Include hw/boards.h a bit less
[qemu/ar7.git] / hw / arm / omap1.c
blobd28ad2b9ff914250d04eee6cb8f7b4844cb059f1
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/main-loop.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "hw/boards.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/arm/soc_dma.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "qemu/range.h"
38 #include "hw/sysbus.h"
39 #include "qemu/cutils.h"
40 #include "qemu/bcd.h"
42 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
44 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
45 funcname, 8 * sz, addr);
48 /* Should signal the TCMI/GPMC */
49 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
51 uint8_t ret;
53 omap_log_badwidth(__func__, addr, 1);
54 cpu_physical_memory_read(addr, &ret, 1);
55 return ret;
58 void omap_badwidth_write8(void *opaque, hwaddr addr,
59 uint32_t value)
61 uint8_t val8 = value;
63 omap_log_badwidth(__func__, addr, 1);
64 cpu_physical_memory_write(addr, &val8, 1);
67 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
69 uint16_t ret;
71 omap_log_badwidth(__func__, addr, 2);
72 cpu_physical_memory_read(addr, &ret, 2);
73 return ret;
76 void omap_badwidth_write16(void *opaque, hwaddr addr,
77 uint32_t value)
79 uint16_t val16 = value;
81 omap_log_badwidth(__func__, addr, 2);
82 cpu_physical_memory_write(addr, &val16, 2);
85 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
87 uint32_t ret;
89 omap_log_badwidth(__func__, addr, 4);
90 cpu_physical_memory_read(addr, &ret, 4);
91 return ret;
94 void omap_badwidth_write32(void *opaque, hwaddr addr,
95 uint32_t value)
97 omap_log_badwidth(__func__, addr, 4);
98 cpu_physical_memory_write(addr, &value, 4);
101 /* MPU OS timers */
102 struct omap_mpu_timer_s {
103 MemoryRegion iomem;
104 qemu_irq irq;
105 omap_clk clk;
106 uint32_t val;
107 int64_t time;
108 QEMUTimer *timer;
109 QEMUBH *tick;
110 int64_t rate;
111 int it_ena;
113 int enable;
114 int ptv;
115 int ar;
116 int st;
117 uint32_t reset_val;
120 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
122 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
124 if (timer->st && timer->enable && timer->rate)
125 return timer->val - muldiv64(distance >> (timer->ptv + 1),
126 timer->rate, NANOSECONDS_PER_SECOND);
127 else
128 return timer->val;
131 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
133 timer->val = omap_timer_read(timer);
134 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
137 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
139 int64_t expires;
141 if (timer->enable && timer->st && timer->rate) {
142 timer->val = timer->reset_val; /* Should skip this on clk enable */
143 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
144 NANOSECONDS_PER_SECOND, timer->rate);
146 /* If timer expiry would be sooner than in about 1 ms and
147 * auto-reload isn't set, then fire immediately. This is a hack
148 * to make systems like PalmOS run in acceptable time. PalmOS
149 * sets the interval to a very low value and polls the status bit
150 * in a busy loop when it wants to sleep just a couple of CPU
151 * ticks. */
152 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
153 timer_mod(timer->timer, timer->time + expires);
154 } else {
155 qemu_bh_schedule(timer->tick);
157 } else
158 timer_del(timer->timer);
161 static void omap_timer_fire(void *opaque)
163 struct omap_mpu_timer_s *timer = opaque;
165 if (!timer->ar) {
166 timer->val = 0;
167 timer->st = 0;
170 if (timer->it_ena)
171 /* Edge-triggered irq */
172 qemu_irq_pulse(timer->irq);
175 static void omap_timer_tick(void *opaque)
177 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
179 omap_timer_sync(timer);
180 omap_timer_fire(timer);
181 omap_timer_update(timer);
184 static void omap_timer_clk_update(void *opaque, int line, int on)
186 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
188 omap_timer_sync(timer);
189 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
190 omap_timer_update(timer);
193 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
195 omap_clk_adduser(timer->clk,
196 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
197 timer->rate = omap_clk_getrate(timer->clk);
200 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
201 unsigned size)
203 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
205 if (size != 4) {
206 return omap_badwidth_read32(opaque, addr);
209 switch (addr) {
210 case 0x00: /* CNTL_TIMER */
211 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
213 case 0x04: /* LOAD_TIM */
214 break;
216 case 0x08: /* READ_TIM */
217 return omap_timer_read(s);
220 OMAP_BAD_REG(addr);
221 return 0;
224 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
225 uint64_t value, unsigned size)
227 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
229 if (size != 4) {
230 omap_badwidth_write32(opaque, addr, value);
231 return;
234 switch (addr) {
235 case 0x00: /* CNTL_TIMER */
236 omap_timer_sync(s);
237 s->enable = (value >> 5) & 1;
238 s->ptv = (value >> 2) & 7;
239 s->ar = (value >> 1) & 1;
240 s->st = value & 1;
241 omap_timer_update(s);
242 return;
244 case 0x04: /* LOAD_TIM */
245 s->reset_val = value;
246 return;
248 case 0x08: /* READ_TIM */
249 OMAP_RO_REG(addr);
250 break;
252 default:
253 OMAP_BAD_REG(addr);
257 static const MemoryRegionOps omap_mpu_timer_ops = {
258 .read = omap_mpu_timer_read,
259 .write = omap_mpu_timer_write,
260 .endianness = DEVICE_LITTLE_ENDIAN,
263 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
265 timer_del(s->timer);
266 s->enable = 0;
267 s->reset_val = 31337;
268 s->val = 0;
269 s->ptv = 0;
270 s->ar = 0;
271 s->st = 0;
272 s->it_ena = 1;
275 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
276 hwaddr base,
277 qemu_irq irq, omap_clk clk)
279 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
281 s->irq = irq;
282 s->clk = clk;
283 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
284 s->tick = qemu_bh_new(omap_timer_fire, s);
285 omap_mpu_timer_reset(s);
286 omap_timer_clk_setup(s);
288 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
289 "omap-mpu-timer", 0x100);
291 memory_region_add_subregion(system_memory, base, &s->iomem);
293 return s;
296 /* Watchdog timer */
297 struct omap_watchdog_timer_s {
298 struct omap_mpu_timer_s timer;
299 MemoryRegion iomem;
300 uint8_t last_wr;
301 int mode;
302 int free;
303 int reset;
306 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
307 unsigned size)
309 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
311 if (size != 2) {
312 return omap_badwidth_read16(opaque, addr);
315 switch (addr) {
316 case 0x00: /* CNTL_TIMER */
317 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
318 (s->timer.st << 7) | (s->free << 1);
320 case 0x04: /* READ_TIMER */
321 return omap_timer_read(&s->timer);
323 case 0x08: /* TIMER_MODE */
324 return s->mode << 15;
327 OMAP_BAD_REG(addr);
328 return 0;
331 static void omap_wd_timer_write(void *opaque, hwaddr addr,
332 uint64_t value, unsigned size)
334 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
336 if (size != 2) {
337 omap_badwidth_write16(opaque, addr, value);
338 return;
341 switch (addr) {
342 case 0x00: /* CNTL_TIMER */
343 omap_timer_sync(&s->timer);
344 s->timer.ptv = (value >> 9) & 7;
345 s->timer.ar = (value >> 8) & 1;
346 s->timer.st = (value >> 7) & 1;
347 s->free = (value >> 1) & 1;
348 omap_timer_update(&s->timer);
349 break;
351 case 0x04: /* LOAD_TIMER */
352 s->timer.reset_val = value & 0xffff;
353 break;
355 case 0x08: /* TIMER_MODE */
356 if (!s->mode && ((value >> 15) & 1))
357 omap_clk_get(s->timer.clk);
358 s->mode |= (value >> 15) & 1;
359 if (s->last_wr == 0xf5) {
360 if ((value & 0xff) == 0xa0) {
361 if (s->mode) {
362 s->mode = 0;
363 omap_clk_put(s->timer.clk);
365 } else {
366 /* XXX: on T|E hardware somehow this has no effect,
367 * on Zire 71 it works as specified. */
368 s->reset = 1;
369 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
372 s->last_wr = value & 0xff;
373 break;
375 default:
376 OMAP_BAD_REG(addr);
380 static const MemoryRegionOps omap_wd_timer_ops = {
381 .read = omap_wd_timer_read,
382 .write = omap_wd_timer_write,
383 .endianness = DEVICE_NATIVE_ENDIAN,
386 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
388 timer_del(s->timer.timer);
389 if (!s->mode)
390 omap_clk_get(s->timer.clk);
391 s->mode = 1;
392 s->free = 1;
393 s->reset = 0;
394 s->timer.enable = 1;
395 s->timer.it_ena = 1;
396 s->timer.reset_val = 0xffff;
397 s->timer.val = 0;
398 s->timer.st = 0;
399 s->timer.ptv = 0;
400 s->timer.ar = 0;
401 omap_timer_update(&s->timer);
404 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
405 hwaddr base,
406 qemu_irq irq, omap_clk clk)
408 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
410 s->timer.irq = irq;
411 s->timer.clk = clk;
412 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
413 omap_wd_timer_reset(s);
414 omap_timer_clk_setup(&s->timer);
416 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
417 "omap-wd-timer", 0x100);
418 memory_region_add_subregion(memory, base, &s->iomem);
420 return s;
423 /* 32-kHz timer */
424 struct omap_32khz_timer_s {
425 struct omap_mpu_timer_s timer;
426 MemoryRegion iomem;
429 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
430 unsigned size)
432 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
433 int offset = addr & OMAP_MPUI_REG_MASK;
435 if (size != 4) {
436 return omap_badwidth_read32(opaque, addr);
439 switch (offset) {
440 case 0x00: /* TVR */
441 return s->timer.reset_val;
443 case 0x04: /* TCR */
444 return omap_timer_read(&s->timer);
446 case 0x08: /* CR */
447 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
449 default:
450 break;
452 OMAP_BAD_REG(addr);
453 return 0;
456 static void omap_os_timer_write(void *opaque, hwaddr addr,
457 uint64_t value, unsigned size)
459 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
460 int offset = addr & OMAP_MPUI_REG_MASK;
462 if (size != 4) {
463 omap_badwidth_write32(opaque, addr, value);
464 return;
467 switch (offset) {
468 case 0x00: /* TVR */
469 s->timer.reset_val = value & 0x00ffffff;
470 break;
472 case 0x04: /* TCR */
473 OMAP_RO_REG(addr);
474 break;
476 case 0x08: /* CR */
477 s->timer.ar = (value >> 3) & 1;
478 s->timer.it_ena = (value >> 2) & 1;
479 if (s->timer.st != (value & 1) || (value & 2)) {
480 omap_timer_sync(&s->timer);
481 s->timer.enable = value & 1;
482 s->timer.st = value & 1;
483 omap_timer_update(&s->timer);
485 break;
487 default:
488 OMAP_BAD_REG(addr);
492 static const MemoryRegionOps omap_os_timer_ops = {
493 .read = omap_os_timer_read,
494 .write = omap_os_timer_write,
495 .endianness = DEVICE_NATIVE_ENDIAN,
498 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
500 timer_del(s->timer.timer);
501 s->timer.enable = 0;
502 s->timer.it_ena = 0;
503 s->timer.reset_val = 0x00ffffff;
504 s->timer.val = 0;
505 s->timer.st = 0;
506 s->timer.ptv = 0;
507 s->timer.ar = 1;
510 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
511 hwaddr base,
512 qemu_irq irq, omap_clk clk)
514 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
516 s->timer.irq = irq;
517 s->timer.clk = clk;
518 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
519 omap_os_timer_reset(s);
520 omap_timer_clk_setup(&s->timer);
522 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
523 "omap-os-timer", 0x800);
524 memory_region_add_subregion(memory, base, &s->iomem);
526 return s;
529 /* Ultra Low-Power Device Module */
530 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
531 unsigned size)
533 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
534 uint16_t ret;
536 if (size != 2) {
537 return omap_badwidth_read16(opaque, addr);
540 switch (addr) {
541 case 0x14: /* IT_STATUS */
542 ret = s->ulpd_pm_regs[addr >> 2];
543 s->ulpd_pm_regs[addr >> 2] = 0;
544 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
545 return ret;
547 case 0x18: /* Reserved */
548 case 0x1c: /* Reserved */
549 case 0x20: /* Reserved */
550 case 0x28: /* Reserved */
551 case 0x2c: /* Reserved */
552 OMAP_BAD_REG(addr);
553 /* fall through */
554 case 0x00: /* COUNTER_32_LSB */
555 case 0x04: /* COUNTER_32_MSB */
556 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
557 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
558 case 0x10: /* GAUGING_CTRL */
559 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
560 case 0x30: /* CLOCK_CTRL */
561 case 0x34: /* SOFT_REQ */
562 case 0x38: /* COUNTER_32_FIQ */
563 case 0x3c: /* DPLL_CTRL */
564 case 0x40: /* STATUS_REQ */
565 /* XXX: check clk::usecount state for every clock */
566 case 0x48: /* LOCL_TIME */
567 case 0x4c: /* APLL_CTRL */
568 case 0x50: /* POWER_CTRL */
569 return s->ulpd_pm_regs[addr >> 2];
572 OMAP_BAD_REG(addr);
573 return 0;
576 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
577 uint16_t diff, uint16_t value)
579 if (diff & (1 << 4)) /* USB_MCLK_EN */
580 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
581 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
582 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
585 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
586 uint16_t diff, uint16_t value)
588 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
589 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
590 if (diff & (1 << 1)) /* SOFT_COM_REQ */
591 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
592 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
593 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
594 if (diff & (1 << 3)) /* SOFT_USB_REQ */
595 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
598 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
599 uint64_t value, unsigned size)
601 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
602 int64_t now, ticks;
603 int div, mult;
604 static const int bypass_div[4] = { 1, 2, 4, 4 };
605 uint16_t diff;
607 if (size != 2) {
608 omap_badwidth_write16(opaque, addr, value);
609 return;
612 switch (addr) {
613 case 0x00: /* COUNTER_32_LSB */
614 case 0x04: /* COUNTER_32_MSB */
615 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
616 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
617 case 0x14: /* IT_STATUS */
618 case 0x40: /* STATUS_REQ */
619 OMAP_RO_REG(addr);
620 break;
622 case 0x10: /* GAUGING_CTRL */
623 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
624 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
625 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
627 if (value & 1)
628 s->ulpd_gauge_start = now;
629 else {
630 now -= s->ulpd_gauge_start;
632 /* 32-kHz ticks */
633 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
634 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
635 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
636 if (ticks >> 32) /* OVERFLOW_32K */
637 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
639 /* High frequency ticks */
640 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
641 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
642 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
643 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
644 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
646 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
647 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
650 s->ulpd_pm_regs[addr >> 2] = value;
651 break;
653 case 0x18: /* Reserved */
654 case 0x1c: /* Reserved */
655 case 0x20: /* Reserved */
656 case 0x28: /* Reserved */
657 case 0x2c: /* Reserved */
658 OMAP_BAD_REG(addr);
659 /* fall through */
660 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
661 case 0x38: /* COUNTER_32_FIQ */
662 case 0x48: /* LOCL_TIME */
663 case 0x50: /* POWER_CTRL */
664 s->ulpd_pm_regs[addr >> 2] = value;
665 break;
667 case 0x30: /* CLOCK_CTRL */
668 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
669 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
670 omap_ulpd_clk_update(s, diff, value);
671 break;
673 case 0x34: /* SOFT_REQ */
674 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
675 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
676 omap_ulpd_req_update(s, diff, value);
677 break;
679 case 0x3c: /* DPLL_CTRL */
680 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
681 * omitted altogether, probably a typo. */
682 /* This register has identical semantics with DPLL(1:3) control
683 * registers, see omap_dpll_write() */
684 diff = s->ulpd_pm_regs[addr >> 2] & value;
685 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
686 if (diff & (0x3ff << 2)) {
687 if (value & (1 << 4)) { /* PLL_ENABLE */
688 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
689 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
690 } else {
691 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
692 mult = 1;
694 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
697 /* Enter the desired mode. */
698 s->ulpd_pm_regs[addr >> 2] =
699 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
700 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
702 /* Act as if the lock is restored. */
703 s->ulpd_pm_regs[addr >> 2] |= 2;
704 break;
706 case 0x4c: /* APLL_CTRL */
707 diff = s->ulpd_pm_regs[addr >> 2] & value;
708 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
709 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
710 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
711 (value & (1 << 0)) ? "apll" : "dpll4"));
712 break;
714 default:
715 OMAP_BAD_REG(addr);
719 static const MemoryRegionOps omap_ulpd_pm_ops = {
720 .read = omap_ulpd_pm_read,
721 .write = omap_ulpd_pm_write,
722 .endianness = DEVICE_NATIVE_ENDIAN,
725 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
727 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
728 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
729 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
730 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
731 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
732 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
733 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
734 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
735 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
736 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
737 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
738 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
739 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
740 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
741 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
742 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
743 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
744 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
745 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
746 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
747 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
748 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
749 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
752 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
753 hwaddr base,
754 struct omap_mpu_state_s *mpu)
756 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
757 "omap-ulpd-pm", 0x800);
758 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
759 omap_ulpd_pm_reset(mpu);
762 /* OMAP Pin Configuration */
763 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
764 unsigned size)
766 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
768 if (size != 4) {
769 return omap_badwidth_read32(opaque, addr);
772 switch (addr) {
773 case 0x00: /* FUNC_MUX_CTRL_0 */
774 case 0x04: /* FUNC_MUX_CTRL_1 */
775 case 0x08: /* FUNC_MUX_CTRL_2 */
776 return s->func_mux_ctrl[addr >> 2];
778 case 0x0c: /* COMP_MODE_CTRL_0 */
779 return s->comp_mode_ctrl[0];
781 case 0x10: /* FUNC_MUX_CTRL_3 */
782 case 0x14: /* FUNC_MUX_CTRL_4 */
783 case 0x18: /* FUNC_MUX_CTRL_5 */
784 case 0x1c: /* FUNC_MUX_CTRL_6 */
785 case 0x20: /* FUNC_MUX_CTRL_7 */
786 case 0x24: /* FUNC_MUX_CTRL_8 */
787 case 0x28: /* FUNC_MUX_CTRL_9 */
788 case 0x2c: /* FUNC_MUX_CTRL_A */
789 case 0x30: /* FUNC_MUX_CTRL_B */
790 case 0x34: /* FUNC_MUX_CTRL_C */
791 case 0x38: /* FUNC_MUX_CTRL_D */
792 return s->func_mux_ctrl[(addr >> 2) - 1];
794 case 0x40: /* PULL_DWN_CTRL_0 */
795 case 0x44: /* PULL_DWN_CTRL_1 */
796 case 0x48: /* PULL_DWN_CTRL_2 */
797 case 0x4c: /* PULL_DWN_CTRL_3 */
798 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
800 case 0x50: /* GATE_INH_CTRL_0 */
801 return s->gate_inh_ctrl[0];
803 case 0x60: /* VOLTAGE_CTRL_0 */
804 return s->voltage_ctrl[0];
806 case 0x70: /* TEST_DBG_CTRL_0 */
807 return s->test_dbg_ctrl[0];
809 case 0x80: /* MOD_CONF_CTRL_0 */
810 return s->mod_conf_ctrl[0];
813 OMAP_BAD_REG(addr);
814 return 0;
817 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
818 uint32_t diff, uint32_t value)
820 if (s->compat1509) {
821 if (diff & (1 << 9)) /* BLUETOOTH */
822 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
823 (~value >> 9) & 1);
824 if (diff & (1 << 7)) /* USB.CLKO */
825 omap_clk_onoff(omap_findclk(s, "usb.clko"),
826 (value >> 7) & 1);
830 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
831 uint32_t diff, uint32_t value)
833 if (s->compat1509) {
834 if (diff & (1U << 31)) {
835 /* MCBSP3_CLK_HIZ_DI */
836 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
838 if (diff & (1 << 1)) {
839 /* CLK32K */
840 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
845 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
846 uint32_t diff, uint32_t value)
848 if (diff & (1U << 31)) {
849 /* CONF_MOD_UART3_CLK_MODE_R */
850 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
851 omap_findclk(s, ((value >> 31) & 1) ?
852 "ck_48m" : "armper_ck"));
854 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
855 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
856 omap_findclk(s, ((value >> 30) & 1) ?
857 "ck_48m" : "armper_ck"));
858 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
859 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
860 omap_findclk(s, ((value >> 29) & 1) ?
861 "ck_48m" : "armper_ck"));
862 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
863 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
864 omap_findclk(s, ((value >> 23) & 1) ?
865 "ck_48m" : "armper_ck"));
866 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
867 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
868 omap_findclk(s, ((value >> 12) & 1) ?
869 "ck_48m" : "armper_ck"));
870 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
871 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
874 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
875 uint64_t value, unsigned size)
877 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
878 uint32_t diff;
880 if (size != 4) {
881 omap_badwidth_write32(opaque, addr, value);
882 return;
885 switch (addr) {
886 case 0x00: /* FUNC_MUX_CTRL_0 */
887 diff = s->func_mux_ctrl[addr >> 2] ^ value;
888 s->func_mux_ctrl[addr >> 2] = value;
889 omap_pin_funcmux0_update(s, diff, value);
890 return;
892 case 0x04: /* FUNC_MUX_CTRL_1 */
893 diff = s->func_mux_ctrl[addr >> 2] ^ value;
894 s->func_mux_ctrl[addr >> 2] = value;
895 omap_pin_funcmux1_update(s, diff, value);
896 return;
898 case 0x08: /* FUNC_MUX_CTRL_2 */
899 s->func_mux_ctrl[addr >> 2] = value;
900 return;
902 case 0x0c: /* COMP_MODE_CTRL_0 */
903 s->comp_mode_ctrl[0] = value;
904 s->compat1509 = (value != 0x0000eaef);
905 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
906 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
907 return;
909 case 0x10: /* FUNC_MUX_CTRL_3 */
910 case 0x14: /* FUNC_MUX_CTRL_4 */
911 case 0x18: /* FUNC_MUX_CTRL_5 */
912 case 0x1c: /* FUNC_MUX_CTRL_6 */
913 case 0x20: /* FUNC_MUX_CTRL_7 */
914 case 0x24: /* FUNC_MUX_CTRL_8 */
915 case 0x28: /* FUNC_MUX_CTRL_9 */
916 case 0x2c: /* FUNC_MUX_CTRL_A */
917 case 0x30: /* FUNC_MUX_CTRL_B */
918 case 0x34: /* FUNC_MUX_CTRL_C */
919 case 0x38: /* FUNC_MUX_CTRL_D */
920 s->func_mux_ctrl[(addr >> 2) - 1] = value;
921 return;
923 case 0x40: /* PULL_DWN_CTRL_0 */
924 case 0x44: /* PULL_DWN_CTRL_1 */
925 case 0x48: /* PULL_DWN_CTRL_2 */
926 case 0x4c: /* PULL_DWN_CTRL_3 */
927 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
928 return;
930 case 0x50: /* GATE_INH_CTRL_0 */
931 s->gate_inh_ctrl[0] = value;
932 return;
934 case 0x60: /* VOLTAGE_CTRL_0 */
935 s->voltage_ctrl[0] = value;
936 return;
938 case 0x70: /* TEST_DBG_CTRL_0 */
939 s->test_dbg_ctrl[0] = value;
940 return;
942 case 0x80: /* MOD_CONF_CTRL_0 */
943 diff = s->mod_conf_ctrl[0] ^ value;
944 s->mod_conf_ctrl[0] = value;
945 omap_pin_modconf1_update(s, diff, value);
946 return;
948 default:
949 OMAP_BAD_REG(addr);
953 static const MemoryRegionOps omap_pin_cfg_ops = {
954 .read = omap_pin_cfg_read,
955 .write = omap_pin_cfg_write,
956 .endianness = DEVICE_NATIVE_ENDIAN,
959 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
961 /* Start in Compatibility Mode. */
962 mpu->compat1509 = 1;
963 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
964 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
965 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
966 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
967 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
968 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
969 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
970 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
971 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
972 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
975 static void omap_pin_cfg_init(MemoryRegion *system_memory,
976 hwaddr base,
977 struct omap_mpu_state_s *mpu)
979 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
980 "omap-pin-cfg", 0x800);
981 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
982 omap_pin_cfg_reset(mpu);
985 /* Device Identification, Die Identification */
986 static uint64_t omap_id_read(void *opaque, hwaddr addr,
987 unsigned size)
989 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
991 if (size != 4) {
992 return omap_badwidth_read32(opaque, addr);
995 switch (addr) {
996 case 0xfffe1800: /* DIE_ID_LSB */
997 return 0xc9581f0e;
998 case 0xfffe1804: /* DIE_ID_MSB */
999 return 0xa8858bfa;
1001 case 0xfffe2000: /* PRODUCT_ID_LSB */
1002 return 0x00aaaafc;
1003 case 0xfffe2004: /* PRODUCT_ID_MSB */
1004 return 0xcafeb574;
1006 case 0xfffed400: /* JTAG_ID_LSB */
1007 switch (s->mpu_model) {
1008 case omap310:
1009 return 0x03310315;
1010 case omap1510:
1011 return 0x03310115;
1012 default:
1013 hw_error("%s: bad mpu model\n", __func__);
1015 break;
1017 case 0xfffed404: /* JTAG_ID_MSB */
1018 switch (s->mpu_model) {
1019 case omap310:
1020 return 0xfb57402f;
1021 case omap1510:
1022 return 0xfb47002f;
1023 default:
1024 hw_error("%s: bad mpu model\n", __func__);
1026 break;
1029 OMAP_BAD_REG(addr);
1030 return 0;
1033 static void omap_id_write(void *opaque, hwaddr addr,
1034 uint64_t value, unsigned size)
1036 if (size != 4) {
1037 omap_badwidth_write32(opaque, addr, value);
1038 return;
1041 OMAP_BAD_REG(addr);
1044 static const MemoryRegionOps omap_id_ops = {
1045 .read = omap_id_read,
1046 .write = omap_id_write,
1047 .endianness = DEVICE_NATIVE_ENDIAN,
1050 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1052 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1053 "omap-id", 0x100000000ULL);
1054 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1055 0xfffe1800, 0x800);
1056 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1057 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1058 0xfffed400, 0x100);
1059 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1060 if (!cpu_is_omap15xx(mpu)) {
1061 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1062 &mpu->id_iomem, 0xfffe2000, 0x800);
1063 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1067 /* MPUI Control (Dummy) */
1068 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1069 unsigned size)
1071 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1073 if (size != 4) {
1074 return omap_badwidth_read32(opaque, addr);
1077 switch (addr) {
1078 case 0x00: /* CTRL */
1079 return s->mpui_ctrl;
1080 case 0x04: /* DEBUG_ADDR */
1081 return 0x01ffffff;
1082 case 0x08: /* DEBUG_DATA */
1083 return 0xffffffff;
1084 case 0x0c: /* DEBUG_FLAG */
1085 return 0x00000800;
1086 case 0x10: /* STATUS */
1087 return 0x00000000;
1089 /* Not in OMAP310 */
1090 case 0x14: /* DSP_STATUS */
1091 case 0x18: /* DSP_BOOT_CONFIG */
1092 return 0x00000000;
1093 case 0x1c: /* DSP_MPUI_CONFIG */
1094 return 0x0000ffff;
1097 OMAP_BAD_REG(addr);
1098 return 0;
1101 static void omap_mpui_write(void *opaque, hwaddr addr,
1102 uint64_t value, unsigned size)
1104 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1106 if (size != 4) {
1107 omap_badwidth_write32(opaque, addr, value);
1108 return;
1111 switch (addr) {
1112 case 0x00: /* CTRL */
1113 s->mpui_ctrl = value & 0x007fffff;
1114 break;
1116 case 0x04: /* DEBUG_ADDR */
1117 case 0x08: /* DEBUG_DATA */
1118 case 0x0c: /* DEBUG_FLAG */
1119 case 0x10: /* STATUS */
1120 /* Not in OMAP310 */
1121 case 0x14: /* DSP_STATUS */
1122 OMAP_RO_REG(addr);
1123 break;
1124 case 0x18: /* DSP_BOOT_CONFIG */
1125 case 0x1c: /* DSP_MPUI_CONFIG */
1126 break;
1128 default:
1129 OMAP_BAD_REG(addr);
1133 static const MemoryRegionOps omap_mpui_ops = {
1134 .read = omap_mpui_read,
1135 .write = omap_mpui_write,
1136 .endianness = DEVICE_NATIVE_ENDIAN,
1139 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1141 s->mpui_ctrl = 0x0003ff1b;
1144 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1145 struct omap_mpu_state_s *mpu)
1147 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1148 "omap-mpui", 0x100);
1149 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1151 omap_mpui_reset(mpu);
1154 /* TIPB Bridges */
1155 struct omap_tipb_bridge_s {
1156 qemu_irq abort;
1157 MemoryRegion iomem;
1159 int width_intr;
1160 uint16_t control;
1161 uint16_t alloc;
1162 uint16_t buffer;
1163 uint16_t enh_control;
1166 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1167 unsigned size)
1169 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1171 if (size < 2) {
1172 return omap_badwidth_read16(opaque, addr);
1175 switch (addr) {
1176 case 0x00: /* TIPB_CNTL */
1177 return s->control;
1178 case 0x04: /* TIPB_BUS_ALLOC */
1179 return s->alloc;
1180 case 0x08: /* MPU_TIPB_CNTL */
1181 return s->buffer;
1182 case 0x0c: /* ENHANCED_TIPB_CNTL */
1183 return s->enh_control;
1184 case 0x10: /* ADDRESS_DBG */
1185 case 0x14: /* DATA_DEBUG_LOW */
1186 case 0x18: /* DATA_DEBUG_HIGH */
1187 return 0xffff;
1188 case 0x1c: /* DEBUG_CNTR_SIG */
1189 return 0x00f8;
1192 OMAP_BAD_REG(addr);
1193 return 0;
1196 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1197 uint64_t value, unsigned size)
1199 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1201 if (size < 2) {
1202 omap_badwidth_write16(opaque, addr, value);
1203 return;
1206 switch (addr) {
1207 case 0x00: /* TIPB_CNTL */
1208 s->control = value & 0xffff;
1209 break;
1211 case 0x04: /* TIPB_BUS_ALLOC */
1212 s->alloc = value & 0x003f;
1213 break;
1215 case 0x08: /* MPU_TIPB_CNTL */
1216 s->buffer = value & 0x0003;
1217 break;
1219 case 0x0c: /* ENHANCED_TIPB_CNTL */
1220 s->width_intr = !(value & 2);
1221 s->enh_control = value & 0x000f;
1222 break;
1224 case 0x10: /* ADDRESS_DBG */
1225 case 0x14: /* DATA_DEBUG_LOW */
1226 case 0x18: /* DATA_DEBUG_HIGH */
1227 case 0x1c: /* DEBUG_CNTR_SIG */
1228 OMAP_RO_REG(addr);
1229 break;
1231 default:
1232 OMAP_BAD_REG(addr);
1236 static const MemoryRegionOps omap_tipb_bridge_ops = {
1237 .read = omap_tipb_bridge_read,
1238 .write = omap_tipb_bridge_write,
1239 .endianness = DEVICE_NATIVE_ENDIAN,
1242 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1244 s->control = 0xffff;
1245 s->alloc = 0x0009;
1246 s->buffer = 0x0000;
1247 s->enh_control = 0x000f;
1250 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1251 MemoryRegion *memory, hwaddr base,
1252 qemu_irq abort_irq, omap_clk clk)
1254 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1256 s->abort = abort_irq;
1257 omap_tipb_bridge_reset(s);
1259 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1260 "omap-tipb-bridge", 0x100);
1261 memory_region_add_subregion(memory, base, &s->iomem);
1263 return s;
1266 /* Dummy Traffic Controller's Memory Interface */
1267 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1268 unsigned size)
1270 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1271 uint32_t ret;
1273 if (size != 4) {
1274 return omap_badwidth_read32(opaque, addr);
1277 switch (addr) {
1278 case 0x00: /* IMIF_PRIO */
1279 case 0x04: /* EMIFS_PRIO */
1280 case 0x08: /* EMIFF_PRIO */
1281 case 0x0c: /* EMIFS_CONFIG */
1282 case 0x10: /* EMIFS_CS0_CONFIG */
1283 case 0x14: /* EMIFS_CS1_CONFIG */
1284 case 0x18: /* EMIFS_CS2_CONFIG */
1285 case 0x1c: /* EMIFS_CS3_CONFIG */
1286 case 0x24: /* EMIFF_MRS */
1287 case 0x28: /* TIMEOUT1 */
1288 case 0x2c: /* TIMEOUT2 */
1289 case 0x30: /* TIMEOUT3 */
1290 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1291 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1292 return s->tcmi_regs[addr >> 2];
1294 case 0x20: /* EMIFF_SDRAM_CONFIG */
1295 ret = s->tcmi_regs[addr >> 2];
1296 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1297 /* XXX: We can try using the VGA_DIRTY flag for this */
1298 return ret;
1301 OMAP_BAD_REG(addr);
1302 return 0;
1305 static void omap_tcmi_write(void *opaque, hwaddr addr,
1306 uint64_t value, unsigned size)
1308 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1310 if (size != 4) {
1311 omap_badwidth_write32(opaque, addr, value);
1312 return;
1315 switch (addr) {
1316 case 0x00: /* IMIF_PRIO */
1317 case 0x04: /* EMIFS_PRIO */
1318 case 0x08: /* EMIFF_PRIO */
1319 case 0x10: /* EMIFS_CS0_CONFIG */
1320 case 0x14: /* EMIFS_CS1_CONFIG */
1321 case 0x18: /* EMIFS_CS2_CONFIG */
1322 case 0x1c: /* EMIFS_CS3_CONFIG */
1323 case 0x20: /* EMIFF_SDRAM_CONFIG */
1324 case 0x24: /* EMIFF_MRS */
1325 case 0x28: /* TIMEOUT1 */
1326 case 0x2c: /* TIMEOUT2 */
1327 case 0x30: /* TIMEOUT3 */
1328 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1329 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1330 s->tcmi_regs[addr >> 2] = value;
1331 break;
1332 case 0x0c: /* EMIFS_CONFIG */
1333 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1334 break;
1336 default:
1337 OMAP_BAD_REG(addr);
1341 static const MemoryRegionOps omap_tcmi_ops = {
1342 .read = omap_tcmi_read,
1343 .write = omap_tcmi_write,
1344 .endianness = DEVICE_NATIVE_ENDIAN,
1347 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1349 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1350 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1352 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1353 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1354 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1355 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1356 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1357 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1358 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1359 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1360 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1361 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1362 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1363 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1366 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1367 struct omap_mpu_state_s *mpu)
1369 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1370 "omap-tcmi", 0x100);
1371 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1372 omap_tcmi_reset(mpu);
1375 /* Digital phase-locked loops control */
1376 struct dpll_ctl_s {
1377 MemoryRegion iomem;
1378 uint16_t mode;
1379 omap_clk dpll;
1382 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1383 unsigned size)
1385 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1387 if (size != 2) {
1388 return omap_badwidth_read16(opaque, addr);
1391 if (addr == 0x00) /* CTL_REG */
1392 return s->mode;
1394 OMAP_BAD_REG(addr);
1395 return 0;
1398 static void omap_dpll_write(void *opaque, hwaddr addr,
1399 uint64_t value, unsigned size)
1401 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1402 uint16_t diff;
1403 static const int bypass_div[4] = { 1, 2, 4, 4 };
1404 int div, mult;
1406 if (size != 2) {
1407 omap_badwidth_write16(opaque, addr, value);
1408 return;
1411 if (addr == 0x00) { /* CTL_REG */
1412 /* See omap_ulpd_pm_write() too */
1413 diff = s->mode & value;
1414 s->mode = value & 0x2fff;
1415 if (diff & (0x3ff << 2)) {
1416 if (value & (1 << 4)) { /* PLL_ENABLE */
1417 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1418 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1419 } else {
1420 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1421 mult = 1;
1423 omap_clk_setrate(s->dpll, div, mult);
1426 /* Enter the desired mode. */
1427 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1429 /* Act as if the lock is restored. */
1430 s->mode |= 2;
1431 } else {
1432 OMAP_BAD_REG(addr);
1436 static const MemoryRegionOps omap_dpll_ops = {
1437 .read = omap_dpll_read,
1438 .write = omap_dpll_write,
1439 .endianness = DEVICE_NATIVE_ENDIAN,
1442 static void omap_dpll_reset(struct dpll_ctl_s *s)
1444 s->mode = 0x2002;
1445 omap_clk_setrate(s->dpll, 1, 1);
1448 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1449 hwaddr base, omap_clk clk)
1451 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1452 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1454 s->dpll = clk;
1455 omap_dpll_reset(s);
1457 memory_region_add_subregion(memory, base, &s->iomem);
1458 return s;
1461 /* MPU Clock/Reset/Power Mode Control */
1462 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1463 unsigned size)
1465 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1467 if (size != 2) {
1468 return omap_badwidth_read16(opaque, addr);
1471 switch (addr) {
1472 case 0x00: /* ARM_CKCTL */
1473 return s->clkm.arm_ckctl;
1475 case 0x04: /* ARM_IDLECT1 */
1476 return s->clkm.arm_idlect1;
1478 case 0x08: /* ARM_IDLECT2 */
1479 return s->clkm.arm_idlect2;
1481 case 0x0c: /* ARM_EWUPCT */
1482 return s->clkm.arm_ewupct;
1484 case 0x10: /* ARM_RSTCT1 */
1485 return s->clkm.arm_rstct1;
1487 case 0x14: /* ARM_RSTCT2 */
1488 return s->clkm.arm_rstct2;
1490 case 0x18: /* ARM_SYSST */
1491 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1493 case 0x1c: /* ARM_CKOUT1 */
1494 return s->clkm.arm_ckout1;
1496 case 0x20: /* ARM_CKOUT2 */
1497 break;
1500 OMAP_BAD_REG(addr);
1501 return 0;
1504 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1505 uint16_t diff, uint16_t value)
1507 omap_clk clk;
1509 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1510 if (value & (1 << 14))
1511 /* Reserved */;
1512 else {
1513 clk = omap_findclk(s, "arminth_ck");
1514 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1517 if (diff & (1 << 12)) { /* ARM_TIMXO */
1518 clk = omap_findclk(s, "armtim_ck");
1519 if (value & (1 << 12))
1520 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1521 else
1522 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1524 /* XXX: en_dspck */
1525 if (diff & (3 << 10)) { /* DSPMMUDIV */
1526 clk = omap_findclk(s, "dspmmu_ck");
1527 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1529 if (diff & (3 << 8)) { /* TCDIV */
1530 clk = omap_findclk(s, "tc_ck");
1531 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1533 if (diff & (3 << 6)) { /* DSPDIV */
1534 clk = omap_findclk(s, "dsp_ck");
1535 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1537 if (diff & (3 << 4)) { /* ARMDIV */
1538 clk = omap_findclk(s, "arm_ck");
1539 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1541 if (diff & (3 << 2)) { /* LCDDIV */
1542 clk = omap_findclk(s, "lcd_ck");
1543 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1545 if (diff & (3 << 0)) { /* PERDIV */
1546 clk = omap_findclk(s, "armper_ck");
1547 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1551 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1552 uint16_t diff, uint16_t value)
1554 omap_clk clk;
1556 if (value & (1 << 11)) { /* SETARM_IDLE */
1557 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1559 if (!(value & (1 << 10))) { /* WKUP_MODE */
1560 /* XXX: disable wakeup from IRQ */
1561 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1564 #define SET_CANIDLE(clock, bit) \
1565 if (diff & (1 << bit)) { \
1566 clk = omap_findclk(s, clock); \
1567 omap_clk_canidle(clk, (value >> bit) & 1); \
1569 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1570 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1571 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1572 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1573 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1574 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1575 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1576 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1577 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1578 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1579 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1580 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1581 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1582 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1585 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1586 uint16_t diff, uint16_t value)
1588 omap_clk clk;
1590 #define SET_ONOFF(clock, bit) \
1591 if (diff & (1 << bit)) { \
1592 clk = omap_findclk(s, clock); \
1593 omap_clk_onoff(clk, (value >> bit) & 1); \
1595 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1596 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1597 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1598 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1599 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1600 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1601 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1602 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1603 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1604 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1605 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1608 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1609 uint16_t diff, uint16_t value)
1611 omap_clk clk;
1613 if (diff & (3 << 4)) { /* TCLKOUT */
1614 clk = omap_findclk(s, "tclk_out");
1615 switch ((value >> 4) & 3) {
1616 case 1:
1617 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1618 omap_clk_onoff(clk, 1);
1619 break;
1620 case 2:
1621 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1622 omap_clk_onoff(clk, 1);
1623 break;
1624 default:
1625 omap_clk_onoff(clk, 0);
1628 if (diff & (3 << 2)) { /* DCLKOUT */
1629 clk = omap_findclk(s, "dclk_out");
1630 switch ((value >> 2) & 3) {
1631 case 0:
1632 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1633 break;
1634 case 1:
1635 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1636 break;
1637 case 2:
1638 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1639 break;
1640 case 3:
1641 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1642 break;
1645 if (diff & (3 << 0)) { /* ACLKOUT */
1646 clk = omap_findclk(s, "aclk_out");
1647 switch ((value >> 0) & 3) {
1648 case 1:
1649 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1650 omap_clk_onoff(clk, 1);
1651 break;
1652 case 2:
1653 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1654 omap_clk_onoff(clk, 1);
1655 break;
1656 case 3:
1657 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1658 omap_clk_onoff(clk, 1);
1659 break;
1660 default:
1661 omap_clk_onoff(clk, 0);
1666 static void omap_clkm_write(void *opaque, hwaddr addr,
1667 uint64_t value, unsigned size)
1669 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1670 uint16_t diff;
1671 omap_clk clk;
1672 static const char *clkschemename[8] = {
1673 "fully synchronous", "fully asynchronous", "synchronous scalable",
1674 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1677 if (size != 2) {
1678 omap_badwidth_write16(opaque, addr, value);
1679 return;
1682 switch (addr) {
1683 case 0x00: /* ARM_CKCTL */
1684 diff = s->clkm.arm_ckctl ^ value;
1685 s->clkm.arm_ckctl = value & 0x7fff;
1686 omap_clkm_ckctl_update(s, diff, value);
1687 return;
1689 case 0x04: /* ARM_IDLECT1 */
1690 diff = s->clkm.arm_idlect1 ^ value;
1691 s->clkm.arm_idlect1 = value & 0x0fff;
1692 omap_clkm_idlect1_update(s, diff, value);
1693 return;
1695 case 0x08: /* ARM_IDLECT2 */
1696 diff = s->clkm.arm_idlect2 ^ value;
1697 s->clkm.arm_idlect2 = value & 0x07ff;
1698 omap_clkm_idlect2_update(s, diff, value);
1699 return;
1701 case 0x0c: /* ARM_EWUPCT */
1702 s->clkm.arm_ewupct = value & 0x003f;
1703 return;
1705 case 0x10: /* ARM_RSTCT1 */
1706 diff = s->clkm.arm_rstct1 ^ value;
1707 s->clkm.arm_rstct1 = value & 0x0007;
1708 if (value & 9) {
1709 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1710 s->clkm.cold_start = 0xa;
1712 if (diff & ~value & 4) { /* DSP_RST */
1713 omap_mpui_reset(s);
1714 omap_tipb_bridge_reset(s->private_tipb);
1715 omap_tipb_bridge_reset(s->public_tipb);
1717 if (diff & 2) { /* DSP_EN */
1718 clk = omap_findclk(s, "dsp_ck");
1719 omap_clk_canidle(clk, (~value >> 1) & 1);
1721 return;
1723 case 0x14: /* ARM_RSTCT2 */
1724 s->clkm.arm_rstct2 = value & 0x0001;
1725 return;
1727 case 0x18: /* ARM_SYSST */
1728 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1729 s->clkm.clocking_scheme = (value >> 11) & 7;
1730 printf("%s: clocking scheme set to %s\n", __func__,
1731 clkschemename[s->clkm.clocking_scheme]);
1733 s->clkm.cold_start &= value & 0x3f;
1734 return;
1736 case 0x1c: /* ARM_CKOUT1 */
1737 diff = s->clkm.arm_ckout1 ^ value;
1738 s->clkm.arm_ckout1 = value & 0x003f;
1739 omap_clkm_ckout1_update(s, diff, value);
1740 return;
1742 case 0x20: /* ARM_CKOUT2 */
1743 default:
1744 OMAP_BAD_REG(addr);
1748 static const MemoryRegionOps omap_clkm_ops = {
1749 .read = omap_clkm_read,
1750 .write = omap_clkm_write,
1751 .endianness = DEVICE_NATIVE_ENDIAN,
1754 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1755 unsigned size)
1757 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1758 CPUState *cpu = CPU(s->cpu);
1760 if (size != 2) {
1761 return omap_badwidth_read16(opaque, addr);
1764 switch (addr) {
1765 case 0x04: /* DSP_IDLECT1 */
1766 return s->clkm.dsp_idlect1;
1768 case 0x08: /* DSP_IDLECT2 */
1769 return s->clkm.dsp_idlect2;
1771 case 0x14: /* DSP_RSTCT2 */
1772 return s->clkm.dsp_rstct2;
1774 case 0x18: /* DSP_SYSST */
1775 cpu = CPU(s->cpu);
1776 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1777 (cpu->halted << 6); /* Quite useless... */
1780 OMAP_BAD_REG(addr);
1781 return 0;
1784 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1785 uint16_t diff, uint16_t value)
1787 omap_clk clk;
1789 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1792 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1793 uint16_t diff, uint16_t value)
1795 omap_clk clk;
1797 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1800 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1801 uint64_t value, unsigned size)
1803 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1804 uint16_t diff;
1806 if (size != 2) {
1807 omap_badwidth_write16(opaque, addr, value);
1808 return;
1811 switch (addr) {
1812 case 0x04: /* DSP_IDLECT1 */
1813 diff = s->clkm.dsp_idlect1 ^ value;
1814 s->clkm.dsp_idlect1 = value & 0x01f7;
1815 omap_clkdsp_idlect1_update(s, diff, value);
1816 break;
1818 case 0x08: /* DSP_IDLECT2 */
1819 s->clkm.dsp_idlect2 = value & 0x0037;
1820 diff = s->clkm.dsp_idlect1 ^ value;
1821 omap_clkdsp_idlect2_update(s, diff, value);
1822 break;
1824 case 0x14: /* DSP_RSTCT2 */
1825 s->clkm.dsp_rstct2 = value & 0x0001;
1826 break;
1828 case 0x18: /* DSP_SYSST */
1829 s->clkm.cold_start &= value & 0x3f;
1830 break;
1832 default:
1833 OMAP_BAD_REG(addr);
1837 static const MemoryRegionOps omap_clkdsp_ops = {
1838 .read = omap_clkdsp_read,
1839 .write = omap_clkdsp_write,
1840 .endianness = DEVICE_NATIVE_ENDIAN,
1843 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1845 if (s->wdt && s->wdt->reset)
1846 s->clkm.cold_start = 0x6;
1847 s->clkm.clocking_scheme = 0;
1848 omap_clkm_ckctl_update(s, ~0, 0x3000);
1849 s->clkm.arm_ckctl = 0x3000;
1850 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1851 s->clkm.arm_idlect1 = 0x0400;
1852 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1853 s->clkm.arm_idlect2 = 0x0100;
1854 s->clkm.arm_ewupct = 0x003f;
1855 s->clkm.arm_rstct1 = 0x0000;
1856 s->clkm.arm_rstct2 = 0x0000;
1857 s->clkm.arm_ckout1 = 0x0015;
1858 s->clkm.dpll1_mode = 0x2002;
1859 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1860 s->clkm.dsp_idlect1 = 0x0040;
1861 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1862 s->clkm.dsp_idlect2 = 0x0000;
1863 s->clkm.dsp_rstct2 = 0x0000;
1866 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1867 hwaddr dsp_base, struct omap_mpu_state_s *s)
1869 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1870 "omap-clkm", 0x100);
1871 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1872 "omap-clkdsp", 0x1000);
1874 s->clkm.arm_idlect1 = 0x03ff;
1875 s->clkm.arm_idlect2 = 0x0100;
1876 s->clkm.dsp_idlect1 = 0x0002;
1877 omap_clkm_reset(s);
1878 s->clkm.cold_start = 0x3a;
1880 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1881 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1884 /* MPU I/O */
1885 struct omap_mpuio_s {
1886 qemu_irq irq;
1887 qemu_irq kbd_irq;
1888 qemu_irq *in;
1889 qemu_irq handler[16];
1890 qemu_irq wakeup;
1891 MemoryRegion iomem;
1893 uint16_t inputs;
1894 uint16_t outputs;
1895 uint16_t dir;
1896 uint16_t edge;
1897 uint16_t mask;
1898 uint16_t ints;
1900 uint16_t debounce;
1901 uint16_t latch;
1902 uint8_t event;
1904 uint8_t buttons[5];
1905 uint8_t row_latch;
1906 uint8_t cols;
1907 int kbd_mask;
1908 int clk;
1911 static void omap_mpuio_set(void *opaque, int line, int level)
1913 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1914 uint16_t prev = s->inputs;
1916 if (level)
1917 s->inputs |= 1 << line;
1918 else
1919 s->inputs &= ~(1 << line);
1921 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1922 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1923 s->ints |= 1 << line;
1924 qemu_irq_raise(s->irq);
1925 /* TODO: wakeup */
1927 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1928 (s->event >> 1) == line) /* PIN_SELECT */
1929 s->latch = s->inputs;
1933 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1935 int i;
1936 uint8_t *row, rows = 0, cols = ~s->cols;
1938 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1939 if (*row & cols)
1940 rows |= i;
1942 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1943 s->row_latch = ~rows;
1946 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1947 unsigned size)
1949 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1950 int offset = addr & OMAP_MPUI_REG_MASK;
1951 uint16_t ret;
1953 if (size != 2) {
1954 return omap_badwidth_read16(opaque, addr);
1957 switch (offset) {
1958 case 0x00: /* INPUT_LATCH */
1959 return s->inputs;
1961 case 0x04: /* OUTPUT_REG */
1962 return s->outputs;
1964 case 0x08: /* IO_CNTL */
1965 return s->dir;
1967 case 0x10: /* KBR_LATCH */
1968 return s->row_latch;
1970 case 0x14: /* KBC_REG */
1971 return s->cols;
1973 case 0x18: /* GPIO_EVENT_MODE_REG */
1974 return s->event;
1976 case 0x1c: /* GPIO_INT_EDGE_REG */
1977 return s->edge;
1979 case 0x20: /* KBD_INT */
1980 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1982 case 0x24: /* GPIO_INT */
1983 ret = s->ints;
1984 s->ints &= s->mask;
1985 if (ret)
1986 qemu_irq_lower(s->irq);
1987 return ret;
1989 case 0x28: /* KBD_MASKIT */
1990 return s->kbd_mask;
1992 case 0x2c: /* GPIO_MASKIT */
1993 return s->mask;
1995 case 0x30: /* GPIO_DEBOUNCING_REG */
1996 return s->debounce;
1998 case 0x34: /* GPIO_LATCH_REG */
1999 return s->latch;
2002 OMAP_BAD_REG(addr);
2003 return 0;
2006 static void omap_mpuio_write(void *opaque, hwaddr addr,
2007 uint64_t value, unsigned size)
2009 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2010 int offset = addr & OMAP_MPUI_REG_MASK;
2011 uint16_t diff;
2012 int ln;
2014 if (size != 2) {
2015 omap_badwidth_write16(opaque, addr, value);
2016 return;
2019 switch (offset) {
2020 case 0x04: /* OUTPUT_REG */
2021 diff = (s->outputs ^ value) & ~s->dir;
2022 s->outputs = value;
2023 while ((ln = ctz32(diff)) != 32) {
2024 if (s->handler[ln])
2025 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2026 diff &= ~(1 << ln);
2028 break;
2030 case 0x08: /* IO_CNTL */
2031 diff = s->outputs & (s->dir ^ value);
2032 s->dir = value;
2034 value = s->outputs & ~s->dir;
2035 while ((ln = ctz32(diff)) != 32) {
2036 if (s->handler[ln])
2037 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2038 diff &= ~(1 << ln);
2040 break;
2042 case 0x14: /* KBC_REG */
2043 s->cols = value;
2044 omap_mpuio_kbd_update(s);
2045 break;
2047 case 0x18: /* GPIO_EVENT_MODE_REG */
2048 s->event = value & 0x1f;
2049 break;
2051 case 0x1c: /* GPIO_INT_EDGE_REG */
2052 s->edge = value;
2053 break;
2055 case 0x28: /* KBD_MASKIT */
2056 s->kbd_mask = value & 1;
2057 omap_mpuio_kbd_update(s);
2058 break;
2060 case 0x2c: /* GPIO_MASKIT */
2061 s->mask = value;
2062 break;
2064 case 0x30: /* GPIO_DEBOUNCING_REG */
2065 s->debounce = value & 0x1ff;
2066 break;
2068 case 0x00: /* INPUT_LATCH */
2069 case 0x10: /* KBR_LATCH */
2070 case 0x20: /* KBD_INT */
2071 case 0x24: /* GPIO_INT */
2072 case 0x34: /* GPIO_LATCH_REG */
2073 OMAP_RO_REG(addr);
2074 return;
2076 default:
2077 OMAP_BAD_REG(addr);
2078 return;
2082 static const MemoryRegionOps omap_mpuio_ops = {
2083 .read = omap_mpuio_read,
2084 .write = omap_mpuio_write,
2085 .endianness = DEVICE_NATIVE_ENDIAN,
2088 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2090 s->inputs = 0;
2091 s->outputs = 0;
2092 s->dir = ~0;
2093 s->event = 0;
2094 s->edge = 0;
2095 s->kbd_mask = 0;
2096 s->mask = 0;
2097 s->debounce = 0;
2098 s->latch = 0;
2099 s->ints = 0;
2100 s->row_latch = 0x1f;
2101 s->clk = 1;
2104 static void omap_mpuio_onoff(void *opaque, int line, int on)
2106 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2108 s->clk = on;
2109 if (on)
2110 omap_mpuio_kbd_update(s);
2113 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2114 hwaddr base,
2115 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2116 omap_clk clk)
2118 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2120 s->irq = gpio_int;
2121 s->kbd_irq = kbd_int;
2122 s->wakeup = wakeup;
2123 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2124 omap_mpuio_reset(s);
2126 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2127 "omap-mpuio", 0x800);
2128 memory_region_add_subregion(memory, base, &s->iomem);
2130 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2132 return s;
2135 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2137 return s->in;
2140 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2142 if (line >= 16 || line < 0)
2143 hw_error("%s: No GPIO line %i\n", __func__, line);
2144 s->handler[line] = handler;
2147 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2149 if (row >= 5 || row < 0)
2150 hw_error("%s: No key %i-%i\n", __func__, col, row);
2152 if (down)
2153 s->buttons[row] |= 1 << col;
2154 else
2155 s->buttons[row] &= ~(1 << col);
2157 omap_mpuio_kbd_update(s);
2160 /* MicroWire Interface */
2161 struct omap_uwire_s {
2162 MemoryRegion iomem;
2163 qemu_irq txirq;
2164 qemu_irq rxirq;
2165 qemu_irq txdrq;
2167 uint16_t txbuf;
2168 uint16_t rxbuf;
2169 uint16_t control;
2170 uint16_t setup[5];
2172 uWireSlave *chip[4];
2175 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2177 int chipselect = (s->control >> 10) & 3; /* INDEX */
2178 uWireSlave *slave = s->chip[chipselect];
2180 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2181 if (s->control & (1 << 12)) /* CS_CMD */
2182 if (slave && slave->send)
2183 slave->send(slave->opaque,
2184 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2185 s->control &= ~(1 << 14); /* CSRB */
2186 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2187 * a DRQ. When is the level IRQ supposed to be reset? */
2190 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2191 if (s->control & (1 << 12)) /* CS_CMD */
2192 if (slave && slave->receive)
2193 s->rxbuf = slave->receive(slave->opaque);
2194 s->control |= 1 << 15; /* RDRB */
2195 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2196 * a DRQ. When is the level IRQ supposed to be reset? */
2200 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2201 unsigned size)
2203 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2204 int offset = addr & OMAP_MPUI_REG_MASK;
2206 if (size != 2) {
2207 return omap_badwidth_read16(opaque, addr);
2210 switch (offset) {
2211 case 0x00: /* RDR */
2212 s->control &= ~(1 << 15); /* RDRB */
2213 return s->rxbuf;
2215 case 0x04: /* CSR */
2216 return s->control;
2218 case 0x08: /* SR1 */
2219 return s->setup[0];
2220 case 0x0c: /* SR2 */
2221 return s->setup[1];
2222 case 0x10: /* SR3 */
2223 return s->setup[2];
2224 case 0x14: /* SR4 */
2225 return s->setup[3];
2226 case 0x18: /* SR5 */
2227 return s->setup[4];
2230 OMAP_BAD_REG(addr);
2231 return 0;
2234 static void omap_uwire_write(void *opaque, hwaddr addr,
2235 uint64_t value, unsigned size)
2237 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2238 int offset = addr & OMAP_MPUI_REG_MASK;
2240 if (size != 2) {
2241 omap_badwidth_write16(opaque, addr, value);
2242 return;
2245 switch (offset) {
2246 case 0x00: /* TDR */
2247 s->txbuf = value; /* TD */
2248 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2249 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2250 (s->control & (1 << 12)))) { /* CS_CMD */
2251 s->control |= 1 << 14; /* CSRB */
2252 omap_uwire_transfer_start(s);
2254 break;
2256 case 0x04: /* CSR */
2257 s->control = value & 0x1fff;
2258 if (value & (1 << 13)) /* START */
2259 omap_uwire_transfer_start(s);
2260 break;
2262 case 0x08: /* SR1 */
2263 s->setup[0] = value & 0x003f;
2264 break;
2266 case 0x0c: /* SR2 */
2267 s->setup[1] = value & 0x0fc0;
2268 break;
2270 case 0x10: /* SR3 */
2271 s->setup[2] = value & 0x0003;
2272 break;
2274 case 0x14: /* SR4 */
2275 s->setup[3] = value & 0x0001;
2276 break;
2278 case 0x18: /* SR5 */
2279 s->setup[4] = value & 0x000f;
2280 break;
2282 default:
2283 OMAP_BAD_REG(addr);
2284 return;
2288 static const MemoryRegionOps omap_uwire_ops = {
2289 .read = omap_uwire_read,
2290 .write = omap_uwire_write,
2291 .endianness = DEVICE_NATIVE_ENDIAN,
2294 static void omap_uwire_reset(struct omap_uwire_s *s)
2296 s->control = 0;
2297 s->setup[0] = 0;
2298 s->setup[1] = 0;
2299 s->setup[2] = 0;
2300 s->setup[3] = 0;
2301 s->setup[4] = 0;
2304 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2305 hwaddr base,
2306 qemu_irq txirq, qemu_irq rxirq,
2307 qemu_irq dma,
2308 omap_clk clk)
2310 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2312 s->txirq = txirq;
2313 s->rxirq = rxirq;
2314 s->txdrq = dma;
2315 omap_uwire_reset(s);
2317 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2318 memory_region_add_subregion(system_memory, base, &s->iomem);
2320 return s;
2323 void omap_uwire_attach(struct omap_uwire_s *s,
2324 uWireSlave *slave, int chipselect)
2326 if (chipselect < 0 || chipselect > 3) {
2327 error_report("%s: Bad chipselect %i", __func__, chipselect);
2328 exit(-1);
2331 s->chip[chipselect] = slave;
2334 /* Pseudonoise Pulse-Width Light Modulator */
2335 struct omap_pwl_s {
2336 MemoryRegion iomem;
2337 uint8_t output;
2338 uint8_t level;
2339 uint8_t enable;
2340 int clk;
2343 static void omap_pwl_update(struct omap_pwl_s *s)
2345 int output = (s->clk && s->enable) ? s->level : 0;
2347 if (output != s->output) {
2348 s->output = output;
2349 printf("%s: Backlight now at %i/256\n", __func__, output);
2353 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2354 unsigned size)
2356 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2357 int offset = addr & OMAP_MPUI_REG_MASK;
2359 if (size != 1) {
2360 return omap_badwidth_read8(opaque, addr);
2363 switch (offset) {
2364 case 0x00: /* PWL_LEVEL */
2365 return s->level;
2366 case 0x04: /* PWL_CTRL */
2367 return s->enable;
2369 OMAP_BAD_REG(addr);
2370 return 0;
2373 static void omap_pwl_write(void *opaque, hwaddr addr,
2374 uint64_t value, unsigned size)
2376 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2377 int offset = addr & OMAP_MPUI_REG_MASK;
2379 if (size != 1) {
2380 omap_badwidth_write8(opaque, addr, value);
2381 return;
2384 switch (offset) {
2385 case 0x00: /* PWL_LEVEL */
2386 s->level = value;
2387 omap_pwl_update(s);
2388 break;
2389 case 0x04: /* PWL_CTRL */
2390 s->enable = value & 1;
2391 omap_pwl_update(s);
2392 break;
2393 default:
2394 OMAP_BAD_REG(addr);
2395 return;
2399 static const MemoryRegionOps omap_pwl_ops = {
2400 .read = omap_pwl_read,
2401 .write = omap_pwl_write,
2402 .endianness = DEVICE_NATIVE_ENDIAN,
2405 static void omap_pwl_reset(struct omap_pwl_s *s)
2407 s->output = 0;
2408 s->level = 0;
2409 s->enable = 0;
2410 s->clk = 1;
2411 omap_pwl_update(s);
2414 static void omap_pwl_clk_update(void *opaque, int line, int on)
2416 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2418 s->clk = on;
2419 omap_pwl_update(s);
2422 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2423 hwaddr base,
2424 omap_clk clk)
2426 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2428 omap_pwl_reset(s);
2430 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2431 "omap-pwl", 0x800);
2432 memory_region_add_subregion(system_memory, base, &s->iomem);
2434 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2435 return s;
2438 /* Pulse-Width Tone module */
2439 struct omap_pwt_s {
2440 MemoryRegion iomem;
2441 uint8_t frc;
2442 uint8_t vrc;
2443 uint8_t gcr;
2444 omap_clk clk;
2447 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2448 unsigned size)
2450 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2451 int offset = addr & OMAP_MPUI_REG_MASK;
2453 if (size != 1) {
2454 return omap_badwidth_read8(opaque, addr);
2457 switch (offset) {
2458 case 0x00: /* FRC */
2459 return s->frc;
2460 case 0x04: /* VCR */
2461 return s->vrc;
2462 case 0x08: /* GCR */
2463 return s->gcr;
2465 OMAP_BAD_REG(addr);
2466 return 0;
2469 static void omap_pwt_write(void *opaque, hwaddr addr,
2470 uint64_t value, unsigned size)
2472 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2473 int offset = addr & OMAP_MPUI_REG_MASK;
2475 if (size != 1) {
2476 omap_badwidth_write8(opaque, addr, value);
2477 return;
2480 switch (offset) {
2481 case 0x00: /* FRC */
2482 s->frc = value & 0x3f;
2483 break;
2484 case 0x04: /* VRC */
2485 if ((value ^ s->vrc) & 1) {
2486 if (value & 1)
2487 printf("%s: %iHz buzz on\n", __func__, (int)
2488 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2489 ((omap_clk_getrate(s->clk) >> 3) /
2490 /* Pre-multiplexer divider */
2491 ((s->gcr & 2) ? 1 : 154) /
2492 /* Octave multiplexer */
2493 (2 << (value & 3)) *
2494 /* 101/107 divider */
2495 ((value & (1 << 2)) ? 101 : 107) *
2496 /* 49/55 divider */
2497 ((value & (1 << 3)) ? 49 : 55) *
2498 /* 50/63 divider */
2499 ((value & (1 << 4)) ? 50 : 63) *
2500 /* 80/127 divider */
2501 ((value & (1 << 5)) ? 80 : 127) /
2502 (107 * 55 * 63 * 127)));
2503 else
2504 printf("%s: silence!\n", __func__);
2506 s->vrc = value & 0x7f;
2507 break;
2508 case 0x08: /* GCR */
2509 s->gcr = value & 3;
2510 break;
2511 default:
2512 OMAP_BAD_REG(addr);
2513 return;
2517 static const MemoryRegionOps omap_pwt_ops = {
2518 .read =omap_pwt_read,
2519 .write = omap_pwt_write,
2520 .endianness = DEVICE_NATIVE_ENDIAN,
2523 static void omap_pwt_reset(struct omap_pwt_s *s)
2525 s->frc = 0;
2526 s->vrc = 0;
2527 s->gcr = 0;
2530 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2531 hwaddr base,
2532 omap_clk clk)
2534 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2535 s->clk = clk;
2536 omap_pwt_reset(s);
2538 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2539 "omap-pwt", 0x800);
2540 memory_region_add_subregion(system_memory, base, &s->iomem);
2541 return s;
2544 /* Real-time Clock module */
2545 struct omap_rtc_s {
2546 MemoryRegion iomem;
2547 qemu_irq irq;
2548 qemu_irq alarm;
2549 QEMUTimer *clk;
2551 uint8_t interrupts;
2552 uint8_t status;
2553 int16_t comp_reg;
2554 int running;
2555 int pm_am;
2556 int auto_comp;
2557 int round;
2558 struct tm alarm_tm;
2559 time_t alarm_ti;
2561 struct tm current_tm;
2562 time_t ti;
2563 uint64_t tick;
2566 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2568 /* s->alarm is level-triggered */
2569 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2572 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2574 s->alarm_ti = mktimegm(&s->alarm_tm);
2575 if (s->alarm_ti == -1)
2576 printf("%s: conversion failed\n", __func__);
2579 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2580 unsigned size)
2582 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2583 int offset = addr & OMAP_MPUI_REG_MASK;
2584 uint8_t i;
2586 if (size != 1) {
2587 return omap_badwidth_read8(opaque, addr);
2590 switch (offset) {
2591 case 0x00: /* SECONDS_REG */
2592 return to_bcd(s->current_tm.tm_sec);
2594 case 0x04: /* MINUTES_REG */
2595 return to_bcd(s->current_tm.tm_min);
2597 case 0x08: /* HOURS_REG */
2598 if (s->pm_am)
2599 return ((s->current_tm.tm_hour > 11) << 7) |
2600 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2601 else
2602 return to_bcd(s->current_tm.tm_hour);
2604 case 0x0c: /* DAYS_REG */
2605 return to_bcd(s->current_tm.tm_mday);
2607 case 0x10: /* MONTHS_REG */
2608 return to_bcd(s->current_tm.tm_mon + 1);
2610 case 0x14: /* YEARS_REG */
2611 return to_bcd(s->current_tm.tm_year % 100);
2613 case 0x18: /* WEEK_REG */
2614 return s->current_tm.tm_wday;
2616 case 0x20: /* ALARM_SECONDS_REG */
2617 return to_bcd(s->alarm_tm.tm_sec);
2619 case 0x24: /* ALARM_MINUTES_REG */
2620 return to_bcd(s->alarm_tm.tm_min);
2622 case 0x28: /* ALARM_HOURS_REG */
2623 if (s->pm_am)
2624 return ((s->alarm_tm.tm_hour > 11) << 7) |
2625 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2626 else
2627 return to_bcd(s->alarm_tm.tm_hour);
2629 case 0x2c: /* ALARM_DAYS_REG */
2630 return to_bcd(s->alarm_tm.tm_mday);
2632 case 0x30: /* ALARM_MONTHS_REG */
2633 return to_bcd(s->alarm_tm.tm_mon + 1);
2635 case 0x34: /* ALARM_YEARS_REG */
2636 return to_bcd(s->alarm_tm.tm_year % 100);
2638 case 0x40: /* RTC_CTRL_REG */
2639 return (s->pm_am << 3) | (s->auto_comp << 2) |
2640 (s->round << 1) | s->running;
2642 case 0x44: /* RTC_STATUS_REG */
2643 i = s->status;
2644 s->status &= ~0x3d;
2645 return i;
2647 case 0x48: /* RTC_INTERRUPTS_REG */
2648 return s->interrupts;
2650 case 0x4c: /* RTC_COMP_LSB_REG */
2651 return ((uint16_t) s->comp_reg) & 0xff;
2653 case 0x50: /* RTC_COMP_MSB_REG */
2654 return ((uint16_t) s->comp_reg) >> 8;
2657 OMAP_BAD_REG(addr);
2658 return 0;
2661 static void omap_rtc_write(void *opaque, hwaddr addr,
2662 uint64_t value, unsigned size)
2664 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2665 int offset = addr & OMAP_MPUI_REG_MASK;
2666 struct tm new_tm;
2667 time_t ti[2];
2669 if (size != 1) {
2670 omap_badwidth_write8(opaque, addr, value);
2671 return;
2674 switch (offset) {
2675 case 0x00: /* SECONDS_REG */
2676 #ifdef ALMDEBUG
2677 printf("RTC SEC_REG <-- %02x\n", value);
2678 #endif
2679 s->ti -= s->current_tm.tm_sec;
2680 s->ti += from_bcd(value);
2681 return;
2683 case 0x04: /* MINUTES_REG */
2684 #ifdef ALMDEBUG
2685 printf("RTC MIN_REG <-- %02x\n", value);
2686 #endif
2687 s->ti -= s->current_tm.tm_min * 60;
2688 s->ti += from_bcd(value) * 60;
2689 return;
2691 case 0x08: /* HOURS_REG */
2692 #ifdef ALMDEBUG
2693 printf("RTC HRS_REG <-- %02x\n", value);
2694 #endif
2695 s->ti -= s->current_tm.tm_hour * 3600;
2696 if (s->pm_am) {
2697 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2698 s->ti += ((value >> 7) & 1) * 43200;
2699 } else
2700 s->ti += from_bcd(value & 0x3f) * 3600;
2701 return;
2703 case 0x0c: /* DAYS_REG */
2704 #ifdef ALMDEBUG
2705 printf("RTC DAY_REG <-- %02x\n", value);
2706 #endif
2707 s->ti -= s->current_tm.tm_mday * 86400;
2708 s->ti += from_bcd(value) * 86400;
2709 return;
2711 case 0x10: /* MONTHS_REG */
2712 #ifdef ALMDEBUG
2713 printf("RTC MTH_REG <-- %02x\n", value);
2714 #endif
2715 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2716 new_tm.tm_mon = from_bcd(value);
2717 ti[0] = mktimegm(&s->current_tm);
2718 ti[1] = mktimegm(&new_tm);
2720 if (ti[0] != -1 && ti[1] != -1) {
2721 s->ti -= ti[0];
2722 s->ti += ti[1];
2723 } else {
2724 /* A less accurate version */
2725 s->ti -= s->current_tm.tm_mon * 2592000;
2726 s->ti += from_bcd(value) * 2592000;
2728 return;
2730 case 0x14: /* YEARS_REG */
2731 #ifdef ALMDEBUG
2732 printf("RTC YRS_REG <-- %02x\n", value);
2733 #endif
2734 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2735 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2736 ti[0] = mktimegm(&s->current_tm);
2737 ti[1] = mktimegm(&new_tm);
2739 if (ti[0] != -1 && ti[1] != -1) {
2740 s->ti -= ti[0];
2741 s->ti += ti[1];
2742 } else {
2743 /* A less accurate version */
2744 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2745 s->ti += (time_t)from_bcd(value) * 31536000;
2747 return;
2749 case 0x18: /* WEEK_REG */
2750 return; /* Ignored */
2752 case 0x20: /* ALARM_SECONDS_REG */
2753 #ifdef ALMDEBUG
2754 printf("ALM SEC_REG <-- %02x\n", value);
2755 #endif
2756 s->alarm_tm.tm_sec = from_bcd(value);
2757 omap_rtc_alarm_update(s);
2758 return;
2760 case 0x24: /* ALARM_MINUTES_REG */
2761 #ifdef ALMDEBUG
2762 printf("ALM MIN_REG <-- %02x\n", value);
2763 #endif
2764 s->alarm_tm.tm_min = from_bcd(value);
2765 omap_rtc_alarm_update(s);
2766 return;
2768 case 0x28: /* ALARM_HOURS_REG */
2769 #ifdef ALMDEBUG
2770 printf("ALM HRS_REG <-- %02x\n", value);
2771 #endif
2772 if (s->pm_am)
2773 s->alarm_tm.tm_hour =
2774 ((from_bcd(value & 0x3f)) % 12) +
2775 ((value >> 7) & 1) * 12;
2776 else
2777 s->alarm_tm.tm_hour = from_bcd(value);
2778 omap_rtc_alarm_update(s);
2779 return;
2781 case 0x2c: /* ALARM_DAYS_REG */
2782 #ifdef ALMDEBUG
2783 printf("ALM DAY_REG <-- %02x\n", value);
2784 #endif
2785 s->alarm_tm.tm_mday = from_bcd(value);
2786 omap_rtc_alarm_update(s);
2787 return;
2789 case 0x30: /* ALARM_MONTHS_REG */
2790 #ifdef ALMDEBUG
2791 printf("ALM MON_REG <-- %02x\n", value);
2792 #endif
2793 s->alarm_tm.tm_mon = from_bcd(value);
2794 omap_rtc_alarm_update(s);
2795 return;
2797 case 0x34: /* ALARM_YEARS_REG */
2798 #ifdef ALMDEBUG
2799 printf("ALM YRS_REG <-- %02x\n", value);
2800 #endif
2801 s->alarm_tm.tm_year = from_bcd(value);
2802 omap_rtc_alarm_update(s);
2803 return;
2805 case 0x40: /* RTC_CTRL_REG */
2806 #ifdef ALMDEBUG
2807 printf("RTC CONTROL <-- %02x\n", value);
2808 #endif
2809 s->pm_am = (value >> 3) & 1;
2810 s->auto_comp = (value >> 2) & 1;
2811 s->round = (value >> 1) & 1;
2812 s->running = value & 1;
2813 s->status &= 0xfd;
2814 s->status |= s->running << 1;
2815 return;
2817 case 0x44: /* RTC_STATUS_REG */
2818 #ifdef ALMDEBUG
2819 printf("RTC STATUSL <-- %02x\n", value);
2820 #endif
2821 s->status &= ~((value & 0xc0) ^ 0x80);
2822 omap_rtc_interrupts_update(s);
2823 return;
2825 case 0x48: /* RTC_INTERRUPTS_REG */
2826 #ifdef ALMDEBUG
2827 printf("RTC INTRS <-- %02x\n", value);
2828 #endif
2829 s->interrupts = value;
2830 return;
2832 case 0x4c: /* RTC_COMP_LSB_REG */
2833 #ifdef ALMDEBUG
2834 printf("RTC COMPLSB <-- %02x\n", value);
2835 #endif
2836 s->comp_reg &= 0xff00;
2837 s->comp_reg |= 0x00ff & value;
2838 return;
2840 case 0x50: /* RTC_COMP_MSB_REG */
2841 #ifdef ALMDEBUG
2842 printf("RTC COMPMSB <-- %02x\n", value);
2843 #endif
2844 s->comp_reg &= 0x00ff;
2845 s->comp_reg |= 0xff00 & (value << 8);
2846 return;
2848 default:
2849 OMAP_BAD_REG(addr);
2850 return;
2854 static const MemoryRegionOps omap_rtc_ops = {
2855 .read = omap_rtc_read,
2856 .write = omap_rtc_write,
2857 .endianness = DEVICE_NATIVE_ENDIAN,
2860 static void omap_rtc_tick(void *opaque)
2862 struct omap_rtc_s *s = opaque;
2864 if (s->round) {
2865 /* Round to nearest full minute. */
2866 if (s->current_tm.tm_sec < 30)
2867 s->ti -= s->current_tm.tm_sec;
2868 else
2869 s->ti += 60 - s->current_tm.tm_sec;
2871 s->round = 0;
2874 localtime_r(&s->ti, &s->current_tm);
2876 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2877 s->status |= 0x40;
2878 omap_rtc_interrupts_update(s);
2881 if (s->interrupts & 0x04)
2882 switch (s->interrupts & 3) {
2883 case 0:
2884 s->status |= 0x04;
2885 qemu_irq_pulse(s->irq);
2886 break;
2887 case 1:
2888 if (s->current_tm.tm_sec)
2889 break;
2890 s->status |= 0x08;
2891 qemu_irq_pulse(s->irq);
2892 break;
2893 case 2:
2894 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2895 break;
2896 s->status |= 0x10;
2897 qemu_irq_pulse(s->irq);
2898 break;
2899 case 3:
2900 if (s->current_tm.tm_sec ||
2901 s->current_tm.tm_min || s->current_tm.tm_hour)
2902 break;
2903 s->status |= 0x20;
2904 qemu_irq_pulse(s->irq);
2905 break;
2908 /* Move on */
2909 if (s->running)
2910 s->ti ++;
2911 s->tick += 1000;
2914 * Every full hour add a rough approximation of the compensation
2915 * register to the 32kHz Timer (which drives the RTC) value.
2917 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2918 s->tick += s->comp_reg * 1000 / 32768;
2920 timer_mod(s->clk, s->tick);
2923 static void omap_rtc_reset(struct omap_rtc_s *s)
2925 struct tm tm;
2927 s->interrupts = 0;
2928 s->comp_reg = 0;
2929 s->running = 0;
2930 s->pm_am = 0;
2931 s->auto_comp = 0;
2932 s->round = 0;
2933 s->tick = qemu_clock_get_ms(rtc_clock);
2934 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2935 s->alarm_tm.tm_mday = 0x01;
2936 s->status = 1 << 7;
2937 qemu_get_timedate(&tm, 0);
2938 s->ti = mktimegm(&tm);
2940 omap_rtc_alarm_update(s);
2941 omap_rtc_tick(s);
2944 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2945 hwaddr base,
2946 qemu_irq timerirq, qemu_irq alarmirq,
2947 omap_clk clk)
2949 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2951 s->irq = timerirq;
2952 s->alarm = alarmirq;
2953 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2955 omap_rtc_reset(s);
2957 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2958 "omap-rtc", 0x800);
2959 memory_region_add_subregion(system_memory, base, &s->iomem);
2961 return s;
2964 /* Multi-channel Buffered Serial Port interfaces */
2965 struct omap_mcbsp_s {
2966 MemoryRegion iomem;
2967 qemu_irq txirq;
2968 qemu_irq rxirq;
2969 qemu_irq txdrq;
2970 qemu_irq rxdrq;
2972 uint16_t spcr[2];
2973 uint16_t rcr[2];
2974 uint16_t xcr[2];
2975 uint16_t srgr[2];
2976 uint16_t mcr[2];
2977 uint16_t pcr;
2978 uint16_t rcer[8];
2979 uint16_t xcer[8];
2980 int tx_rate;
2981 int rx_rate;
2982 int tx_req;
2983 int rx_req;
2985 I2SCodec *codec;
2986 QEMUTimer *source_timer;
2987 QEMUTimer *sink_timer;
2990 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2992 int irq;
2994 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2995 case 0:
2996 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2997 break;
2998 case 3:
2999 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3000 break;
3001 default:
3002 irq = 0;
3003 break;
3006 if (irq)
3007 qemu_irq_pulse(s->rxirq);
3009 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3010 case 0:
3011 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3012 break;
3013 case 3:
3014 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3015 break;
3016 default:
3017 irq = 0;
3018 break;
3021 if (irq)
3022 qemu_irq_pulse(s->txirq);
3025 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3027 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3028 s->spcr[0] |= 1 << 2; /* RFULL */
3029 s->spcr[0] |= 1 << 1; /* RRDY */
3030 qemu_irq_raise(s->rxdrq);
3031 omap_mcbsp_intr_update(s);
3034 static void omap_mcbsp_source_tick(void *opaque)
3036 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3037 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3039 if (!s->rx_rate)
3040 return;
3041 if (s->rx_req)
3042 printf("%s: Rx FIFO overrun\n", __func__);
3044 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3046 omap_mcbsp_rx_newdata(s);
3047 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3048 NANOSECONDS_PER_SECOND);
3051 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3053 if (!s->codec || !s->codec->rts)
3054 omap_mcbsp_source_tick(s);
3055 else if (s->codec->in.len) {
3056 s->rx_req = s->codec->in.len;
3057 omap_mcbsp_rx_newdata(s);
3061 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3063 timer_del(s->source_timer);
3066 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3068 s->spcr[0] &= ~(1 << 1); /* RRDY */
3069 qemu_irq_lower(s->rxdrq);
3070 omap_mcbsp_intr_update(s);
3073 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3075 s->spcr[1] |= 1 << 1; /* XRDY */
3076 qemu_irq_raise(s->txdrq);
3077 omap_mcbsp_intr_update(s);
3080 static void omap_mcbsp_sink_tick(void *opaque)
3082 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3083 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3085 if (!s->tx_rate)
3086 return;
3087 if (s->tx_req)
3088 printf("%s: Tx FIFO underrun\n", __func__);
3090 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3092 omap_mcbsp_tx_newdata(s);
3093 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3094 NANOSECONDS_PER_SECOND);
3097 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3099 if (!s->codec || !s->codec->cts)
3100 omap_mcbsp_sink_tick(s);
3101 else if (s->codec->out.size) {
3102 s->tx_req = s->codec->out.size;
3103 omap_mcbsp_tx_newdata(s);
3107 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3109 s->spcr[1] &= ~(1 << 1); /* XRDY */
3110 qemu_irq_lower(s->txdrq);
3111 omap_mcbsp_intr_update(s);
3112 if (s->codec && s->codec->cts)
3113 s->codec->tx_swallow(s->codec->opaque);
3116 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3118 s->tx_req = 0;
3119 omap_mcbsp_tx_done(s);
3120 timer_del(s->sink_timer);
3123 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3125 int prev_rx_rate, prev_tx_rate;
3126 int rx_rate = 0, tx_rate = 0;
3127 int cpu_rate = 1500000; /* XXX */
3129 /* TODO: check CLKSTP bit */
3130 if (s->spcr[1] & (1 << 6)) { /* GRST */
3131 if (s->spcr[0] & (1 << 0)) { /* RRST */
3132 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3133 (s->pcr & (1 << 8))) { /* CLKRM */
3134 if (~s->pcr & (1 << 7)) /* SCLKME */
3135 rx_rate = cpu_rate /
3136 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3137 } else
3138 if (s->codec)
3139 rx_rate = s->codec->rx_rate;
3142 if (s->spcr[1] & (1 << 0)) { /* XRST */
3143 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3144 (s->pcr & (1 << 9))) { /* CLKXM */
3145 if (~s->pcr & (1 << 7)) /* SCLKME */
3146 tx_rate = cpu_rate /
3147 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3148 } else
3149 if (s->codec)
3150 tx_rate = s->codec->tx_rate;
3153 prev_tx_rate = s->tx_rate;
3154 prev_rx_rate = s->rx_rate;
3155 s->tx_rate = tx_rate;
3156 s->rx_rate = rx_rate;
3158 if (s->codec)
3159 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3161 if (!prev_tx_rate && tx_rate)
3162 omap_mcbsp_tx_start(s);
3163 else if (s->tx_rate && !tx_rate)
3164 omap_mcbsp_tx_stop(s);
3166 if (!prev_rx_rate && rx_rate)
3167 omap_mcbsp_rx_start(s);
3168 else if (prev_tx_rate && !tx_rate)
3169 omap_mcbsp_rx_stop(s);
3172 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3173 unsigned size)
3175 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3176 int offset = addr & OMAP_MPUI_REG_MASK;
3177 uint16_t ret;
3179 if (size != 2) {
3180 return omap_badwidth_read16(opaque, addr);
3183 switch (offset) {
3184 case 0x00: /* DRR2 */
3185 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3186 return 0x0000;
3187 /* Fall through. */
3188 case 0x02: /* DRR1 */
3189 if (s->rx_req < 2) {
3190 printf("%s: Rx FIFO underrun\n", __func__);
3191 omap_mcbsp_rx_done(s);
3192 } else {
3193 s->tx_req -= 2;
3194 if (s->codec && s->codec->in.len >= 2) {
3195 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3196 ret |= s->codec->in.fifo[s->codec->in.start ++];
3197 s->codec->in.len -= 2;
3198 } else
3199 ret = 0x0000;
3200 if (!s->tx_req)
3201 omap_mcbsp_rx_done(s);
3202 return ret;
3204 return 0x0000;
3206 case 0x04: /* DXR2 */
3207 case 0x06: /* DXR1 */
3208 return 0x0000;
3210 case 0x08: /* SPCR2 */
3211 return s->spcr[1];
3212 case 0x0a: /* SPCR1 */
3213 return s->spcr[0];
3214 case 0x0c: /* RCR2 */
3215 return s->rcr[1];
3216 case 0x0e: /* RCR1 */
3217 return s->rcr[0];
3218 case 0x10: /* XCR2 */
3219 return s->xcr[1];
3220 case 0x12: /* XCR1 */
3221 return s->xcr[0];
3222 case 0x14: /* SRGR2 */
3223 return s->srgr[1];
3224 case 0x16: /* SRGR1 */
3225 return s->srgr[0];
3226 case 0x18: /* MCR2 */
3227 return s->mcr[1];
3228 case 0x1a: /* MCR1 */
3229 return s->mcr[0];
3230 case 0x1c: /* RCERA */
3231 return s->rcer[0];
3232 case 0x1e: /* RCERB */
3233 return s->rcer[1];
3234 case 0x20: /* XCERA */
3235 return s->xcer[0];
3236 case 0x22: /* XCERB */
3237 return s->xcer[1];
3238 case 0x24: /* PCR0 */
3239 return s->pcr;
3240 case 0x26: /* RCERC */
3241 return s->rcer[2];
3242 case 0x28: /* RCERD */
3243 return s->rcer[3];
3244 case 0x2a: /* XCERC */
3245 return s->xcer[2];
3246 case 0x2c: /* XCERD */
3247 return s->xcer[3];
3248 case 0x2e: /* RCERE */
3249 return s->rcer[4];
3250 case 0x30: /* RCERF */
3251 return s->rcer[5];
3252 case 0x32: /* XCERE */
3253 return s->xcer[4];
3254 case 0x34: /* XCERF */
3255 return s->xcer[5];
3256 case 0x36: /* RCERG */
3257 return s->rcer[6];
3258 case 0x38: /* RCERH */
3259 return s->rcer[7];
3260 case 0x3a: /* XCERG */
3261 return s->xcer[6];
3262 case 0x3c: /* XCERH */
3263 return s->xcer[7];
3266 OMAP_BAD_REG(addr);
3267 return 0;
3270 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3271 uint32_t value)
3273 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3274 int offset = addr & OMAP_MPUI_REG_MASK;
3276 switch (offset) {
3277 case 0x00: /* DRR2 */
3278 case 0x02: /* DRR1 */
3279 OMAP_RO_REG(addr);
3280 return;
3282 case 0x04: /* DXR2 */
3283 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3284 return;
3285 /* Fall through. */
3286 case 0x06: /* DXR1 */
3287 if (s->tx_req > 1) {
3288 s->tx_req -= 2;
3289 if (s->codec && s->codec->cts) {
3290 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3291 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3293 if (s->tx_req < 2)
3294 omap_mcbsp_tx_done(s);
3295 } else
3296 printf("%s: Tx FIFO overrun\n", __func__);
3297 return;
3299 case 0x08: /* SPCR2 */
3300 s->spcr[1] &= 0x0002;
3301 s->spcr[1] |= 0x03f9 & value;
3302 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3303 if (~value & 1) /* XRST */
3304 s->spcr[1] &= ~6;
3305 omap_mcbsp_req_update(s);
3306 return;
3307 case 0x0a: /* SPCR1 */
3308 s->spcr[0] &= 0x0006;
3309 s->spcr[0] |= 0xf8f9 & value;
3310 if (value & (1 << 15)) /* DLB */
3311 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3312 if (~value & 1) { /* RRST */
3313 s->spcr[0] &= ~6;
3314 s->rx_req = 0;
3315 omap_mcbsp_rx_done(s);
3317 omap_mcbsp_req_update(s);
3318 return;
3320 case 0x0c: /* RCR2 */
3321 s->rcr[1] = value & 0xffff;
3322 return;
3323 case 0x0e: /* RCR1 */
3324 s->rcr[0] = value & 0x7fe0;
3325 return;
3326 case 0x10: /* XCR2 */
3327 s->xcr[1] = value & 0xffff;
3328 return;
3329 case 0x12: /* XCR1 */
3330 s->xcr[0] = value & 0x7fe0;
3331 return;
3332 case 0x14: /* SRGR2 */
3333 s->srgr[1] = value & 0xffff;
3334 omap_mcbsp_req_update(s);
3335 return;
3336 case 0x16: /* SRGR1 */
3337 s->srgr[0] = value & 0xffff;
3338 omap_mcbsp_req_update(s);
3339 return;
3340 case 0x18: /* MCR2 */
3341 s->mcr[1] = value & 0x03e3;
3342 if (value & 3) /* XMCM */
3343 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3344 return;
3345 case 0x1a: /* MCR1 */
3346 s->mcr[0] = value & 0x03e1;
3347 if (value & 1) /* RMCM */
3348 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3349 return;
3350 case 0x1c: /* RCERA */
3351 s->rcer[0] = value & 0xffff;
3352 return;
3353 case 0x1e: /* RCERB */
3354 s->rcer[1] = value & 0xffff;
3355 return;
3356 case 0x20: /* XCERA */
3357 s->xcer[0] = value & 0xffff;
3358 return;
3359 case 0x22: /* XCERB */
3360 s->xcer[1] = value & 0xffff;
3361 return;
3362 case 0x24: /* PCR0 */
3363 s->pcr = value & 0x7faf;
3364 return;
3365 case 0x26: /* RCERC */
3366 s->rcer[2] = value & 0xffff;
3367 return;
3368 case 0x28: /* RCERD */
3369 s->rcer[3] = value & 0xffff;
3370 return;
3371 case 0x2a: /* XCERC */
3372 s->xcer[2] = value & 0xffff;
3373 return;
3374 case 0x2c: /* XCERD */
3375 s->xcer[3] = value & 0xffff;
3376 return;
3377 case 0x2e: /* RCERE */
3378 s->rcer[4] = value & 0xffff;
3379 return;
3380 case 0x30: /* RCERF */
3381 s->rcer[5] = value & 0xffff;
3382 return;
3383 case 0x32: /* XCERE */
3384 s->xcer[4] = value & 0xffff;
3385 return;
3386 case 0x34: /* XCERF */
3387 s->xcer[5] = value & 0xffff;
3388 return;
3389 case 0x36: /* RCERG */
3390 s->rcer[6] = value & 0xffff;
3391 return;
3392 case 0x38: /* RCERH */
3393 s->rcer[7] = value & 0xffff;
3394 return;
3395 case 0x3a: /* XCERG */
3396 s->xcer[6] = value & 0xffff;
3397 return;
3398 case 0x3c: /* XCERH */
3399 s->xcer[7] = value & 0xffff;
3400 return;
3403 OMAP_BAD_REG(addr);
3406 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3407 uint32_t value)
3409 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3410 int offset = addr & OMAP_MPUI_REG_MASK;
3412 if (offset == 0x04) { /* DXR */
3413 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3414 return;
3415 if (s->tx_req > 3) {
3416 s->tx_req -= 4;
3417 if (s->codec && s->codec->cts) {
3418 s->codec->out.fifo[s->codec->out.len ++] =
3419 (value >> 24) & 0xff;
3420 s->codec->out.fifo[s->codec->out.len ++] =
3421 (value >> 16) & 0xff;
3422 s->codec->out.fifo[s->codec->out.len ++] =
3423 (value >> 8) & 0xff;
3424 s->codec->out.fifo[s->codec->out.len ++] =
3425 (value >> 0) & 0xff;
3427 if (s->tx_req < 4)
3428 omap_mcbsp_tx_done(s);
3429 } else
3430 printf("%s: Tx FIFO overrun\n", __func__);
3431 return;
3434 omap_badwidth_write16(opaque, addr, value);
3437 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3438 uint64_t value, unsigned size)
3440 switch (size) {
3441 case 2:
3442 omap_mcbsp_writeh(opaque, addr, value);
3443 break;
3444 case 4:
3445 omap_mcbsp_writew(opaque, addr, value);
3446 break;
3447 default:
3448 omap_badwidth_write16(opaque, addr, value);
3452 static const MemoryRegionOps omap_mcbsp_ops = {
3453 .read = omap_mcbsp_read,
3454 .write = omap_mcbsp_write,
3455 .endianness = DEVICE_NATIVE_ENDIAN,
3458 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3460 memset(&s->spcr, 0, sizeof(s->spcr));
3461 memset(&s->rcr, 0, sizeof(s->rcr));
3462 memset(&s->xcr, 0, sizeof(s->xcr));
3463 s->srgr[0] = 0x0001;
3464 s->srgr[1] = 0x2000;
3465 memset(&s->mcr, 0, sizeof(s->mcr));
3466 memset(&s->pcr, 0, sizeof(s->pcr));
3467 memset(&s->rcer, 0, sizeof(s->rcer));
3468 memset(&s->xcer, 0, sizeof(s->xcer));
3469 s->tx_req = 0;
3470 s->rx_req = 0;
3471 s->tx_rate = 0;
3472 s->rx_rate = 0;
3473 timer_del(s->source_timer);
3474 timer_del(s->sink_timer);
3477 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3478 hwaddr base,
3479 qemu_irq txirq, qemu_irq rxirq,
3480 qemu_irq *dma, omap_clk clk)
3482 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3484 s->txirq = txirq;
3485 s->rxirq = rxirq;
3486 s->txdrq = dma[0];
3487 s->rxdrq = dma[1];
3488 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3489 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3490 omap_mcbsp_reset(s);
3492 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3493 memory_region_add_subregion(system_memory, base, &s->iomem);
3495 return s;
3498 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3500 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502 if (s->rx_rate) {
3503 s->rx_req = s->codec->in.len;
3504 omap_mcbsp_rx_newdata(s);
3508 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3510 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3512 if (s->tx_rate) {
3513 s->tx_req = s->codec->out.size;
3514 omap_mcbsp_tx_newdata(s);
3518 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3520 s->codec = slave;
3521 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3522 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3525 /* LED Pulse Generators */
3526 struct omap_lpg_s {
3527 MemoryRegion iomem;
3528 QEMUTimer *tm;
3530 uint8_t control;
3531 uint8_t power;
3532 int64_t on;
3533 int64_t period;
3534 int clk;
3535 int cycle;
3538 static void omap_lpg_tick(void *opaque)
3540 struct omap_lpg_s *s = opaque;
3542 if (s->cycle)
3543 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3544 else
3545 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3547 s->cycle = !s->cycle;
3548 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3551 static void omap_lpg_update(struct omap_lpg_s *s)
3553 int64_t on, period = 1, ticks = 1000;
3554 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3556 if (~s->control & (1 << 6)) /* LPGRES */
3557 on = 0;
3558 else if (s->control & (1 << 7)) /* PERM_ON */
3559 on = period;
3560 else {
3561 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3562 256 / 32);
3563 on = (s->clk && s->power) ? muldiv64(ticks,
3564 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3567 timer_del(s->tm);
3568 if (on == period && s->on < s->period)
3569 printf("%s: LED is on\n", __func__);
3570 else if (on == 0 && s->on)
3571 printf("%s: LED is off\n", __func__);
3572 else if (on && (on != s->on || period != s->period)) {
3573 s->cycle = 0;
3574 s->on = on;
3575 s->period = period;
3576 omap_lpg_tick(s);
3577 return;
3580 s->on = on;
3581 s->period = period;
3584 static void omap_lpg_reset(struct omap_lpg_s *s)
3586 s->control = 0x00;
3587 s->power = 0x00;
3588 s->clk = 1;
3589 omap_lpg_update(s);
3592 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3593 unsigned size)
3595 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3596 int offset = addr & OMAP_MPUI_REG_MASK;
3598 if (size != 1) {
3599 return omap_badwidth_read8(opaque, addr);
3602 switch (offset) {
3603 case 0x00: /* LCR */
3604 return s->control;
3606 case 0x04: /* PMR */
3607 return s->power;
3610 OMAP_BAD_REG(addr);
3611 return 0;
3614 static void omap_lpg_write(void *opaque, hwaddr addr,
3615 uint64_t value, unsigned size)
3617 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3618 int offset = addr & OMAP_MPUI_REG_MASK;
3620 if (size != 1) {
3621 omap_badwidth_write8(opaque, addr, value);
3622 return;
3625 switch (offset) {
3626 case 0x00: /* LCR */
3627 if (~value & (1 << 6)) /* LPGRES */
3628 omap_lpg_reset(s);
3629 s->control = value & 0xff;
3630 omap_lpg_update(s);
3631 return;
3633 case 0x04: /* PMR */
3634 s->power = value & 0x01;
3635 omap_lpg_update(s);
3636 return;
3638 default:
3639 OMAP_BAD_REG(addr);
3640 return;
3644 static const MemoryRegionOps omap_lpg_ops = {
3645 .read = omap_lpg_read,
3646 .write = omap_lpg_write,
3647 .endianness = DEVICE_NATIVE_ENDIAN,
3650 static void omap_lpg_clk_update(void *opaque, int line, int on)
3652 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3654 s->clk = on;
3655 omap_lpg_update(s);
3658 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3659 hwaddr base, omap_clk clk)
3661 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3663 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3665 omap_lpg_reset(s);
3667 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3668 memory_region_add_subregion(system_memory, base, &s->iomem);
3670 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3672 return s;
3675 /* MPUI Peripheral Bridge configuration */
3676 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3677 unsigned size)
3679 if (size != 2) {
3680 return omap_badwidth_read16(opaque, addr);
3683 if (addr == OMAP_MPUI_BASE) /* CMR */
3684 return 0xfe4d;
3686 OMAP_BAD_REG(addr);
3687 return 0;
3690 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3691 uint64_t value, unsigned size)
3693 /* FIXME: infinite loop */
3694 omap_badwidth_write16(opaque, addr, value);
3697 static const MemoryRegionOps omap_mpui_io_ops = {
3698 .read = omap_mpui_io_read,
3699 .write = omap_mpui_io_write,
3700 .endianness = DEVICE_NATIVE_ENDIAN,
3703 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3704 struct omap_mpu_state_s *mpu)
3706 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3707 "omap-mpui-io", 0x7fff);
3708 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3709 &mpu->mpui_io_iomem);
3712 /* General chip reset */
3713 static void omap1_mpu_reset(void *opaque)
3715 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3717 omap_dma_reset(mpu->dma);
3718 omap_mpu_timer_reset(mpu->timer[0]);
3719 omap_mpu_timer_reset(mpu->timer[1]);
3720 omap_mpu_timer_reset(mpu->timer[2]);
3721 omap_wd_timer_reset(mpu->wdt);
3722 omap_os_timer_reset(mpu->os_timer);
3723 omap_lcdc_reset(mpu->lcd);
3724 omap_ulpd_pm_reset(mpu);
3725 omap_pin_cfg_reset(mpu);
3726 omap_mpui_reset(mpu);
3727 omap_tipb_bridge_reset(mpu->private_tipb);
3728 omap_tipb_bridge_reset(mpu->public_tipb);
3729 omap_dpll_reset(mpu->dpll[0]);
3730 omap_dpll_reset(mpu->dpll[1]);
3731 omap_dpll_reset(mpu->dpll[2]);
3732 omap_uart_reset(mpu->uart[0]);
3733 omap_uart_reset(mpu->uart[1]);
3734 omap_uart_reset(mpu->uart[2]);
3735 omap_mmc_reset(mpu->mmc);
3736 omap_mpuio_reset(mpu->mpuio);
3737 omap_uwire_reset(mpu->microwire);
3738 omap_pwl_reset(mpu->pwl);
3739 omap_pwt_reset(mpu->pwt);
3740 omap_rtc_reset(mpu->rtc);
3741 omap_mcbsp_reset(mpu->mcbsp1);
3742 omap_mcbsp_reset(mpu->mcbsp2);
3743 omap_mcbsp_reset(mpu->mcbsp3);
3744 omap_lpg_reset(mpu->led[0]);
3745 omap_lpg_reset(mpu->led[1]);
3746 omap_clkm_reset(mpu);
3747 cpu_reset(CPU(mpu->cpu));
3750 static const struct omap_map_s {
3751 hwaddr phys_dsp;
3752 hwaddr phys_mpu;
3753 uint32_t size;
3754 const char *name;
3755 } omap15xx_dsp_mm[] = {
3756 /* Strobe 0 */
3757 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3758 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3759 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3760 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3761 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3762 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3763 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3764 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3765 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3766 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3767 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3768 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3769 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3770 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3771 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3772 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3773 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3774 /* Strobe 1 */
3775 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3777 { 0 }
3780 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3781 const struct omap_map_s *map)
3783 MemoryRegion *io;
3785 for (; map->phys_dsp; map ++) {
3786 io = g_new(MemoryRegion, 1);
3787 memory_region_init_alias(io, NULL, map->name,
3788 system_memory, map->phys_mpu, map->size);
3789 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3793 void omap_mpu_wakeup(void *opaque, int irq, int req)
3795 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3796 CPUState *cpu = CPU(mpu->cpu);
3798 if (cpu->halted) {
3799 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3803 static const struct dma_irq_map omap1_dma_irq_map[] = {
3804 { 0, OMAP_INT_DMA_CH0_6 },
3805 { 0, OMAP_INT_DMA_CH1_7 },
3806 { 0, OMAP_INT_DMA_CH2_8 },
3807 { 0, OMAP_INT_DMA_CH3 },
3808 { 0, OMAP_INT_DMA_CH4 },
3809 { 0, OMAP_INT_DMA_CH5 },
3810 { 1, OMAP_INT_1610_DMA_CH6 },
3811 { 1, OMAP_INT_1610_DMA_CH7 },
3812 { 1, OMAP_INT_1610_DMA_CH8 },
3813 { 1, OMAP_INT_1610_DMA_CH9 },
3814 { 1, OMAP_INT_1610_DMA_CH10 },
3815 { 1, OMAP_INT_1610_DMA_CH11 },
3816 { 1, OMAP_INT_1610_DMA_CH12 },
3817 { 1, OMAP_INT_1610_DMA_CH13 },
3818 { 1, OMAP_INT_1610_DMA_CH14 },
3819 { 1, OMAP_INT_1610_DMA_CH15 }
3822 /* DMA ports for OMAP1 */
3823 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3824 hwaddr addr)
3826 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3829 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3830 hwaddr addr)
3832 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3833 addr);
3836 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3837 hwaddr addr)
3839 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3842 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3843 hwaddr addr)
3845 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3848 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3849 hwaddr addr)
3851 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3854 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3855 hwaddr addr)
3857 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3860 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3861 unsigned long sdram_size,
3862 const char *cpu_type)
3864 int i;
3865 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3866 qemu_irq dma_irqs[6];
3867 DriveInfo *dinfo;
3868 SysBusDevice *busdev;
3870 /* Core */
3871 s->mpu_model = omap310;
3872 s->cpu = ARM_CPU(cpu_create(cpu_type));
3873 s->sdram_size = sdram_size;
3874 s->sram_size = OMAP15XX_SRAM_SIZE;
3876 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3878 /* Clocks */
3879 omap_clk_init(s);
3881 /* Memory-mapped stuff */
3882 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3883 s->sdram_size);
3884 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3885 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3886 &error_fatal);
3887 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3889 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3891 s->ih[0] = qdev_create(NULL, "omap-intc");
3892 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3893 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3894 qdev_init_nofail(s->ih[0]);
3895 busdev = SYS_BUS_DEVICE(s->ih[0]);
3896 sysbus_connect_irq(busdev, 0,
3897 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3898 sysbus_connect_irq(busdev, 1,
3899 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3900 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3901 s->ih[1] = qdev_create(NULL, "omap-intc");
3902 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3903 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3904 qdev_init_nofail(s->ih[1]);
3905 busdev = SYS_BUS_DEVICE(s->ih[1]);
3906 sysbus_connect_irq(busdev, 0,
3907 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3908 /* The second interrupt controller's FIQ output is not wired up */
3909 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3911 for (i = 0; i < 6; i++) {
3912 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3913 omap1_dma_irq_map[i].intr);
3915 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3916 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3917 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3919 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3920 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3921 s->port[imif ].addr_valid = omap_validate_imif_addr;
3922 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3923 s->port[local ].addr_valid = omap_validate_local_addr;
3924 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3926 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3927 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3928 OMAP_EMIFF_BASE, s->sdram_size);
3929 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3930 OMAP_IMIF_BASE, s->sram_size);
3932 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3934 omap_findclk(s, "mputim_ck"));
3935 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3936 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3937 omap_findclk(s, "mputim_ck"));
3938 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3939 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3940 omap_findclk(s, "mputim_ck"));
3942 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3943 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3944 omap_findclk(s, "armwdt_ck"));
3946 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3947 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3948 omap_findclk(s, "clk32-kHz"));
3950 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3951 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3952 omap_dma_get_lcdch(s->dma),
3953 omap_findclk(s, "lcd_ck"));
3955 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3956 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3957 omap_id_init(system_memory, s);
3959 omap_mpui_init(system_memory, 0xfffec900, s);
3961 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3962 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3963 omap_findclk(s, "tipb_ck"));
3964 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3965 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3966 omap_findclk(s, "tipb_ck"));
3968 omap_tcmi_init(system_memory, 0xfffecc00, s);
3970 s->uart[0] = omap_uart_init(0xfffb0000,
3971 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3972 omap_findclk(s, "uart1_ck"),
3973 omap_findclk(s, "uart1_ck"),
3974 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3975 "uart1",
3976 serial_hd(0));
3977 s->uart[1] = omap_uart_init(0xfffb0800,
3978 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3979 omap_findclk(s, "uart2_ck"),
3980 omap_findclk(s, "uart2_ck"),
3981 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3982 "uart2",
3983 serial_hd(0) ? serial_hd(1) : NULL);
3984 s->uart[2] = omap_uart_init(0xfffb9800,
3985 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3986 omap_findclk(s, "uart3_ck"),
3987 omap_findclk(s, "uart3_ck"),
3988 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3989 "uart3",
3990 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3992 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3993 omap_findclk(s, "dpll1"));
3994 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3995 omap_findclk(s, "dpll2"));
3996 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3997 omap_findclk(s, "dpll3"));
3999 dinfo = drive_get(IF_SD, 0, 0);
4000 if (!dinfo && !qtest_enabled()) {
4001 warn_report("missing SecureDigital device");
4003 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4004 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4005 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4006 &s->drq[OMAP_DMA_MMC_TX],
4007 omap_findclk(s, "mmc_ck"));
4009 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4010 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4011 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4012 s->wakeup, omap_findclk(s, "clk32-kHz"));
4014 s->gpio = qdev_create(NULL, "omap-gpio");
4015 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4016 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4017 qdev_init_nofail(s->gpio);
4018 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4019 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4020 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4022 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4023 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4024 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4025 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4027 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4028 omap_findclk(s, "armxor_ck"));
4029 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4030 omap_findclk(s, "armxor_ck"));
4032 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4033 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4034 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4035 qdev_init_nofail(s->i2c[0]);
4036 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4037 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4038 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4039 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4040 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4042 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4045 omap_findclk(s, "clk32-kHz"));
4047 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4048 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4049 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4050 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4051 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4052 qdev_get_gpio_in(s->ih[0],
4053 OMAP_INT_310_McBSP2_TX),
4054 qdev_get_gpio_in(s->ih[0],
4055 OMAP_INT_310_McBSP2_RX),
4056 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4057 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4058 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4059 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4060 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4062 s->led[0] = omap_lpg_init(system_memory,
4063 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4064 s->led[1] = omap_lpg_init(system_memory,
4065 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4067 /* Register mappings not currenlty implemented:
4068 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4069 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4070 * USB W2FC fffb4000 - fffb47ff
4071 * Camera Interface fffb6800 - fffb6fff
4072 * USB Host fffba000 - fffba7ff
4073 * FAC fffba800 - fffbafff
4074 * HDQ/1-Wire fffbc000 - fffbc7ff
4075 * TIPB switches fffbc800 - fffbcfff
4076 * Mailbox fffcf000 - fffcf7ff
4077 * Local bus IF fffec100 - fffec1ff
4078 * Local bus MMU fffec200 - fffec2ff
4079 * DSP MMU fffed200 - fffed2ff
4082 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4083 omap_setup_mpui_io(system_memory, s);
4085 qemu_register_reset(omap1_mpu_reset, s);
4087 return s;