* End of Stream */
2425 break;
2428 if ((index + n_valid + n_invalid) >
2429 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2430 /* Bad index in stream */
2431 error_report(
2432 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2433 index, n_valid, n_invalid, spapr->htab_shift);
2434 return -EINVAL;
2437 if (spapr->htab) {
2438 if (n_valid) {
2439 qemu_get_buffer(f, HPTE(spapr->htab, index),
2440 HASH_PTE_SIZE_64 * n_valid);
2442 if (n_invalid) {
2443 memset(HPTE(spapr->htab, index + n_valid), 0,
2444 HASH_PTE_SIZE_64 * n_invalid);
2446 } else {
2447 int rc;
2449 assert(fd >= 0);
2451 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2452 if (rc < 0) {
2453 return rc;
2458 if (!spapr->htab) {
2459 assert(fd >= 0);
2460 close(fd);
2463 return 0;
2466 static void htab_save_cleanup(void *opaque)
2468 SpaprMachineState *spapr = opaque;
2470 close_htab_fd(spapr);
2473 static SaveVMHandlers savevm_htab_handlers = {
2474 .save_setup = htab_save_setup,
2475 .save_live_iterate = htab_save_iterate,
2476 .save_live_complete_precopy = htab_save_complete,
2477 .save_cleanup = htab_save_cleanup,
2478 .load_state = htab_load,
2481 static void spapr_boot_set(void *opaque, const char *boot_device,
2482 Error **errp)
2484 MachineState *machine = MACHINE(opaque);
2485 machine->boot_order = g_strdup(boot_device);
2488 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2490 MachineState *machine = MACHINE(spapr);
2491 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2492 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2493 int i;
2495 for (i = 0; i < nr_lmbs; i++) {
2496 uint64_t addr;
2498 addr = i * lmb_size + machine->device_memory->base;
2499 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2500 addr / lmb_size);
2505 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2506 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2507 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2509 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2511 int i;
2513 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2514 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2515 " is not aligned to %" PRIu64 " MiB",
2516 machine->ram_size,
2517 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2518 return;
2521 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2522 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2523 " is not aligned to %" PRIu64 " MiB",
2524 machine->ram_size,
2525 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2526 return;
2529 for (i = 0; i < nb_numa_nodes; i++) {
2530 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2531 error_setg(errp,
2532 "Node %d memory size 0x%" PRIx64
2533 " is not aligned to %" PRIu64 " MiB",
2534 i, numa_info[i].node_mem,
2535 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2536 return;
2541 /* find cpu slot in machine->possible_cpus by core_id */
2542 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2544 int index = id / smp_threads;
2546 if (index >= ms->possible_cpus->len) {
2547 return NULL;
2549 if (idx) {
2550 *idx = index;
2552 return &ms->possible_cpus->cpus[index];
2555 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2557 Error *local_err = NULL;
2558 bool vsmt_user = !!spapr->vsmt;
2559 int kvm_smt = kvmppc_smt_threads();
2560 int ret;
2562 if (!kvm_enabled() && (smp_threads > 1)) {
2563 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2564 "on a pseries machine");
2565 goto out;
2567 if (!is_power_of_2(smp_threads)) {
2568 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2569 "machine because it must be a power of 2", smp_threads);
2570 goto out;
2573 /* Detemine the VSMT mode to use: */
2574 if (vsmt_user) {
2575 if (spapr->vsmt < smp_threads) {
2576 error_setg(&local_err, "Cannot support VSMT mode %d"
2577 " because it must be >= threads/core (%d)",
2578 spapr->vsmt, smp_threads);
2579 goto out;
2581 /* In this case, spapr->vsmt has been set by the command line */
2582 } else {
2584 * Default VSMT value is tricky, because we need it to be as
2585 * consistent as possible (for migration), but this requires
2586 * changing it for at least some existing cases. We pick 8 as
2587 * the value that we'd get with KVM on POWER8, the
2588 * overwhelmingly common case in production systems.
2590 spapr->vsmt = MAX(8, smp_threads);
2593 /* KVM: If necessary, set the SMT mode: */
2594 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2595 ret = kvmppc_set_smt_threads(spapr->vsmt);
2596 if (ret) {
2597 /* Looks like KVM isn't able to change VSMT mode */
2598 error_setg(&local_err,
2599 "Failed to set KVM's VSMT mode to %d (errno %d)",
2600 spapr->vsmt, ret);
2601 /* We can live with that if the default one is big enough
2602 * for the number of threads, and a submultiple of the one
2603 * we want. In this case we'll waste some vcpu ids, but
2604 * behaviour will be correct */
2605 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2606 warn_report_err(local_err);
2607 local_err = NULL;
2608 goto out;
2609 } else {
2610 if (!vsmt_user) {
2611 error_append_hint(&local_err,
2612 "On PPC, a VM with %d threads/core"
2613 " on a host with %d threads/core"
2614 " requires the use of VSMT mode %d.\n",
2615 smp_threads, kvm_smt, spapr->vsmt);
2617 kvmppc_hint_smt_possible(&local_err);
2618 goto out;
2622 /* else TCG: nothing to do currently */
2623 out:
2624 error_propagate(errp, local_err);
2627 static void spapr_init_cpus(SpaprMachineState *spapr)
2629 MachineState *machine = MACHINE(spapr);
2630 MachineClass *mc = MACHINE_GET_CLASS(machine);
2631 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2632 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2633 const CPUArchIdList *possible_cpus;
2634 int boot_cores_nr = smp_cpus / smp_threads;
2635 int i;
2637 possible_cpus = mc->possible_cpu_arch_ids(machine);
2638 if (mc->has_hotpluggable_cpus) {
2639 if (smp_cpus % smp_threads) {
2640 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2641 smp_cpus, smp_threads);
2642 exit(1);
2644 if (max_cpus % smp_threads) {
2645 error_report("max_cpus (%u) must be multiple of threads (%u)",
2646 max_cpus, smp_threads);
2647 exit(1);
2649 } else {
2650 if (max_cpus != smp_cpus) {
2651 error_report("This machine version does not support CPU hotplug");
2652 exit(1);
2654 boot_cores_nr = possible_cpus->len;
2657 if (smc->pre_2_10_has_unused_icps) {
2658 int i;
2660 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2661 /* Dummy entries get deregistered when real ICPState objects
2662 * are registered during CPU core hotplug.
2664 pre_2_10_vmstate_register_dummy_icp(i);
2668 for (i = 0; i < possible_cpus->len; i++) {
2669 int core_id = i * smp_threads;
2671 if (mc->has_hotpluggable_cpus) {
2672 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2673 spapr_vcpu_id(spapr, core_id));
2676 if (i < boot_cores_nr) {
2677 Object *core = object_new(type);
2678 int nr_threads = smp_threads;
2680 /* Handle the partially filled core for older machine types */
2681 if ((i + 1) * smp_threads >= smp_cpus) {
2682 nr_threads = smp_cpus - i * smp_threads;
2685 object_property_set_int(core, nr_threads, "nr-threads",
2686 &error_fatal);
2687 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2688 &error_fatal);
2689 object_property_set_bool(core, true, "realized", &error_fatal);
2691 object_unref(core);
2696 static PCIHostState *spapr_create_default_phb(void)
2698 DeviceState *dev;
2700 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2701 qdev_prop_set_uint32(dev, "index", 0);
2702 qdev_init_nofail(dev);
2704 return PCI_HOST_BRIDGE(dev);
2707 /* pSeries LPAR / sPAPR hardware init */
2708 static void spapr_machine_init(MachineState *machine)
2710 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2711 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2712 const char *kernel_filename = machine->kernel_filename;
2713 const char *initrd_filename = machine->initrd_filename;
2714 PCIHostState *phb;
2715 int i;
2716 MemoryRegion *sysmem = get_system_memory();
2717 MemoryRegion *ram = g_new(MemoryRegion, 1);
2718 hwaddr node0_size = spapr_node0_size(machine);
2719 long load_limit, fw_size;
2720 char *filename;
2721 Error *resize_hpt_err = NULL;
2723 msi_nonbroken = true;
2725 QLIST_INIT(&spapr->phbs);
2726 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2728 /* Determine capabilities to run with */
2729 spapr_caps_init(spapr);
2731 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2732 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2734 * If the user explicitly requested a mode we should either
2735 * supply it, or fail completely (which we do below). But if
2736 * it's not set explicitly, we reset our mode to something
2737 * that works
2739 if (resize_hpt_err) {
2740 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2741 error_free(resize_hpt_err);
2742 resize_hpt_err = NULL;
2743 } else {
2744 spapr->resize_hpt = smc->resize_hpt_default;
2748 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2750 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2752 * User requested HPT resize, but this host can't supply it. Bail out
2754 error_report_err(resize_hpt_err);
2755 exit(1);
2758 spapr->rma_size = node0_size;
2760 /* With KVM, we don't actually know whether KVM supports an
2761 * unbounded RMA (PR KVM) or is limited by the hash table size
2762 * (HV KVM using VRMA), so we always assume the latter
2764 * In that case, we also limit the initial allocations for RTAS
2765 * etc... to 256M since we have no way to know what the VRMA size
2766 * is going to be as it depends on the size of the hash table
2767 * which isn't determined yet.
2769 if (kvm_enabled()) {
2770 spapr->vrma_adjust = 1;
2771 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2774 /* Actually we don't support unbounded RMA anymore since we added
2775 * proper emulation of HV mode. The max we can get is 16G which
2776 * also happens to be what we configure for PAPR mode so make sure
2777 * we don't do anything bigger than that
2779 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2781 if (spapr->rma_size > node0_size) {
2782 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2783 spapr->rma_size);
2784 exit(1);
2787 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2788 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2791 * VSMT must be set in order to be able to compute VCPU ids, ie to
2792 * call spapr_max_server_number() or spapr_vcpu_id().
2794 spapr_set_vsmt_mode(spapr, &error_fatal);
2796 /* Set up Interrupt Controller before we create the VCPUs */
2797 spapr_irq_init(spapr, &error_fatal);
2799 /* Set up containers for ibm,client-architecture-support negotiated options
2801 spapr->ov5 = spapr_ovec_new();
2802 spapr->ov5_cas = spapr_ovec_new();
2804 if (smc->dr_lmb_enabled) {
2805 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2806 spapr_validate_node_memory(machine, &error_fatal);
2809 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2811 /* advertise support for dedicated HP event source to guests */
2812 if (spapr->use_hotplug_event_source) {
2813 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2816 /* advertise support for HPT resizing */
2817 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2818 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2821 /* advertise support for ibm,dyamic-memory-v2 */
2822 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2824 /* advertise XIVE on POWER9 machines */
2825 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2826 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2829 /* init CPUs */
2830 spapr_init_cpus(spapr);
2832 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2833 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2834 spapr->max_compat_pvr)) {
2835 /* KVM and TCG always allow GTSE with radix... */
2836 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2838 /* ... but not with hash (currently). */
2840 if (kvm_enabled()) {
2841 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2842 kvmppc_enable_logical_ci_hcalls();
2843 kvmppc_enable_set_mode_hcall();
2845 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2846 kvmppc_enable_clear_ref_mod_hcalls();
2848 /* Enable H_PAGE_INIT */
2849 kvmppc_enable_h_page_init();
2852 /* allocate RAM */
2853 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2854 machine->ram_size);
2855 memory_region_add_subregion(sysmem, 0, ram);
2857 /* always allocate the device memory information */
2858 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2860 /* initialize hotplug memory address space */
2861 if (machine->ram_size < machine->maxram_size) {
2862 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2864 * Limit the number of hotpluggable memory slots to half the number
2865 * slots that KVM supports, leaving the other half for PCI and other
2866 * devices. However ensure that number of slots doesn't drop below 32.
2868 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2869 SPAPR_MAX_RAM_SLOTS;
2871 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2872 max_memslots = SPAPR_MAX_RAM_SLOTS;
2874 if (machine->ram_slots > max_memslots) {
2875 error_report("Specified number of memory slots %"
2876 PRIu64" exceeds max supported %d",
2877 machine->ram_slots, max_memslots);
2878 exit(1);
2881 machine->device_memory->base = ROUND_UP(machine->ram_size,
2882 SPAPR_DEVICE_MEM_ALIGN);
2883 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2884 "device-memory", device_mem_size);
2885 memory_region_add_subregion(sysmem, machine->device_memory->base,
2886 &machine->device_memory->mr);
2889 if (smc->dr_lmb_enabled) {
2890 spapr_create_lmb_dr_connectors(spapr);
2893 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2894 if (!filename) {
2895 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2896 exit(1);
2898 spapr->rtas_size = get_image_size(filename);
2899 if (spapr->rtas_size < 0) {
2900 error_report("Could not get size of LPAR rtas '%s'", filename);
2901 exit(1);
2903 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2904 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2905 error_report("Could not load LPAR rtas '%s'", filename);
2906 exit(1);
2908 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2909 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2910 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2911 exit(1);
2913 g_free(filename);
2915 /* Set up RTAS event infrastructure */
2916 spapr_events_init(spapr);
2918 /* Set up the RTC RTAS interfaces */
2919 spapr_rtc_create(spapr);
2921 /* Set up VIO bus */
2922 spapr->vio_bus = spapr_vio_bus_init();
2924 for (i = 0; i < serial_max_hds(); i++) {
2925 if (serial_hd(i)) {
2926 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2930 /* We always have at least the nvram device on VIO */
2931 spapr_create_nvram(spapr);
2934 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2935 * connectors (described in root DT node's "ibm,drc-types" property)
2936 * are pre-initialized here. additional child connectors (such as
2937 * connectors for a PHBs PCI slots) are added as needed during their
2938 * parent's realization.
2940 if (smc->dr_phb_enabled) {
2941 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2942 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2946 /* Set up PCI */
2947 spapr_pci_rtas_init();
2949 phb = spapr_create_default_phb();
2951 for (i = 0; i < nb_nics; i++) {
2952 NICInfo *nd = &nd_table[i];
2954 if (!nd->model) {
2955 nd->model = g_strdup("spapr-vlan");
2958 if (g_str_equal(nd->model, "spapr-vlan") ||
2959 g_str_equal(nd->model, "ibmveth")) {
2960 spapr_vlan_create(spapr->vio_bus, nd);
2961 } else {
2962 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2966 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2967 spapr_vscsi_create(spapr->vio_bus);
2970 /* Graphics */
2971 if (spapr_vga_init(phb->bus, &error_fatal)) {
2972 spapr->has_graphics = true;
2973 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2976 if (machine->usb) {
2977 if (smc->use_ohci_by_default) {
2978 pci_create_simple(phb->bus, -1, "pci-ohci");
2979 } else {
2980 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2983 if (spapr->has_graphics) {
2984 USBBus *usb_bus = usb_bus_find(-1);
2986 usb_create_simple(usb_bus, "usb-kbd");
2987 usb_create_simple(usb_bus, "usb-mouse");
2991 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2992 error_report(
2993 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2994 MIN_RMA_SLOF);
2995 exit(1);
2998 if (kernel_filename) {
2999 uint64_t lowaddr = 0;
3001 spapr->kernel_size = load_elf(kernel_filename, NULL,
3002 translate_kernel_address, NULL,
3003 NULL, &lowaddr, NULL, 1,
3004 PPC_ELF_MACHINE, 0, 0);
3005 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3006 spapr->kernel_size = load_elf(kernel_filename, NULL,
3007 translate_kernel_address, NULL, NULL,
3008 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3009 0, 0);
3010 spapr->kernel_le = spapr->kernel_size > 0;
3012 if (spapr->kernel_size < 0) {
3013 error_report("error loading %s: %s", kernel_filename,
3014 load_elf_strerror(spapr->kernel_size));
3015 exit(1);
3018 /* load initrd */
3019 if (initrd_filename) {
3020 /* Try to locate the initrd in the gap between the kernel
3021 * and the firmware. Add a bit of space just in case
3023 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3024 + 0x1ffff) & ~0xffff;
3025 spapr->initrd_size = load_image_targphys(initrd_filename,
3026 spapr->initrd_base,
3027 load_limit
3028 - spapr->initrd_base);
3029 if (spapr->initrd_size < 0) {
3030 error_report("could not load initial ram disk '%s'",
3031 initrd_filename);
3032 exit(1);
3037 if (bios_name == NULL) {
3038 bios_name = FW_FILE_NAME;
3040 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3041 if (!filename) {
3042 error_report("Could not find LPAR firmware '%s'", bios_name);
3043 exit(1);
3045 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3046 if (fw_size <= 0) {
3047 error_report("Could not load LPAR firmware '%s'", filename);
3048 exit(1);
3050 g_free(filename);
3052 /* FIXME: Should register things through the MachineState's qdev
3053 * interface, this is a legacy from the sPAPREnvironment structure
3054 * which predated MachineState but had a similar function */
3055 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3056 register_savevm_live(NULL, "spapr/htab", -1, 1,
3057 &savevm_htab_handlers, spapr);
3059 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3060 &error_fatal);
3062 qemu_register_boot_set(spapr_boot_set, spapr);
3064 if (kvm_enabled()) {
3065 /* to stop and start vmclock */
3066 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3067 &spapr->tb);
3069 kvmppc_spapr_enable_inkernel_multitce();
3073 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3075 if (!vm_type) {
3076 return 0;
3079 if (!strcmp(vm_type, "HV")) {
3080 return 1;
3083 if (!strcmp(vm_type, "PR")) {
3084 return 2;
3087 error_report("Unknown kvm-type specified '%s'", vm_type);
3088 exit(1);
3092 * Implementation of an interface to adjust firmware path
3093 * for the bootindex property handling.
3095 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3096 DeviceState *dev)
3098 #define CAST(type, obj, name) \
3099 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3100 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3101 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3102 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3104 if (d) {
3105 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3106 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3107 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3109 if (spapr) {
3111 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3112 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3113 * 0x8000 | (target << 8) | (bus << 5) | lun
3114 * (see the "Logical unit addressing format" table in SAM5)
3116 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3117 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3118 (uint64_t)id << 48);
3119 } else if (virtio) {
3121 * We use SRP luns of the form 01000000 | (target << 8) | lun
3122 * in the top 32 bits of the 64-bit LUN
3123 * Note: the quote above is from SLOF and it is wrong,
3124 * the actual binding is:
3125 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3127 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3128 if (d->lun >= 256) {
3129 /* Use the LUN "flat space addressing method" */
3130 id |= 0x4000;
3132 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3133 (uint64_t)id << 32);
3134 } else if (usb) {
3136 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3137 * in the top 32 bits of the 64-bit LUN
3139 unsigned usb_port = atoi(usb->port->path);
3140 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3141 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3142 (uint64_t)id << 32);
3147 * SLOF probes the USB devices, and if it recognizes that the device is a
3148 * storage device, it changes its name to "storage" instead of "usb-host",
3149 * and additionally adds a child node for the SCSI LUN, so the correct
3150 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3152 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3153 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3154 if (usb_host_dev_is_scsi_storage(usbdev)) {
3155 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3159 if (phb) {
3160 /* Replace "pci" with "pci@800000020000000" */
3161 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3164 if (vsc) {
3165 /* Same logic as virtio above */
3166 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3167 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3170 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3171 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3172 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3173 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3176 return NULL;
3179 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3181 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3183 return g_strdup(spapr->kvm_type);
3186 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3188 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190 g_free(spapr->kvm_type);
3191 spapr->kvm_type = g_strdup(value);
3194 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3196 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3198 return spapr->use_hotplug_event_source;
3201 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3202 Error **errp)
3204 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3206 spapr->use_hotplug_event_source = value;
3209 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3211 return true;
3214 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218 switch (spapr->resize_hpt) {
3219 case SPAPR_RESIZE_HPT_DEFAULT:
3220 return g_strdup("default");
3221 case SPAPR_RESIZE_HPT_DISABLED:
3222 return g_strdup("disabled");
3223 case SPAPR_RESIZE_HPT_ENABLED:
3224 return g_strdup("enabled");
3225 case SPAPR_RESIZE_HPT_REQUIRED:
3226 return g_strdup("required");
3228 g_assert_not_reached();
3231 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3235 if (strcmp(value, "default") == 0) {
3236 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3237 } else if (strcmp(value, "disabled") == 0) {
3238 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3239 } else if (strcmp(value, "enabled") == 0) {
3240 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3241 } else if (strcmp(value, "required") == 0) {
3242 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3243 } else {
3244 error_setg(errp, "Bad value for \"resize-hpt\" property");
3248 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3249 void *opaque, Error **errp)
3251 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3254 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3255 void *opaque, Error **errp)
3257 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3260 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3262 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264 if (spapr->irq == &spapr_irq_xics_legacy) {
3265 return g_strdup("legacy");
3266 } else if (spapr->irq == &spapr_irq_xics) {
3267 return g_strdup("xics");
3268 } else if (spapr->irq == &spapr_irq_xive) {
3269 return g_strdup("xive");
3270 } else if (spapr->irq == &spapr_irq_dual) {
3271 return g_strdup("dual");
3273 g_assert_not_reached();
3276 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3280 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3281 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3282 return;
3285 /* The legacy IRQ backend can not be set */
3286 if (strcmp(value, "xics") == 0) {
3287 spapr->irq = &spapr_irq_xics;
3288 } else if (strcmp(value, "xive") == 0) {
3289 spapr->irq = &spapr_irq_xive;
3290 } else if (strcmp(value, "dual") == 0) {
3291 spapr->irq = &spapr_irq_dual;
3292 } else {
3293 error_setg(errp, "Bad value for \"ic-mode\" property");
3297 static char *spapr_get_host_model(Object *obj, Error **errp)
3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301 return g_strdup(spapr->host_model);
3304 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3306 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3308 g_free(spapr->host_model);
3309 spapr->host_model = g_strdup(value);
3312 static char *spapr_get_host_serial(Object *obj, Error **errp)
3314 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316 return g_strdup(spapr->host_serial);
3319 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3321 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323 g_free(spapr->host_serial);
3324 spapr->host_serial = g_strdup(value);
3327 static void spapr_instance_init(Object *obj)
3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3332 spapr->htab_fd = -1;
3333 spapr->use_hotplug_event_source = true;
3334 object_property_add_str(obj, "kvm-type",
3335 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3336 object_property_set_description(obj, "kvm-type",
3337 "Specifies the KVM virtualization mode (HV, PR)",
3338 NULL);
3339 object_property_add_bool(obj, "modern-hotplug-events",
3340 spapr_get_modern_hotplug_events,
3341 spapr_set_modern_hotplug_events,
3342 NULL);
3343 object_property_set_description(obj, "modern-hotplug-events",
3344 "Use dedicated hotplug event mechanism in"
3345 " place of standard EPOW events when possible"
3346 " (required for memory hot-unplug support)",
3347 NULL);
3348 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3349 "Maximum permitted CPU compatibility mode",
3350 &error_fatal);
3352 object_property_add_str(obj, "resize-hpt",
3353 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3354 object_property_set_description(obj, "resize-hpt",
3355 "Resizing of the Hash Page Table (enabled, disabled, required)",
3356 NULL);
3357 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3358 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3359 object_property_set_description(obj, "vsmt",
3360 "Virtual SMT: KVM behaves as if this were"
3361 " the host's SMT mode", &error_abort);
3362 object_property_add_bool(obj, "vfio-no-msix-emulation",
3363 spapr_get_msix_emulation, NULL, NULL);
3365 /* The machine class defines the default interrupt controller mode */
3366 spapr->irq = smc->irq;
3367 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3368 spapr_set_ic_mode, NULL);
3369 object_property_set_description(obj, "ic-mode",
3370 "Specifies the interrupt controller mode (xics, xive, dual)",
3371 NULL);
3373 object_property_add_str(obj, "host-model",
3374 spapr_get_host_model, spapr_set_host_model,
3375 &error_abort);
3376 object_property_set_description(obj, "host-model",
3377 "Host model to advertise in guest device tree", &error_abort);
3378 object_property_add_str(obj, "host-serial",
3379 spapr_get_host_serial, spapr_set_host_serial,
3380 &error_abort);
3381 object_property_set_description(obj, "host-serial",
3382 "Host serial number to advertise in guest device tree", &error_abort);
3385 static void spapr_machine_finalizefn(Object *obj)
3387 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3389 g_free(spapr->kvm_type);
3392 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3394 cpu_synchronize_state(cs);
3395 ppc_cpu_do_system_reset(cs);
3398 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3400 CPUState *cs;
3402 CPU_FOREACH(cs) {
3403 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3407 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3408 void *fdt, int *fdt_start_offset, Error **errp)
3410 uint64_t addr;
3411 uint32_t node;
3413 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3414 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3415 &error_abort);
3416 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3417 SPAPR_MEMORY_BLOCK_SIZE);
3418 return 0;
3421 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3422 bool dedicated_hp_event_source, Error **errp)
3424 SpaprDrc *drc;
3425 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3426 int i;
3427 uint64_t addr = addr_start;
3428 bool hotplugged = spapr_drc_hotplugged(dev);
3429 Error *local_err = NULL;
3431 for (i = 0; i < nr_lmbs; i++) {
3432 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3433 addr / SPAPR_MEMORY_BLOCK_SIZE);
3434 g_assert(drc);
3436 spapr_drc_attach(drc, dev, &local_err);
3437 if (local_err) {
3438 while (addr > addr_start) {
3439 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3441 addr / SPAPR_MEMORY_BLOCK_SIZE);
3442 spapr_drc_detach(drc);
3444 error_propagate(errp, local_err);
3445 return;
3447 if (!hotplugged) {
3448 spapr_drc_reset(drc);
3450 addr += SPAPR_MEMORY_BLOCK_SIZE;
3452 /* send hotplug notification to the
3453 * guest only in case of hotplugged memory
3455 if (hotplugged) {
3456 if (dedicated_hp_event_source) {
3457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3458 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3459 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3460 nr_lmbs,
3461 spapr_drc_index(drc));
3462 } else {
3463 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3464 nr_lmbs);
3469 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3470 Error **errp)
3472 Error *local_err = NULL;
3473 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3474 PCDIMMDevice *dimm = PC_DIMM(dev);
3475 uint64_t size, addr;
3477 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3479 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3480 if (local_err) {
3481 goto out;
3484 addr = object_property_get_uint(OBJECT(dimm),
3485 PC_DIMM_ADDR_PROP, &local_err);
3486 if (local_err) {
3487 goto out_unplug;
3490 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3491 &local_err);
3492 if (local_err) {
3493 goto out_unplug;
3496 return;
3498 out_unplug:
3499 pc_dimm_unplug(dimm, MACHINE(ms));
3500 out:
3501 error_propagate(errp, local_err);
3504 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3505 Error **errp)
3507 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3508 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3509 PCDIMMDevice *dimm = PC_DIMM(dev);
3510 Error *local_err = NULL;
3511 uint64_t size;
3512 Object *memdev;
3513 hwaddr pagesize;
3515 if (!smc->dr_lmb_enabled) {
3516 error_setg(errp, "Memory hotplug not supported for this machine");
3517 return;
3520 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3521 if (local_err) {
3522 error_propagate(errp, local_err);
3523 return;
3526 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3527 error_setg(errp, "Hotplugged memory size must be a multiple of "
3528 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3529 return;
3532 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3533 &error_abort);
3534 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3535 spapr_check_pagesize(spapr, pagesize, &local_err);
3536 if (local_err) {
3537 error_propagate(errp, local_err);
3538 return;
3541 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3544 struct SpaprDimmState {
3545 PCDIMMDevice *dimm;
3546 uint32_t nr_lmbs;
3547 QTAILQ_ENTRY(SpaprDimmState) next;
3550 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3551 PCDIMMDevice *dimm)
3553 SpaprDimmState *dimm_state = NULL;
3555 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3556 if (dimm_state->dimm == dimm) {
3557 break;
3560 return dimm_state;
3563 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3564 uint32_t nr_lmbs,
3565 PCDIMMDevice *dimm)
3567 SpaprDimmState *ds = NULL;
3570 * If this request is for a DIMM whose removal had failed earlier
3571 * (due to guest's refusal to remove the LMBs), we would have this
3572 * dimm already in the pending_dimm_unplugs list. In that
3573 * case don't add again.
3575 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3576 if (!ds) {
3577 ds = g_malloc0(sizeof(SpaprDimmState));
3578 ds->nr_lmbs = nr_lmbs;
3579 ds->dimm = dimm;
3580 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3582 return ds;
3585 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3586 SpaprDimmState *dimm_state)
3588 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3589 g_free(dimm_state);
3592 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3593 PCDIMMDevice *dimm)
3595 SpaprDrc *drc;
3596 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3597 &error_abort);
3598 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3599 uint32_t avail_lmbs = 0;
3600 uint64_t addr_start, addr;
3601 int i;
3603 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3604 &error_abort);
3606 addr = addr_start;
3607 for (i = 0; i < nr_lmbs; i++) {
3608 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3609 addr / SPAPR_MEMORY_BLOCK_SIZE);
3610 g_assert(drc);
3611 if (drc->dev) {
3612 avail_lmbs++;
3614 addr += SPAPR_MEMORY_BLOCK_SIZE;
3617 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3620 /* Callback to be called during DRC release. */
3621 void spapr_lmb_release(DeviceState *dev)
3623 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3624 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3625 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3627 /* This information will get lost if a migration occurs
3628 * during the unplug process. In this case recover it. */
3629 if (ds == NULL) {
3630 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3631 g_assert(ds);
3632 /* The DRC being examined by the caller at least must be counted */
3633 g_assert(ds->nr_lmbs);
3636 if (--ds->nr_lmbs) {
3637 return;
3641 * Now that all the LMBs have been removed by the guest, call the
3642 * unplug handler chain. This can never fail.
3644 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3645 object_unparent(OBJECT(dev));
3648 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3650 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3651 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3653 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3654 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3655 spapr_pending_dimm_unplugs_remove(spapr, ds);
3658 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3659 DeviceState *dev, Error **errp)
3661 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3662 Error *local_err = NULL;
3663 PCDIMMDevice *dimm = PC_DIMM(dev);
3664 uint32_t nr_lmbs;
3665 uint64_t size, addr_start, addr;
3666 int i;
3667 SpaprDrc *drc;
3669 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3670 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3672 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3673 &local_err);
3674 if (local_err) {
3675 goto out;
3679 * An existing pending dimm state for this DIMM means that there is an
3680 * unplug operation in progress, waiting for the spapr_lmb_release
3681 * callback to complete the job (BQL can't cover that far). In this case,
3682 * bail out to avoid detaching DRCs that were already released.
3684 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3685 error_setg(&local_err,
3686 "Memory unplug already in progress for device %s",
3687 dev->id);
3688 goto out;
3691 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3693 addr = addr_start;
3694 for (i = 0; i < nr_lmbs; i++) {
3695 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3696 addr / SPAPR_MEMORY_BLOCK_SIZE);
3697 g_assert(drc);
3699 spapr_drc_detach(drc);
3700 addr += SPAPR_MEMORY_BLOCK_SIZE;
3703 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3704 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3705 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3706 nr_lmbs, spapr_drc_index(drc));
3707 out:
3708 error_propagate(errp, local_err);
3711 /* Callback to be called during DRC release. */
3712 void spapr_core_release(DeviceState *dev)
3714 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3716 /* Call the unplug handler chain. This can never fail. */
3717 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3718 object_unparent(OBJECT(dev));
3721 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3723 MachineState *ms = MACHINE(hotplug_dev);
3724 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3725 CPUCore *cc = CPU_CORE(dev);
3726 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3728 if (smc->pre_2_10_has_unused_icps) {
3729 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3730 int i;
3732 for (i = 0; i < cc->nr_threads; i++) {
3733 CPUState *cs = CPU(sc->threads[i]);
3735 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3739 assert(core_slot);
3740 core_slot->cpu = NULL;
3741 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3744 static
3745 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3746 Error **errp)
3748 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3749 int index;
3750 SpaprDrc *drc;
3751 CPUCore *cc = CPU_CORE(dev);
3753 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3754 error_setg(errp, "Unable to find CPU core with core-id: %d",
3755 cc->core_id);
3756 return;
3758 if (index == 0) {
3759 error_setg(errp, "Boot CPU core may not be unplugged");
3760 return;
3763 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3764 spapr_vcpu_id(spapr, cc->core_id));
3765 g_assert(drc);
3767 spapr_drc_detach(drc);
3769 spapr_hotplug_req_remove_by_index(drc);
3772 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3773 void *fdt, int *fdt_start_offset, Error **errp)
3775 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3776 CPUState *cs = CPU(core->threads[0]);
3777 PowerPCCPU *cpu = POWERPC_CPU(cs);
3778 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3779 int id = spapr_get_vcpu_id(cpu);
3780 char *nodename;
3781 int offset;
3783 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3784 offset = fdt_add_subnode(fdt, 0, nodename);
3785 g_free(nodename);
3787 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3789 *fdt_start_offset = offset;
3790 return 0;
3793 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3794 Error **errp)
3796 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3797 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3798 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3799 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3800 CPUCore *cc = CPU_CORE(dev);
3801 CPUState *cs;
3802 SpaprDrc *drc;
3803 Error *local_err = NULL;
3804 CPUArchId *core_slot;
3805 int index;
3806 bool hotplugged = spapr_drc_hotplugged(dev);
3808 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3809 if (!core_slot) {
3810 error_setg(errp, "Unable to find CPU core with core-id: %d",
3811 cc->core_id);
3812 return;
3814 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3815 spapr_vcpu_id(spapr, cc->core_id));
3817 g_assert(drc || !mc->has_hotpluggable_cpus);
3819 if (drc) {
3820 spapr_drc_attach(drc, dev, &local_err);
3821 if (local_err) {
3822 error_propagate(errp, local_err);
3823 return;
3826 if (hotplugged) {
3828 * Send hotplug notification interrupt to the guest only
3829 * in case of hotplugged CPUs.
3831 spapr_hotplug_req_add_by_index(drc);
3832 } else {
3833 spapr_drc_reset(drc);
3837 core_slot->cpu = OBJECT(dev);
3839 if (smc->pre_2_10_has_unused_icps) {
3840 int i;
3842 for (i = 0; i < cc->nr_threads; i++) {
3843 cs = CPU(core->threads[i]);
3844 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3849 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3850 Error **errp)
3852 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3853 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3854 Error *local_err = NULL;
3855 CPUCore *cc = CPU_CORE(dev);
3856 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3857 const char *type = object_get_typename(OBJECT(dev));
3858 CPUArchId *core_slot;
3859 int index;
3861 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3862 error_setg(&local_err, "CPU hotplug not supported for this machine");
3863 goto out;
3866 if (strcmp(base_core_type, type)) {
3867 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3868 goto out;
3871 if (cc->core_id % smp_threads) {
3872 error_setg(&local_err, "invalid core id %d", cc->core_id);
3873 goto out;
3877 * In general we should have homogeneous threads-per-core, but old
3878 * (pre hotplug support) machine types allow the last core to have
3879 * reduced threads as a compatibility hack for when we allowed
3880 * total vcpus not a multiple of threads-per-core.
3882 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3883 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3884 cc->nr_threads, smp_threads);
3885 goto out;
3888 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3889 if (!core_slot) {
3890 error_setg(&local_err, "core id %d out of range", cc->core_id);
3891 goto out;
3894 if (core_slot->cpu) {
3895 error_setg(&local_err, "core %d already populated", cc->core_id);
3896 goto out;
3899 numa_cpu_pre_plug(core_slot, dev, &local_err);
3901 out:
3902 error_propagate(errp, local_err);
3905 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3906 void *fdt, int *fdt_start_offset, Error **errp)
3908 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3909 int intc_phandle;
3911 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3912 if (intc_phandle <= 0) {
3913 return -1;
3916 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3917 fdt_start_offset)) {
3918 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3919 return -1;
3922 /* generally SLOF creates these, for hotplug it's up to QEMU */
3923 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3925 return 0;
3928 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3929 Error **errp)
3931 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3932 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3933 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3934 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3936 if (dev->hotplugged && !smc->dr_phb_enabled) {
3937 error_setg(errp, "PHB hotplug not supported for this machine");
3938 return;
3941 if (sphb->index == (uint32_t)-1) {
3942 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3943 return;
3947 * This will check that sphb->index doesn't exceed the maximum number of
3948 * PHBs for the current machine type.
3950 smc->phb_placement(spapr, sphb->index,
3951 &sphb->buid, &sphb->io_win_addr,
3952 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3953 windows_supported, sphb->dma_liobn,
3954 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3955 errp);
3958 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3959 Error **errp)
3961 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3962 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3963 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3964 SpaprDrc *drc;
3965 bool hotplugged = spapr_drc_hotplugged(dev);
3966 Error *local_err = NULL;
3968 if (!smc->dr_phb_enabled) {
3969 return;
3972 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3973 /* hotplug hooks should check it's enabled before getting this far */
3974 assert(drc);
3976 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3977 if (local_err) {
3978 error_propagate(errp, local_err);
3979 return;
3982 if (hotplugged) {
3983 spapr_hotplug_req_add_by_index(drc);
3984 } else {
3985 spapr_drc_reset(drc);
3989 void spapr_phb_release(DeviceState *dev)
3991 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3993 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3994 object_unparent(OBJECT(dev));
3997 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3999 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4002 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4003 DeviceState *dev, Error **errp)
4005 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4006 SpaprDrc *drc;
4008 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4009 assert(drc);
4011 if (!spapr_drc_unplug_requested(drc)) {
4012 spapr_drc_detach(drc);
4013 spapr_hotplug_req_remove_by_index(drc);
4017 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4018 DeviceState *dev, Error **errp)
4020 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4021 spapr_memory_plug(hotplug_dev, dev, errp);
4022 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4023 spapr_core_plug(hotplug_dev, dev, errp);
4024 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4025 spapr_phb_plug(hotplug_dev, dev, errp);
4029 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4030 DeviceState *dev, Error **errp)
4032 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4033 spapr_memory_unplug(hotplug_dev, dev);
4034 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4035 spapr_core_unplug(hotplug_dev, dev);
4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4037 spapr_phb_unplug(hotplug_dev, dev);
4041 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4042 DeviceState *dev, Error **errp)
4044 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4045 MachineClass *mc = MACHINE_GET_CLASS(sms);
4046 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4049 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4050 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4051 } else {
4052 /* NOTE: this means there is a window after guest reset, prior to
4053 * CAS negotiation, where unplug requests will fail due to the
4054 * capability not being detected yet. This is a bit different than
4055 * the case with PCI unplug, where the events will be queued and
4056 * eventually handled by the guest after boot
4058 error_setg(errp, "Memory hot unplug not supported for this guest");
4060 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4061 if (!mc->has_hotpluggable_cpus) {
4062 error_setg(errp, "CPU hot unplug not supported on this machine");
4063 return;
4065 spapr_core_unplug_request(hotplug_dev, dev, errp);
4066 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4067 if (!smc->dr_phb_enabled) {
4068 error_setg(errp, "PHB hot unplug not supported on this machine");
4069 return;
4071 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4075 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4076 DeviceState *dev, Error **errp)
4078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4079 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4081 spapr_core_pre_plug(hotplug_dev, dev, errp);
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4083 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4087 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4088 DeviceState *dev)
4090 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4091 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4092 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4093 return HOTPLUG_HANDLER(machine);
4095 return NULL;
4098 static CpuInstanceProperties
4099 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4101 CPUArchId *core_slot;
4102 MachineClass *mc = MACHINE_GET_CLASS(machine);
4104 /* make sure possible_cpu are intialized */
4105 mc->possible_cpu_arch_ids(machine);
4106 /* get CPU core slot containing thread that matches cpu_index */
4107 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4108 assert(core_slot);
4109 return core_slot->props;
4112 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4114 return idx / smp_cores % nb_numa_nodes;
4117 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4119 int i;
4120 const char *core_type;
4121 int spapr_max_cores = max_cpus / smp_threads;
4122 MachineClass *mc = MACHINE_GET_CLASS(machine);
4124 if (!mc->has_hotpluggable_cpus) {
4125 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4127 if (machine->possible_cpus) {
4128 assert(machine->possible_cpus->len == spapr_max_cores);
4129 return machine->possible_cpus;
4132 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4133 if (!core_type) {
4134 error_report("Unable to find sPAPR CPU Core definition");
4135 exit(1);
4138 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4139 sizeof(CPUArchId) * spapr_max_cores);
4140 machine->possible_cpus->len = spapr_max_cores;
4141 for (i = 0; i < machine->possible_cpus->len; i++) {
4142 int core_id = i * smp_threads;
4144 machine->possible_cpus->cpus[i].type = core_type;
4145 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4146 machine->possible_cpus->cpus[i].arch_id = core_id;
4147 machine->possible_cpus->cpus[i].props.has_core_id = true;
4148 machine->possible_cpus->cpus[i].props.core_id = core_id;
4150 return machine->possible_cpus;
4153 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4154 uint64_t *buid, hwaddr *pio,
4155 hwaddr *mmio32, hwaddr *mmio64,
4156 unsigned n_dma, uint32_t *liobns,
4157 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4160 * New-style PHB window placement.
4162 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4163 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4164 * windows.
4166 * Some guest kernels can't work with MMIO windows above 1<<46
4167 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4169 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4170 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4171 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4172 * 1TiB 64-bit MMIO windows for each PHB.
4174 const uint64_t base_buid = 0x800000020000000ULL;
4175 int i;
4177 /* Sanity check natural alignments */
4178 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4179 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4180 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4181 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4182 /* Sanity check bounds */
4183 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4184 SPAPR_PCI_MEM32_WIN_SIZE);
4185 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4186 SPAPR_PCI_MEM64_WIN_SIZE);
4188 if (index >= SPAPR_MAX_PHBS) {
4189 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4190 SPAPR_MAX_PHBS - 1);
4191 return;
4194 *buid = base_buid + index;
4195 for (i = 0; i < n_dma; ++i) {
4196 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4199 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4200 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4201 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4203 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4204 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4207 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4209 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4211 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4214 static void spapr_ics_resend(XICSFabric *dev)
4216 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4218 ics_resend(spapr->ics);
4221 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4223 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4225 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4228 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4229 Monitor *mon)
4231 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4233 spapr->irq->print_info(spapr, mon);
4236 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4238 return cpu->vcpu_id;
4241 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4243 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4244 int vcpu_id;
4246 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4248 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4249 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4250 error_append_hint(errp, "Adjust the number of cpus to %d "
4251 "or try to raise the number of threads per core\n",
4252 vcpu_id * smp_threads / spapr->vsmt);
4253 return;
4256 cpu->vcpu_id = vcpu_id;
4259 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4261 CPUState *cs;
4263 CPU_FOREACH(cs) {
4264 PowerPCCPU *cpu = POWERPC_CPU(cs);
4266 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4267 return cpu;
4271 return NULL;
4274 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4276 MachineClass *mc = MACHINE_CLASS(oc);
4277 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4278 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4279 NMIClass *nc = NMI_CLASS(oc);
4280 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4281 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4282 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4283 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4285 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4286 mc->ignore_boot_device_suffixes = true;
4289 * We set up the default / latest behaviour here. The class_init
4290 * functions for the specific versioned machine types can override
4291 * these details for backwards compatibility
4293 mc->init = spapr_machine_init;
4294 mc->reset = spapr_machine_reset;
4295 mc->block_default_type = IF_SCSI;
4296 mc->max_cpus = 1024;
4297 mc->no_parallel = 1;
4298 mc->default_boot_order = "";
4299 mc->default_ram_size = 512 * MiB;
4300 mc->default_display = "std";
4301 mc->kvm_type = spapr_kvm_type;
4302 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4303 mc->pci_allow_0_address = true;
4304 assert(!mc->get_hotplug_handler);
4305 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4306 hc->pre_plug = spapr_machine_device_pre_plug;
4307 hc->plug = spapr_machine_device_plug;
4308 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4309 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4310 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4311 hc->unplug_request = spapr_machine_device_unplug_request;
4312 hc->unplug = spapr_machine_device_unplug;
4314 smc->dr_lmb_enabled = true;
4315 smc->update_dt_enabled = true;
4316 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4317 mc->has_hotpluggable_cpus = true;
4318 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4319 fwc->get_dev_path = spapr_get_fw_dev_path;
4320 nc->nmi_monitor_handler = spapr_nmi;
4321 smc->phb_placement = spapr_phb_placement;
4322 vhc->hypercall = emulate_spapr_hypercall;
4323 vhc->hpt_mask = spapr_hpt_mask;
4324 vhc->map_hptes = spapr_map_hptes;
4325 vhc->unmap_hptes = spapr_unmap_hptes;
4326 vhc->hpte_set_c = spapr_hpte_set_c;
4327 vhc->hpte_set_r = spapr_hpte_set_r;
4328 vhc->get_pate = spapr_get_pate;
4329 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4330 xic->ics_get = spapr_ics_get;
4331 xic->ics_resend = spapr_ics_resend;
4332 xic->icp_get = spapr_icp_get;
4333 ispc->print_info = spapr_pic_print_info;
4334 /* Force NUMA node memory size to be a multiple of
4335 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4336 * in which LMBs are represented and hot-added
4338 mc->numa_mem_align_shift = 28;
4340 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4341 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4342 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4343 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4344 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4345 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4346 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4347 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4348 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4349 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4350 spapr_caps_add_properties(smc, &error_abort);
4351 smc->irq = &spapr_irq_xics;
4352 smc->dr_phb_enabled = true;
4355 static const TypeInfo spapr_machine_info = {
4356 .name = TYPE_SPAPR_MACHINE,
4357 .parent = TYPE_MACHINE,
4358 .abstract = true,
4359 .instance_size = sizeof(SpaprMachineState),
4360 .instance_init = spapr_instance_init,
4361 .instance_finalize = spapr_machine_finalizefn,
4362 .class_size = sizeof(SpaprMachineClass),
4363 .class_init = spapr_machine_class_init,
4364 .interfaces = (InterfaceInfo[]) {
4365 { TYPE_FW_PATH_PROVIDER },
4366 { TYPE_NMI },
4367 { TYPE_HOTPLUG_HANDLER },
4368 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4369 { TYPE_XICS_FABRIC },
4370 { TYPE_INTERRUPT_STATS_PROVIDER },
4375 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4376 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4377 void *data) \
4379 MachineClass *mc = MACHINE_CLASS(oc); \
4380 spapr_machine_##suffix##_class_options(mc); \
4381 if (latest) { \
4382 mc->alias = "pseries"; \
4383 mc->is_default = 1; \
4386 static const TypeInfo spapr_machine_##suffix##_info = { \
4387 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4388 .parent = TYPE_SPAPR_MACHINE, \
4389 .class_init = spapr_machine_##suffix##_class_init, \
4390 }; \
4391 static void spapr_machine_register_##suffix(void) \
4393 type_register(&spapr_machine_##suffix##_info); \
4395 type_init(spapr_machine_register_##suffix)
4398 * pseries-4.1
4400 static void spapr_machine_4_1_class_options(MachineClass *mc)
4402 /* Defaults for the latest behaviour inherited from the base class */
4405 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4408 * pseries-4.0
4410 static void spapr_machine_4_0_class_options(MachineClass *mc)
4412 spapr_machine_4_1_class_options(mc);
4413 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4416 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4419 * pseries-3.1
4421 static void phb_placement_3_1(SpaprMachineState *spapr, uint32_t index,
4422 uint64_t *buid, hwaddr *pio,
4423 hwaddr *mmio32, hwaddr *mmio64,
4424 unsigned n_dma, uint32_t *liobns,
4425 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4427 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4428 nv2gpa, nv2atsd, errp);
4429 *nv2gpa = 0;
4430 *nv2atsd = 0;
4433 static void spapr_machine_3_1_class_options(MachineClass *mc)
4435 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4437 spapr_machine_4_0_class_options(mc);
4438 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4440 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4441 smc->update_dt_enabled = false;
4442 smc->dr_phb_enabled = false;
4443 smc->broken_host_serial_model = true;
4444 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4445 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4446 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4447 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4448 smc->phb_placement = phb_placement_3_1;
4451 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4454 * pseries-3.0
4457 static void spapr_machine_3_0_class_options(MachineClass *mc)
4459 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4461 spapr_machine_3_1_class_options(mc);
4462 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4464 smc->legacy_irq_allocation = true;
4465 smc->irq = &spapr_irq_xics_legacy;
4468 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4471 * pseries-2.12
4473 static void spapr_machine_2_12_class_options(MachineClass *mc)
4475 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4476 static GlobalProperty compat[] = {
4477 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4478 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4481 spapr_machine_3_0_class_options(mc);
4482 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4483 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4485 /* We depend on kvm_enabled() to choose a default value for the
4486 * hpt-max-page-size capability. Of course we can't do it here
4487 * because this is too early and the HW accelerator isn't initialzed
4488 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4490 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4493 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4495 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4497 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4499 spapr_machine_2_12_class_options(mc);
4500 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4501 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4502 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4505 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4508 * pseries-2.11
4511 static void spapr_machine_2_11_class_options(MachineClass *mc)
4513 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4515 spapr_machine_2_12_class_options(mc);
4516 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4517 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4520 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4523 * pseries-2.10
4526 static void spapr_machine_2_10_class_options(MachineClass *mc)
4528 spapr_machine_2_11_class_options(mc);
4529 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4532 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4535 * pseries-2.9
4538 static void spapr_machine_2_9_class_options(MachineClass *mc)
4540 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4541 static GlobalProperty compat[] = {
4542 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4545 spapr_machine_2_10_class_options(mc);
4546 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4547 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4548 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4549 smc->pre_2_10_has_unused_icps = true;
4550 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4553 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4556 * pseries-2.8
4559 static void spapr_machine_2_8_class_options(MachineClass *mc)
4561 static GlobalProperty compat[] = {
4562 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4565 spapr_machine_2_9_class_options(mc);
4566 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4567 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4568 mc->numa_mem_align_shift = 23;
4571 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4574 * pseries-2.7
4577 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4578 uint64_t *buid, hwaddr *pio,
4579 hwaddr *mmio32, hwaddr *mmio64,
4580 unsigned n_dma, uint32_t *liobns,
4581 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4583 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4584 const uint64_t base_buid = 0x800000020000000ULL;
4585 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4586 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4587 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4588 const uint32_t max_index = 255;
4589 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4591 uint64_t ram_top = MACHINE(spapr)->ram_size;
4592 hwaddr phb0_base, phb_base;
4593 int i;
4595 /* Do we have device memory? */
4596 if (MACHINE(spapr)->maxram_size > ram_top) {
4597 /* Can't just use maxram_size, because there may be an
4598 * alignment gap between normal and device memory regions
4600 ram_top = MACHINE(spapr)->device_memory->base +
4601 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4604 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4606 if (index > max_index) {
4607 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4608 max_index);
4609 return;
4612 *buid = base_buid + index;
4613 for (i = 0; i < n_dma; ++i) {
4614 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4617 phb_base = phb0_base + index * phb_spacing;
4618 *pio = phb_base + pio_offset;
4619 *mmio32 = phb_base + mmio_offset;
4621 * We don't set the 64-bit MMIO window, relying on the PHB's
4622 * fallback behaviour of automatically splitting a large "32-bit"
4623 * window into contiguous 32-bit and 64-bit windows
4626 *nv2gpa = 0;
4627 *nv2atsd = 0;
4630 static void spapr_machine_2_7_class_options(MachineClass *mc)
4632 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4633 static GlobalProperty compat[] = {
4634 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4635 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4636 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4637 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4640 spapr_machine_2_8_class_options(mc);
4641 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4642 mc->default_machine_opts = "modern-hotplug-events=off";
4643 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4644 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4645 smc->phb_placement = phb_placement_2_7;
4648 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4651 * pseries-2.6
4654 static void spapr_machine_2_6_class_options(MachineClass *mc)
4656 static GlobalProperty compat[] = {
4657 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4660 spapr_machine_2_7_class_options(mc);
4661 mc->has_hotpluggable_cpus = false;
4662 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4663 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4666 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4669 * pseries-2.5
4672 static void spapr_machine_2_5_class_options(MachineClass *mc)
4674 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4675 static GlobalProperty compat[] = {
4676 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4679 spapr_machine_2_6_class_options(mc);
4680 smc->use_ohci_by_default = true;
4681 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4682 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4685 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4688 * pseries-2.4
4691 static void spapr_machine_2_4_class_options(MachineClass *mc)
4693 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4695 spapr_machine_2_5_class_options(mc);
4696 smc->dr_lmb_enabled = false;
4697 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4700 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4703 * pseries-2.3
4706 static void spapr_machine_2_3_class_options(MachineClass *mc)
4708 static GlobalProperty compat[] = {
4709 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4711 spapr_machine_2_4_class_options(mc);
4712 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4713 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4715 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4718 * pseries-2.2
4721 static void spapr_machine_2_2_class_options(MachineClass *mc)
4723 static GlobalProperty compat[] = {
4724 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4727 spapr_machine_2_3_class_options(mc);
4728 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4729 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4730 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4732 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4735 * pseries-2.1
4738 static void spapr_machine_2_1_class_options(MachineClass *mc)
4740 spapr_machine_2_2_class_options(mc);
4741 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4743 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4745 static void spapr_machine_register_types(void)
4747 type_register_static(&spapr_machine_info);
4750 type_init(spapr_machine_register_types)