2 * Arm Musca-B1 test chip board emulation
4 * Copyright (c) 2019 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * The Musca boards are a reference implementation of a system using
14 * the SSE-200 subsystem for embedded:
15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17 * We model the A and B1 variants of this board, as described in the TRMs:
18 * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19 * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
36 #include "qom/object.h"
38 #define MUSCA_NUMIRQ_MAX 96
39 #define MUSCA_PPC_MAX 3
40 #define MUSCA_MPC_MAX 5
42 typedef struct MPCInfo MPCInfo
;
44 typedef enum MuscaType
{
49 struct MuscaMachineClass
{
55 const MPCInfo
*mpc_info
;
59 struct MuscaMachineState
{
64 MemoryRegion ram
[MUSCA_MPC_MAX
];
65 SplitIRQ cpu_irq_splitter
[MUSCA_NUMIRQ_MAX
];
66 SplitIRQ sec_resp_splitter
;
67 TZPPC ppc
[MUSCA_PPC_MAX
];
68 MemoryRegion container
;
69 UnimplementedDeviceState eflash
[2];
70 UnimplementedDeviceState qspi
;
71 TZMPC mpc
[MUSCA_MPC_MAX
];
72 UnimplementedDeviceState mhu
[2];
73 UnimplementedDeviceState pwm
[3];
74 UnimplementedDeviceState i2s
;
76 UnimplementedDeviceState i2c
[2];
77 UnimplementedDeviceState spi
;
78 UnimplementedDeviceState scc
;
79 UnimplementedDeviceState timer
;
81 UnimplementedDeviceState pvt
;
82 UnimplementedDeviceState sdio
;
83 UnimplementedDeviceState gpio
;
84 UnimplementedDeviceState cryptoisland
;
87 #define TYPE_MUSCA_MACHINE "musca"
88 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
89 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
91 OBJECT_DECLARE_TYPE(MuscaMachineState
, MuscaMachineClass
, MUSCA_MACHINE
)
94 * Main SYSCLK frequency in Hz
95 * TODO this should really be different for the two cores, but we
96 * don't model that in our SSE-200 model yet.
98 #define SYSCLK_FRQ 40000000
100 static qemu_irq
get_sse_irq_in(MuscaMachineState
*mms
, int irqno
)
102 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
103 assert(irqno
< MUSCA_NUMIRQ_MAX
);
105 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
109 * Most of the devices in the Musca board sit behind Peripheral Protection
110 * Controllers. These data structures define the layout of which devices
111 * sit behind which PPCs.
112 * The devfn for each port is a function which creates, configures
113 * and initializes the device, returning the MemoryRegion which
114 * needs to be plugged into the downstream end of the PPC port.
116 typedef MemoryRegion
*MakeDevFn(MuscaMachineState
*mms
, void *opaque
,
117 const char *name
, hwaddr size
);
119 typedef struct PPCPortInfo
{
127 typedef struct PPCInfo
{
129 PPCPortInfo ports
[TZ_NUM_PORTS
];
132 static MemoryRegion
*make_unimp_dev(MuscaMachineState
*mms
,
133 void *opaque
, const char *name
, hwaddr size
)
136 * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
137 * and return a pointer to its MemoryRegion.
139 UnimplementedDeviceState
*uds
= opaque
;
141 object_initialize_child(OBJECT(mms
), name
, uds
, TYPE_UNIMPLEMENTED_DEVICE
);
142 qdev_prop_set_string(DEVICE(uds
), "name", name
);
143 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
144 sysbus_realize(SYS_BUS_DEVICE(uds
), &error_fatal
);
145 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
148 typedef enum MPCInfoType
{
161 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
162 static const MPCInfo a_mpc_info
[] = { {
175 static const MPCInfo b1_mpc_info
[] = { {
196 .name
= "cryptoisland",
197 .type
= MPC_CRYPTOISLAND
,
203 static MemoryRegion
*make_mpc(MuscaMachineState
*mms
, void *opaque
,
204 const char *name
, hwaddr size
)
207 * Create an MPC and the RAM or flash behind it.
212 * MPC 4: CryptoIsland
213 * For now we implement the flash regions as ROM (ie not programmable)
214 * (with their control interface memory regions being unimplemented
215 * stubs behind the PPCs).
216 * The whole CryptoIsland region behind its MPC is an unimplemented stub.
218 MuscaMachineClass
*mmc
= MUSCA_MACHINE_GET_CLASS(mms
);
220 int i
= mpc
- &mms
->mpc
[0];
221 MemoryRegion
*downstream
;
222 MemoryRegion
*upstream
;
223 UnimplementedDeviceState
*uds
;
225 const MPCInfo
*mpcinfo
= mmc
->mpc_info
;
227 mpcname
= g_strdup_printf("%s-mpc", mpcinfo
[i
].name
);
229 switch (mpcinfo
[i
].type
) {
231 downstream
= &mms
->ram
[i
];
232 memory_region_init_rom(downstream
, NULL
, mpcinfo
[i
].name
,
233 mpcinfo
[i
].size
, &error_fatal
);
236 downstream
= &mms
->ram
[i
];
237 memory_region_init_ram(downstream
, NULL
, mpcinfo
[i
].name
,
238 mpcinfo
[i
].size
, &error_fatal
);
240 case MPC_CRYPTOISLAND
:
241 /* We don't implement the CryptoIsland yet */
242 uds
= &mms
->cryptoisland
;
243 object_initialize_child(OBJECT(mms
), name
, uds
,
244 TYPE_UNIMPLEMENTED_DEVICE
);
245 qdev_prop_set_string(DEVICE(uds
), "name", mpcinfo
[i
].name
);
246 qdev_prop_set_uint64(DEVICE(uds
), "size", mpcinfo
[i
].size
);
247 sysbus_realize(SYS_BUS_DEVICE(uds
), &error_fatal
);
248 downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
251 g_assert_not_reached();
254 object_initialize_child(OBJECT(mms
), mpcname
, mpc
, TYPE_TZ_MPC
);
255 object_property_set_link(OBJECT(mpc
), "downstream", OBJECT(downstream
),
257 sysbus_realize(SYS_BUS_DEVICE(mpc
), &error_fatal
);
258 /* Map the upstream end of the MPC into system memory */
259 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
260 memory_region_add_subregion(get_system_memory(), mpcinfo
[i
].addr
, upstream
);
261 /* and connect its interrupt to the SSE-200 */
262 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
263 qdev_get_gpio_in_named(DEVICE(&mms
->sse
),
264 "mpcexp_status", i
));
267 /* Return the register interface MR for our caller to map behind the PPC */
268 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
271 static MemoryRegion
*make_rtc(MuscaMachineState
*mms
, void *opaque
,
272 const char *name
, hwaddr size
)
274 PL031State
*rtc
= opaque
;
276 object_initialize_child(OBJECT(mms
), name
, rtc
, TYPE_PL031
);
277 sysbus_realize(SYS_BUS_DEVICE(rtc
), &error_fatal
);
278 sysbus_connect_irq(SYS_BUS_DEVICE(rtc
), 0, get_sse_irq_in(mms
, 39));
279 return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc
), 0);
282 static MemoryRegion
*make_uart(MuscaMachineState
*mms
, void *opaque
,
283 const char *name
, hwaddr size
)
285 PL011State
*uart
= opaque
;
286 int i
= uart
- &mms
->uart
[0];
287 int irqbase
= 7 + i
* 6;
290 object_initialize_child(OBJECT(mms
), name
, uart
, TYPE_PL011
);
291 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
292 sysbus_realize(SYS_BUS_DEVICE(uart
), &error_fatal
);
293 s
= SYS_BUS_DEVICE(uart
);
294 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqbase
+ 5)); /* combined */
295 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqbase
+ 0)); /* RX */
296 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, irqbase
+ 1)); /* TX */
297 sysbus_connect_irq(s
, 3, get_sse_irq_in(mms
, irqbase
+ 2)); /* RT */
298 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, irqbase
+ 3)); /* MS */
299 sysbus_connect_irq(s
, 5, get_sse_irq_in(mms
, irqbase
+ 4)); /* E */
300 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
303 static MemoryRegion
*make_musca_a_devs(MuscaMachineState
*mms
, void *opaque
,
304 const char *name
, hwaddr size
)
307 * Create the container MemoryRegion for all the devices that live
308 * behind the Musca-A PPC's single port. These devices don't have a PPC
309 * port each, but we use the PPCPortInfo struct as a convenient way
310 * to describe them. Note that addresses here are relative to the base
311 * address of the PPC port region: 0x40100000, and devices appear both
312 * at the 0x4... NS region and the 0x5... S region.
315 MemoryRegion
*container
= &mms
->container
;
317 const PPCPortInfo devices
[] = {
318 { "uart0", make_uart
, &mms
->uart
[0], 0x1000, 0x1000 },
319 { "uart1", make_uart
, &mms
->uart
[1], 0x2000, 0x1000 },
320 { "spi", make_unimp_dev
, &mms
->spi
, 0x3000, 0x1000 },
321 { "i2c0", make_unimp_dev
, &mms
->i2c
[0], 0x4000, 0x1000 },
322 { "i2c1", make_unimp_dev
, &mms
->i2c
[1], 0x5000, 0x1000 },
323 { "i2s", make_unimp_dev
, &mms
->i2s
, 0x6000, 0x1000 },
324 { "pwm0", make_unimp_dev
, &mms
->pwm
[0], 0x7000, 0x1000 },
325 { "rtc", make_rtc
, &mms
->rtc
, 0x8000, 0x1000 },
326 { "qspi", make_unimp_dev
, &mms
->qspi
, 0xa000, 0x1000 },
327 { "timer", make_unimp_dev
, &mms
->timer
, 0xb000, 0x1000 },
328 { "scc", make_unimp_dev
, &mms
->scc
, 0xc000, 0x1000 },
329 { "pwm1", make_unimp_dev
, &mms
->pwm
[1], 0xe000, 0x1000 },
330 { "pwm2", make_unimp_dev
, &mms
->pwm
[2], 0xf000, 0x1000 },
331 { "gpio", make_unimp_dev
, &mms
->gpio
, 0x10000, 0x1000 },
332 { "mpc0", make_mpc
, &mms
->mpc
[0], 0x12000, 0x1000 },
333 { "mpc1", make_mpc
, &mms
->mpc
[1], 0x13000, 0x1000 },
336 memory_region_init(container
, OBJECT(mms
), "musca-device-container", size
);
338 for (i
= 0; i
< ARRAY_SIZE(devices
); i
++) {
339 const PPCPortInfo
*pinfo
= &devices
[i
];
342 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
);
343 memory_region_add_subregion(container
, pinfo
->addr
, mr
);
346 return &mms
->container
;
349 static void musca_init(MachineState
*machine
)
351 MuscaMachineState
*mms
= MUSCA_MACHINE(machine
);
352 MuscaMachineClass
*mmc
= MUSCA_MACHINE_GET_CLASS(mms
);
353 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
354 MemoryRegion
*system_memory
= get_system_memory();
356 DeviceState
*dev_splitter
;
361 assert(mmc
->num_irqs
<= MUSCA_NUMIRQ_MAX
);
362 assert(mmc
->num_mpcs
<= MUSCA_MPC_MAX
);
364 if (strcmp(machine
->cpu_type
, mc
->default_cpu_type
) != 0) {
365 error_report("This board can only be used with CPU %s",
366 mc
->default_cpu_type
);
370 object_initialize_child(OBJECT(machine
), "sse-200", &mms
->sse
,
372 ssedev
= DEVICE(&mms
->sse
);
373 object_property_set_link(OBJECT(&mms
->sse
), "memory",
374 OBJECT(system_memory
), &error_fatal
);
375 qdev_prop_set_uint32(ssedev
, "EXP_NUMIRQ", mmc
->num_irqs
);
376 qdev_prop_set_uint32(ssedev
, "init-svtor", mmc
->init_svtor
);
377 qdev_prop_set_uint32(ssedev
, "SRAM_ADDR_WIDTH", mmc
->sram_addr_width
);
378 qdev_prop_set_uint32(ssedev
, "MAINCLK", SYSCLK_FRQ
);
380 * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
381 * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
383 if (mmc
->type
== MUSCA_B1
) {
384 qdev_prop_set_bit(ssedev
, "CPU0_FPU", true);
385 qdev_prop_set_bit(ssedev
, "CPU0_DSP", true);
387 sysbus_realize(SYS_BUS_DEVICE(&mms
->sse
), &error_fatal
);
390 * We need to create splitters to feed the IRQ inputs
391 * for each CPU in the SSE-200 from each device in the board.
393 for (i
= 0; i
< mmc
->num_irqs
; i
++) {
394 char *name
= g_strdup_printf("musca-irq-splitter%d", i
);
395 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
397 object_initialize_child_with_props(OBJECT(machine
), name
, splitter
,
398 sizeof(*splitter
), TYPE_SPLIT_IRQ
,
402 object_property_set_int(OBJECT(splitter
), "num-lines", 2,
404 qdev_realize(DEVICE(splitter
), NULL
, &error_fatal
);
405 qdev_connect_gpio_out(DEVICE(splitter
), 0,
406 qdev_get_gpio_in_named(ssedev
, "EXP_IRQ", i
));
407 qdev_connect_gpio_out(DEVICE(splitter
), 1,
408 qdev_get_gpio_in_named(ssedev
,
413 * The sec_resp_cfg output from the SSE-200 must be split into multiple
414 * lines, one for each of the PPCs we create here.
416 object_initialize_child_with_props(OBJECT(machine
), "sec-resp-splitter",
417 &mms
->sec_resp_splitter
,
418 sizeof(mms
->sec_resp_splitter
),
419 TYPE_SPLIT_IRQ
, &error_fatal
, NULL
);
421 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
), "num-lines",
422 ARRAY_SIZE(mms
->ppc
), &error_fatal
);
423 qdev_realize(DEVICE(&mms
->sec_resp_splitter
), NULL
, &error_fatal
);
424 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
425 qdev_connect_gpio_out_named(ssedev
, "sec_resp_cfg", 0,
426 qdev_get_gpio_in(dev_splitter
, 0));
429 * Most of the devices in the board are behind Peripheral Protection
430 * Controllers. The required order for initializing things is:
431 * + initialize the PPC
432 * + initialize, configure and realize downstream devices
433 * + connect downstream device MemoryRegions to the PPC
435 * + map the PPC's MemoryRegions to the places in the address map
436 * where the downstream devices should appear
437 * + wire up the PPC's control lines to the SSE object
439 * The PPC mapping differs for the -A and -B1 variants; the -A version
440 * is much simpler, using only a single port of a single PPC and putting
441 * all the devices behind that.
443 const PPCInfo a_ppcs
[] = { {
444 .name
= "ahb_ppcexp0",
446 { "musca-devices", make_musca_a_devs
, 0, 0x40100000, 0x100000 },
452 * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
453 * and the 0x5.. S region. Devices listed with an 0x5.. address appear
454 * only in the S region.
456 const PPCInfo b1_ppcs
[] = { {
457 .name
= "apb_ppcexp0",
459 { "eflash0", make_unimp_dev
, &mms
->eflash
[0],
460 0x52400000, 0x1000 },
461 { "eflash1", make_unimp_dev
, &mms
->eflash
[1],
462 0x52500000, 0x1000 },
463 { "qspi", make_unimp_dev
, &mms
->qspi
, 0x42800000, 0x100000 },
464 { "mpc0", make_mpc
, &mms
->mpc
[0], 0x52000000, 0x1000 },
465 { "mpc1", make_mpc
, &mms
->mpc
[1], 0x52100000, 0x1000 },
466 { "mpc2", make_mpc
, &mms
->mpc
[2], 0x52200000, 0x1000 },
467 { "mpc3", make_mpc
, &mms
->mpc
[3], 0x52300000, 0x1000 },
468 { "mhu0", make_unimp_dev
, &mms
->mhu
[0], 0x42600000, 0x100000 },
469 { "mhu1", make_unimp_dev
, &mms
->mhu
[1], 0x42700000, 0x100000 },
470 { }, /* port 9: unused */
471 { }, /* port 10: unused */
472 { }, /* port 11: unused */
473 { }, /* port 12: unused */
474 { }, /* port 13: unused */
475 { "mpc4", make_mpc
, &mms
->mpc
[4], 0x52e00000, 0x1000 },
478 .name
= "apb_ppcexp1",
480 { "pwm0", make_unimp_dev
, &mms
->pwm
[0], 0x40101000, 0x1000 },
481 { "pwm1", make_unimp_dev
, &mms
->pwm
[1], 0x40102000, 0x1000 },
482 { "pwm2", make_unimp_dev
, &mms
->pwm
[2], 0x40103000, 0x1000 },
483 { "i2s", make_unimp_dev
, &mms
->i2s
, 0x40104000, 0x1000 },
484 { "uart0", make_uart
, &mms
->uart
[0], 0x40105000, 0x1000 },
485 { "uart1", make_uart
, &mms
->uart
[1], 0x40106000, 0x1000 },
486 { "i2c0", make_unimp_dev
, &mms
->i2c
[0], 0x40108000, 0x1000 },
487 { "i2c1", make_unimp_dev
, &mms
->i2c
[1], 0x40109000, 0x1000 },
488 { "spi", make_unimp_dev
, &mms
->spi
, 0x4010a000, 0x1000 },
489 { "scc", make_unimp_dev
, &mms
->scc
, 0x5010b000, 0x1000 },
490 { "timer", make_unimp_dev
, &mms
->timer
, 0x4010c000, 0x1000 },
491 { "rtc", make_rtc
, &mms
->rtc
, 0x4010d000, 0x1000 },
492 { "pvt", make_unimp_dev
, &mms
->pvt
, 0x4010e000, 0x1000 },
493 { "sdio", make_unimp_dev
, &mms
->sdio
, 0x4010f000, 0x1000 },
496 .name
= "ahb_ppcexp0",
498 { }, /* port 0: unused */
499 { "gpio", make_unimp_dev
, &mms
->gpio
, 0x41000000, 0x1000 },
507 num_ppcs
= ARRAY_SIZE(a_ppcs
);
511 num_ppcs
= ARRAY_SIZE(b1_ppcs
);
514 g_assert_not_reached();
516 assert(num_ppcs
<= MUSCA_PPC_MAX
);
518 for (i
= 0; i
< num_ppcs
; i
++) {
519 const PPCInfo
*ppcinfo
= &ppcs
[i
];
520 TZPPC
*ppc
= &mms
->ppc
[i
];
525 object_initialize_child(OBJECT(machine
), ppcinfo
->name
, ppc
,
527 ppcdev
= DEVICE(ppc
);
529 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
530 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
538 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
);
539 portname
= g_strdup_printf("port[%d]", port
);
540 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
545 sysbus_realize(SYS_BUS_DEVICE(ppc
), &error_fatal
);
547 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
548 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
553 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
555 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
556 qdev_connect_gpio_out_named(ssedev
, gpioname
, port
,
557 qdev_get_gpio_in_named(ppcdev
,
561 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
562 qdev_connect_gpio_out_named(ssedev
, gpioname
, port
,
563 qdev_get_gpio_in_named(ppcdev
,
568 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
569 qdev_connect_gpio_out_named(ssedev
, gpioname
, 0,
570 qdev_get_gpio_in_named(ppcdev
,
573 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
574 qdev_connect_gpio_out_named(ssedev
, gpioname
, 0,
575 qdev_get_gpio_in_named(ppcdev
,
578 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
579 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
580 qdev_get_gpio_in_named(ssedev
,
584 qdev_connect_gpio_out(dev_splitter
, i
,
585 qdev_get_gpio_in_named(ppcdev
,
589 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
, 0x2000000);
592 static void musca_class_init(ObjectClass
*oc
, void *data
)
594 MachineClass
*mc
= MACHINE_CLASS(oc
);
596 mc
->default_cpus
= 2;
597 mc
->min_cpus
= mc
->default_cpus
;
598 mc
->max_cpus
= mc
->default_cpus
;
599 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
600 mc
->init
= musca_init
;
603 static void musca_a_class_init(ObjectClass
*oc
, void *data
)
605 MachineClass
*mc
= MACHINE_CLASS(oc
);
606 MuscaMachineClass
*mmc
= MUSCA_MACHINE_CLASS(oc
);
608 mc
->desc
= "ARM Musca-A board (dual Cortex-M33)";
610 mmc
->init_svtor
= 0x10200000;
611 mmc
->sram_addr_width
= 15;
613 mmc
->mpc_info
= a_mpc_info
;
614 mmc
->num_mpcs
= ARRAY_SIZE(a_mpc_info
);
617 static void musca_b1_class_init(ObjectClass
*oc
, void *data
)
619 MachineClass
*mc
= MACHINE_CLASS(oc
);
620 MuscaMachineClass
*mmc
= MUSCA_MACHINE_CLASS(oc
);
622 mc
->desc
= "ARM Musca-B1 board (dual Cortex-M33)";
623 mmc
->type
= MUSCA_B1
;
625 * This matches the DAPlink firmware which boots from QSPI. There
626 * is also a firmware blob which boots from the eFlash, which
627 * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
628 * though we could in theory expose a machine property on the command
629 * line to allow the user to request eFlash boot.
631 mmc
->init_svtor
= 0x10000000;
632 mmc
->sram_addr_width
= 17;
634 mmc
->mpc_info
= b1_mpc_info
;
635 mmc
->num_mpcs
= ARRAY_SIZE(b1_mpc_info
);
638 static const TypeInfo musca_info
= {
639 .name
= TYPE_MUSCA_MACHINE
,
640 .parent
= TYPE_MACHINE
,
642 .instance_size
= sizeof(MuscaMachineState
),
643 .class_size
= sizeof(MuscaMachineClass
),
644 .class_init
= musca_class_init
,
647 static const TypeInfo musca_a_info
= {
648 .name
= TYPE_MUSCA_A_MACHINE
,
649 .parent
= TYPE_MUSCA_MACHINE
,
650 .class_init
= musca_a_class_init
,
653 static const TypeInfo musca_b1_info
= {
654 .name
= TYPE_MUSCA_B1_MACHINE
,
655 .parent
= TYPE_MUSCA_MACHINE
,
656 .class_init
= musca_b1_class_init
,
659 static void musca_machine_init(void)
661 type_register_static(&musca_info
);
662 type_register_static(&musca_a_info
);
663 type_register_static(&musca_b1_info
);
666 type_init(musca_machine_init
);