Include hw/boards.h a bit less
[qemu/ar7.git] / hw / arm / smmuv3.c
blob0ccc77239008c759d65659c35f2ef89ebd39244d
1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/irq.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-core.h"
25 #include "hw/pci/pci.h"
26 #include "exec/address-spaces.h"
27 #include "cpu.h"
28 #include "trace.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
33 #include "hw/arm/smmuv3.h"
34 #include "smmuv3-internal.h"
36 /**
37 * smmuv3_trigger_irq - pulse @irq if enabled and update
38 * GERROR register in case of GERROR interrupt
40 * @irq: irq type
41 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
43 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
44 uint32_t gerror_mask)
47 bool pulse = false;
49 switch (irq) {
50 case SMMU_IRQ_EVTQ:
51 pulse = smmuv3_eventq_irq_enabled(s);
52 break;
53 case SMMU_IRQ_PRIQ:
54 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
55 break;
56 case SMMU_IRQ_CMD_SYNC:
57 pulse = true;
58 break;
59 case SMMU_IRQ_GERROR:
61 uint32_t pending = s->gerror ^ s->gerrorn;
62 uint32_t new_gerrors = ~pending & gerror_mask;
64 if (!new_gerrors) {
65 /* only toggle non pending errors */
66 return;
68 s->gerror ^= new_gerrors;
69 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
71 pulse = smmuv3_gerror_irq_enabled(s);
72 break;
75 if (pulse) {
76 trace_smmuv3_trigger_irq(irq);
77 qemu_irq_pulse(s->irq[irq]);
81 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
83 uint32_t pending = s->gerror ^ s->gerrorn;
84 uint32_t toggled = s->gerrorn ^ new_gerrorn;
86 if (toggled & ~pending) {
87 qemu_log_mask(LOG_GUEST_ERROR,
88 "guest toggles non pending errors = 0x%x\n",
89 toggled & ~pending);
93 * We do not raise any error in case guest toggles bits corresponding
94 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
96 s->gerrorn = new_gerrorn;
98 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
101 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
103 dma_addr_t addr = Q_CONS_ENTRY(q);
105 return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
108 static MemTxResult queue_write(SMMUQueue *q, void *data)
110 dma_addr_t addr = Q_PROD_ENTRY(q);
111 MemTxResult ret;
113 ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
114 if (ret != MEMTX_OK) {
115 return ret;
118 queue_prod_incr(q);
119 return MEMTX_OK;
122 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
124 SMMUQueue *q = &s->eventq;
125 MemTxResult r;
127 if (!smmuv3_eventq_enabled(s)) {
128 return MEMTX_ERROR;
131 if (smmuv3_q_full(q)) {
132 return MEMTX_ERROR;
135 r = queue_write(q, evt);
136 if (r != MEMTX_OK) {
137 return r;
140 if (!smmuv3_q_empty(q)) {
141 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
143 return MEMTX_OK;
146 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
148 Evt evt = {};
149 MemTxResult r;
151 if (!smmuv3_eventq_enabled(s)) {
152 return;
155 EVT_SET_TYPE(&evt, info->type);
156 EVT_SET_SID(&evt, info->sid);
158 switch (info->type) {
159 case SMMU_EVT_NONE:
160 return;
161 case SMMU_EVT_F_UUT:
162 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
163 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
164 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
165 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
166 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
167 EVT_SET_IND(&evt, info->u.f_uut.ind);
168 break;
169 case SMMU_EVT_C_BAD_STREAMID:
170 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
171 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
172 break;
173 case SMMU_EVT_F_STE_FETCH:
174 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
175 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
176 EVT_SET_ADDR(&evt, info->u.f_ste_fetch.addr);
177 break;
178 case SMMU_EVT_C_BAD_STE:
179 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
180 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
181 break;
182 case SMMU_EVT_F_STREAM_DISABLED:
183 break;
184 case SMMU_EVT_F_TRANS_FORBIDDEN:
185 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
186 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
187 break;
188 case SMMU_EVT_C_BAD_SUBSTREAMID:
189 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
190 break;
191 case SMMU_EVT_F_CD_FETCH:
192 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
193 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
194 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
195 break;
196 case SMMU_EVT_C_BAD_CD:
197 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
198 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
199 break;
200 case SMMU_EVT_F_WALK_EABT:
201 case SMMU_EVT_F_TRANSLATION:
202 case SMMU_EVT_F_ADDR_SIZE:
203 case SMMU_EVT_F_ACCESS:
204 case SMMU_EVT_F_PERMISSION:
205 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
206 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
207 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
208 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
209 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
210 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
211 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
212 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
213 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
214 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
215 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
216 break;
217 case SMMU_EVT_F_CFG_CONFLICT:
218 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
219 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
220 break;
221 /* rest is not implemented */
222 case SMMU_EVT_F_BAD_ATS_TREQ:
223 case SMMU_EVT_F_TLB_CONFLICT:
224 case SMMU_EVT_E_PAGE_REQ:
225 default:
226 g_assert_not_reached();
229 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
230 r = smmuv3_write_eventq(s, &evt);
231 if (r != MEMTX_OK) {
232 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
234 info->recorded = true;
237 static void smmuv3_init_regs(SMMUv3State *s)
240 * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
241 * multi-level stream table
243 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
244 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
245 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
246 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
247 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
248 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
249 /* terminated transaction will always be aborted/error returned */
250 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
251 /* 2-level stream table supported */
252 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
254 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
255 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
256 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
258 /* 4K and 64K granule support */
259 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
260 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
261 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
263 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
264 s->cmdq.prod = 0;
265 s->cmdq.cons = 0;
266 s->cmdq.entry_size = sizeof(struct Cmd);
267 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
268 s->eventq.prod = 0;
269 s->eventq.cons = 0;
270 s->eventq.entry_size = sizeof(struct Evt);
272 s->features = 0;
273 s->sid_split = 0;
276 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
277 SMMUEventInfo *event)
279 int ret;
281 trace_smmuv3_get_ste(addr);
282 /* TODO: guarantee 64-bit single-copy atomicity */
283 ret = dma_memory_read(&address_space_memory, addr,
284 (void *)buf, sizeof(*buf));
285 if (ret != MEMTX_OK) {
286 qemu_log_mask(LOG_GUEST_ERROR,
287 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
288 event->type = SMMU_EVT_F_STE_FETCH;
289 event->u.f_ste_fetch.addr = addr;
290 return -EINVAL;
292 return 0;
296 /* @ssid > 0 not supported yet */
297 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
298 CD *buf, SMMUEventInfo *event)
300 dma_addr_t addr = STE_CTXPTR(ste);
301 int ret;
303 trace_smmuv3_get_cd(addr);
304 /* TODO: guarantee 64-bit single-copy atomicity */
305 ret = dma_memory_read(&address_space_memory, addr,
306 (void *)buf, sizeof(*buf));
307 if (ret != MEMTX_OK) {
308 qemu_log_mask(LOG_GUEST_ERROR,
309 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
310 event->type = SMMU_EVT_F_CD_FETCH;
311 event->u.f_ste_fetch.addr = addr;
312 return -EINVAL;
314 return 0;
317 /* Returns < 0 in case of invalid STE, 0 otherwise */
318 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
319 STE *ste, SMMUEventInfo *event)
321 uint32_t config;
323 if (!STE_VALID(ste)) {
324 goto bad_ste;
327 config = STE_CONFIG(ste);
329 if (STE_CFG_ABORT(config)) {
330 cfg->aborted = true;
331 return 0;
334 if (STE_CFG_BYPASS(config)) {
335 cfg->bypassed = true;
336 return 0;
339 if (STE_CFG_S2_ENABLED(config)) {
340 qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
341 goto bad_ste;
344 if (STE_S1CDMAX(ste) != 0) {
345 qemu_log_mask(LOG_UNIMP,
346 "SMMUv3 does not support multiple context descriptors yet\n");
347 goto bad_ste;
350 if (STE_S1STALLD(ste)) {
351 qemu_log_mask(LOG_UNIMP,
352 "SMMUv3 S1 stalling fault model not allowed yet\n");
353 goto bad_ste;
355 return 0;
357 bad_ste:
358 event->type = SMMU_EVT_C_BAD_STE;
359 return -EINVAL;
363 * smmu_find_ste - Return the stream table entry associated
364 * to the sid
366 * @s: smmuv3 handle
367 * @sid: stream ID
368 * @ste: returned stream table entry
369 * @event: handle to an event info
371 * Supports linear and 2-level stream table
372 * Return 0 on success, -EINVAL otherwise
374 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
375 SMMUEventInfo *event)
377 dma_addr_t addr;
378 int ret;
380 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
381 /* Check SID range */
382 if (sid > (1 << SMMU_IDR1_SIDSIZE)) {
383 event->type = SMMU_EVT_C_BAD_STREAMID;
384 return -EINVAL;
386 if (s->features & SMMU_FEATURE_2LVL_STE) {
387 int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
388 dma_addr_t strtab_base, l1ptr, l2ptr;
389 STEDesc l1std;
391 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK;
392 l1_ste_offset = sid >> s->sid_split;
393 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
394 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
395 /* TODO: guarantee 64-bit single-copy atomicity */
396 ret = dma_memory_read(&address_space_memory, l1ptr,
397 (uint8_t *)&l1std, sizeof(l1std));
398 if (ret != MEMTX_OK) {
399 qemu_log_mask(LOG_GUEST_ERROR,
400 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
401 event->type = SMMU_EVT_F_STE_FETCH;
402 event->u.f_ste_fetch.addr = l1ptr;
403 return -EINVAL;
406 span = L1STD_SPAN(&l1std);
408 if (!span) {
409 /* l2ptr is not valid */
410 qemu_log_mask(LOG_GUEST_ERROR,
411 "invalid sid=%d (L1STD span=0)\n", sid);
412 event->type = SMMU_EVT_C_BAD_STREAMID;
413 return -EINVAL;
415 max_l2_ste = (1 << span) - 1;
416 l2ptr = l1std_l2ptr(&l1std);
417 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
418 l2ptr, l2_ste_offset, max_l2_ste);
419 if (l2_ste_offset > max_l2_ste) {
420 qemu_log_mask(LOG_GUEST_ERROR,
421 "l2_ste_offset=%d > max_l2_ste=%d\n",
422 l2_ste_offset, max_l2_ste);
423 event->type = SMMU_EVT_C_BAD_STE;
424 return -EINVAL;
426 addr = l2ptr + l2_ste_offset * sizeof(*ste);
427 } else {
428 addr = s->strtab_base + sid * sizeof(*ste);
431 if (smmu_get_ste(s, addr, ste, event)) {
432 return -EINVAL;
435 return 0;
438 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
440 int ret = -EINVAL;
441 int i;
443 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
444 goto bad_cd;
446 if (!CD_A(cd)) {
447 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
449 if (CD_S(cd)) {
450 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
452 if (CD_HA(cd) || CD_HD(cd)) {
453 goto bad_cd; /* HTTU = 0 */
456 /* we support only those at the moment */
457 cfg->aa64 = true;
458 cfg->stage = 1;
460 cfg->oas = oas2bits(CD_IPS(cd));
461 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
462 cfg->tbi = CD_TBI(cd);
463 cfg->asid = CD_ASID(cd);
465 trace_smmuv3_decode_cd(cfg->oas);
467 /* decode data dependent on TT */
468 for (i = 0; i <= 1; i++) {
469 int tg, tsz;
470 SMMUTransTableInfo *tt = &cfg->tt[i];
472 cfg->tt[i].disabled = CD_EPD(cd, i);
473 if (cfg->tt[i].disabled) {
474 continue;
477 tsz = CD_TSZ(cd, i);
478 if (tsz < 16 || tsz > 39) {
479 goto bad_cd;
482 tg = CD_TG(cd, i);
483 tt->granule_sz = tg2granule(tg, i);
484 if ((tt->granule_sz != 12 && tt->granule_sz != 16) || CD_ENDI(cd)) {
485 goto bad_cd;
488 tt->tsz = tsz;
489 tt->ttb = CD_TTB(cd, i);
490 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
491 goto bad_cd;
493 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz);
496 event->record_trans_faults = CD_R(cd);
498 return 0;
500 bad_cd:
501 event->type = SMMU_EVT_C_BAD_CD;
502 return ret;
506 * smmuv3_decode_config - Prepare the translation configuration
507 * for the @mr iommu region
508 * @mr: iommu memory region the translation config must be prepared for
509 * @cfg: output translation configuration which is populated through
510 * the different configuration decoding steps
511 * @event: must be zero'ed by the caller
513 * return < 0 in case of config decoding error (@event is filled
514 * accordingly). Return 0 otherwise.
516 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
517 SMMUEventInfo *event)
519 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
520 uint32_t sid = smmu_get_sid(sdev);
521 SMMUv3State *s = sdev->smmu;
522 int ret;
523 STE ste;
524 CD cd;
526 ret = smmu_find_ste(s, sid, &ste, event);
527 if (ret) {
528 return ret;
531 ret = decode_ste(s, cfg, &ste, event);
532 if (ret) {
533 return ret;
536 if (cfg->aborted || cfg->bypassed) {
537 return 0;
540 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
541 if (ret) {
542 return ret;
545 return decode_cd(cfg, &cd, event);
549 * smmuv3_get_config - Look up for a cached copy of configuration data for
550 * @sdev and on cache miss performs a configuration structure decoding from
551 * guest RAM.
553 * @sdev: SMMUDevice handle
554 * @event: output event info
556 * The configuration cache contains data resulting from both STE and CD
557 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
558 * by the SMMUDevice handle.
560 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
562 SMMUv3State *s = sdev->smmu;
563 SMMUState *bc = &s->smmu_state;
564 SMMUTransCfg *cfg;
566 cfg = g_hash_table_lookup(bc->configs, sdev);
567 if (cfg) {
568 sdev->cfg_cache_hits++;
569 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
570 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
571 100 * sdev->cfg_cache_hits /
572 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
573 } else {
574 sdev->cfg_cache_misses++;
575 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
576 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
577 100 * sdev->cfg_cache_hits /
578 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
579 cfg = g_new0(SMMUTransCfg, 1);
581 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
582 g_hash_table_insert(bc->configs, sdev, cfg);
583 } else {
584 g_free(cfg);
585 cfg = NULL;
588 return cfg;
591 static void smmuv3_flush_config(SMMUDevice *sdev)
593 SMMUv3State *s = sdev->smmu;
594 SMMUState *bc = &s->smmu_state;
596 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
597 g_hash_table_remove(bc->configs, sdev);
600 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
601 IOMMUAccessFlags flag, int iommu_idx)
603 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
604 SMMUv3State *s = sdev->smmu;
605 uint32_t sid = smmu_get_sid(sdev);
606 SMMUEventInfo event = {.type = SMMU_EVT_NONE, .sid = sid};
607 SMMUPTWEventInfo ptw_info = {};
608 SMMUTranslationStatus status;
609 SMMUState *bs = ARM_SMMU(s);
610 uint64_t page_mask, aligned_addr;
611 IOMMUTLBEntry *cached_entry = NULL;
612 SMMUTransTableInfo *tt;
613 SMMUTransCfg *cfg = NULL;
614 IOMMUTLBEntry entry = {
615 .target_as = &address_space_memory,
616 .iova = addr,
617 .translated_addr = addr,
618 .addr_mask = ~(hwaddr)0,
619 .perm = IOMMU_NONE,
621 SMMUIOTLBKey key, *new_key;
623 qemu_mutex_lock(&s->mutex);
625 if (!smmu_enabled(s)) {
626 status = SMMU_TRANS_DISABLE;
627 goto epilogue;
630 cfg = smmuv3_get_config(sdev, &event);
631 if (!cfg) {
632 status = SMMU_TRANS_ERROR;
633 goto epilogue;
636 if (cfg->aborted) {
637 status = SMMU_TRANS_ABORT;
638 goto epilogue;
641 if (cfg->bypassed) {
642 status = SMMU_TRANS_BYPASS;
643 goto epilogue;
646 tt = select_tt(cfg, addr);
647 if (!tt) {
648 if (event.record_trans_faults) {
649 event.type = SMMU_EVT_F_TRANSLATION;
650 event.u.f_translation.addr = addr;
651 event.u.f_translation.rnw = flag & 0x1;
653 status = SMMU_TRANS_ERROR;
654 goto epilogue;
657 page_mask = (1ULL << (tt->granule_sz)) - 1;
658 aligned_addr = addr & ~page_mask;
660 key.asid = cfg->asid;
661 key.iova = aligned_addr;
663 cached_entry = g_hash_table_lookup(bs->iotlb, &key);
664 if (cached_entry) {
665 cfg->iotlb_hits++;
666 trace_smmu_iotlb_cache_hit(cfg->asid, aligned_addr,
667 cfg->iotlb_hits, cfg->iotlb_misses,
668 100 * cfg->iotlb_hits /
669 (cfg->iotlb_hits + cfg->iotlb_misses));
670 if ((flag & IOMMU_WO) && !(cached_entry->perm & IOMMU_WO)) {
671 status = SMMU_TRANS_ERROR;
672 if (event.record_trans_faults) {
673 event.type = SMMU_EVT_F_PERMISSION;
674 event.u.f_permission.addr = addr;
675 event.u.f_permission.rnw = flag & 0x1;
677 } else {
678 status = SMMU_TRANS_SUCCESS;
680 goto epilogue;
683 cfg->iotlb_misses++;
684 trace_smmu_iotlb_cache_miss(cfg->asid, addr & ~page_mask,
685 cfg->iotlb_hits, cfg->iotlb_misses,
686 100 * cfg->iotlb_hits /
687 (cfg->iotlb_hits + cfg->iotlb_misses));
689 if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
690 smmu_iotlb_inv_all(bs);
693 cached_entry = g_new0(IOMMUTLBEntry, 1);
695 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
696 g_free(cached_entry);
697 switch (ptw_info.type) {
698 case SMMU_PTW_ERR_WALK_EABT:
699 event.type = SMMU_EVT_F_WALK_EABT;
700 event.u.f_walk_eabt.addr = addr;
701 event.u.f_walk_eabt.rnw = flag & 0x1;
702 event.u.f_walk_eabt.class = 0x1;
703 event.u.f_walk_eabt.addr2 = ptw_info.addr;
704 break;
705 case SMMU_PTW_ERR_TRANSLATION:
706 if (event.record_trans_faults) {
707 event.type = SMMU_EVT_F_TRANSLATION;
708 event.u.f_translation.addr = addr;
709 event.u.f_translation.rnw = flag & 0x1;
711 break;
712 case SMMU_PTW_ERR_ADDR_SIZE:
713 if (event.record_trans_faults) {
714 event.type = SMMU_EVT_F_ADDR_SIZE;
715 event.u.f_addr_size.addr = addr;
716 event.u.f_addr_size.rnw = flag & 0x1;
718 break;
719 case SMMU_PTW_ERR_ACCESS:
720 if (event.record_trans_faults) {
721 event.type = SMMU_EVT_F_ACCESS;
722 event.u.f_access.addr = addr;
723 event.u.f_access.rnw = flag & 0x1;
725 break;
726 case SMMU_PTW_ERR_PERMISSION:
727 if (event.record_trans_faults) {
728 event.type = SMMU_EVT_F_PERMISSION;
729 event.u.f_permission.addr = addr;
730 event.u.f_permission.rnw = flag & 0x1;
732 break;
733 default:
734 g_assert_not_reached();
736 status = SMMU_TRANS_ERROR;
737 } else {
738 new_key = g_new0(SMMUIOTLBKey, 1);
739 new_key->asid = cfg->asid;
740 new_key->iova = aligned_addr;
741 g_hash_table_insert(bs->iotlb, new_key, cached_entry);
742 status = SMMU_TRANS_SUCCESS;
745 epilogue:
746 qemu_mutex_unlock(&s->mutex);
747 switch (status) {
748 case SMMU_TRANS_SUCCESS:
749 entry.perm = flag;
750 entry.translated_addr = cached_entry->translated_addr +
751 (addr & page_mask);
752 entry.addr_mask = cached_entry->addr_mask;
753 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
754 entry.translated_addr, entry.perm);
755 break;
756 case SMMU_TRANS_DISABLE:
757 entry.perm = flag;
758 entry.addr_mask = ~TARGET_PAGE_MASK;
759 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
760 entry.perm);
761 break;
762 case SMMU_TRANS_BYPASS:
763 entry.perm = flag;
764 entry.addr_mask = ~TARGET_PAGE_MASK;
765 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
766 entry.perm);
767 break;
768 case SMMU_TRANS_ABORT:
769 /* no event is recorded on abort */
770 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
771 entry.perm);
772 break;
773 case SMMU_TRANS_ERROR:
774 qemu_log_mask(LOG_GUEST_ERROR,
775 "%s translation failed for iova=0x%"PRIx64"(%s)\n",
776 mr->parent_obj.name, addr, smmu_event_string(event.type));
777 smmuv3_record_event(s, &event);
778 break;
781 return entry;
785 * smmuv3_notify_iova - call the notifier @n for a given
786 * @asid and @iova tuple.
788 * @mr: IOMMU mr region handle
789 * @n: notifier to be called
790 * @asid: address space ID or negative value if we don't care
791 * @iova: iova
793 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
794 IOMMUNotifier *n,
795 int asid,
796 dma_addr_t iova)
798 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
799 SMMUEventInfo event = {};
800 SMMUTransTableInfo *tt;
801 SMMUTransCfg *cfg;
802 IOMMUTLBEntry entry;
804 cfg = smmuv3_get_config(sdev, &event);
805 if (!cfg) {
806 qemu_log_mask(LOG_GUEST_ERROR,
807 "%s error decoding the configuration for iommu mr=%s\n",
808 __func__, mr->parent_obj.name);
809 return;
812 if (asid >= 0 && cfg->asid != asid) {
813 return;
816 tt = select_tt(cfg, iova);
817 if (!tt) {
818 return;
821 entry.target_as = &address_space_memory;
822 entry.iova = iova;
823 entry.addr_mask = (1 << tt->granule_sz) - 1;
824 entry.perm = IOMMU_NONE;
826 memory_region_notify_one(n, &entry);
829 /* invalidate an asid/iova tuple in all mr's */
830 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova)
832 SMMUDevice *sdev;
834 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
835 IOMMUMemoryRegion *mr = &sdev->iommu;
836 IOMMUNotifier *n;
838 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova);
840 IOMMU_NOTIFIER_FOREACH(n, mr) {
841 smmuv3_notify_iova(mr, n, asid, iova);
846 static int smmuv3_cmdq_consume(SMMUv3State *s)
848 SMMUState *bs = ARM_SMMU(s);
849 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
850 SMMUQueue *q = &s->cmdq;
851 SMMUCommandType type = 0;
853 if (!smmuv3_cmdq_enabled(s)) {
854 return 0;
857 * some commands depend on register values, typically CR0. In case those
858 * register values change while handling the command, spec says it
859 * is UNPREDICTABLE whether the command is interpreted under the new
860 * or old value.
863 while (!smmuv3_q_empty(q)) {
864 uint32_t pending = s->gerror ^ s->gerrorn;
865 Cmd cmd;
867 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
868 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
870 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
871 break;
874 if (queue_read(q, &cmd) != MEMTX_OK) {
875 cmd_error = SMMU_CERROR_ABT;
876 break;
879 type = CMD_TYPE(&cmd);
881 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
883 qemu_mutex_lock(&s->mutex);
884 switch (type) {
885 case SMMU_CMD_SYNC:
886 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
887 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
889 break;
890 case SMMU_CMD_PREFETCH_CONFIG:
891 case SMMU_CMD_PREFETCH_ADDR:
892 break;
893 case SMMU_CMD_CFGI_STE:
895 uint32_t sid = CMD_SID(&cmd);
896 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
897 SMMUDevice *sdev;
899 if (CMD_SSEC(&cmd)) {
900 cmd_error = SMMU_CERROR_ILL;
901 break;
904 if (!mr) {
905 break;
908 trace_smmuv3_cmdq_cfgi_ste(sid);
909 sdev = container_of(mr, SMMUDevice, iommu);
910 smmuv3_flush_config(sdev);
912 break;
914 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
916 uint32_t start = CMD_SID(&cmd), end, i;
917 uint8_t range = CMD_STE_RANGE(&cmd);
919 if (CMD_SSEC(&cmd)) {
920 cmd_error = SMMU_CERROR_ILL;
921 break;
924 end = start + (1 << (range + 1)) - 1;
925 trace_smmuv3_cmdq_cfgi_ste_range(start, end);
927 for (i = start; i <= end; i++) {
928 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, i);
929 SMMUDevice *sdev;
931 if (!mr) {
932 continue;
934 sdev = container_of(mr, SMMUDevice, iommu);
935 smmuv3_flush_config(sdev);
937 break;
939 case SMMU_CMD_CFGI_CD:
940 case SMMU_CMD_CFGI_CD_ALL:
942 uint32_t sid = CMD_SID(&cmd);
943 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
944 SMMUDevice *sdev;
946 if (CMD_SSEC(&cmd)) {
947 cmd_error = SMMU_CERROR_ILL;
948 break;
951 if (!mr) {
952 break;
955 trace_smmuv3_cmdq_cfgi_cd(sid);
956 sdev = container_of(mr, SMMUDevice, iommu);
957 smmuv3_flush_config(sdev);
958 break;
960 case SMMU_CMD_TLBI_NH_ASID:
962 uint16_t asid = CMD_ASID(&cmd);
964 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
965 smmu_inv_notifiers_all(&s->smmu_state);
966 smmu_iotlb_inv_asid(bs, asid);
967 break;
969 case SMMU_CMD_TLBI_NH_ALL:
970 case SMMU_CMD_TLBI_NSNH_ALL:
971 trace_smmuv3_cmdq_tlbi_nh();
972 smmu_inv_notifiers_all(&s->smmu_state);
973 smmu_iotlb_inv_all(bs);
974 break;
975 case SMMU_CMD_TLBI_NH_VAA:
977 dma_addr_t addr = CMD_ADDR(&cmd);
978 uint16_t vmid = CMD_VMID(&cmd);
980 trace_smmuv3_cmdq_tlbi_nh_vaa(vmid, addr);
981 smmuv3_inv_notifiers_iova(bs, -1, addr);
982 smmu_iotlb_inv_all(bs);
983 break;
985 case SMMU_CMD_TLBI_NH_VA:
987 uint16_t asid = CMD_ASID(&cmd);
988 uint16_t vmid = CMD_VMID(&cmd);
989 dma_addr_t addr = CMD_ADDR(&cmd);
990 bool leaf = CMD_LEAF(&cmd);
992 trace_smmuv3_cmdq_tlbi_nh_va(vmid, asid, addr, leaf);
993 smmuv3_inv_notifiers_iova(bs, asid, addr);
994 smmu_iotlb_inv_iova(bs, asid, addr);
995 break;
997 case SMMU_CMD_TLBI_EL3_ALL:
998 case SMMU_CMD_TLBI_EL3_VA:
999 case SMMU_CMD_TLBI_EL2_ALL:
1000 case SMMU_CMD_TLBI_EL2_ASID:
1001 case SMMU_CMD_TLBI_EL2_VA:
1002 case SMMU_CMD_TLBI_EL2_VAA:
1003 case SMMU_CMD_TLBI_S12_VMALL:
1004 case SMMU_CMD_TLBI_S2_IPA:
1005 case SMMU_CMD_ATC_INV:
1006 case SMMU_CMD_PRI_RESP:
1007 case SMMU_CMD_RESUME:
1008 case SMMU_CMD_STALL_TERM:
1009 trace_smmuv3_unhandled_cmd(type);
1010 break;
1011 default:
1012 cmd_error = SMMU_CERROR_ILL;
1013 qemu_log_mask(LOG_GUEST_ERROR,
1014 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1015 break;
1017 qemu_mutex_unlock(&s->mutex);
1018 if (cmd_error) {
1019 break;
1022 * We only increment the cons index after the completion of
1023 * the command. We do that because the SYNC returns immediately
1024 * and does not check the completion of previous commands
1026 queue_cons_incr(q);
1029 if (cmd_error) {
1030 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1031 smmu_write_cmdq_err(s, cmd_error);
1032 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1035 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1036 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1038 return 0;
1041 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1042 uint64_t data, MemTxAttrs attrs)
1044 switch (offset) {
1045 case A_GERROR_IRQ_CFG0:
1046 s->gerror_irq_cfg0 = data;
1047 return MEMTX_OK;
1048 case A_STRTAB_BASE:
1049 s->strtab_base = data;
1050 return MEMTX_OK;
1051 case A_CMDQ_BASE:
1052 s->cmdq.base = data;
1053 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1054 if (s->cmdq.log2size > SMMU_CMDQS) {
1055 s->cmdq.log2size = SMMU_CMDQS;
1057 return MEMTX_OK;
1058 case A_EVENTQ_BASE:
1059 s->eventq.base = data;
1060 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1061 if (s->eventq.log2size > SMMU_EVENTQS) {
1062 s->eventq.log2size = SMMU_EVENTQS;
1064 return MEMTX_OK;
1065 case A_EVENTQ_IRQ_CFG0:
1066 s->eventq_irq_cfg0 = data;
1067 return MEMTX_OK;
1068 default:
1069 qemu_log_mask(LOG_UNIMP,
1070 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1071 __func__, offset);
1072 return MEMTX_OK;
1076 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1077 uint64_t data, MemTxAttrs attrs)
1079 switch (offset) {
1080 case A_CR0:
1081 s->cr[0] = data;
1082 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1083 /* in case the command queue has been enabled */
1084 smmuv3_cmdq_consume(s);
1085 return MEMTX_OK;
1086 case A_CR1:
1087 s->cr[1] = data;
1088 return MEMTX_OK;
1089 case A_CR2:
1090 s->cr[2] = data;
1091 return MEMTX_OK;
1092 case A_IRQ_CTRL:
1093 s->irq_ctrl = data;
1094 return MEMTX_OK;
1095 case A_GERRORN:
1096 smmuv3_write_gerrorn(s, data);
1098 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1099 * be processed again
1101 smmuv3_cmdq_consume(s);
1102 return MEMTX_OK;
1103 case A_GERROR_IRQ_CFG0: /* 64b */
1104 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1105 return MEMTX_OK;
1106 case A_GERROR_IRQ_CFG0 + 4:
1107 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1108 return MEMTX_OK;
1109 case A_GERROR_IRQ_CFG1:
1110 s->gerror_irq_cfg1 = data;
1111 return MEMTX_OK;
1112 case A_GERROR_IRQ_CFG2:
1113 s->gerror_irq_cfg2 = data;
1114 return MEMTX_OK;
1115 case A_STRTAB_BASE: /* 64b */
1116 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1117 return MEMTX_OK;
1118 case A_STRTAB_BASE + 4:
1119 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1120 return MEMTX_OK;
1121 case A_STRTAB_BASE_CFG:
1122 s->strtab_base_cfg = data;
1123 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1124 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1125 s->features |= SMMU_FEATURE_2LVL_STE;
1127 return MEMTX_OK;
1128 case A_CMDQ_BASE: /* 64b */
1129 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1130 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1131 if (s->cmdq.log2size > SMMU_CMDQS) {
1132 s->cmdq.log2size = SMMU_CMDQS;
1134 return MEMTX_OK;
1135 case A_CMDQ_BASE + 4: /* 64b */
1136 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1137 return MEMTX_OK;
1138 case A_CMDQ_PROD:
1139 s->cmdq.prod = data;
1140 smmuv3_cmdq_consume(s);
1141 return MEMTX_OK;
1142 case A_CMDQ_CONS:
1143 s->cmdq.cons = data;
1144 return MEMTX_OK;
1145 case A_EVENTQ_BASE: /* 64b */
1146 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1147 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1148 if (s->eventq.log2size > SMMU_EVENTQS) {
1149 s->eventq.log2size = SMMU_EVENTQS;
1151 return MEMTX_OK;
1152 case A_EVENTQ_BASE + 4:
1153 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1154 return MEMTX_OK;
1155 case A_EVENTQ_PROD:
1156 s->eventq.prod = data;
1157 return MEMTX_OK;
1158 case A_EVENTQ_CONS:
1159 s->eventq.cons = data;
1160 return MEMTX_OK;
1161 case A_EVENTQ_IRQ_CFG0: /* 64b */
1162 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1163 return MEMTX_OK;
1164 case A_EVENTQ_IRQ_CFG0 + 4:
1165 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1166 return MEMTX_OK;
1167 case A_EVENTQ_IRQ_CFG1:
1168 s->eventq_irq_cfg1 = data;
1169 return MEMTX_OK;
1170 case A_EVENTQ_IRQ_CFG2:
1171 s->eventq_irq_cfg2 = data;
1172 return MEMTX_OK;
1173 default:
1174 qemu_log_mask(LOG_UNIMP,
1175 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1176 __func__, offset);
1177 return MEMTX_OK;
1181 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1182 unsigned size, MemTxAttrs attrs)
1184 SMMUState *sys = opaque;
1185 SMMUv3State *s = ARM_SMMUV3(sys);
1186 MemTxResult r;
1188 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1189 offset &= ~0x10000;
1191 switch (size) {
1192 case 8:
1193 r = smmu_writell(s, offset, data, attrs);
1194 break;
1195 case 4:
1196 r = smmu_writel(s, offset, data, attrs);
1197 break;
1198 default:
1199 r = MEMTX_ERROR;
1200 break;
1203 trace_smmuv3_write_mmio(offset, data, size, r);
1204 return r;
1207 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1208 uint64_t *data, MemTxAttrs attrs)
1210 switch (offset) {
1211 case A_GERROR_IRQ_CFG0:
1212 *data = s->gerror_irq_cfg0;
1213 return MEMTX_OK;
1214 case A_STRTAB_BASE:
1215 *data = s->strtab_base;
1216 return MEMTX_OK;
1217 case A_CMDQ_BASE:
1218 *data = s->cmdq.base;
1219 return MEMTX_OK;
1220 case A_EVENTQ_BASE:
1221 *data = s->eventq.base;
1222 return MEMTX_OK;
1223 default:
1224 *data = 0;
1225 qemu_log_mask(LOG_UNIMP,
1226 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1227 __func__, offset);
1228 return MEMTX_OK;
1232 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1233 uint64_t *data, MemTxAttrs attrs)
1235 switch (offset) {
1236 case A_IDREGS ... A_IDREGS + 0x2f:
1237 *data = smmuv3_idreg(offset - A_IDREGS);
1238 return MEMTX_OK;
1239 case A_IDR0 ... A_IDR5:
1240 *data = s->idr[(offset - A_IDR0) / 4];
1241 return MEMTX_OK;
1242 case A_IIDR:
1243 *data = s->iidr;
1244 return MEMTX_OK;
1245 case A_CR0:
1246 *data = s->cr[0];
1247 return MEMTX_OK;
1248 case A_CR0ACK:
1249 *data = s->cr0ack;
1250 return MEMTX_OK;
1251 case A_CR1:
1252 *data = s->cr[1];
1253 return MEMTX_OK;
1254 case A_CR2:
1255 *data = s->cr[2];
1256 return MEMTX_OK;
1257 case A_STATUSR:
1258 *data = s->statusr;
1259 return MEMTX_OK;
1260 case A_IRQ_CTRL:
1261 case A_IRQ_CTRL_ACK:
1262 *data = s->irq_ctrl;
1263 return MEMTX_OK;
1264 case A_GERROR:
1265 *data = s->gerror;
1266 return MEMTX_OK;
1267 case A_GERRORN:
1268 *data = s->gerrorn;
1269 return MEMTX_OK;
1270 case A_GERROR_IRQ_CFG0: /* 64b */
1271 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1272 return MEMTX_OK;
1273 case A_GERROR_IRQ_CFG0 + 4:
1274 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1275 return MEMTX_OK;
1276 case A_GERROR_IRQ_CFG1:
1277 *data = s->gerror_irq_cfg1;
1278 return MEMTX_OK;
1279 case A_GERROR_IRQ_CFG2:
1280 *data = s->gerror_irq_cfg2;
1281 return MEMTX_OK;
1282 case A_STRTAB_BASE: /* 64b */
1283 *data = extract64(s->strtab_base, 0, 32);
1284 return MEMTX_OK;
1285 case A_STRTAB_BASE + 4: /* 64b */
1286 *data = extract64(s->strtab_base, 32, 32);
1287 return MEMTX_OK;
1288 case A_STRTAB_BASE_CFG:
1289 *data = s->strtab_base_cfg;
1290 return MEMTX_OK;
1291 case A_CMDQ_BASE: /* 64b */
1292 *data = extract64(s->cmdq.base, 0, 32);
1293 return MEMTX_OK;
1294 case A_CMDQ_BASE + 4:
1295 *data = extract64(s->cmdq.base, 32, 32);
1296 return MEMTX_OK;
1297 case A_CMDQ_PROD:
1298 *data = s->cmdq.prod;
1299 return MEMTX_OK;
1300 case A_CMDQ_CONS:
1301 *data = s->cmdq.cons;
1302 return MEMTX_OK;
1303 case A_EVENTQ_BASE: /* 64b */
1304 *data = extract64(s->eventq.base, 0, 32);
1305 return MEMTX_OK;
1306 case A_EVENTQ_BASE + 4: /* 64b */
1307 *data = extract64(s->eventq.base, 32, 32);
1308 return MEMTX_OK;
1309 case A_EVENTQ_PROD:
1310 *data = s->eventq.prod;
1311 return MEMTX_OK;
1312 case A_EVENTQ_CONS:
1313 *data = s->eventq.cons;
1314 return MEMTX_OK;
1315 default:
1316 *data = 0;
1317 qemu_log_mask(LOG_UNIMP,
1318 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1319 __func__, offset);
1320 return MEMTX_OK;
1324 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1325 unsigned size, MemTxAttrs attrs)
1327 SMMUState *sys = opaque;
1328 SMMUv3State *s = ARM_SMMUV3(sys);
1329 MemTxResult r;
1331 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1332 offset &= ~0x10000;
1334 switch (size) {
1335 case 8:
1336 r = smmu_readll(s, offset, data, attrs);
1337 break;
1338 case 4:
1339 r = smmu_readl(s, offset, data, attrs);
1340 break;
1341 default:
1342 r = MEMTX_ERROR;
1343 break;
1346 trace_smmuv3_read_mmio(offset, *data, size, r);
1347 return r;
1350 static const MemoryRegionOps smmu_mem_ops = {
1351 .read_with_attrs = smmu_read_mmio,
1352 .write_with_attrs = smmu_write_mmio,
1353 .endianness = DEVICE_LITTLE_ENDIAN,
1354 .valid = {
1355 .min_access_size = 4,
1356 .max_access_size = 8,
1358 .impl = {
1359 .min_access_size = 4,
1360 .max_access_size = 8,
1364 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1366 int i;
1368 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1369 sysbus_init_irq(dev, &s->irq[i]);
1373 static void smmu_reset(DeviceState *dev)
1375 SMMUv3State *s = ARM_SMMUV3(dev);
1376 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1378 c->parent_reset(dev);
1380 smmuv3_init_regs(s);
1383 static void smmu_realize(DeviceState *d, Error **errp)
1385 SMMUState *sys = ARM_SMMU(d);
1386 SMMUv3State *s = ARM_SMMUV3(sys);
1387 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1388 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1389 Error *local_err = NULL;
1391 c->parent_realize(d, &local_err);
1392 if (local_err) {
1393 error_propagate(errp, local_err);
1394 return;
1397 qemu_mutex_init(&s->mutex);
1399 memory_region_init_io(&sys->iomem, OBJECT(s),
1400 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1402 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1404 sysbus_init_mmio(dev, &sys->iomem);
1406 smmu_init_irq(s, dev);
1409 static const VMStateDescription vmstate_smmuv3_queue = {
1410 .name = "smmuv3_queue",
1411 .version_id = 1,
1412 .minimum_version_id = 1,
1413 .fields = (VMStateField[]) {
1414 VMSTATE_UINT64(base, SMMUQueue),
1415 VMSTATE_UINT32(prod, SMMUQueue),
1416 VMSTATE_UINT32(cons, SMMUQueue),
1417 VMSTATE_UINT8(log2size, SMMUQueue),
1418 VMSTATE_END_OF_LIST(),
1422 static const VMStateDescription vmstate_smmuv3 = {
1423 .name = "smmuv3",
1424 .version_id = 1,
1425 .minimum_version_id = 1,
1426 .fields = (VMStateField[]) {
1427 VMSTATE_UINT32(features, SMMUv3State),
1428 VMSTATE_UINT8(sid_size, SMMUv3State),
1429 VMSTATE_UINT8(sid_split, SMMUv3State),
1431 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1432 VMSTATE_UINT32(cr0ack, SMMUv3State),
1433 VMSTATE_UINT32(statusr, SMMUv3State),
1434 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1435 VMSTATE_UINT32(gerror, SMMUv3State),
1436 VMSTATE_UINT32(gerrorn, SMMUv3State),
1437 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1438 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1439 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1440 VMSTATE_UINT64(strtab_base, SMMUv3State),
1441 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1442 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1443 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1444 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1446 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1447 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1449 VMSTATE_END_OF_LIST(),
1453 static void smmuv3_instance_init(Object *obj)
1455 /* Nothing much to do here as of now */
1458 static void smmuv3_class_init(ObjectClass *klass, void *data)
1460 DeviceClass *dc = DEVICE_CLASS(klass);
1461 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1463 dc->vmsd = &vmstate_smmuv3;
1464 device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1465 c->parent_realize = dc->realize;
1466 dc->realize = smmu_realize;
1469 static void smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1470 IOMMUNotifierFlag old,
1471 IOMMUNotifierFlag new)
1473 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1474 SMMUv3State *s3 = sdev->smmu;
1475 SMMUState *s = &(s3->smmu_state);
1477 if (new & IOMMU_NOTIFIER_MAP) {
1478 int bus_num = pci_bus_num(sdev->bus);
1479 PCIDevice *pcidev = pci_find_device(sdev->bus, bus_num, sdev->devfn);
1481 warn_report("SMMUv3 does not support notification on MAP: "
1482 "device %s will not function properly", pcidev->name);
1485 if (old == IOMMU_NOTIFIER_NONE) {
1486 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1487 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1488 } else if (new == IOMMU_NOTIFIER_NONE) {
1489 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1490 QLIST_REMOVE(sdev, next);
1494 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1495 void *data)
1497 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1499 imrc->translate = smmuv3_translate;
1500 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1503 static const TypeInfo smmuv3_type_info = {
1504 .name = TYPE_ARM_SMMUV3,
1505 .parent = TYPE_ARM_SMMU,
1506 .instance_size = sizeof(SMMUv3State),
1507 .instance_init = smmuv3_instance_init,
1508 .class_size = sizeof(SMMUv3Class),
1509 .class_init = smmuv3_class_init,
1512 static const TypeInfo smmuv3_iommu_memory_region_info = {
1513 .parent = TYPE_IOMMU_MEMORY_REGION,
1514 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1515 .class_init = smmuv3_iommu_memory_region_class_init,
1518 static void smmuv3_register_types(void)
1520 type_register(&smmuv3_type_info);
1521 type_register(&smmuv3_iommu_memory_region_info);
1524 type_init(smmuv3_register_types)