Include hw/boards.h a bit less
[qemu/ar7.git] / target / i386 / hvf / hvf.c
blob6863cf2de4987bbf78abe2aefe2fbe45543e80e5
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
7 * QEMU Hypervisor.framework support
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
48 #include "qemu/osdep.h"
49 #include "qemu-common.h"
50 #include "qemu/error-report.h"
52 #include "sysemu/hvf.h"
53 #include "hvf-i386.h"
54 #include "vmcs.h"
55 #include "vmx.h"
56 #include "x86.h"
57 #include "x86_descr.h"
58 #include "x86_mmu.h"
59 #include "x86_decode.h"
60 #include "x86_emu.h"
61 #include "x86_task.h"
62 #include "x86hvf.h"
64 #include <Hypervisor/hv.h>
65 #include <Hypervisor/hv_vmx.h>
67 #include "exec/address-spaces.h"
68 #include "hw/i386/apic_internal.h"
69 #include "qemu/main-loop.h"
70 #include "sysemu/accel.h"
71 #include "sysemu/sysemu.h"
72 #include "target/i386/cpu.h"
74 HVFState *hvf_state;
76 static void assert_hvf_ok(hv_return_t ret)
78 if (ret == HV_SUCCESS) {
79 return;
82 switch (ret) {
83 case HV_ERROR:
84 error_report("Error: HV_ERROR");
85 break;
86 case HV_BUSY:
87 error_report("Error: HV_BUSY");
88 break;
89 case HV_BAD_ARGUMENT:
90 error_report("Error: HV_BAD_ARGUMENT");
91 break;
92 case HV_NO_RESOURCES:
93 error_report("Error: HV_NO_RESOURCES");
94 break;
95 case HV_NO_DEVICE:
96 error_report("Error: HV_NO_DEVICE");
97 break;
98 case HV_UNSUPPORTED:
99 error_report("Error: HV_UNSUPPORTED");
100 break;
101 default:
102 error_report("Unknown Error");
105 abort();
108 /* Memory slots */
109 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
111 hvf_slot *slot;
112 int x;
113 for (x = 0; x < hvf_state->num_slots; ++x) {
114 slot = &hvf_state->slots[x];
115 if (slot->size && start < (slot->start + slot->size) &&
116 end > slot->start) {
117 return slot;
120 return NULL;
123 struct mac_slot {
124 int present;
125 uint64_t size;
126 uint64_t gpa_start;
127 uint64_t gva;
130 struct mac_slot mac_slots[32];
131 #define ALIGN(x, y) (((x) + (y) - 1) & ~((y) - 1))
133 static int do_hvf_set_memory(hvf_slot *slot)
135 struct mac_slot *macslot;
136 hv_memory_flags_t flags;
137 hv_return_t ret;
139 macslot = &mac_slots[slot->slot_id];
141 if (macslot->present) {
142 if (macslot->size != slot->size) {
143 macslot->present = 0;
144 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
145 assert_hvf_ok(ret);
149 if (!slot->size) {
150 return 0;
153 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
155 macslot->present = 1;
156 macslot->gpa_start = slot->start;
157 macslot->size = slot->size;
158 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
159 assert_hvf_ok(ret);
160 return 0;
163 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
165 hvf_slot *mem;
166 MemoryRegion *area = section->mr;
168 if (!memory_region_is_ram(area)) {
169 return;
172 mem = hvf_find_overlap_slot(
173 section->offset_within_address_space,
174 section->offset_within_address_space + int128_get64(section->size));
176 if (mem && add) {
177 if (mem->size == int128_get64(section->size) &&
178 mem->start == section->offset_within_address_space &&
179 mem->mem == (memory_region_get_ram_ptr(area) +
180 section->offset_within_region)) {
181 return; /* Same region was attempted to register, go away. */
185 /* Region needs to be reset. set the size to 0 and remap it. */
186 if (mem) {
187 mem->size = 0;
188 if (do_hvf_set_memory(mem)) {
189 error_report("Failed to reset overlapping slot");
190 abort();
194 if (!add) {
195 return;
198 /* Now make a new slot. */
199 int x;
201 for (x = 0; x < hvf_state->num_slots; ++x) {
202 mem = &hvf_state->slots[x];
203 if (!mem->size) {
204 break;
208 if (x == hvf_state->num_slots) {
209 error_report("No free slots");
210 abort();
213 mem->size = int128_get64(section->size);
214 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
215 mem->start = section->offset_within_address_space;
216 mem->region = area;
218 if (do_hvf_set_memory(mem)) {
219 error_report("Error registering new memory slot");
220 abort();
224 void vmx_update_tpr(CPUState *cpu)
226 /* TODO: need integrate APIC handling */
227 X86CPU *x86_cpu = X86_CPU(cpu);
228 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
229 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
231 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
232 if (irr == -1) {
233 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
234 } else {
235 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
236 irr >> 4);
240 void update_apic_tpr(CPUState *cpu)
242 X86CPU *x86_cpu = X86_CPU(cpu);
243 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
244 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
247 #define VECTORING_INFO_VECTOR_MASK 0xff
249 static void hvf_handle_interrupt(CPUState * cpu, int mask)
251 cpu->interrupt_request |= mask;
252 if (!qemu_cpu_is_self(cpu)) {
253 qemu_cpu_kick(cpu);
257 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
258 int direction, int size, int count)
260 int i;
261 uint8_t *ptr = buffer;
263 for (i = 0; i < count; i++) {
264 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
265 ptr, size,
266 direction);
267 ptr += size;
271 /* TODO: synchronize vcpu state */
272 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
274 CPUState *cpu_state = cpu;
275 if (cpu_state->vcpu_dirty == 0) {
276 hvf_get_registers(cpu_state);
279 cpu_state->vcpu_dirty = 1;
282 void hvf_cpu_synchronize_state(CPUState *cpu_state)
284 if (cpu_state->vcpu_dirty == 0) {
285 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
289 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
291 CPUState *cpu_state = cpu;
292 hvf_put_registers(cpu_state);
293 cpu_state->vcpu_dirty = false;
296 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
298 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
301 void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
303 CPUState *cpu_state = cpu;
304 hvf_put_registers(cpu_state);
305 cpu_state->vcpu_dirty = false;
308 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
310 run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
313 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
315 int read, write;
317 /* EPT fault on an instruction fetch doesn't make sense here */
318 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
319 return false;
322 /* EPT fault must be a read fault or a write fault */
323 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
324 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
325 if ((read | write) == 0) {
326 return false;
329 if (write && slot) {
330 if (slot->flags & HVF_SLOT_LOG) {
331 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
332 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
333 HV_MEMORY_READ | HV_MEMORY_WRITE);
338 * The EPT violation must have been caused by accessing a
339 * guest-physical address that is a translation of a guest-linear
340 * address.
342 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
343 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
344 return false;
347 return !slot;
350 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
352 hvf_slot *slot;
354 slot = hvf_find_overlap_slot(
355 section->offset_within_address_space,
356 section->offset_within_address_space + int128_get64(section->size));
358 /* protect region against writes; begin tracking it */
359 if (on) {
360 slot->flags |= HVF_SLOT_LOG;
361 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
362 HV_MEMORY_READ);
363 /* stop tracking region*/
364 } else {
365 slot->flags &= ~HVF_SLOT_LOG;
366 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
367 HV_MEMORY_READ | HV_MEMORY_WRITE);
371 static void hvf_log_start(MemoryListener *listener,
372 MemoryRegionSection *section, int old, int new)
374 if (old != 0) {
375 return;
378 hvf_set_dirty_tracking(section, 1);
381 static void hvf_log_stop(MemoryListener *listener,
382 MemoryRegionSection *section, int old, int new)
384 if (new != 0) {
385 return;
388 hvf_set_dirty_tracking(section, 0);
391 static void hvf_log_sync(MemoryListener *listener,
392 MemoryRegionSection *section)
395 * sync of dirty pages is handled elsewhere; just make sure we keep
396 * tracking the region.
398 hvf_set_dirty_tracking(section, 1);
401 static void hvf_region_add(MemoryListener *listener,
402 MemoryRegionSection *section)
404 hvf_set_phys_mem(section, true);
407 static void hvf_region_del(MemoryListener *listener,
408 MemoryRegionSection *section)
410 hvf_set_phys_mem(section, false);
413 static MemoryListener hvf_memory_listener = {
414 .priority = 10,
415 .region_add = hvf_region_add,
416 .region_del = hvf_region_del,
417 .log_start = hvf_log_start,
418 .log_stop = hvf_log_stop,
419 .log_sync = hvf_log_sync,
422 void hvf_reset_vcpu(CPUState *cpu) {
424 /* TODO: this shouldn't be needed; there is already a call to
425 * cpu_synchronize_all_post_reset in vl.c
427 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
428 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
429 macvm_set_cr0(cpu->hvf_fd, 0x60000010);
431 wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
432 wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
433 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
435 /* set VMCS guest state fields */
436 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
437 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
438 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
439 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
441 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
442 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
443 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
444 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
446 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
447 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
448 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
449 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
451 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
452 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
453 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
454 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
456 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
457 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
458 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
459 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
461 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
462 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
463 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
464 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
466 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
467 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
468 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
469 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
471 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
472 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
473 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
474 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
476 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
477 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
479 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
480 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
482 /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
483 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
485 wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
486 wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
487 wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
488 wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
489 wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
490 wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
491 wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
492 wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
493 wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
494 wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
496 for (int i = 0; i < 8; i++) {
497 wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
500 hv_vm_sync_tsc(0);
501 hv_vcpu_invalidate_tlb(cpu->hvf_fd);
502 hv_vcpu_flush(cpu->hvf_fd);
505 void hvf_vcpu_destroy(CPUState *cpu)
507 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
508 assert_hvf_ok(ret);
511 static void dummy_signal(int sig)
515 int hvf_init_vcpu(CPUState *cpu)
518 X86CPU *x86cpu = X86_CPU(cpu);
519 CPUX86State *env = &x86cpu->env;
520 int r;
522 /* init cpu signals */
523 sigset_t set;
524 struct sigaction sigact;
526 memset(&sigact, 0, sizeof(sigact));
527 sigact.sa_handler = dummy_signal;
528 sigaction(SIG_IPI, &sigact, NULL);
530 pthread_sigmask(SIG_BLOCK, NULL, &set);
531 sigdelset(&set, SIG_IPI);
533 init_emu();
534 init_decoder();
536 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
537 env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
539 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
540 cpu->vcpu_dirty = 1;
541 assert_hvf_ok(r);
543 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
544 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
545 abort();
547 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
548 &hvf_state->hvf_caps->vmx_cap_procbased)) {
549 abort();
551 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
552 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
553 abort();
555 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
556 &hvf_state->hvf_caps->vmx_cap_entry)) {
557 abort();
560 /* set VMCS control fields */
561 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
562 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
563 VMCS_PIN_BASED_CTLS_EXTINT |
564 VMCS_PIN_BASED_CTLS_NMI |
565 VMCS_PIN_BASED_CTLS_VNMI));
566 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
567 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
568 VMCS_PRI_PROC_BASED_CTLS_HLT |
569 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
570 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
571 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
572 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
573 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
574 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
575 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
577 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
578 0));
579 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
581 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
583 x86cpu = X86_CPU(cpu);
584 x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
586 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
587 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
588 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
589 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
590 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
591 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
592 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
593 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
594 /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
595 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
596 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
597 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
599 return 0;
602 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
604 X86CPU *x86_cpu = X86_CPU(cpu);
605 CPUX86State *env = &x86_cpu->env;
607 env->exception_nr = -1;
608 env->exception_pending = 0;
609 env->exception_injected = 0;
610 env->interrupt_injected = -1;
611 env->nmi_injected = false;
612 if (idtvec_info & VMCS_IDT_VEC_VALID) {
613 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
614 case VMCS_IDT_VEC_HWINTR:
615 case VMCS_IDT_VEC_SWINTR:
616 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
617 break;
618 case VMCS_IDT_VEC_NMI:
619 env->nmi_injected = true;
620 break;
621 case VMCS_IDT_VEC_HWEXCEPTION:
622 case VMCS_IDT_VEC_SWEXCEPTION:
623 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
624 env->exception_injected = 1;
625 break;
626 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
627 default:
628 abort();
630 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
631 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
632 env->ins_len = ins_len;
634 if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
635 env->has_error_code = true;
636 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
639 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
640 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
641 env->hflags2 |= HF2_NMI_MASK;
642 } else {
643 env->hflags2 &= ~HF2_NMI_MASK;
645 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
646 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
647 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
648 env->hflags |= HF_INHIBIT_IRQ_MASK;
649 } else {
650 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
654 int hvf_vcpu_exec(CPUState *cpu)
656 X86CPU *x86_cpu = X86_CPU(cpu);
657 CPUX86State *env = &x86_cpu->env;
658 int ret = 0;
659 uint64_t rip = 0;
661 if (hvf_process_events(cpu)) {
662 return EXCP_HLT;
665 do {
666 if (cpu->vcpu_dirty) {
667 hvf_put_registers(cpu);
668 cpu->vcpu_dirty = false;
671 if (hvf_inject_interrupts(cpu)) {
672 return EXCP_INTERRUPT;
674 vmx_update_tpr(cpu);
676 qemu_mutex_unlock_iothread();
677 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
678 qemu_mutex_lock_iothread();
679 return EXCP_HLT;
682 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
683 assert_hvf_ok(r);
685 /* handle VMEXIT */
686 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
687 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
688 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
689 VMCS_EXIT_INSTRUCTION_LENGTH);
691 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
693 hvf_store_events(cpu, ins_len, idtvec_info);
694 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
695 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
696 env->eflags = RFLAGS(env);
698 qemu_mutex_lock_iothread();
700 update_apic_tpr(cpu);
701 current_cpu = cpu;
703 ret = 0;
704 switch (exit_reason) {
705 case EXIT_REASON_HLT: {
706 macvm_set_rip(cpu, rip + ins_len);
707 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
708 (EFLAGS(env) & IF_MASK))
709 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
710 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
711 cpu->halted = 1;
712 ret = EXCP_HLT;
713 break;
715 ret = EXCP_INTERRUPT;
716 break;
718 case EXIT_REASON_MWAIT: {
719 ret = EXCP_INTERRUPT;
720 break;
722 /* Need to check if MMIO or unmmaped fault */
723 case EXIT_REASON_EPT_FAULT:
725 hvf_slot *slot;
726 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
728 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
729 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
730 vmx_set_nmi_blocking(cpu);
733 slot = hvf_find_overlap_slot(gpa, gpa);
734 /* mmio */
735 if (ept_emulation_fault(slot, gpa, exit_qual)) {
736 struct x86_decode decode;
738 load_regs(cpu);
739 env->hvf_emul->fetch_rip = rip;
741 decode_instruction(env, &decode);
742 exec_instruction(env, &decode);
743 store_regs(cpu);
744 break;
746 break;
748 case EXIT_REASON_INOUT:
750 uint32_t in = (exit_qual & 8) != 0;
751 uint32_t size = (exit_qual & 7) + 1;
752 uint32_t string = (exit_qual & 16) != 0;
753 uint32_t port = exit_qual >> 16;
754 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
756 if (!string && in) {
757 uint64_t val = 0;
758 load_regs(cpu);
759 hvf_handle_io(env, port, &val, 0, size, 1);
760 if (size == 1) {
761 AL(env) = val;
762 } else if (size == 2) {
763 AX(env) = val;
764 } else if (size == 4) {
765 RAX(env) = (uint32_t)val;
766 } else {
767 RAX(env) = (uint64_t)val;
769 RIP(env) += ins_len;
770 store_regs(cpu);
771 break;
772 } else if (!string && !in) {
773 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
774 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
775 macvm_set_rip(cpu, rip + ins_len);
776 break;
778 struct x86_decode decode;
780 load_regs(cpu);
781 env->hvf_emul->fetch_rip = rip;
783 decode_instruction(env, &decode);
784 assert(ins_len == decode.len);
785 exec_instruction(env, &decode);
786 store_regs(cpu);
788 break;
790 case EXIT_REASON_CPUID: {
791 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
792 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
793 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
794 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
796 cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
798 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
799 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
800 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
801 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
803 macvm_set_rip(cpu, rip + ins_len);
804 break;
806 case EXIT_REASON_XSETBV: {
807 X86CPU *x86_cpu = X86_CPU(cpu);
808 CPUX86State *env = &x86_cpu->env;
809 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
810 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
811 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
813 if (ecx) {
814 macvm_set_rip(cpu, rip + ins_len);
815 break;
817 env->xcr0 = ((uint64_t)edx << 32) | eax;
818 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
819 macvm_set_rip(cpu, rip + ins_len);
820 break;
822 case EXIT_REASON_INTR_WINDOW:
823 vmx_clear_int_window_exiting(cpu);
824 ret = EXCP_INTERRUPT;
825 break;
826 case EXIT_REASON_NMI_WINDOW:
827 vmx_clear_nmi_window_exiting(cpu);
828 ret = EXCP_INTERRUPT;
829 break;
830 case EXIT_REASON_EXT_INTR:
831 /* force exit and allow io handling */
832 ret = EXCP_INTERRUPT;
833 break;
834 case EXIT_REASON_RDMSR:
835 case EXIT_REASON_WRMSR:
837 load_regs(cpu);
838 if (exit_reason == EXIT_REASON_RDMSR) {
839 simulate_rdmsr(cpu);
840 } else {
841 simulate_wrmsr(cpu);
843 RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
844 store_regs(cpu);
845 break;
847 case EXIT_REASON_CR_ACCESS: {
848 int cr;
849 int reg;
851 load_regs(cpu);
852 cr = exit_qual & 15;
853 reg = (exit_qual >> 8) & 15;
855 switch (cr) {
856 case 0x0: {
857 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
858 break;
860 case 4: {
861 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
862 break;
864 case 8: {
865 X86CPU *x86_cpu = X86_CPU(cpu);
866 if (exit_qual & 0x10) {
867 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
868 } else {
869 int tpr = RRX(env, reg);
870 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
871 ret = EXCP_INTERRUPT;
873 break;
875 default:
876 error_report("Unrecognized CR %d", cr);
877 abort();
879 RIP(env) += ins_len;
880 store_regs(cpu);
881 break;
883 case EXIT_REASON_APIC_ACCESS: { /* TODO */
884 struct x86_decode decode;
886 load_regs(cpu);
887 env->hvf_emul->fetch_rip = rip;
889 decode_instruction(env, &decode);
890 exec_instruction(env, &decode);
891 store_regs(cpu);
892 break;
894 case EXIT_REASON_TPR: {
895 ret = 1;
896 break;
898 case EXIT_REASON_TASK_SWITCH: {
899 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
900 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
901 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
902 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
903 & VMCS_INTR_T_MASK);
904 break;
906 case EXIT_REASON_TRIPLE_FAULT: {
907 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
908 ret = EXCP_INTERRUPT;
909 break;
911 case EXIT_REASON_RDPMC:
912 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
913 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
914 macvm_set_rip(cpu, rip + ins_len);
915 break;
916 case VMX_REASON_VMCALL:
917 env->exception_nr = EXCP0D_GPF;
918 env->exception_injected = 1;
919 env->has_error_code = true;
920 env->error_code = 0;
921 break;
922 default:
923 error_report("%llx: unhandled exit %llx", rip, exit_reason);
925 } while (ret == 0);
927 return ret;
930 bool hvf_allowed;
932 static int hvf_accel_init(MachineState *ms)
934 int x;
935 hv_return_t ret;
936 HVFState *s;
938 ret = hv_vm_create(HV_VM_DEFAULT);
939 assert_hvf_ok(ret);
941 s = g_new0(HVFState, 1);
943 s->num_slots = 32;
944 for (x = 0; x < s->num_slots; ++x) {
945 s->slots[x].size = 0;
946 s->slots[x].slot_id = x;
949 hvf_state = s;
950 cpu_interrupt_handler = hvf_handle_interrupt;
951 memory_listener_register(&hvf_memory_listener, &address_space_memory);
952 return 0;
955 static void hvf_accel_class_init(ObjectClass *oc, void *data)
957 AccelClass *ac = ACCEL_CLASS(oc);
958 ac->name = "HVF";
959 ac->init_machine = hvf_accel_init;
960 ac->allowed = &hvf_allowed;
963 static const TypeInfo hvf_accel_type = {
964 .name = TYPE_HVF_ACCEL,
965 .parent = TYPE_ACCEL,
966 .class_init = hvf_accel_class_init,
969 static void hvf_type_init(void)
971 type_register_static(&hvf_accel_type);
974 type_init(hvf_type_init);