block: Move system emulator QMP commands to block/qapi-sysemu.c
[qemu/ar7.git] / migration / rdma.c
blobf61587891b1f568643b1dce589a9ff8db4e173b0
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include <sys/socket.h>
33 #include <netdb.h>
34 #include <arpa/inet.h>
35 #include <rdma/rdma_cma.h>
36 #include "trace.h"
39 * Print and error on both the Monitor and the Log file.
41 #define ERROR(errp, fmt, ...) \
42 do { \
43 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
44 if (errp && (*(errp) == NULL)) { \
45 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
46 } \
47 } while (0)
49 #define RDMA_RESOLVE_TIMEOUT_MS 10000
51 /* Do not merge data if larger than this. */
52 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
53 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
55 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
58 * This is only for non-live state being migrated.
59 * Instead of RDMA_WRITE messages, we use RDMA_SEND
60 * messages for that state, which requires a different
61 * delivery design than main memory.
63 #define RDMA_SEND_INCREMENT 32768
66 * Maximum size infiniband SEND message
68 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
69 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
71 #define RDMA_CONTROL_VERSION_CURRENT 1
73 * Capabilities for negotiation.
75 #define RDMA_CAPABILITY_PIN_ALL 0x01
78 * Add the other flags above to this list of known capabilities
79 * as they are introduced.
81 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
83 #define CHECK_ERROR_STATE() \
84 do { \
85 if (rdma->error_state) { \
86 if (!rdma->error_reported) { \
87 error_report("RDMA is in an error state waiting migration" \
88 " to abort!"); \
89 rdma->error_reported = 1; \
90 } \
91 return rdma->error_state; \
92 } \
93 } while (0)
96 * A work request ID is 64-bits and we split up these bits
97 * into 3 parts:
99 * bits 0-15 : type of control message, 2^16
100 * bits 16-29: ram block index, 2^14
101 * bits 30-63: ram block chunk number, 2^34
103 * The last two bit ranges are only used for RDMA writes,
104 * in order to track their completion and potentially
105 * also track unregistration status of the message.
107 #define RDMA_WRID_TYPE_SHIFT 0UL
108 #define RDMA_WRID_BLOCK_SHIFT 16UL
109 #define RDMA_WRID_CHUNK_SHIFT 30UL
111 #define RDMA_WRID_TYPE_MASK \
112 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
114 #define RDMA_WRID_BLOCK_MASK \
115 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
117 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
120 * RDMA migration protocol:
121 * 1. RDMA Writes (data messages, i.e. RAM)
122 * 2. IB Send/Recv (control channel messages)
124 enum {
125 RDMA_WRID_NONE = 0,
126 RDMA_WRID_RDMA_WRITE = 1,
127 RDMA_WRID_SEND_CONTROL = 2000,
128 RDMA_WRID_RECV_CONTROL = 4000,
131 static const char *wrid_desc[] = {
132 [RDMA_WRID_NONE] = "NONE",
133 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
134 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
135 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
139 * Work request IDs for IB SEND messages only (not RDMA writes).
140 * This is used by the migration protocol to transmit
141 * control messages (such as device state and registration commands)
143 * We could use more WRs, but we have enough for now.
145 enum {
146 RDMA_WRID_READY = 0,
147 RDMA_WRID_DATA,
148 RDMA_WRID_CONTROL,
149 RDMA_WRID_MAX,
153 * SEND/RECV IB Control Messages.
155 enum {
156 RDMA_CONTROL_NONE = 0,
157 RDMA_CONTROL_ERROR,
158 RDMA_CONTROL_READY, /* ready to receive */
159 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
160 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
161 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
162 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
163 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
164 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
165 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
166 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
167 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
172 * Memory and MR structures used to represent an IB Send/Recv work request.
173 * This is *not* used for RDMA writes, only IB Send/Recv.
175 typedef struct {
176 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
177 struct ibv_mr *control_mr; /* registration metadata */
178 size_t control_len; /* length of the message */
179 uint8_t *control_curr; /* start of unconsumed bytes */
180 } RDMAWorkRequestData;
183 * Negotiate RDMA capabilities during connection-setup time.
185 typedef struct {
186 uint32_t version;
187 uint32_t flags;
188 } RDMACapabilities;
190 static void caps_to_network(RDMACapabilities *cap)
192 cap->version = htonl(cap->version);
193 cap->flags = htonl(cap->flags);
196 static void network_to_caps(RDMACapabilities *cap)
198 cap->version = ntohl(cap->version);
199 cap->flags = ntohl(cap->flags);
203 * Representation of a RAMBlock from an RDMA perspective.
204 * This is not transmitted, only local.
205 * This and subsequent structures cannot be linked lists
206 * because we're using a single IB message to transmit
207 * the information. It's small anyway, so a list is overkill.
209 typedef struct RDMALocalBlock {
210 char *block_name;
211 uint8_t *local_host_addr; /* local virtual address */
212 uint64_t remote_host_addr; /* remote virtual address */
213 uint64_t offset;
214 uint64_t length;
215 struct ibv_mr **pmr; /* MRs for chunk-level registration */
216 struct ibv_mr *mr; /* MR for non-chunk-level registration */
217 uint32_t *remote_keys; /* rkeys for chunk-level registration */
218 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
219 int index; /* which block are we */
220 unsigned int src_index; /* (Only used on dest) */
221 bool is_ram_block;
222 int nb_chunks;
223 unsigned long *transit_bitmap;
224 unsigned long *unregister_bitmap;
225 } RDMALocalBlock;
228 * Also represents a RAMblock, but only on the dest.
229 * This gets transmitted by the dest during connection-time
230 * to the source VM and then is used to populate the
231 * corresponding RDMALocalBlock with
232 * the information needed to perform the actual RDMA.
234 typedef struct QEMU_PACKED RDMADestBlock {
235 uint64_t remote_host_addr;
236 uint64_t offset;
237 uint64_t length;
238 uint32_t remote_rkey;
239 uint32_t padding;
240 } RDMADestBlock;
242 static const char *control_desc(unsigned int rdma_control)
244 static const char *strs[] = {
245 [RDMA_CONTROL_NONE] = "NONE",
246 [RDMA_CONTROL_ERROR] = "ERROR",
247 [RDMA_CONTROL_READY] = "READY",
248 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
249 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
250 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
251 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
252 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
253 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
254 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
255 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
256 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
259 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
260 return "??BAD CONTROL VALUE??";
263 return strs[rdma_control];
266 static uint64_t htonll(uint64_t v)
268 union { uint32_t lv[2]; uint64_t llv; } u;
269 u.lv[0] = htonl(v >> 32);
270 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
271 return u.llv;
274 static uint64_t ntohll(uint64_t v) {
275 union { uint32_t lv[2]; uint64_t llv; } u;
276 u.llv = v;
277 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
280 static void dest_block_to_network(RDMADestBlock *db)
282 db->remote_host_addr = htonll(db->remote_host_addr);
283 db->offset = htonll(db->offset);
284 db->length = htonll(db->length);
285 db->remote_rkey = htonl(db->remote_rkey);
288 static void network_to_dest_block(RDMADestBlock *db)
290 db->remote_host_addr = ntohll(db->remote_host_addr);
291 db->offset = ntohll(db->offset);
292 db->length = ntohll(db->length);
293 db->remote_rkey = ntohl(db->remote_rkey);
297 * Virtual address of the above structures used for transmitting
298 * the RAMBlock descriptions at connection-time.
299 * This structure is *not* transmitted.
301 typedef struct RDMALocalBlocks {
302 int nb_blocks;
303 bool init; /* main memory init complete */
304 RDMALocalBlock *block;
305 } RDMALocalBlocks;
308 * Main data structure for RDMA state.
309 * While there is only one copy of this structure being allocated right now,
310 * this is the place where one would start if you wanted to consider
311 * having more than one RDMA connection open at the same time.
313 typedef struct RDMAContext {
314 char *host;
315 int port;
317 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
320 * This is used by *_exchange_send() to figure out whether or not
321 * the initial "READY" message has already been received or not.
322 * This is because other functions may potentially poll() and detect
323 * the READY message before send() does, in which case we need to
324 * know if it completed.
326 int control_ready_expected;
328 /* number of outstanding writes */
329 int nb_sent;
331 /* store info about current buffer so that we can
332 merge it with future sends */
333 uint64_t current_addr;
334 uint64_t current_length;
335 /* index of ram block the current buffer belongs to */
336 int current_index;
337 /* index of the chunk in the current ram block */
338 int current_chunk;
340 bool pin_all;
343 * infiniband-specific variables for opening the device
344 * and maintaining connection state and so forth.
346 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
347 * cm_id->verbs, cm_id->channel, and cm_id->qp.
349 struct rdma_cm_id *cm_id; /* connection manager ID */
350 struct rdma_cm_id *listen_id;
351 bool connected;
353 struct ibv_context *verbs;
354 struct rdma_event_channel *channel;
355 struct ibv_qp *qp; /* queue pair */
356 struct ibv_comp_channel *comp_channel; /* completion channel */
357 struct ibv_pd *pd; /* protection domain */
358 struct ibv_cq *cq; /* completion queue */
361 * If a previous write failed (perhaps because of a failed
362 * memory registration, then do not attempt any future work
363 * and remember the error state.
365 int error_state;
366 int error_reported;
367 int received_error;
370 * Description of ram blocks used throughout the code.
372 RDMALocalBlocks local_ram_blocks;
373 RDMADestBlock *dest_blocks;
375 /* Index of the next RAMBlock received during block registration */
376 unsigned int next_src_index;
379 * Migration on *destination* started.
380 * Then use coroutine yield function.
381 * Source runs in a thread, so we don't care.
383 int migration_started_on_destination;
385 int total_registrations;
386 int total_writes;
388 int unregister_current, unregister_next;
389 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
391 GHashTable *blockmap;
393 /* the RDMAContext for return path */
394 struct RDMAContext *return_path;
395 bool is_return_path;
396 } RDMAContext;
398 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
399 #define QIO_CHANNEL_RDMA(obj) \
400 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
402 typedef struct QIOChannelRDMA QIOChannelRDMA;
405 struct QIOChannelRDMA {
406 QIOChannel parent;
407 RDMAContext *rdmain;
408 RDMAContext *rdmaout;
409 QEMUFile *file;
410 bool blocking; /* XXX we don't actually honour this yet */
414 * Main structure for IB Send/Recv control messages.
415 * This gets prepended at the beginning of every Send/Recv.
417 typedef struct QEMU_PACKED {
418 uint32_t len; /* Total length of data portion */
419 uint32_t type; /* which control command to perform */
420 uint32_t repeat; /* number of commands in data portion of same type */
421 uint32_t padding;
422 } RDMAControlHeader;
424 static void control_to_network(RDMAControlHeader *control)
426 control->type = htonl(control->type);
427 control->len = htonl(control->len);
428 control->repeat = htonl(control->repeat);
431 static void network_to_control(RDMAControlHeader *control)
433 control->type = ntohl(control->type);
434 control->len = ntohl(control->len);
435 control->repeat = ntohl(control->repeat);
439 * Register a single Chunk.
440 * Information sent by the source VM to inform the dest
441 * to register an single chunk of memory before we can perform
442 * the actual RDMA operation.
444 typedef struct QEMU_PACKED {
445 union QEMU_PACKED {
446 uint64_t current_addr; /* offset into the ram_addr_t space */
447 uint64_t chunk; /* chunk to lookup if unregistering */
448 } key;
449 uint32_t current_index; /* which ramblock the chunk belongs to */
450 uint32_t padding;
451 uint64_t chunks; /* how many sequential chunks to register */
452 } RDMARegister;
454 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
456 RDMALocalBlock *local_block;
457 local_block = &rdma->local_ram_blocks.block[reg->current_index];
459 if (local_block->is_ram_block) {
461 * current_addr as passed in is an address in the local ram_addr_t
462 * space, we need to translate this for the destination
464 reg->key.current_addr -= local_block->offset;
465 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
467 reg->key.current_addr = htonll(reg->key.current_addr);
468 reg->current_index = htonl(reg->current_index);
469 reg->chunks = htonll(reg->chunks);
472 static void network_to_register(RDMARegister *reg)
474 reg->key.current_addr = ntohll(reg->key.current_addr);
475 reg->current_index = ntohl(reg->current_index);
476 reg->chunks = ntohll(reg->chunks);
479 typedef struct QEMU_PACKED {
480 uint32_t value; /* if zero, we will madvise() */
481 uint32_t block_idx; /* which ram block index */
482 uint64_t offset; /* Address in remote ram_addr_t space */
483 uint64_t length; /* length of the chunk */
484 } RDMACompress;
486 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
488 comp->value = htonl(comp->value);
490 * comp->offset as passed in is an address in the local ram_addr_t
491 * space, we need to translate this for the destination
493 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
494 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
495 comp->block_idx = htonl(comp->block_idx);
496 comp->offset = htonll(comp->offset);
497 comp->length = htonll(comp->length);
500 static void network_to_compress(RDMACompress *comp)
502 comp->value = ntohl(comp->value);
503 comp->block_idx = ntohl(comp->block_idx);
504 comp->offset = ntohll(comp->offset);
505 comp->length = ntohll(comp->length);
509 * The result of the dest's memory registration produces an "rkey"
510 * which the source VM must reference in order to perform
511 * the RDMA operation.
513 typedef struct QEMU_PACKED {
514 uint32_t rkey;
515 uint32_t padding;
516 uint64_t host_addr;
517 } RDMARegisterResult;
519 static void result_to_network(RDMARegisterResult *result)
521 result->rkey = htonl(result->rkey);
522 result->host_addr = htonll(result->host_addr);
525 static void network_to_result(RDMARegisterResult *result)
527 result->rkey = ntohl(result->rkey);
528 result->host_addr = ntohll(result->host_addr);
531 const char *print_wrid(int wrid);
532 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
533 uint8_t *data, RDMAControlHeader *resp,
534 int *resp_idx,
535 int (*callback)(RDMAContext *rdma));
537 static inline uint64_t ram_chunk_index(const uint8_t *start,
538 const uint8_t *host)
540 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
543 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
544 uint64_t i)
546 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
547 (i << RDMA_REG_CHUNK_SHIFT));
550 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
551 uint64_t i)
553 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
554 (1UL << RDMA_REG_CHUNK_SHIFT);
556 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
557 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
560 return result;
563 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
564 void *host_addr,
565 ram_addr_t block_offset, uint64_t length)
567 RDMALocalBlocks *local = &rdma->local_ram_blocks;
568 RDMALocalBlock *block;
569 RDMALocalBlock *old = local->block;
571 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
573 if (local->nb_blocks) {
574 int x;
576 if (rdma->blockmap) {
577 for (x = 0; x < local->nb_blocks; x++) {
578 g_hash_table_remove(rdma->blockmap,
579 (void *)(uintptr_t)old[x].offset);
580 g_hash_table_insert(rdma->blockmap,
581 (void *)(uintptr_t)old[x].offset,
582 &local->block[x]);
585 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
586 g_free(old);
589 block = &local->block[local->nb_blocks];
591 block->block_name = g_strdup(block_name);
592 block->local_host_addr = host_addr;
593 block->offset = block_offset;
594 block->length = length;
595 block->index = local->nb_blocks;
596 block->src_index = ~0U; /* Filled in by the receipt of the block list */
597 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
598 block->transit_bitmap = bitmap_new(block->nb_chunks);
599 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
600 block->unregister_bitmap = bitmap_new(block->nb_chunks);
601 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
602 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
604 block->is_ram_block = local->init ? false : true;
606 if (rdma->blockmap) {
607 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
610 trace_rdma_add_block(block_name, local->nb_blocks,
611 (uintptr_t) block->local_host_addr,
612 block->offset, block->length,
613 (uintptr_t) (block->local_host_addr + block->length),
614 BITS_TO_LONGS(block->nb_chunks) *
615 sizeof(unsigned long) * 8,
616 block->nb_chunks);
618 local->nb_blocks++;
620 return 0;
624 * Memory regions need to be registered with the device and queue pairs setup
625 * in advanced before the migration starts. This tells us where the RAM blocks
626 * are so that we can register them individually.
628 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
630 const char *block_name = qemu_ram_get_idstr(rb);
631 void *host_addr = qemu_ram_get_host_addr(rb);
632 ram_addr_t block_offset = qemu_ram_get_offset(rb);
633 ram_addr_t length = qemu_ram_get_used_length(rb);
634 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
638 * Identify the RAMBlocks and their quantity. They will be references to
639 * identify chunk boundaries inside each RAMBlock and also be referenced
640 * during dynamic page registration.
642 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
644 RDMALocalBlocks *local = &rdma->local_ram_blocks;
645 int ret;
647 assert(rdma->blockmap == NULL);
648 memset(local, 0, sizeof *local);
649 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
650 if (ret) {
651 return ret;
653 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
654 rdma->dest_blocks = g_new0(RDMADestBlock,
655 rdma->local_ram_blocks.nb_blocks);
656 local->init = true;
657 return 0;
661 * Note: If used outside of cleanup, the caller must ensure that the destination
662 * block structures are also updated
664 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
666 RDMALocalBlocks *local = &rdma->local_ram_blocks;
667 RDMALocalBlock *old = local->block;
668 int x;
670 if (rdma->blockmap) {
671 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
673 if (block->pmr) {
674 int j;
676 for (j = 0; j < block->nb_chunks; j++) {
677 if (!block->pmr[j]) {
678 continue;
680 ibv_dereg_mr(block->pmr[j]);
681 rdma->total_registrations--;
683 g_free(block->pmr);
684 block->pmr = NULL;
687 if (block->mr) {
688 ibv_dereg_mr(block->mr);
689 rdma->total_registrations--;
690 block->mr = NULL;
693 g_free(block->transit_bitmap);
694 block->transit_bitmap = NULL;
696 g_free(block->unregister_bitmap);
697 block->unregister_bitmap = NULL;
699 g_free(block->remote_keys);
700 block->remote_keys = NULL;
702 g_free(block->block_name);
703 block->block_name = NULL;
705 if (rdma->blockmap) {
706 for (x = 0; x < local->nb_blocks; x++) {
707 g_hash_table_remove(rdma->blockmap,
708 (void *)(uintptr_t)old[x].offset);
712 if (local->nb_blocks > 1) {
714 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
716 if (block->index) {
717 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
720 if (block->index < (local->nb_blocks - 1)) {
721 memcpy(local->block + block->index, old + (block->index + 1),
722 sizeof(RDMALocalBlock) *
723 (local->nb_blocks - (block->index + 1)));
724 for (x = block->index; x < local->nb_blocks - 1; x++) {
725 local->block[x].index--;
728 } else {
729 assert(block == local->block);
730 local->block = NULL;
733 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
734 block->offset, block->length,
735 (uintptr_t)(block->local_host_addr + block->length),
736 BITS_TO_LONGS(block->nb_chunks) *
737 sizeof(unsigned long) * 8, block->nb_chunks);
739 g_free(old);
741 local->nb_blocks--;
743 if (local->nb_blocks && rdma->blockmap) {
744 for (x = 0; x < local->nb_blocks; x++) {
745 g_hash_table_insert(rdma->blockmap,
746 (void *)(uintptr_t)local->block[x].offset,
747 &local->block[x]);
751 return 0;
755 * Put in the log file which RDMA device was opened and the details
756 * associated with that device.
758 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
760 struct ibv_port_attr port;
762 if (ibv_query_port(verbs, 1, &port)) {
763 error_report("Failed to query port information");
764 return;
767 printf("%s RDMA Device opened: kernel name %s "
768 "uverbs device name %s, "
769 "infiniband_verbs class device path %s, "
770 "infiniband class device path %s, "
771 "transport: (%d) %s\n",
772 who,
773 verbs->device->name,
774 verbs->device->dev_name,
775 verbs->device->dev_path,
776 verbs->device->ibdev_path,
777 port.link_layer,
778 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
779 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
780 ? "Ethernet" : "Unknown"));
784 * Put in the log file the RDMA gid addressing information,
785 * useful for folks who have trouble understanding the
786 * RDMA device hierarchy in the kernel.
788 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
790 char sgid[33];
791 char dgid[33];
792 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
793 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
794 trace_qemu_rdma_dump_gid(who, sgid, dgid);
798 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
799 * We will try the next addrinfo struct, and fail if there are
800 * no other valid addresses to bind against.
802 * If user is listening on '[::]', then we will not have a opened a device
803 * yet and have no way of verifying if the device is RoCE or not.
805 * In this case, the source VM will throw an error for ALL types of
806 * connections (both IPv4 and IPv6) if the destination machine does not have
807 * a regular infiniband network available for use.
809 * The only way to guarantee that an error is thrown for broken kernels is
810 * for the management software to choose a *specific* interface at bind time
811 * and validate what time of hardware it is.
813 * Unfortunately, this puts the user in a fix:
815 * If the source VM connects with an IPv4 address without knowing that the
816 * destination has bound to '[::]' the migration will unconditionally fail
817 * unless the management software is explicitly listening on the IPv4
818 * address while using a RoCE-based device.
820 * If the source VM connects with an IPv6 address, then we're OK because we can
821 * throw an error on the source (and similarly on the destination).
823 * But in mixed environments, this will be broken for a while until it is fixed
824 * inside linux.
826 * We do provide a *tiny* bit of help in this function: We can list all of the
827 * devices in the system and check to see if all the devices are RoCE or
828 * Infiniband.
830 * If we detect that we have a *pure* RoCE environment, then we can safely
831 * thrown an error even if the management software has specified '[::]' as the
832 * bind address.
834 * However, if there is are multiple hetergeneous devices, then we cannot make
835 * this assumption and the user just has to be sure they know what they are
836 * doing.
838 * Patches are being reviewed on linux-rdma.
840 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
842 /* This bug only exists in linux, to our knowledge. */
843 #ifdef CONFIG_LINUX
844 struct ibv_port_attr port_attr;
847 * Verbs are only NULL if management has bound to '[::]'.
849 * Let's iterate through all the devices and see if there any pure IB
850 * devices (non-ethernet).
852 * If not, then we can safely proceed with the migration.
853 * Otherwise, there are no guarantees until the bug is fixed in linux.
855 if (!verbs) {
856 int num_devices, x;
857 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
858 bool roce_found = false;
859 bool ib_found = false;
861 for (x = 0; x < num_devices; x++) {
862 verbs = ibv_open_device(dev_list[x]);
863 if (!verbs) {
864 if (errno == EPERM) {
865 continue;
866 } else {
867 return -EINVAL;
871 if (ibv_query_port(verbs, 1, &port_attr)) {
872 ibv_close_device(verbs);
873 ERROR(errp, "Could not query initial IB port");
874 return -EINVAL;
877 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
878 ib_found = true;
879 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
880 roce_found = true;
883 ibv_close_device(verbs);
887 if (roce_found) {
888 if (ib_found) {
889 fprintf(stderr, "WARN: migrations may fail:"
890 " IPv6 over RoCE / iWARP in linux"
891 " is broken. But since you appear to have a"
892 " mixed RoCE / IB environment, be sure to only"
893 " migrate over the IB fabric until the kernel "
894 " fixes the bug.\n");
895 } else {
896 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
897 " and your management software has specified '[::]'"
898 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
899 return -ENONET;
903 return 0;
907 * If we have a verbs context, that means that some other than '[::]' was
908 * used by the management software for binding. In which case we can
909 * actually warn the user about a potentially broken kernel.
912 /* IB ports start with 1, not 0 */
913 if (ibv_query_port(verbs, 1, &port_attr)) {
914 ERROR(errp, "Could not query initial IB port");
915 return -EINVAL;
918 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
919 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
920 "(but patches on linux-rdma in progress)");
921 return -ENONET;
924 #endif
926 return 0;
930 * Figure out which RDMA device corresponds to the requested IP hostname
931 * Also create the initial connection manager identifiers for opening
932 * the connection.
934 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
936 int ret;
937 struct rdma_addrinfo *res;
938 char port_str[16];
939 struct rdma_cm_event *cm_event;
940 char ip[40] = "unknown";
941 struct rdma_addrinfo *e;
943 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
944 ERROR(errp, "RDMA hostname has not been set");
945 return -EINVAL;
948 /* create CM channel */
949 rdma->channel = rdma_create_event_channel();
950 if (!rdma->channel) {
951 ERROR(errp, "could not create CM channel");
952 return -EINVAL;
955 /* create CM id */
956 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
957 if (ret) {
958 ERROR(errp, "could not create channel id");
959 goto err_resolve_create_id;
962 snprintf(port_str, 16, "%d", rdma->port);
963 port_str[15] = '\0';
965 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
966 if (ret < 0) {
967 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
968 goto err_resolve_get_addr;
971 for (e = res; e != NULL; e = e->ai_next) {
972 inet_ntop(e->ai_family,
973 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
974 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
976 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
977 RDMA_RESOLVE_TIMEOUT_MS);
978 if (!ret) {
979 if (e->ai_family == AF_INET6) {
980 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
981 if (ret) {
982 continue;
985 goto route;
989 ERROR(errp, "could not resolve address %s", rdma->host);
990 goto err_resolve_get_addr;
992 route:
993 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
995 ret = rdma_get_cm_event(rdma->channel, &cm_event);
996 if (ret) {
997 ERROR(errp, "could not perform event_addr_resolved");
998 goto err_resolve_get_addr;
1001 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1002 ERROR(errp, "result not equal to event_addr_resolved %s",
1003 rdma_event_str(cm_event->event));
1004 perror("rdma_resolve_addr");
1005 rdma_ack_cm_event(cm_event);
1006 ret = -EINVAL;
1007 goto err_resolve_get_addr;
1009 rdma_ack_cm_event(cm_event);
1011 /* resolve route */
1012 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1013 if (ret) {
1014 ERROR(errp, "could not resolve rdma route");
1015 goto err_resolve_get_addr;
1018 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1019 if (ret) {
1020 ERROR(errp, "could not perform event_route_resolved");
1021 goto err_resolve_get_addr;
1023 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1024 ERROR(errp, "result not equal to event_route_resolved: %s",
1025 rdma_event_str(cm_event->event));
1026 rdma_ack_cm_event(cm_event);
1027 ret = -EINVAL;
1028 goto err_resolve_get_addr;
1030 rdma_ack_cm_event(cm_event);
1031 rdma->verbs = rdma->cm_id->verbs;
1032 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1033 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1034 return 0;
1036 err_resolve_get_addr:
1037 rdma_destroy_id(rdma->cm_id);
1038 rdma->cm_id = NULL;
1039 err_resolve_create_id:
1040 rdma_destroy_event_channel(rdma->channel);
1041 rdma->channel = NULL;
1042 return ret;
1046 * Create protection domain and completion queues
1048 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1050 /* allocate pd */
1051 rdma->pd = ibv_alloc_pd(rdma->verbs);
1052 if (!rdma->pd) {
1053 error_report("failed to allocate protection domain");
1054 return -1;
1057 /* create completion channel */
1058 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1059 if (!rdma->comp_channel) {
1060 error_report("failed to allocate completion channel");
1061 goto err_alloc_pd_cq;
1065 * Completion queue can be filled by both read and write work requests,
1066 * so must reflect the sum of both possible queue sizes.
1068 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1069 NULL, rdma->comp_channel, 0);
1070 if (!rdma->cq) {
1071 error_report("failed to allocate completion queue");
1072 goto err_alloc_pd_cq;
1075 return 0;
1077 err_alloc_pd_cq:
1078 if (rdma->pd) {
1079 ibv_dealloc_pd(rdma->pd);
1081 if (rdma->comp_channel) {
1082 ibv_destroy_comp_channel(rdma->comp_channel);
1084 rdma->pd = NULL;
1085 rdma->comp_channel = NULL;
1086 return -1;
1091 * Create queue pairs.
1093 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1095 struct ibv_qp_init_attr attr = { 0 };
1096 int ret;
1098 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1099 attr.cap.max_recv_wr = 3;
1100 attr.cap.max_send_sge = 1;
1101 attr.cap.max_recv_sge = 1;
1102 attr.send_cq = rdma->cq;
1103 attr.recv_cq = rdma->cq;
1104 attr.qp_type = IBV_QPT_RC;
1106 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1107 if (ret) {
1108 return -1;
1111 rdma->qp = rdma->cm_id->qp;
1112 return 0;
1115 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1117 int i;
1118 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1120 for (i = 0; i < local->nb_blocks; i++) {
1121 local->block[i].mr =
1122 ibv_reg_mr(rdma->pd,
1123 local->block[i].local_host_addr,
1124 local->block[i].length,
1125 IBV_ACCESS_LOCAL_WRITE |
1126 IBV_ACCESS_REMOTE_WRITE
1128 if (!local->block[i].mr) {
1129 perror("Failed to register local dest ram block!\n");
1130 break;
1132 rdma->total_registrations++;
1135 if (i >= local->nb_blocks) {
1136 return 0;
1139 for (i--; i >= 0; i--) {
1140 ibv_dereg_mr(local->block[i].mr);
1141 rdma->total_registrations--;
1144 return -1;
1149 * Find the ram block that corresponds to the page requested to be
1150 * transmitted by QEMU.
1152 * Once the block is found, also identify which 'chunk' within that
1153 * block that the page belongs to.
1155 * This search cannot fail or the migration will fail.
1157 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1158 uintptr_t block_offset,
1159 uint64_t offset,
1160 uint64_t length,
1161 uint64_t *block_index,
1162 uint64_t *chunk_index)
1164 uint64_t current_addr = block_offset + offset;
1165 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1166 (void *) block_offset);
1167 assert(block);
1168 assert(current_addr >= block->offset);
1169 assert((current_addr + length) <= (block->offset + block->length));
1171 *block_index = block->index;
1172 *chunk_index = ram_chunk_index(block->local_host_addr,
1173 block->local_host_addr + (current_addr - block->offset));
1175 return 0;
1179 * Register a chunk with IB. If the chunk was already registered
1180 * previously, then skip.
1182 * Also return the keys associated with the registration needed
1183 * to perform the actual RDMA operation.
1185 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1186 RDMALocalBlock *block, uintptr_t host_addr,
1187 uint32_t *lkey, uint32_t *rkey, int chunk,
1188 uint8_t *chunk_start, uint8_t *chunk_end)
1190 if (block->mr) {
1191 if (lkey) {
1192 *lkey = block->mr->lkey;
1194 if (rkey) {
1195 *rkey = block->mr->rkey;
1197 return 0;
1200 /* allocate memory to store chunk MRs */
1201 if (!block->pmr) {
1202 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1206 * If 'rkey', then we're the destination, so grant access to the source.
1208 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1210 if (!block->pmr[chunk]) {
1211 uint64_t len = chunk_end - chunk_start;
1213 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1215 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1216 chunk_start, len,
1217 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1218 IBV_ACCESS_REMOTE_WRITE) : 0));
1220 if (!block->pmr[chunk]) {
1221 perror("Failed to register chunk!");
1222 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1223 " start %" PRIuPTR " end %" PRIuPTR
1224 " host %" PRIuPTR
1225 " local %" PRIuPTR " registrations: %d\n",
1226 block->index, chunk, (uintptr_t)chunk_start,
1227 (uintptr_t)chunk_end, host_addr,
1228 (uintptr_t)block->local_host_addr,
1229 rdma->total_registrations);
1230 return -1;
1232 rdma->total_registrations++;
1235 if (lkey) {
1236 *lkey = block->pmr[chunk]->lkey;
1238 if (rkey) {
1239 *rkey = block->pmr[chunk]->rkey;
1241 return 0;
1245 * Register (at connection time) the memory used for control
1246 * channel messages.
1248 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1250 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1251 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1252 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1253 if (rdma->wr_data[idx].control_mr) {
1254 rdma->total_registrations++;
1255 return 0;
1257 error_report("qemu_rdma_reg_control failed");
1258 return -1;
1261 const char *print_wrid(int wrid)
1263 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1264 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1266 return wrid_desc[wrid];
1270 * RDMA requires memory registration (mlock/pinning), but this is not good for
1271 * overcommitment.
1273 * In preparation for the future where LRU information or workload-specific
1274 * writable writable working set memory access behavior is available to QEMU
1275 * it would be nice to have in place the ability to UN-register/UN-pin
1276 * particular memory regions from the RDMA hardware when it is determine that
1277 * those regions of memory will likely not be accessed again in the near future.
1279 * While we do not yet have such information right now, the following
1280 * compile-time option allows us to perform a non-optimized version of this
1281 * behavior.
1283 * By uncommenting this option, you will cause *all* RDMA transfers to be
1284 * unregistered immediately after the transfer completes on both sides of the
1285 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1287 * This will have a terrible impact on migration performance, so until future
1288 * workload information or LRU information is available, do not attempt to use
1289 * this feature except for basic testing.
1291 //#define RDMA_UNREGISTRATION_EXAMPLE
1294 * Perform a non-optimized memory unregistration after every transfer
1295 * for demonstration purposes, only if pin-all is not requested.
1297 * Potential optimizations:
1298 * 1. Start a new thread to run this function continuously
1299 - for bit clearing
1300 - and for receipt of unregister messages
1301 * 2. Use an LRU.
1302 * 3. Use workload hints.
1304 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1306 while (rdma->unregistrations[rdma->unregister_current]) {
1307 int ret;
1308 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1309 uint64_t chunk =
1310 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1311 uint64_t index =
1312 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1313 RDMALocalBlock *block =
1314 &(rdma->local_ram_blocks.block[index]);
1315 RDMARegister reg = { .current_index = index };
1316 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1318 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1319 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1320 .repeat = 1,
1323 trace_qemu_rdma_unregister_waiting_proc(chunk,
1324 rdma->unregister_current);
1326 rdma->unregistrations[rdma->unregister_current] = 0;
1327 rdma->unregister_current++;
1329 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1330 rdma->unregister_current = 0;
1335 * Unregistration is speculative (because migration is single-threaded
1336 * and we cannot break the protocol's inifinband message ordering).
1337 * Thus, if the memory is currently being used for transmission,
1338 * then abort the attempt to unregister and try again
1339 * later the next time a completion is received for this memory.
1341 clear_bit(chunk, block->unregister_bitmap);
1343 if (test_bit(chunk, block->transit_bitmap)) {
1344 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1345 continue;
1348 trace_qemu_rdma_unregister_waiting_send(chunk);
1350 ret = ibv_dereg_mr(block->pmr[chunk]);
1351 block->pmr[chunk] = NULL;
1352 block->remote_keys[chunk] = 0;
1354 if (ret != 0) {
1355 perror("unregistration chunk failed");
1356 return -ret;
1358 rdma->total_registrations--;
1360 reg.key.chunk = chunk;
1361 register_to_network(rdma, &reg);
1362 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1363 &resp, NULL, NULL);
1364 if (ret < 0) {
1365 return ret;
1368 trace_qemu_rdma_unregister_waiting_complete(chunk);
1371 return 0;
1374 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1375 uint64_t chunk)
1377 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1379 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1380 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1382 return result;
1386 * Set bit for unregistration in the next iteration.
1387 * We cannot transmit right here, but will unpin later.
1389 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1390 uint64_t chunk, uint64_t wr_id)
1392 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1393 error_report("rdma migration: queue is full");
1394 } else {
1395 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1397 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1398 trace_qemu_rdma_signal_unregister_append(chunk,
1399 rdma->unregister_next);
1401 rdma->unregistrations[rdma->unregister_next++] =
1402 qemu_rdma_make_wrid(wr_id, index, chunk);
1404 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1405 rdma->unregister_next = 0;
1407 } else {
1408 trace_qemu_rdma_signal_unregister_already(chunk);
1414 * Consult the connection manager to see a work request
1415 * (of any kind) has completed.
1416 * Return the work request ID that completed.
1418 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1419 uint32_t *byte_len)
1421 int ret;
1422 struct ibv_wc wc;
1423 uint64_t wr_id;
1425 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1427 if (!ret) {
1428 *wr_id_out = RDMA_WRID_NONE;
1429 return 0;
1432 if (ret < 0) {
1433 error_report("ibv_poll_cq return %d", ret);
1434 return ret;
1437 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1439 if (wc.status != IBV_WC_SUCCESS) {
1440 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1441 wc.status, ibv_wc_status_str(wc.status));
1442 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1444 return -1;
1447 if (rdma->control_ready_expected &&
1448 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1449 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1450 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1451 rdma->control_ready_expected = 0;
1454 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1455 uint64_t chunk =
1456 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1457 uint64_t index =
1458 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1459 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1461 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1462 index, chunk, block->local_host_addr,
1463 (void *)(uintptr_t)block->remote_host_addr);
1465 clear_bit(chunk, block->transit_bitmap);
1467 if (rdma->nb_sent > 0) {
1468 rdma->nb_sent--;
1471 if (!rdma->pin_all) {
1473 * FYI: If one wanted to signal a specific chunk to be unregistered
1474 * using LRU or workload-specific information, this is the function
1475 * you would call to do so. That chunk would then get asynchronously
1476 * unregistered later.
1478 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1479 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1480 #endif
1482 } else {
1483 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1486 *wr_id_out = wc.wr_id;
1487 if (byte_len) {
1488 *byte_len = wc.byte_len;
1491 return 0;
1494 /* Wait for activity on the completion channel.
1495 * Returns 0 on success, none-0 on error.
1497 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1499 struct rdma_cm_event *cm_event;
1500 int ret = -1;
1503 * Coroutine doesn't start until migration_fd_process_incoming()
1504 * so don't yield unless we know we're running inside of a coroutine.
1506 if (rdma->migration_started_on_destination &&
1507 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1508 yield_until_fd_readable(rdma->comp_channel->fd);
1509 } else {
1510 /* This is the source side, we're in a separate thread
1511 * or destination prior to migration_fd_process_incoming()
1512 * after postcopy, the destination also in a seprate thread.
1513 * we can't yield; so we have to poll the fd.
1514 * But we need to be able to handle 'cancel' or an error
1515 * without hanging forever.
1517 while (!rdma->error_state && !rdma->received_error) {
1518 GPollFD pfds[2];
1519 pfds[0].fd = rdma->comp_channel->fd;
1520 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1521 pfds[0].revents = 0;
1523 pfds[1].fd = rdma->channel->fd;
1524 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1525 pfds[1].revents = 0;
1527 /* 0.1s timeout, should be fine for a 'cancel' */
1528 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1529 case 2:
1530 case 1: /* fd active */
1531 if (pfds[0].revents) {
1532 return 0;
1535 if (pfds[1].revents) {
1536 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1537 if (!ret) {
1538 rdma_ack_cm_event(cm_event);
1541 error_report("receive cm event while wait comp channel,"
1542 "cm event is %d", cm_event->event);
1543 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1544 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1545 return -EPIPE;
1548 break;
1550 case 0: /* Timeout, go around again */
1551 break;
1553 default: /* Error of some type -
1554 * I don't trust errno from qemu_poll_ns
1556 error_report("%s: poll failed", __func__);
1557 return -EPIPE;
1560 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1561 /* Bail out and let the cancellation happen */
1562 return -EPIPE;
1567 if (rdma->received_error) {
1568 return -EPIPE;
1570 return rdma->error_state;
1574 * Block until the next work request has completed.
1576 * First poll to see if a work request has already completed,
1577 * otherwise block.
1579 * If we encounter completed work requests for IDs other than
1580 * the one we're interested in, then that's generally an error.
1582 * The only exception is actual RDMA Write completions. These
1583 * completions only need to be recorded, but do not actually
1584 * need further processing.
1586 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1587 uint32_t *byte_len)
1589 int num_cq_events = 0, ret = 0;
1590 struct ibv_cq *cq;
1591 void *cq_ctx;
1592 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1594 if (ibv_req_notify_cq(rdma->cq, 0)) {
1595 return -1;
1597 /* poll cq first */
1598 while (wr_id != wrid_requested) {
1599 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1600 if (ret < 0) {
1601 return ret;
1604 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1606 if (wr_id == RDMA_WRID_NONE) {
1607 break;
1609 if (wr_id != wrid_requested) {
1610 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1611 wrid_requested, print_wrid(wr_id), wr_id);
1615 if (wr_id == wrid_requested) {
1616 return 0;
1619 while (1) {
1620 ret = qemu_rdma_wait_comp_channel(rdma);
1621 if (ret) {
1622 goto err_block_for_wrid;
1625 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1626 if (ret) {
1627 perror("ibv_get_cq_event");
1628 goto err_block_for_wrid;
1631 num_cq_events++;
1633 ret = -ibv_req_notify_cq(cq, 0);
1634 if (ret) {
1635 goto err_block_for_wrid;
1638 while (wr_id != wrid_requested) {
1639 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1640 if (ret < 0) {
1641 goto err_block_for_wrid;
1644 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1646 if (wr_id == RDMA_WRID_NONE) {
1647 break;
1649 if (wr_id != wrid_requested) {
1650 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1651 wrid_requested, print_wrid(wr_id), wr_id);
1655 if (wr_id == wrid_requested) {
1656 goto success_block_for_wrid;
1660 success_block_for_wrid:
1661 if (num_cq_events) {
1662 ibv_ack_cq_events(cq, num_cq_events);
1664 return 0;
1666 err_block_for_wrid:
1667 if (num_cq_events) {
1668 ibv_ack_cq_events(cq, num_cq_events);
1671 rdma->error_state = ret;
1672 return ret;
1676 * Post a SEND message work request for the control channel
1677 * containing some data and block until the post completes.
1679 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1680 RDMAControlHeader *head)
1682 int ret = 0;
1683 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1684 struct ibv_send_wr *bad_wr;
1685 struct ibv_sge sge = {
1686 .addr = (uintptr_t)(wr->control),
1687 .length = head->len + sizeof(RDMAControlHeader),
1688 .lkey = wr->control_mr->lkey,
1690 struct ibv_send_wr send_wr = {
1691 .wr_id = RDMA_WRID_SEND_CONTROL,
1692 .opcode = IBV_WR_SEND,
1693 .send_flags = IBV_SEND_SIGNALED,
1694 .sg_list = &sge,
1695 .num_sge = 1,
1698 trace_qemu_rdma_post_send_control(control_desc(head->type));
1701 * We don't actually need to do a memcpy() in here if we used
1702 * the "sge" properly, but since we're only sending control messages
1703 * (not RAM in a performance-critical path), then its OK for now.
1705 * The copy makes the RDMAControlHeader simpler to manipulate
1706 * for the time being.
1708 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1709 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1710 control_to_network((void *) wr->control);
1712 if (buf) {
1713 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1717 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1719 if (ret > 0) {
1720 error_report("Failed to use post IB SEND for control");
1721 return -ret;
1724 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1725 if (ret < 0) {
1726 error_report("rdma migration: send polling control error");
1729 return ret;
1733 * Post a RECV work request in anticipation of some future receipt
1734 * of data on the control channel.
1736 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1738 struct ibv_recv_wr *bad_wr;
1739 struct ibv_sge sge = {
1740 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1741 .length = RDMA_CONTROL_MAX_BUFFER,
1742 .lkey = rdma->wr_data[idx].control_mr->lkey,
1745 struct ibv_recv_wr recv_wr = {
1746 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1747 .sg_list = &sge,
1748 .num_sge = 1,
1752 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1753 return -1;
1756 return 0;
1760 * Block and wait for a RECV control channel message to arrive.
1762 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1763 RDMAControlHeader *head, int expecting, int idx)
1765 uint32_t byte_len;
1766 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1767 &byte_len);
1769 if (ret < 0) {
1770 error_report("rdma migration: recv polling control error!");
1771 return ret;
1774 network_to_control((void *) rdma->wr_data[idx].control);
1775 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1777 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1779 if (expecting == RDMA_CONTROL_NONE) {
1780 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1781 head->type);
1782 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1783 error_report("Was expecting a %s (%d) control message"
1784 ", but got: %s (%d), length: %d",
1785 control_desc(expecting), expecting,
1786 control_desc(head->type), head->type, head->len);
1787 if (head->type == RDMA_CONTROL_ERROR) {
1788 rdma->received_error = true;
1790 return -EIO;
1792 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1793 error_report("too long length: %d", head->len);
1794 return -EINVAL;
1796 if (sizeof(*head) + head->len != byte_len) {
1797 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1798 return -EINVAL;
1801 return 0;
1805 * When a RECV work request has completed, the work request's
1806 * buffer is pointed at the header.
1808 * This will advance the pointer to the data portion
1809 * of the control message of the work request's buffer that
1810 * was populated after the work request finished.
1812 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1813 RDMAControlHeader *head)
1815 rdma->wr_data[idx].control_len = head->len;
1816 rdma->wr_data[idx].control_curr =
1817 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1821 * This is an 'atomic' high-level operation to deliver a single, unified
1822 * control-channel message.
1824 * Additionally, if the user is expecting some kind of reply to this message,
1825 * they can request a 'resp' response message be filled in by posting an
1826 * additional work request on behalf of the user and waiting for an additional
1827 * completion.
1829 * The extra (optional) response is used during registration to us from having
1830 * to perform an *additional* exchange of message just to provide a response by
1831 * instead piggy-backing on the acknowledgement.
1833 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1834 uint8_t *data, RDMAControlHeader *resp,
1835 int *resp_idx,
1836 int (*callback)(RDMAContext *rdma))
1838 int ret = 0;
1841 * Wait until the dest is ready before attempting to deliver the message
1842 * by waiting for a READY message.
1844 if (rdma->control_ready_expected) {
1845 RDMAControlHeader resp;
1846 ret = qemu_rdma_exchange_get_response(rdma,
1847 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1848 if (ret < 0) {
1849 return ret;
1854 * If the user is expecting a response, post a WR in anticipation of it.
1856 if (resp) {
1857 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1858 if (ret) {
1859 error_report("rdma migration: error posting"
1860 " extra control recv for anticipated result!");
1861 return ret;
1866 * Post a WR to replace the one we just consumed for the READY message.
1868 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1869 if (ret) {
1870 error_report("rdma migration: error posting first control recv!");
1871 return ret;
1875 * Deliver the control message that was requested.
1877 ret = qemu_rdma_post_send_control(rdma, data, head);
1879 if (ret < 0) {
1880 error_report("Failed to send control buffer!");
1881 return ret;
1885 * If we're expecting a response, block and wait for it.
1887 if (resp) {
1888 if (callback) {
1889 trace_qemu_rdma_exchange_send_issue_callback();
1890 ret = callback(rdma);
1891 if (ret < 0) {
1892 return ret;
1896 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1897 ret = qemu_rdma_exchange_get_response(rdma, resp,
1898 resp->type, RDMA_WRID_DATA);
1900 if (ret < 0) {
1901 return ret;
1904 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1905 if (resp_idx) {
1906 *resp_idx = RDMA_WRID_DATA;
1908 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1911 rdma->control_ready_expected = 1;
1913 return 0;
1917 * This is an 'atomic' high-level operation to receive a single, unified
1918 * control-channel message.
1920 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1921 int expecting)
1923 RDMAControlHeader ready = {
1924 .len = 0,
1925 .type = RDMA_CONTROL_READY,
1926 .repeat = 1,
1928 int ret;
1931 * Inform the source that we're ready to receive a message.
1933 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1935 if (ret < 0) {
1936 error_report("Failed to send control buffer!");
1937 return ret;
1941 * Block and wait for the message.
1943 ret = qemu_rdma_exchange_get_response(rdma, head,
1944 expecting, RDMA_WRID_READY);
1946 if (ret < 0) {
1947 return ret;
1950 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1953 * Post a new RECV work request to replace the one we just consumed.
1955 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1956 if (ret) {
1957 error_report("rdma migration: error posting second control recv!");
1958 return ret;
1961 return 0;
1965 * Write an actual chunk of memory using RDMA.
1967 * If we're using dynamic registration on the dest-side, we have to
1968 * send a registration command first.
1970 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1971 int current_index, uint64_t current_addr,
1972 uint64_t length)
1974 struct ibv_sge sge;
1975 struct ibv_send_wr send_wr = { 0 };
1976 struct ibv_send_wr *bad_wr;
1977 int reg_result_idx, ret, count = 0;
1978 uint64_t chunk, chunks;
1979 uint8_t *chunk_start, *chunk_end;
1980 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1981 RDMARegister reg;
1982 RDMARegisterResult *reg_result;
1983 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1984 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1985 .type = RDMA_CONTROL_REGISTER_REQUEST,
1986 .repeat = 1,
1989 retry:
1990 sge.addr = (uintptr_t)(block->local_host_addr +
1991 (current_addr - block->offset));
1992 sge.length = length;
1994 chunk = ram_chunk_index(block->local_host_addr,
1995 (uint8_t *)(uintptr_t)sge.addr);
1996 chunk_start = ram_chunk_start(block, chunk);
1998 if (block->is_ram_block) {
1999 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2001 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2002 chunks--;
2004 } else {
2005 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2007 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2008 chunks--;
2012 trace_qemu_rdma_write_one_top(chunks + 1,
2013 (chunks + 1) *
2014 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2016 chunk_end = ram_chunk_end(block, chunk + chunks);
2018 if (!rdma->pin_all) {
2019 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2020 qemu_rdma_unregister_waiting(rdma);
2021 #endif
2024 while (test_bit(chunk, block->transit_bitmap)) {
2025 (void)count;
2026 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2027 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2029 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2031 if (ret < 0) {
2032 error_report("Failed to Wait for previous write to complete "
2033 "block %d chunk %" PRIu64
2034 " current %" PRIu64 " len %" PRIu64 " %d",
2035 current_index, chunk, sge.addr, length, rdma->nb_sent);
2036 return ret;
2040 if (!rdma->pin_all || !block->is_ram_block) {
2041 if (!block->remote_keys[chunk]) {
2043 * This chunk has not yet been registered, so first check to see
2044 * if the entire chunk is zero. If so, tell the other size to
2045 * memset() + madvise() the entire chunk without RDMA.
2048 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2049 RDMACompress comp = {
2050 .offset = current_addr,
2051 .value = 0,
2052 .block_idx = current_index,
2053 .length = length,
2056 head.len = sizeof(comp);
2057 head.type = RDMA_CONTROL_COMPRESS;
2059 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2060 current_index, current_addr);
2062 compress_to_network(rdma, &comp);
2063 ret = qemu_rdma_exchange_send(rdma, &head,
2064 (uint8_t *) &comp, NULL, NULL, NULL);
2066 if (ret < 0) {
2067 return -EIO;
2070 acct_update_position(f, sge.length, true);
2072 return 1;
2076 * Otherwise, tell other side to register.
2078 reg.current_index = current_index;
2079 if (block->is_ram_block) {
2080 reg.key.current_addr = current_addr;
2081 } else {
2082 reg.key.chunk = chunk;
2084 reg.chunks = chunks;
2086 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2087 current_addr);
2089 register_to_network(rdma, &reg);
2090 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2091 &resp, &reg_result_idx, NULL);
2092 if (ret < 0) {
2093 return ret;
2096 /* try to overlap this single registration with the one we sent. */
2097 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2098 &sge.lkey, NULL, chunk,
2099 chunk_start, chunk_end)) {
2100 error_report("cannot get lkey");
2101 return -EINVAL;
2104 reg_result = (RDMARegisterResult *)
2105 rdma->wr_data[reg_result_idx].control_curr;
2107 network_to_result(reg_result);
2109 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2110 reg_result->rkey, chunk);
2112 block->remote_keys[chunk] = reg_result->rkey;
2113 block->remote_host_addr = reg_result->host_addr;
2114 } else {
2115 /* already registered before */
2116 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2117 &sge.lkey, NULL, chunk,
2118 chunk_start, chunk_end)) {
2119 error_report("cannot get lkey!");
2120 return -EINVAL;
2124 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2125 } else {
2126 send_wr.wr.rdma.rkey = block->remote_rkey;
2128 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2129 &sge.lkey, NULL, chunk,
2130 chunk_start, chunk_end)) {
2131 error_report("cannot get lkey!");
2132 return -EINVAL;
2137 * Encode the ram block index and chunk within this wrid.
2138 * We will use this information at the time of completion
2139 * to figure out which bitmap to check against and then which
2140 * chunk in the bitmap to look for.
2142 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2143 current_index, chunk);
2145 send_wr.opcode = IBV_WR_RDMA_WRITE;
2146 send_wr.send_flags = IBV_SEND_SIGNALED;
2147 send_wr.sg_list = &sge;
2148 send_wr.num_sge = 1;
2149 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2150 (current_addr - block->offset);
2152 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2153 sge.length);
2156 * ibv_post_send() does not return negative error numbers,
2157 * per the specification they are positive - no idea why.
2159 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2161 if (ret == ENOMEM) {
2162 trace_qemu_rdma_write_one_queue_full();
2163 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2164 if (ret < 0) {
2165 error_report("rdma migration: failed to make "
2166 "room in full send queue! %d", ret);
2167 return ret;
2170 goto retry;
2172 } else if (ret > 0) {
2173 perror("rdma migration: post rdma write failed");
2174 return -ret;
2177 set_bit(chunk, block->transit_bitmap);
2178 acct_update_position(f, sge.length, false);
2179 rdma->total_writes++;
2181 return 0;
2185 * Push out any unwritten RDMA operations.
2187 * We support sending out multiple chunks at the same time.
2188 * Not all of them need to get signaled in the completion queue.
2190 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2192 int ret;
2194 if (!rdma->current_length) {
2195 return 0;
2198 ret = qemu_rdma_write_one(f, rdma,
2199 rdma->current_index, rdma->current_addr, rdma->current_length);
2201 if (ret < 0) {
2202 return ret;
2205 if (ret == 0) {
2206 rdma->nb_sent++;
2207 trace_qemu_rdma_write_flush(rdma->nb_sent);
2210 rdma->current_length = 0;
2211 rdma->current_addr = 0;
2213 return 0;
2216 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2217 uint64_t offset, uint64_t len)
2219 RDMALocalBlock *block;
2220 uint8_t *host_addr;
2221 uint8_t *chunk_end;
2223 if (rdma->current_index < 0) {
2224 return 0;
2227 if (rdma->current_chunk < 0) {
2228 return 0;
2231 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2232 host_addr = block->local_host_addr + (offset - block->offset);
2233 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2235 if (rdma->current_length == 0) {
2236 return 0;
2240 * Only merge into chunk sequentially.
2242 if (offset != (rdma->current_addr + rdma->current_length)) {
2243 return 0;
2246 if (offset < block->offset) {
2247 return 0;
2250 if ((offset + len) > (block->offset + block->length)) {
2251 return 0;
2254 if ((host_addr + len) > chunk_end) {
2255 return 0;
2258 return 1;
2262 * We're not actually writing here, but doing three things:
2264 * 1. Identify the chunk the buffer belongs to.
2265 * 2. If the chunk is full or the buffer doesn't belong to the current
2266 * chunk, then start a new chunk and flush() the old chunk.
2267 * 3. To keep the hardware busy, we also group chunks into batches
2268 * and only require that a batch gets acknowledged in the completion
2269 * qeueue instead of each individual chunk.
2271 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2272 uint64_t block_offset, uint64_t offset,
2273 uint64_t len)
2275 uint64_t current_addr = block_offset + offset;
2276 uint64_t index = rdma->current_index;
2277 uint64_t chunk = rdma->current_chunk;
2278 int ret;
2280 /* If we cannot merge it, we flush the current buffer first. */
2281 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2282 ret = qemu_rdma_write_flush(f, rdma);
2283 if (ret) {
2284 return ret;
2286 rdma->current_length = 0;
2287 rdma->current_addr = current_addr;
2289 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2290 offset, len, &index, &chunk);
2291 if (ret) {
2292 error_report("ram block search failed");
2293 return ret;
2295 rdma->current_index = index;
2296 rdma->current_chunk = chunk;
2299 /* merge it */
2300 rdma->current_length += len;
2302 /* flush it if buffer is too large */
2303 if (rdma->current_length >= RDMA_MERGE_MAX) {
2304 return qemu_rdma_write_flush(f, rdma);
2307 return 0;
2310 static void qemu_rdma_cleanup(RDMAContext *rdma)
2312 int idx;
2314 if (rdma->cm_id && rdma->connected) {
2315 if ((rdma->error_state ||
2316 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2317 !rdma->received_error) {
2318 RDMAControlHeader head = { .len = 0,
2319 .type = RDMA_CONTROL_ERROR,
2320 .repeat = 1,
2322 error_report("Early error. Sending error.");
2323 qemu_rdma_post_send_control(rdma, NULL, &head);
2326 rdma_disconnect(rdma->cm_id);
2327 trace_qemu_rdma_cleanup_disconnect();
2328 rdma->connected = false;
2331 if (rdma->channel) {
2332 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2334 g_free(rdma->dest_blocks);
2335 rdma->dest_blocks = NULL;
2337 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2338 if (rdma->wr_data[idx].control_mr) {
2339 rdma->total_registrations--;
2340 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2342 rdma->wr_data[idx].control_mr = NULL;
2345 if (rdma->local_ram_blocks.block) {
2346 while (rdma->local_ram_blocks.nb_blocks) {
2347 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2351 if (rdma->qp) {
2352 rdma_destroy_qp(rdma->cm_id);
2353 rdma->qp = NULL;
2355 if (rdma->cq) {
2356 ibv_destroy_cq(rdma->cq);
2357 rdma->cq = NULL;
2359 if (rdma->comp_channel) {
2360 ibv_destroy_comp_channel(rdma->comp_channel);
2361 rdma->comp_channel = NULL;
2363 if (rdma->pd) {
2364 ibv_dealloc_pd(rdma->pd);
2365 rdma->pd = NULL;
2367 if (rdma->cm_id) {
2368 rdma_destroy_id(rdma->cm_id);
2369 rdma->cm_id = NULL;
2372 /* the destination side, listen_id and channel is shared */
2373 if (rdma->listen_id) {
2374 if (!rdma->is_return_path) {
2375 rdma_destroy_id(rdma->listen_id);
2377 rdma->listen_id = NULL;
2379 if (rdma->channel) {
2380 if (!rdma->is_return_path) {
2381 rdma_destroy_event_channel(rdma->channel);
2383 rdma->channel = NULL;
2387 if (rdma->channel) {
2388 rdma_destroy_event_channel(rdma->channel);
2389 rdma->channel = NULL;
2391 g_free(rdma->host);
2392 rdma->host = NULL;
2396 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2398 int ret, idx;
2399 Error *local_err = NULL, **temp = &local_err;
2402 * Will be validated against destination's actual capabilities
2403 * after the connect() completes.
2405 rdma->pin_all = pin_all;
2407 ret = qemu_rdma_resolve_host(rdma, temp);
2408 if (ret) {
2409 goto err_rdma_source_init;
2412 ret = qemu_rdma_alloc_pd_cq(rdma);
2413 if (ret) {
2414 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2415 " limits may be too low. Please check $ ulimit -a # and "
2416 "search for 'ulimit -l' in the output");
2417 goto err_rdma_source_init;
2420 ret = qemu_rdma_alloc_qp(rdma);
2421 if (ret) {
2422 ERROR(temp, "rdma migration: error allocating qp!");
2423 goto err_rdma_source_init;
2426 ret = qemu_rdma_init_ram_blocks(rdma);
2427 if (ret) {
2428 ERROR(temp, "rdma migration: error initializing ram blocks!");
2429 goto err_rdma_source_init;
2432 /* Build the hash that maps from offset to RAMBlock */
2433 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2434 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2435 g_hash_table_insert(rdma->blockmap,
2436 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2437 &rdma->local_ram_blocks.block[idx]);
2440 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2441 ret = qemu_rdma_reg_control(rdma, idx);
2442 if (ret) {
2443 ERROR(temp, "rdma migration: error registering %d control!",
2444 idx);
2445 goto err_rdma_source_init;
2449 return 0;
2451 err_rdma_source_init:
2452 error_propagate(errp, local_err);
2453 qemu_rdma_cleanup(rdma);
2454 return -1;
2457 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2459 RDMACapabilities cap = {
2460 .version = RDMA_CONTROL_VERSION_CURRENT,
2461 .flags = 0,
2463 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2464 .retry_count = 5,
2465 .private_data = &cap,
2466 .private_data_len = sizeof(cap),
2468 struct rdma_cm_event *cm_event;
2469 int ret;
2472 * Only negotiate the capability with destination if the user
2473 * on the source first requested the capability.
2475 if (rdma->pin_all) {
2476 trace_qemu_rdma_connect_pin_all_requested();
2477 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2480 caps_to_network(&cap);
2482 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2483 if (ret) {
2484 ERROR(errp, "posting second control recv");
2485 goto err_rdma_source_connect;
2488 ret = rdma_connect(rdma->cm_id, &conn_param);
2489 if (ret) {
2490 perror("rdma_connect");
2491 ERROR(errp, "connecting to destination!");
2492 goto err_rdma_source_connect;
2495 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2496 if (ret) {
2497 perror("rdma_get_cm_event after rdma_connect");
2498 ERROR(errp, "connecting to destination!");
2499 rdma_ack_cm_event(cm_event);
2500 goto err_rdma_source_connect;
2503 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2504 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2505 ERROR(errp, "connecting to destination!");
2506 rdma_ack_cm_event(cm_event);
2507 goto err_rdma_source_connect;
2509 rdma->connected = true;
2511 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2512 network_to_caps(&cap);
2515 * Verify that the *requested* capabilities are supported by the destination
2516 * and disable them otherwise.
2518 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2519 ERROR(errp, "Server cannot support pinning all memory. "
2520 "Will register memory dynamically.");
2521 rdma->pin_all = false;
2524 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2526 rdma_ack_cm_event(cm_event);
2528 rdma->control_ready_expected = 1;
2529 rdma->nb_sent = 0;
2530 return 0;
2532 err_rdma_source_connect:
2533 qemu_rdma_cleanup(rdma);
2534 return -1;
2537 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2539 int ret, idx;
2540 struct rdma_cm_id *listen_id;
2541 char ip[40] = "unknown";
2542 struct rdma_addrinfo *res, *e;
2543 char port_str[16];
2545 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2546 rdma->wr_data[idx].control_len = 0;
2547 rdma->wr_data[idx].control_curr = NULL;
2550 if (!rdma->host || !rdma->host[0]) {
2551 ERROR(errp, "RDMA host is not set!");
2552 rdma->error_state = -EINVAL;
2553 return -1;
2555 /* create CM channel */
2556 rdma->channel = rdma_create_event_channel();
2557 if (!rdma->channel) {
2558 ERROR(errp, "could not create rdma event channel");
2559 rdma->error_state = -EINVAL;
2560 return -1;
2563 /* create CM id */
2564 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2565 if (ret) {
2566 ERROR(errp, "could not create cm_id!");
2567 goto err_dest_init_create_listen_id;
2570 snprintf(port_str, 16, "%d", rdma->port);
2571 port_str[15] = '\0';
2573 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2574 if (ret < 0) {
2575 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2576 goto err_dest_init_bind_addr;
2579 for (e = res; e != NULL; e = e->ai_next) {
2580 inet_ntop(e->ai_family,
2581 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2582 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2583 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2584 if (ret) {
2585 continue;
2587 if (e->ai_family == AF_INET6) {
2588 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2589 if (ret) {
2590 continue;
2593 break;
2596 if (!e) {
2597 ERROR(errp, "Error: could not rdma_bind_addr!");
2598 goto err_dest_init_bind_addr;
2601 rdma->listen_id = listen_id;
2602 qemu_rdma_dump_gid("dest_init", listen_id);
2603 return 0;
2605 err_dest_init_bind_addr:
2606 rdma_destroy_id(listen_id);
2607 err_dest_init_create_listen_id:
2608 rdma_destroy_event_channel(rdma->channel);
2609 rdma->channel = NULL;
2610 rdma->error_state = ret;
2611 return ret;
2615 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2616 RDMAContext *rdma)
2618 int idx;
2620 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2621 rdma_return_path->wr_data[idx].control_len = 0;
2622 rdma_return_path->wr_data[idx].control_curr = NULL;
2625 /*the CM channel and CM id is shared*/
2626 rdma_return_path->channel = rdma->channel;
2627 rdma_return_path->listen_id = rdma->listen_id;
2629 rdma->return_path = rdma_return_path;
2630 rdma_return_path->return_path = rdma;
2631 rdma_return_path->is_return_path = true;
2634 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2636 RDMAContext *rdma = NULL;
2637 InetSocketAddress *addr;
2639 if (host_port) {
2640 rdma = g_new0(RDMAContext, 1);
2641 rdma->current_index = -1;
2642 rdma->current_chunk = -1;
2644 addr = g_new(InetSocketAddress, 1);
2645 if (!inet_parse(addr, host_port, NULL)) {
2646 rdma->port = atoi(addr->port);
2647 rdma->host = g_strdup(addr->host);
2648 } else {
2649 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2650 g_free(rdma);
2651 rdma = NULL;
2654 qapi_free_InetSocketAddress(addr);
2657 return rdma;
2661 * QEMUFile interface to the control channel.
2662 * SEND messages for control only.
2663 * VM's ram is handled with regular RDMA messages.
2665 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2666 const struct iovec *iov,
2667 size_t niov,
2668 int *fds,
2669 size_t nfds,
2670 Error **errp)
2672 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2673 QEMUFile *f = rioc->file;
2674 RDMAContext *rdma;
2675 int ret;
2676 ssize_t done = 0;
2677 size_t i;
2678 size_t len = 0;
2680 RCU_READ_LOCK_GUARD();
2681 rdma = atomic_rcu_read(&rioc->rdmaout);
2683 if (!rdma) {
2684 return -EIO;
2687 CHECK_ERROR_STATE();
2690 * Push out any writes that
2691 * we're queued up for VM's ram.
2693 ret = qemu_rdma_write_flush(f, rdma);
2694 if (ret < 0) {
2695 rdma->error_state = ret;
2696 return ret;
2699 for (i = 0; i < niov; i++) {
2700 size_t remaining = iov[i].iov_len;
2701 uint8_t * data = (void *)iov[i].iov_base;
2702 while (remaining) {
2703 RDMAControlHeader head;
2705 len = MIN(remaining, RDMA_SEND_INCREMENT);
2706 remaining -= len;
2708 head.len = len;
2709 head.type = RDMA_CONTROL_QEMU_FILE;
2711 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2713 if (ret < 0) {
2714 rdma->error_state = ret;
2715 return ret;
2718 data += len;
2719 done += len;
2723 return done;
2726 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2727 size_t size, int idx)
2729 size_t len = 0;
2731 if (rdma->wr_data[idx].control_len) {
2732 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2734 len = MIN(size, rdma->wr_data[idx].control_len);
2735 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2736 rdma->wr_data[idx].control_curr += len;
2737 rdma->wr_data[idx].control_len -= len;
2740 return len;
2744 * QEMUFile interface to the control channel.
2745 * RDMA links don't use bytestreams, so we have to
2746 * return bytes to QEMUFile opportunistically.
2748 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2749 const struct iovec *iov,
2750 size_t niov,
2751 int **fds,
2752 size_t *nfds,
2753 Error **errp)
2755 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2756 RDMAContext *rdma;
2757 RDMAControlHeader head;
2758 int ret = 0;
2759 ssize_t i;
2760 size_t done = 0;
2762 RCU_READ_LOCK_GUARD();
2763 rdma = atomic_rcu_read(&rioc->rdmain);
2765 if (!rdma) {
2766 return -EIO;
2769 CHECK_ERROR_STATE();
2771 for (i = 0; i < niov; i++) {
2772 size_t want = iov[i].iov_len;
2773 uint8_t *data = (void *)iov[i].iov_base;
2776 * First, we hold on to the last SEND message we
2777 * were given and dish out the bytes until we run
2778 * out of bytes.
2780 ret = qemu_rdma_fill(rdma, data, want, 0);
2781 done += ret;
2782 want -= ret;
2783 /* Got what we needed, so go to next iovec */
2784 if (want == 0) {
2785 continue;
2788 /* If we got any data so far, then don't wait
2789 * for more, just return what we have */
2790 if (done > 0) {
2791 break;
2795 /* We've got nothing at all, so lets wait for
2796 * more to arrive
2798 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2800 if (ret < 0) {
2801 rdma->error_state = ret;
2802 return ret;
2806 * SEND was received with new bytes, now try again.
2808 ret = qemu_rdma_fill(rdma, data, want, 0);
2809 done += ret;
2810 want -= ret;
2812 /* Still didn't get enough, so lets just return */
2813 if (want) {
2814 if (done == 0) {
2815 return QIO_CHANNEL_ERR_BLOCK;
2816 } else {
2817 break;
2821 return done;
2825 * Block until all the outstanding chunks have been delivered by the hardware.
2827 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2829 int ret;
2831 if (qemu_rdma_write_flush(f, rdma) < 0) {
2832 return -EIO;
2835 while (rdma->nb_sent) {
2836 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2837 if (ret < 0) {
2838 error_report("rdma migration: complete polling error!");
2839 return -EIO;
2843 qemu_rdma_unregister_waiting(rdma);
2845 return 0;
2849 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2850 bool blocking,
2851 Error **errp)
2853 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2854 /* XXX we should make readv/writev actually honour this :-) */
2855 rioc->blocking = blocking;
2856 return 0;
2860 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2861 struct QIOChannelRDMASource {
2862 GSource parent;
2863 QIOChannelRDMA *rioc;
2864 GIOCondition condition;
2867 static gboolean
2868 qio_channel_rdma_source_prepare(GSource *source,
2869 gint *timeout)
2871 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2872 RDMAContext *rdma;
2873 GIOCondition cond = 0;
2874 *timeout = -1;
2876 RCU_READ_LOCK_GUARD();
2877 if (rsource->condition == G_IO_IN) {
2878 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2879 } else {
2880 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2883 if (!rdma) {
2884 error_report("RDMAContext is NULL when prepare Gsource");
2885 return FALSE;
2888 if (rdma->wr_data[0].control_len) {
2889 cond |= G_IO_IN;
2891 cond |= G_IO_OUT;
2893 return cond & rsource->condition;
2896 static gboolean
2897 qio_channel_rdma_source_check(GSource *source)
2899 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2900 RDMAContext *rdma;
2901 GIOCondition cond = 0;
2903 RCU_READ_LOCK_GUARD();
2904 if (rsource->condition == G_IO_IN) {
2905 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2906 } else {
2907 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2910 if (!rdma) {
2911 error_report("RDMAContext is NULL when check Gsource");
2912 return FALSE;
2915 if (rdma->wr_data[0].control_len) {
2916 cond |= G_IO_IN;
2918 cond |= G_IO_OUT;
2920 return cond & rsource->condition;
2923 static gboolean
2924 qio_channel_rdma_source_dispatch(GSource *source,
2925 GSourceFunc callback,
2926 gpointer user_data)
2928 QIOChannelFunc func = (QIOChannelFunc)callback;
2929 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2930 RDMAContext *rdma;
2931 GIOCondition cond = 0;
2933 RCU_READ_LOCK_GUARD();
2934 if (rsource->condition == G_IO_IN) {
2935 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2936 } else {
2937 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2940 if (!rdma) {
2941 error_report("RDMAContext is NULL when dispatch Gsource");
2942 return FALSE;
2945 if (rdma->wr_data[0].control_len) {
2946 cond |= G_IO_IN;
2948 cond |= G_IO_OUT;
2950 return (*func)(QIO_CHANNEL(rsource->rioc),
2951 (cond & rsource->condition),
2952 user_data);
2955 static void
2956 qio_channel_rdma_source_finalize(GSource *source)
2958 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2960 object_unref(OBJECT(ssource->rioc));
2963 GSourceFuncs qio_channel_rdma_source_funcs = {
2964 qio_channel_rdma_source_prepare,
2965 qio_channel_rdma_source_check,
2966 qio_channel_rdma_source_dispatch,
2967 qio_channel_rdma_source_finalize
2970 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2971 GIOCondition condition)
2973 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2974 QIOChannelRDMASource *ssource;
2975 GSource *source;
2977 source = g_source_new(&qio_channel_rdma_source_funcs,
2978 sizeof(QIOChannelRDMASource));
2979 ssource = (QIOChannelRDMASource *)source;
2981 ssource->rioc = rioc;
2982 object_ref(OBJECT(rioc));
2984 ssource->condition = condition;
2986 return source;
2989 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
2990 AioContext *ctx,
2991 IOHandler *io_read,
2992 IOHandler *io_write,
2993 void *opaque)
2995 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2996 if (io_read) {
2997 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
2998 false, io_read, io_write, NULL, opaque);
2999 } else {
3000 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3001 false, io_read, io_write, NULL, opaque);
3005 struct rdma_close_rcu {
3006 struct rcu_head rcu;
3007 RDMAContext *rdmain;
3008 RDMAContext *rdmaout;
3011 /* callback from qio_channel_rdma_close via call_rcu */
3012 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3014 if (rcu->rdmain) {
3015 qemu_rdma_cleanup(rcu->rdmain);
3018 if (rcu->rdmaout) {
3019 qemu_rdma_cleanup(rcu->rdmaout);
3022 g_free(rcu->rdmain);
3023 g_free(rcu->rdmaout);
3024 g_free(rcu);
3027 static int qio_channel_rdma_close(QIOChannel *ioc,
3028 Error **errp)
3030 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3031 RDMAContext *rdmain, *rdmaout;
3032 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3034 trace_qemu_rdma_close();
3036 rdmain = rioc->rdmain;
3037 if (rdmain) {
3038 atomic_rcu_set(&rioc->rdmain, NULL);
3041 rdmaout = rioc->rdmaout;
3042 if (rdmaout) {
3043 atomic_rcu_set(&rioc->rdmaout, NULL);
3046 rcu->rdmain = rdmain;
3047 rcu->rdmaout = rdmaout;
3048 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3050 return 0;
3053 static int
3054 qio_channel_rdma_shutdown(QIOChannel *ioc,
3055 QIOChannelShutdown how,
3056 Error **errp)
3058 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3059 RDMAContext *rdmain, *rdmaout;
3061 RCU_READ_LOCK_GUARD();
3063 rdmain = atomic_rcu_read(&rioc->rdmain);
3064 rdmaout = atomic_rcu_read(&rioc->rdmain);
3066 switch (how) {
3067 case QIO_CHANNEL_SHUTDOWN_READ:
3068 if (rdmain) {
3069 rdmain->error_state = -1;
3071 break;
3072 case QIO_CHANNEL_SHUTDOWN_WRITE:
3073 if (rdmaout) {
3074 rdmaout->error_state = -1;
3076 break;
3077 case QIO_CHANNEL_SHUTDOWN_BOTH:
3078 default:
3079 if (rdmain) {
3080 rdmain->error_state = -1;
3082 if (rdmaout) {
3083 rdmaout->error_state = -1;
3085 break;
3088 return 0;
3092 * Parameters:
3093 * @offset == 0 :
3094 * This means that 'block_offset' is a full virtual address that does not
3095 * belong to a RAMBlock of the virtual machine and instead
3096 * represents a private malloc'd memory area that the caller wishes to
3097 * transfer.
3099 * @offset != 0 :
3100 * Offset is an offset to be added to block_offset and used
3101 * to also lookup the corresponding RAMBlock.
3103 * @size > 0 :
3104 * Initiate an transfer this size.
3106 * @size == 0 :
3107 * A 'hint' or 'advice' that means that we wish to speculatively
3108 * and asynchronously unregister this memory. In this case, there is no
3109 * guarantee that the unregister will actually happen, for example,
3110 * if the memory is being actively transmitted. Additionally, the memory
3111 * may be re-registered at any future time if a write within the same
3112 * chunk was requested again, even if you attempted to unregister it
3113 * here.
3115 * @size < 0 : TODO, not yet supported
3116 * Unregister the memory NOW. This means that the caller does not
3117 * expect there to be any future RDMA transfers and we just want to clean
3118 * things up. This is used in case the upper layer owns the memory and
3119 * cannot wait for qemu_fclose() to occur.
3121 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3122 * sent. Usually, this will not be more than a few bytes of
3123 * the protocol because most transfers are sent asynchronously.
3125 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3126 ram_addr_t block_offset, ram_addr_t offset,
3127 size_t size, uint64_t *bytes_sent)
3129 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3130 RDMAContext *rdma;
3131 int ret;
3133 RCU_READ_LOCK_GUARD();
3134 rdma = atomic_rcu_read(&rioc->rdmaout);
3136 if (!rdma) {
3137 return -EIO;
3140 CHECK_ERROR_STATE();
3142 if (migration_in_postcopy()) {
3143 return RAM_SAVE_CONTROL_NOT_SUPP;
3146 qemu_fflush(f);
3148 if (size > 0) {
3150 * Add this page to the current 'chunk'. If the chunk
3151 * is full, or the page doen't belong to the current chunk,
3152 * an actual RDMA write will occur and a new chunk will be formed.
3154 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3155 if (ret < 0) {
3156 error_report("rdma migration: write error! %d", ret);
3157 goto err;
3161 * We always return 1 bytes because the RDMA
3162 * protocol is completely asynchronous. We do not yet know
3163 * whether an identified chunk is zero or not because we're
3164 * waiting for other pages to potentially be merged with
3165 * the current chunk. So, we have to call qemu_update_position()
3166 * later on when the actual write occurs.
3168 if (bytes_sent) {
3169 *bytes_sent = 1;
3171 } else {
3172 uint64_t index, chunk;
3174 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3175 if (size < 0) {
3176 ret = qemu_rdma_drain_cq(f, rdma);
3177 if (ret < 0) {
3178 fprintf(stderr, "rdma: failed to synchronously drain"
3179 " completion queue before unregistration.\n");
3180 goto err;
3185 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3186 offset, size, &index, &chunk);
3188 if (ret) {
3189 error_report("ram block search failed");
3190 goto err;
3193 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3196 * TODO: Synchronous, guaranteed unregistration (should not occur during
3197 * fast-path). Otherwise, unregisters will process on the next call to
3198 * qemu_rdma_drain_cq()
3199 if (size < 0) {
3200 qemu_rdma_unregister_waiting(rdma);
3206 * Drain the Completion Queue if possible, but do not block,
3207 * just poll.
3209 * If nothing to poll, the end of the iteration will do this
3210 * again to make sure we don't overflow the request queue.
3212 while (1) {
3213 uint64_t wr_id, wr_id_in;
3214 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3215 if (ret < 0) {
3216 error_report("rdma migration: polling error! %d", ret);
3217 goto err;
3220 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3222 if (wr_id == RDMA_WRID_NONE) {
3223 break;
3227 return RAM_SAVE_CONTROL_DELAYED;
3228 err:
3229 rdma->error_state = ret;
3230 return ret;
3233 static void rdma_accept_incoming_migration(void *opaque);
3235 static void rdma_cm_poll_handler(void *opaque)
3237 RDMAContext *rdma = opaque;
3238 int ret;
3239 struct rdma_cm_event *cm_event;
3240 MigrationIncomingState *mis = migration_incoming_get_current();
3242 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3243 if (ret) {
3244 error_report("get_cm_event failed %d", errno);
3245 return;
3247 rdma_ack_cm_event(cm_event);
3249 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3250 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3251 if (!rdma->error_state &&
3252 migration_incoming_get_current()->state !=
3253 MIGRATION_STATUS_COMPLETED) {
3254 error_report("receive cm event, cm event is %d", cm_event->event);
3255 rdma->error_state = -EPIPE;
3256 if (rdma->return_path) {
3257 rdma->return_path->error_state = -EPIPE;
3261 if (mis->migration_incoming_co) {
3262 qemu_coroutine_enter(mis->migration_incoming_co);
3264 return;
3268 static int qemu_rdma_accept(RDMAContext *rdma)
3270 RDMACapabilities cap;
3271 struct rdma_conn_param conn_param = {
3272 .responder_resources = 2,
3273 .private_data = &cap,
3274 .private_data_len = sizeof(cap),
3276 struct rdma_cm_event *cm_event;
3277 struct ibv_context *verbs;
3278 int ret = -EINVAL;
3279 int idx;
3281 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3282 if (ret) {
3283 goto err_rdma_dest_wait;
3286 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3287 rdma_ack_cm_event(cm_event);
3288 goto err_rdma_dest_wait;
3291 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3293 network_to_caps(&cap);
3295 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3296 error_report("Unknown source RDMA version: %d, bailing...",
3297 cap.version);
3298 rdma_ack_cm_event(cm_event);
3299 goto err_rdma_dest_wait;
3303 * Respond with only the capabilities this version of QEMU knows about.
3305 cap.flags &= known_capabilities;
3308 * Enable the ones that we do know about.
3309 * Add other checks here as new ones are introduced.
3311 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3312 rdma->pin_all = true;
3315 rdma->cm_id = cm_event->id;
3316 verbs = cm_event->id->verbs;
3318 rdma_ack_cm_event(cm_event);
3320 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3322 caps_to_network(&cap);
3324 trace_qemu_rdma_accept_pin_verbsc(verbs);
3326 if (!rdma->verbs) {
3327 rdma->verbs = verbs;
3328 } else if (rdma->verbs != verbs) {
3329 error_report("ibv context not matching %p, %p!", rdma->verbs,
3330 verbs);
3331 goto err_rdma_dest_wait;
3334 qemu_rdma_dump_id("dest_init", verbs);
3336 ret = qemu_rdma_alloc_pd_cq(rdma);
3337 if (ret) {
3338 error_report("rdma migration: error allocating pd and cq!");
3339 goto err_rdma_dest_wait;
3342 ret = qemu_rdma_alloc_qp(rdma);
3343 if (ret) {
3344 error_report("rdma migration: error allocating qp!");
3345 goto err_rdma_dest_wait;
3348 ret = qemu_rdma_init_ram_blocks(rdma);
3349 if (ret) {
3350 error_report("rdma migration: error initializing ram blocks!");
3351 goto err_rdma_dest_wait;
3354 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3355 ret = qemu_rdma_reg_control(rdma, idx);
3356 if (ret) {
3357 error_report("rdma: error registering %d control", idx);
3358 goto err_rdma_dest_wait;
3362 /* Accept the second connection request for return path */
3363 if (migrate_postcopy() && !rdma->is_return_path) {
3364 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3365 NULL,
3366 (void *)(intptr_t)rdma->return_path);
3367 } else {
3368 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3369 NULL, rdma);
3372 ret = rdma_accept(rdma->cm_id, &conn_param);
3373 if (ret) {
3374 error_report("rdma_accept returns %d", ret);
3375 goto err_rdma_dest_wait;
3378 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3379 if (ret) {
3380 error_report("rdma_accept get_cm_event failed %d", ret);
3381 goto err_rdma_dest_wait;
3384 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3385 error_report("rdma_accept not event established");
3386 rdma_ack_cm_event(cm_event);
3387 goto err_rdma_dest_wait;
3390 rdma_ack_cm_event(cm_event);
3391 rdma->connected = true;
3393 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3394 if (ret) {
3395 error_report("rdma migration: error posting second control recv");
3396 goto err_rdma_dest_wait;
3399 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3401 return 0;
3403 err_rdma_dest_wait:
3404 rdma->error_state = ret;
3405 qemu_rdma_cleanup(rdma);
3406 return ret;
3409 static int dest_ram_sort_func(const void *a, const void *b)
3411 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3412 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3414 return (a_index < b_index) ? -1 : (a_index != b_index);
3418 * During each iteration of the migration, we listen for instructions
3419 * by the source VM to perform dynamic page registrations before they
3420 * can perform RDMA operations.
3422 * We respond with the 'rkey'.
3424 * Keep doing this until the source tells us to stop.
3426 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3428 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3429 .type = RDMA_CONTROL_REGISTER_RESULT,
3430 .repeat = 0,
3432 RDMAControlHeader unreg_resp = { .len = 0,
3433 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3434 .repeat = 0,
3436 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3437 .repeat = 1 };
3438 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3439 RDMAContext *rdma;
3440 RDMALocalBlocks *local;
3441 RDMAControlHeader head;
3442 RDMARegister *reg, *registers;
3443 RDMACompress *comp;
3444 RDMARegisterResult *reg_result;
3445 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3446 RDMALocalBlock *block;
3447 void *host_addr;
3448 int ret = 0;
3449 int idx = 0;
3450 int count = 0;
3451 int i = 0;
3453 RCU_READ_LOCK_GUARD();
3454 rdma = atomic_rcu_read(&rioc->rdmain);
3456 if (!rdma) {
3457 return -EIO;
3460 CHECK_ERROR_STATE();
3462 local = &rdma->local_ram_blocks;
3463 do {
3464 trace_qemu_rdma_registration_handle_wait();
3466 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3468 if (ret < 0) {
3469 break;
3472 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3473 error_report("rdma: Too many requests in this message (%d)."
3474 "Bailing.", head.repeat);
3475 ret = -EIO;
3476 break;
3479 switch (head.type) {
3480 case RDMA_CONTROL_COMPRESS:
3481 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3482 network_to_compress(comp);
3484 trace_qemu_rdma_registration_handle_compress(comp->length,
3485 comp->block_idx,
3486 comp->offset);
3487 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3488 error_report("rdma: 'compress' bad block index %u (vs %d)",
3489 (unsigned int)comp->block_idx,
3490 rdma->local_ram_blocks.nb_blocks);
3491 ret = -EIO;
3492 goto out;
3494 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3496 host_addr = block->local_host_addr +
3497 (comp->offset - block->offset);
3499 ram_handle_compressed(host_addr, comp->value, comp->length);
3500 break;
3502 case RDMA_CONTROL_REGISTER_FINISHED:
3503 trace_qemu_rdma_registration_handle_finished();
3504 goto out;
3506 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3507 trace_qemu_rdma_registration_handle_ram_blocks();
3509 /* Sort our local RAM Block list so it's the same as the source,
3510 * we can do this since we've filled in a src_index in the list
3511 * as we received the RAMBlock list earlier.
3513 qsort(rdma->local_ram_blocks.block,
3514 rdma->local_ram_blocks.nb_blocks,
3515 sizeof(RDMALocalBlock), dest_ram_sort_func);
3516 for (i = 0; i < local->nb_blocks; i++) {
3517 local->block[i].index = i;
3520 if (rdma->pin_all) {
3521 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3522 if (ret) {
3523 error_report("rdma migration: error dest "
3524 "registering ram blocks");
3525 goto out;
3530 * Dest uses this to prepare to transmit the RAMBlock descriptions
3531 * to the source VM after connection setup.
3532 * Both sides use the "remote" structure to communicate and update
3533 * their "local" descriptions with what was sent.
3535 for (i = 0; i < local->nb_blocks; i++) {
3536 rdma->dest_blocks[i].remote_host_addr =
3537 (uintptr_t)(local->block[i].local_host_addr);
3539 if (rdma->pin_all) {
3540 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3543 rdma->dest_blocks[i].offset = local->block[i].offset;
3544 rdma->dest_blocks[i].length = local->block[i].length;
3546 dest_block_to_network(&rdma->dest_blocks[i]);
3547 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3548 local->block[i].block_name,
3549 local->block[i].offset,
3550 local->block[i].length,
3551 local->block[i].local_host_addr,
3552 local->block[i].src_index);
3555 blocks.len = rdma->local_ram_blocks.nb_blocks
3556 * sizeof(RDMADestBlock);
3559 ret = qemu_rdma_post_send_control(rdma,
3560 (uint8_t *) rdma->dest_blocks, &blocks);
3562 if (ret < 0) {
3563 error_report("rdma migration: error sending remote info");
3564 goto out;
3567 break;
3568 case RDMA_CONTROL_REGISTER_REQUEST:
3569 trace_qemu_rdma_registration_handle_register(head.repeat);
3571 reg_resp.repeat = head.repeat;
3572 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3574 for (count = 0; count < head.repeat; count++) {
3575 uint64_t chunk;
3576 uint8_t *chunk_start, *chunk_end;
3578 reg = &registers[count];
3579 network_to_register(reg);
3581 reg_result = &results[count];
3583 trace_qemu_rdma_registration_handle_register_loop(count,
3584 reg->current_index, reg->key.current_addr, reg->chunks);
3586 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3587 error_report("rdma: 'register' bad block index %u (vs %d)",
3588 (unsigned int)reg->current_index,
3589 rdma->local_ram_blocks.nb_blocks);
3590 ret = -ENOENT;
3591 goto out;
3593 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3594 if (block->is_ram_block) {
3595 if (block->offset > reg->key.current_addr) {
3596 error_report("rdma: bad register address for block %s"
3597 " offset: %" PRIx64 " current_addr: %" PRIx64,
3598 block->block_name, block->offset,
3599 reg->key.current_addr);
3600 ret = -ERANGE;
3601 goto out;
3603 host_addr = (block->local_host_addr +
3604 (reg->key.current_addr - block->offset));
3605 chunk = ram_chunk_index(block->local_host_addr,
3606 (uint8_t *) host_addr);
3607 } else {
3608 chunk = reg->key.chunk;
3609 host_addr = block->local_host_addr +
3610 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3611 /* Check for particularly bad chunk value */
3612 if (host_addr < (void *)block->local_host_addr) {
3613 error_report("rdma: bad chunk for block %s"
3614 " chunk: %" PRIx64,
3615 block->block_name, reg->key.chunk);
3616 ret = -ERANGE;
3617 goto out;
3620 chunk_start = ram_chunk_start(block, chunk);
3621 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3622 /* avoid "-Waddress-of-packed-member" warning */
3623 uint32_t tmp_rkey = 0;
3624 if (qemu_rdma_register_and_get_keys(rdma, block,
3625 (uintptr_t)host_addr, NULL, &tmp_rkey,
3626 chunk, chunk_start, chunk_end)) {
3627 error_report("cannot get rkey");
3628 ret = -EINVAL;
3629 goto out;
3631 reg_result->rkey = tmp_rkey;
3633 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3635 trace_qemu_rdma_registration_handle_register_rkey(
3636 reg_result->rkey);
3638 result_to_network(reg_result);
3641 ret = qemu_rdma_post_send_control(rdma,
3642 (uint8_t *) results, &reg_resp);
3644 if (ret < 0) {
3645 error_report("Failed to send control buffer");
3646 goto out;
3648 break;
3649 case RDMA_CONTROL_UNREGISTER_REQUEST:
3650 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3651 unreg_resp.repeat = head.repeat;
3652 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3654 for (count = 0; count < head.repeat; count++) {
3655 reg = &registers[count];
3656 network_to_register(reg);
3658 trace_qemu_rdma_registration_handle_unregister_loop(count,
3659 reg->current_index, reg->key.chunk);
3661 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3663 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3664 block->pmr[reg->key.chunk] = NULL;
3666 if (ret != 0) {
3667 perror("rdma unregistration chunk failed");
3668 ret = -ret;
3669 goto out;
3672 rdma->total_registrations--;
3674 trace_qemu_rdma_registration_handle_unregister_success(
3675 reg->key.chunk);
3678 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3680 if (ret < 0) {
3681 error_report("Failed to send control buffer");
3682 goto out;
3684 break;
3685 case RDMA_CONTROL_REGISTER_RESULT:
3686 error_report("Invalid RESULT message at dest.");
3687 ret = -EIO;
3688 goto out;
3689 default:
3690 error_report("Unknown control message %s", control_desc(head.type));
3691 ret = -EIO;
3692 goto out;
3694 } while (1);
3695 out:
3696 if (ret < 0) {
3697 rdma->error_state = ret;
3699 return ret;
3702 /* Destination:
3703 * Called via a ram_control_load_hook during the initial RAM load section which
3704 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3705 * on the source.
3706 * We've already built our local RAMBlock list, but not yet sent the list to
3707 * the source.
3709 static int
3710 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3712 RDMAContext *rdma;
3713 int curr;
3714 int found = -1;
3716 RCU_READ_LOCK_GUARD();
3717 rdma = atomic_rcu_read(&rioc->rdmain);
3719 if (!rdma) {
3720 return -EIO;
3723 /* Find the matching RAMBlock in our local list */
3724 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3725 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3726 found = curr;
3727 break;
3731 if (found == -1) {
3732 error_report("RAMBlock '%s' not found on destination", name);
3733 return -ENOENT;
3736 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3737 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3738 rdma->next_src_index++;
3740 return 0;
3743 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3745 switch (flags) {
3746 case RAM_CONTROL_BLOCK_REG:
3747 return rdma_block_notification_handle(opaque, data);
3749 case RAM_CONTROL_HOOK:
3750 return qemu_rdma_registration_handle(f, opaque);
3752 default:
3753 /* Shouldn't be called with any other values */
3754 abort();
3758 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3759 uint64_t flags, void *data)
3761 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3762 RDMAContext *rdma;
3764 RCU_READ_LOCK_GUARD();
3765 rdma = atomic_rcu_read(&rioc->rdmaout);
3766 if (!rdma) {
3767 return -EIO;
3770 CHECK_ERROR_STATE();
3772 if (migration_in_postcopy()) {
3773 return 0;
3776 trace_qemu_rdma_registration_start(flags);
3777 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3778 qemu_fflush(f);
3780 return 0;
3784 * Inform dest that dynamic registrations are done for now.
3785 * First, flush writes, if any.
3787 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3788 uint64_t flags, void *data)
3790 Error *local_err = NULL, **errp = &local_err;
3791 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3792 RDMAContext *rdma;
3793 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3794 int ret = 0;
3796 RCU_READ_LOCK_GUARD();
3797 rdma = atomic_rcu_read(&rioc->rdmaout);
3798 if (!rdma) {
3799 return -EIO;
3802 CHECK_ERROR_STATE();
3804 if (migration_in_postcopy()) {
3805 return 0;
3808 qemu_fflush(f);
3809 ret = qemu_rdma_drain_cq(f, rdma);
3811 if (ret < 0) {
3812 goto err;
3815 if (flags == RAM_CONTROL_SETUP) {
3816 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3817 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3818 int reg_result_idx, i, nb_dest_blocks;
3820 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3821 trace_qemu_rdma_registration_stop_ram();
3824 * Make sure that we parallelize the pinning on both sides.
3825 * For very large guests, doing this serially takes a really
3826 * long time, so we have to 'interleave' the pinning locally
3827 * with the control messages by performing the pinning on this
3828 * side before we receive the control response from the other
3829 * side that the pinning has completed.
3831 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3832 &reg_result_idx, rdma->pin_all ?
3833 qemu_rdma_reg_whole_ram_blocks : NULL);
3834 if (ret < 0) {
3835 ERROR(errp, "receiving remote info!");
3836 return ret;
3839 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3842 * The protocol uses two different sets of rkeys (mutually exclusive):
3843 * 1. One key to represent the virtual address of the entire ram block.
3844 * (dynamic chunk registration disabled - pin everything with one rkey.)
3845 * 2. One to represent individual chunks within a ram block.
3846 * (dynamic chunk registration enabled - pin individual chunks.)
3848 * Once the capability is successfully negotiated, the destination transmits
3849 * the keys to use (or sends them later) including the virtual addresses
3850 * and then propagates the remote ram block descriptions to his local copy.
3853 if (local->nb_blocks != nb_dest_blocks) {
3854 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3855 "Your QEMU command line parameters are probably "
3856 "not identical on both the source and destination.",
3857 local->nb_blocks, nb_dest_blocks);
3858 rdma->error_state = -EINVAL;
3859 return -EINVAL;
3862 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3863 memcpy(rdma->dest_blocks,
3864 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3865 for (i = 0; i < nb_dest_blocks; i++) {
3866 network_to_dest_block(&rdma->dest_blocks[i]);
3868 /* We require that the blocks are in the same order */
3869 if (rdma->dest_blocks[i].length != local->block[i].length) {
3870 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3871 "vs %" PRIu64, local->block[i].block_name, i,
3872 local->block[i].length,
3873 rdma->dest_blocks[i].length);
3874 rdma->error_state = -EINVAL;
3875 return -EINVAL;
3877 local->block[i].remote_host_addr =
3878 rdma->dest_blocks[i].remote_host_addr;
3879 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3883 trace_qemu_rdma_registration_stop(flags);
3885 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3886 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3888 if (ret < 0) {
3889 goto err;
3892 return 0;
3893 err:
3894 rdma->error_state = ret;
3895 return ret;
3898 static const QEMUFileHooks rdma_read_hooks = {
3899 .hook_ram_load = rdma_load_hook,
3902 static const QEMUFileHooks rdma_write_hooks = {
3903 .before_ram_iterate = qemu_rdma_registration_start,
3904 .after_ram_iterate = qemu_rdma_registration_stop,
3905 .save_page = qemu_rdma_save_page,
3909 static void qio_channel_rdma_finalize(Object *obj)
3911 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3912 if (rioc->rdmain) {
3913 qemu_rdma_cleanup(rioc->rdmain);
3914 g_free(rioc->rdmain);
3915 rioc->rdmain = NULL;
3917 if (rioc->rdmaout) {
3918 qemu_rdma_cleanup(rioc->rdmaout);
3919 g_free(rioc->rdmaout);
3920 rioc->rdmaout = NULL;
3924 static void qio_channel_rdma_class_init(ObjectClass *klass,
3925 void *class_data G_GNUC_UNUSED)
3927 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3929 ioc_klass->io_writev = qio_channel_rdma_writev;
3930 ioc_klass->io_readv = qio_channel_rdma_readv;
3931 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3932 ioc_klass->io_close = qio_channel_rdma_close;
3933 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3934 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3935 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3938 static const TypeInfo qio_channel_rdma_info = {
3939 .parent = TYPE_QIO_CHANNEL,
3940 .name = TYPE_QIO_CHANNEL_RDMA,
3941 .instance_size = sizeof(QIOChannelRDMA),
3942 .instance_finalize = qio_channel_rdma_finalize,
3943 .class_init = qio_channel_rdma_class_init,
3946 static void qio_channel_rdma_register_types(void)
3948 type_register_static(&qio_channel_rdma_info);
3951 type_init(qio_channel_rdma_register_types);
3953 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3955 QIOChannelRDMA *rioc;
3957 if (qemu_file_mode_is_not_valid(mode)) {
3958 return NULL;
3961 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3963 if (mode[0] == 'w') {
3964 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3965 rioc->rdmaout = rdma;
3966 rioc->rdmain = rdma->return_path;
3967 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3968 } else {
3969 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3970 rioc->rdmain = rdma;
3971 rioc->rdmaout = rdma->return_path;
3972 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3975 return rioc->file;
3978 static void rdma_accept_incoming_migration(void *opaque)
3980 RDMAContext *rdma = opaque;
3981 int ret;
3982 QEMUFile *f;
3983 Error *local_err = NULL;
3985 trace_qemu_rdma_accept_incoming_migration();
3986 ret = qemu_rdma_accept(rdma);
3988 if (ret) {
3989 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
3990 return;
3993 trace_qemu_rdma_accept_incoming_migration_accepted();
3995 if (rdma->is_return_path) {
3996 return;
3999 f = qemu_fopen_rdma(rdma, "rb");
4000 if (f == NULL) {
4001 fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4002 qemu_rdma_cleanup(rdma);
4003 return;
4006 rdma->migration_started_on_destination = 1;
4007 migration_fd_process_incoming(f, &local_err);
4008 if (local_err) {
4009 error_reportf_err(local_err, "RDMA ERROR:");
4013 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4015 int ret;
4016 RDMAContext *rdma, *rdma_return_path = NULL;
4017 Error *local_err = NULL;
4019 trace_rdma_start_incoming_migration();
4020 rdma = qemu_rdma_data_init(host_port, &local_err);
4022 if (rdma == NULL) {
4023 goto err;
4026 ret = qemu_rdma_dest_init(rdma, &local_err);
4028 if (ret) {
4029 goto err;
4032 trace_rdma_start_incoming_migration_after_dest_init();
4034 ret = rdma_listen(rdma->listen_id, 5);
4036 if (ret) {
4037 ERROR(errp, "listening on socket!");
4038 goto err;
4041 trace_rdma_start_incoming_migration_after_rdma_listen();
4043 /* initialize the RDMAContext for return path */
4044 if (migrate_postcopy()) {
4045 rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4047 if (rdma_return_path == NULL) {
4048 goto err;
4051 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4054 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4055 NULL, (void *)(intptr_t)rdma);
4056 return;
4057 err:
4058 error_propagate(errp, local_err);
4059 g_free(rdma);
4060 g_free(rdma_return_path);
4063 void rdma_start_outgoing_migration(void *opaque,
4064 const char *host_port, Error **errp)
4066 MigrationState *s = opaque;
4067 RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
4068 RDMAContext *rdma_return_path = NULL;
4069 int ret = 0;
4071 if (rdma == NULL) {
4072 goto err;
4075 ret = qemu_rdma_source_init(rdma,
4076 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4078 if (ret) {
4079 goto err;
4082 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4083 ret = qemu_rdma_connect(rdma, errp);
4085 if (ret) {
4086 goto err;
4089 /* RDMA postcopy need a seprate queue pair for return path */
4090 if (migrate_postcopy()) {
4091 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4093 if (rdma_return_path == NULL) {
4094 goto err;
4097 ret = qemu_rdma_source_init(rdma_return_path,
4098 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4100 if (ret) {
4101 goto err;
4104 ret = qemu_rdma_connect(rdma_return_path, errp);
4106 if (ret) {
4107 goto err;
4110 rdma->return_path = rdma_return_path;
4111 rdma_return_path->return_path = rdma;
4112 rdma_return_path->is_return_path = true;
4115 trace_rdma_start_outgoing_migration_after_rdma_connect();
4117 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4118 migrate_fd_connect(s, NULL);
4119 return;
4120 err:
4121 g_free(rdma);
4122 g_free(rdma_return_path);