8 { 'include': 'common.json' }
13 # Enable QMP capabilities.
17 # @enable: An optional list of QMPCapability values to enable. The
18 # client must not enable any capability that is not
19 # mentioned in the QMP greeting message. If the field is not
20 # provided, it means no QMP capabilities will be enabled.
25 # -> { "execute": "qmp_capabilities",
26 # "arguments": { "enable": [ "oob" ] } }
29 # Notes: This command is valid exactly when first connecting: it must be
30 # issued before any other command will be accepted, and will fail once the
31 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
33 # The QMP client needs to explicitly enable QMP capabilities, otherwise
34 # all the QMP capabilities will be turned off by default.
39 { 'command': 'qmp_capabilities',
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
46 # Enumeration of capabilities to be advertised during initial client
47 # connection, used for agreeing on particular QMP extension behaviors.
49 # @oob: QMP ability to support out-of-band requests.
50 # (Please refer to qmp-spec.txt for more information on OOB)
55 { 'enum': 'QMPCapability',
61 # A three-part version number.
63 # @major: The major version number.
65 # @minor: The minor version number.
67 # @micro: The micro version number.
71 { 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
78 # A description of QEMU's version.
80 # @qemu: The version of QEMU. By current convention, a micro
81 # version of 50 signifies a development branch. A micro version
82 # greater than or equal to 90 signifies a release candidate for
83 # the next minor version. A micro version of less than 50
84 # signifies a stable release.
86 # @package: QEMU will always set this field to an empty string. Downstream
87 # versions of QEMU should set this to a non-empty string. The
88 # exact format depends on the downstream however it highly
89 # recommended that a unique name is used.
93 { 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
99 # Returns the current version of QEMU.
101 # Returns: A @VersionInfo object describing the current version of QEMU.
107 # -> { "execute": "query-version" }
120 { 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
126 # Information about a QMP command
128 # @name: The command name
132 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
137 # Return a list of supported QMP commands by this server
139 # Returns: A list of @CommandInfo for all supported commands
145 # -> { "execute": "query-commands" }
149 # "name":"query-balloon"
152 # "name":"system_powerdown"
157 # Note: This example has been shortened as the real response is too long.
160 { 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
166 # Policy for handling lost ticks in timer devices.
168 # @discard: throw away the missed tick(s) and continue with future injection
169 # normally. Guest time may be delayed, unless the OS has explicit
170 # handling of lost ticks
172 # @delay: continue to deliver ticks at the normal rate. Guest time will be
173 # delayed due to the late tick
175 # @merge: merge the missed tick(s) into one tick and inject. Guest time
176 # may be delayed, depending on how the OS reacts to the merging
179 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180 # guest time should not be delayed once catchup is complete.
184 { 'enum': 'LostTickPolicy',
185 'data': ['discard', 'delay', 'merge', 'slew' ] }
190 # Allow client connections for VNC, Spice and socket based
191 # character devices to be passed in to QEMU via SCM_RIGHTS.
193 # @protocol: protocol name. Valid names are "vnc", "spice" or the
194 # name of a character device (eg. from -chardev id=XXXX)
196 # @fdname: file descriptor name previously passed via 'getfd' command
198 # @skipauth: whether to skip authentication. Only applies
199 # to "vnc" and "spice" protocols
201 # @tls: whether to perform TLS. Only applies to the "spice"
204 # Returns: nothing on success.
210 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211 # "fdname": "myclient" } }
212 # <- { "return": {} }
215 { 'command': 'add_client',
216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
222 # Guest name information.
224 # @name: The name of the guest
228 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
233 # Return the name information of a guest.
235 # Returns: @NameInfo of the guest
241 # -> { "execute": "query-name" }
242 # <- { "return": { "name": "qemu-name" } }
245 { 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
250 # Information about support for KVM acceleration
252 # @enabled: true if KVM acceleration is active
254 # @present: true if KVM acceleration is built into this executable
258 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
263 # Returns information about KVM acceleration
271 # -> { "execute": "query-kvm" }
272 # <- { "return": { "enabled": true, "present": true } }
275 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
280 # Guest UUID information (Universally Unique Identifier).
282 # @UUID: the UUID of the guest
286 # Notes: If no UUID was specified for the guest, a null UUID is returned.
288 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
293 # Query the guest UUID information.
295 # Returns: The @UuidInfo for the guest
301 # -> { "execute": "query-uuid" }
302 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
305 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
310 # Information about a QMP event
312 # @name: The event name
316 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
321 # Return a list of supported QMP events by this server
323 # Returns: A list of @EventInfo for all supported events
329 # -> { "execute": "query-events" }
341 # Note: This example has been shortened as the real response is too long.
344 { 'command': 'query-events', 'returns': ['EventInfo'] }
349 # An enumeration of cpu types that enable additional information during
350 # @query-cpus and @query-cpus-fast.
358 { 'enum': 'CpuInfoArch',
359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
364 # Information about a virtual CPU
366 # @CPU: the index of the virtual CPU
368 # @current: this only exists for backwards compatibility and should be ignored
370 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
371 # to a processor specific low power mode.
373 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
375 # @thread_id: ID of the underlying host thread
377 # @props: properties describing to which node/socket/core/thread
378 # virtual CPU belongs to, provided if supported by board (since 2.10)
380 # @arch: architecture of the cpu, which determines which additional fields
381 # will be listed (since 2.6)
385 # Notes: @halted is a transient state that changes frequently. By the time the
386 # data is sent to the client, the guest may no longer be halted.
388 { 'union': 'CpuInfo',
389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390 'qom_path': 'str', 'thread_id': 'int',
391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392 'discriminator': 'arch',
393 'data': { 'x86': 'CpuInfoX86',
394 'sparc': 'CpuInfoSPARC',
396 'mips': 'CpuInfoMIPS',
397 'tricore': 'CpuInfoTricore',
398 's390': 'CpuInfoS390',
399 'riscv': 'CpuInfoRISCV' } }
404 # Additional information about a virtual i386 or x86_64 CPU
406 # @pc: the 64-bit instruction pointer
410 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
415 # Additional information about a virtual SPARC CPU
417 # @pc: the PC component of the instruction pointer
419 # @npc: the NPC component of the instruction pointer
423 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
428 # Additional information about a virtual PPC CPU
430 # @nip: the instruction pointer
434 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
439 # Additional information about a virtual MIPS CPU
441 # @PC: the instruction pointer
445 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
450 # Additional information about a virtual Tricore CPU
452 # @PC: the instruction pointer
456 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
461 # Additional information about a virtual RISCV CPU
463 # @pc: the instruction pointer
467 { 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
472 # An enumeration of cpu states that can be assumed by a virtual
477 { 'enum': 'CpuS390State',
478 'prefix': 'S390_CPU_STATE',
479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
484 # Additional information about a virtual S390 CPU
486 # @cpu-state: the virtual CPU's state
490 { 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
495 # Returns a list of information about each virtual CPU.
497 # This command causes vCPU threads to exit to userspace, which causes
498 # a small interruption to guest CPU execution. This will have a negative
499 # impact on realtime guests and other latency sensitive guest workloads.
500 # It is recommended to use @query-cpus-fast instead of this command to
501 # avoid the vCPU interruption.
503 # Returns: a list of @CpuInfo for each virtual CPU
509 # -> { "execute": "query-cpus" }
515 # "qom_path":"/machine/unattached/device[0]",
524 # "qom_path":"/machine/unattached/device[2]",
532 # Notes: This interface is deprecated (since 2.12.0), and it is strongly
533 # recommended that you avoid using it. Use @query-cpus-fast to
534 # obtain information about virtual CPUs.
537 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
542 # Information about a virtual CPU
544 # @cpu-index: index of the virtual CPU
546 # @qom-path: path to the CPU object in the QOM tree
548 # @thread-id: ID of the underlying host thread
550 # @props: properties describing to which node/socket/core/thread
551 # virtual CPU belongs to, provided if supported by board
553 # @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
556 # @target: the QEMU system emulation target, which determines which
557 # additional fields will be listed (since 3.0)
562 { 'union' : 'CpuInfoFast',
563 'base' : { 'cpu-index' : 'int',
566 '*props' : 'CpuInstanceProperties',
567 'arch' : 'CpuInfoArch',
568 'target' : 'SysEmuTarget' },
569 'discriminator' : 'target',
570 'data' : { 's390x' : 'CpuInfoS390' } }
575 # Returns information about all virtual CPUs. This command does not
576 # incur a performance penalty and should be used in production
577 # instead of query-cpus.
579 # Returns: list of @CpuInfoFast
585 # -> { "execute": "query-cpus-fast" }
588 # "thread-id": 25627,
594 # "qom-path": "/machine/unattached/device[0]",
600 # "thread-id": 25628,
606 # "qom-path": "/machine/unattached/device[2]",
614 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
619 # Information about an iothread
621 # @id: the identifier of the iothread
623 # @thread-id: ID of the underlying host thread
625 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
628 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
629 # configured (since 2.9)
631 # @poll-shrink: how many ns will be removed from polling time, 0 means that
632 # it's not configured (since 2.9)
636 { 'struct': 'IOThreadInfo',
637 'data': {'id': 'str',
639 'poll-max-ns': 'int',
641 'poll-shrink': 'int' } }
646 # Returns a list of information about each iothread.
648 # Note: this list excludes the QEMU main loop thread, which is not declared
649 # using the -object iothread command-line option. It is always the main thread
652 # Returns: a list of @IOThreadInfo for each iothread
658 # -> { "execute": "query-iothreads" }
672 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673 'allow-preconfig': true }
678 # Information about the guest balloon device.
680 # @actual: the number of bytes the balloon currently contains
685 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
690 # Return information about the balloon device.
692 # Returns: @BalloonInfo on success
694 # If the balloon driver is enabled but not functional because the KVM
695 # kernel module cannot support it, KvmMissingCap
697 # If no balloon device is present, DeviceNotActive
703 # -> { "execute": "query-balloon" }
705 # "actual": 1073741824,
710 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
715 # Emitted when the guest changes the actual BALLOON level. This value is
716 # equivalent to the @actual field return by the 'query-balloon' command
718 # @actual: actual level of the guest memory balloon in bytes
720 # Note: this event is rate-limited.
726 # <- { "event": "BALLOON_CHANGE",
727 # "data": { "actual": 944766976 },
728 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
731 { 'event': 'BALLOON_CHANGE',
732 'data': { 'actual': 'int' } }
737 # A PCI device memory region
739 # @base: the starting address (guest physical)
741 # @limit: the ending address (guest physical)
745 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
750 # Information about a PCI device I/O region.
752 # @bar: the index of the Base Address Register for this region
754 # @type: 'io' if the region is a PIO region
755 # 'memory' if the region is a MMIO region
759 # @prefetch: if @type is 'memory', true if the memory is prefetchable
761 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
765 { 'struct': 'PciMemoryRegion',
766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
772 # Information about a bus of a PCI Bridge device
774 # @number: primary bus interface number. This should be the number of the
775 # bus the device resides on.
777 # @secondary: secondary bus interface number. This is the number of the
778 # main bus for the bridge
780 # @subordinate: This is the highest number bus that resides below the
783 # @io_range: The PIO range for all devices on this bridge
785 # @memory_range: The MMIO range for all devices on this bridge
787 # @prefetchable_range: The range of prefetchable MMIO for all devices on
792 { 'struct': 'PciBusInfo',
793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794 'io_range': 'PciMemoryRange',
795 'memory_range': 'PciMemoryRange',
796 'prefetchable_range': 'PciMemoryRange' } }
801 # Information about a PCI Bridge device
803 # @bus: information about the bus the device resides on
805 # @devices: a list of @PciDeviceInfo for each device on this bridge
809 { 'struct': 'PciBridgeInfo',
810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
815 # Information about the Class of a PCI device
817 # @desc: a string description of the device's class
819 # @class: the class code of the device
823 { 'struct': 'PciDeviceClass',
824 'data': {'*desc': 'str', 'class': 'int'} }
829 # Information about the Id of a PCI device
831 # @device: the PCI device id
833 # @vendor: the PCI vendor id
837 { 'struct': 'PciDeviceId',
838 'data': {'device': 'int', 'vendor': 'int'} }
843 # Information about a PCI device
845 # @bus: the bus number of the device
847 # @slot: the slot the device is located in
849 # @function: the function of the slot used by the device
851 # @class_info: the class of the device
853 # @id: the PCI device id
855 # @irq: if an IRQ is assigned to the device, the IRQ number
857 # @qdev_id: the device name of the PCI device
859 # @pci_bridge: if the device is a PCI bridge, the bridge information
861 # @regions: a list of the PCI I/O regions associated with the device
863 # Notes: the contents of @class_info.desc are not stable and should only be
864 # treated as informational.
868 { 'struct': 'PciDeviceInfo',
869 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
870 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
871 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
872 'regions': ['PciMemoryRegion']} }
877 # Information about a PCI bus
879 # @bus: the bus index
881 # @devices: a list of devices on this bus
885 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
890 # Return information about the PCI bus topology of the guest.
892 # Returns: a list of @PciInfo for each PCI bus. Each bus is
893 # represented by a json-object, which has a key with a json-array of
894 # all PCI devices attached to it. Each device is represented by a
901 # -> { "execute": "query-pci" }
912 # "desc": "Host bridge"
928 # "desc": "ISA bridge"
944 # "desc": "IDE controller"
966 # "desc": "VGA controller"
976 # "mem_type_64": false,
979 # "address": 4026531840,
984 # "mem_type_64": false,
987 # "address": 4060086272,
992 # "mem_type_64": false,
1007 # "desc": "RAM controller"
1028 # Note: This example has been shortened as the real response is too long.
1031 { 'command': 'query-pci', 'returns': ['PciInfo'] }
1036 # This command will cause the QEMU process to exit gracefully. While every
1037 # attempt is made to send the QMP response before terminating, this is not
1038 # guaranteed. When using this interface, a premature EOF would not be
1045 # -> { "execute": "quit" }
1046 # <- { "return": {} }
1048 { 'command': 'quit' }
1053 # Stop all guest VCPU execution.
1057 # Notes: This function will succeed even if the guest is already in the stopped
1058 # state. In "inmigrate" state, it will ensure that the guest
1059 # remains paused once migration finishes, as if the -S option was
1060 # passed on the command line.
1064 # -> { "execute": "stop" }
1065 # <- { "return": {} }
1068 { 'command': 'stop' }
1073 # Performs a hard reset of a guest.
1079 # -> { "execute": "system_reset" }
1080 # <- { "return": {} }
1083 { 'command': 'system_reset' }
1086 # @system_powerdown:
1088 # Requests that a guest perform a powerdown operation.
1092 # Notes: A guest may or may not respond to this command. This command
1093 # returning does not indicate that a guest has accepted the request or
1094 # that it has shut down. Many guests will respond to this command by
1095 # prompting the user in some way.
1098 # -> { "execute": "system_powerdown" }
1099 # <- { "return": {} }
1102 { 'command': 'system_powerdown' }
1107 # Adds CPU with specified ID
1109 # @id: ID of CPU to be created, valid values [0..max_cpus)
1111 # Returns: Nothing on success
1117 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1118 # <- { "return": {} }
1121 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1126 # Save a portion of guest memory to a file.
1128 # @val: the virtual address of the guest to start from
1130 # @size: the size of memory region to save
1132 # @filename: the file to save the memory to as binary data
1134 # @cpu-index: the index of the virtual CPU to use for translating the
1135 # virtual address (defaults to CPU 0)
1137 # Returns: Nothing on success
1141 # Notes: Errors were not reliably returned until 1.1
1145 # -> { "execute": "memsave",
1146 # "arguments": { "val": 10,
1148 # "filename": "/tmp/virtual-mem-dump" } }
1149 # <- { "return": {} }
1152 { 'command': 'memsave',
1153 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1158 # Save a portion of guest physical memory to a file.
1160 # @val: the physical address of the guest to start from
1162 # @size: the size of memory region to save
1164 # @filename: the file to save the memory to as binary data
1166 # Returns: Nothing on success
1170 # Notes: Errors were not reliably returned until 1.1
1174 # -> { "execute": "pmemsave",
1175 # "arguments": { "val": 10,
1177 # "filename": "/tmp/physical-mem-dump" } }
1178 # <- { "return": {} }
1181 { 'command': 'pmemsave',
1182 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1187 # Resume guest VCPU execution.
1191 # Returns: If successful, nothing
1193 # Notes: This command will succeed if the guest is currently running. It
1194 # will also succeed if the guest is in the "inmigrate" state; in
1195 # this case, the effect of the command is to make sure the guest
1196 # starts once migration finishes, removing the effect of the -S
1197 # command line option if it was passed.
1201 # -> { "execute": "cont" }
1202 # <- { "return": {} }
1205 { 'command': 'cont' }
1208 # @x-exit-preconfig:
1210 # Exit from "preconfig" state
1212 # This command makes QEMU exit the preconfig state and proceed with
1213 # VM initialization using configuration data provided on the command line
1214 # and via the QMP monitor during the preconfig state. The command is only
1215 # available during the preconfig state (i.e. when the --preconfig command
1216 # line option was in use).
1224 # -> { "execute": "x-exit-preconfig" }
1225 # <- { "return": {} }
1228 { 'command': 'x-exit-preconfig', 'allow-preconfig': true }
1233 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1241 # -> { "execute": "system_wakeup" }
1242 # <- { "return": {} }
1245 { 'command': 'system_wakeup' }
1250 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1251 # The command fails when the guest doesn't support injecting.
1253 # Returns: If successful, nothing
1257 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1261 # -> { "execute": "inject-nmi" }
1262 # <- { "return": {} }
1265 { 'command': 'inject-nmi' }
1270 # Request the balloon driver to change its balloon size.
1272 # @value: the target size of the balloon in bytes
1274 # Returns: Nothing on success
1275 # If the balloon driver is enabled but not functional because the KVM
1276 # kernel module cannot support it, KvmMissingCap
1277 # If no balloon device is present, DeviceNotActive
1279 # Notes: This command just issues a request to the guest. When it returns,
1280 # the balloon size may not have changed. A guest can change the balloon
1281 # size independent of this command.
1287 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1288 # <- { "return": {} }
1291 { 'command': 'balloon', 'data': {'value': 'int'} }
1294 # @human-monitor-command:
1296 # Execute a command on the human monitor and return the output.
1298 # @command-line: the command to execute in the human monitor
1300 # @cpu-index: The CPU to use for commands that require an implicit CPU
1302 # Returns: the output of the command as a string
1306 # Notes: This command only exists as a stop-gap. Its use is highly
1307 # discouraged. The semantics of this command are not
1308 # guaranteed: this means that command names, arguments and
1309 # responses can change or be removed at ANY time. Applications
1310 # that rely on long term stability guarantees should NOT
1313 # Known limitations:
1315 # * This command is stateless, this means that commands that depend
1316 # on state information (such as getfd) might not work
1318 # * Commands that prompt the user for data don't currently work
1322 # -> { "execute": "human-monitor-command",
1323 # "arguments": { "command-line": "info kvm" } }
1324 # <- { "return": "kvm support: enabled\r\n" }
1327 { 'command': 'human-monitor-command',
1328 'data': {'command-line': 'str', '*cpu-index': 'int'},
1332 # @ObjectPropertyInfo:
1334 # @name: the name of the property
1336 # @type: the type of the property. This will typically come in one of four
1339 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1340 # These types are mapped to the appropriate JSON type.
1342 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1343 # device type name. Child properties create the composition tree.
1345 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1346 # device type name. Link properties form the device model graph.
1348 # @description: if specified, the description of the property.
1352 { 'struct': 'ObjectPropertyInfo',
1353 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1358 # This command will list any properties of a object given a path in the object
1361 # @path: the path within the object model. See @qom-get for a description of
1364 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1369 { 'command': 'qom-list',
1370 'data': { 'path': 'str' },
1371 'returns': [ 'ObjectPropertyInfo' ],
1372 'allow-preconfig': true }
1377 # This command will get a property from a object model path and return the
1380 # @path: The path within the object model. There are two forms of supported
1381 # paths--absolute and partial paths.
1383 # Absolute paths are derived from the root object and can follow child<>
1384 # or link<> properties. Since they can follow link<> properties, they
1385 # can be arbitrarily long. Absolute paths look like absolute filenames
1386 # and are prefixed with a leading slash.
1388 # Partial paths look like relative filenames. They do not begin
1389 # with a prefix. The matching rules for partial paths are subtle but
1390 # designed to make specifying objects easy. At each level of the
1391 # composition tree, the partial path is matched as an absolute path.
1392 # The first match is not returned. At least two matches are searched
1393 # for. A successful result is only returned if only one match is
1394 # found. If more than one match is found, a flag is return to
1395 # indicate that the match was ambiguous.
1397 # @property: The property name to read
1399 # Returns: The property value. The type depends on the property
1400 # type. child<> and link<> properties are returned as #str
1401 # pathnames. All integer property types (u8, u16, etc) are
1406 { 'command': 'qom-get',
1407 'data': { 'path': 'str', 'property': 'str' },
1409 'allow-preconfig': true }
1414 # This command will set a property from a object model path.
1416 # @path: see @qom-get for a description of this parameter
1418 # @property: the property name to set
1420 # @value: a value who's type is appropriate for the property type. See @qom-get
1421 # for a description of type mapping.
1425 { 'command': 'qom-set',
1426 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1427 'allow-preconfig': true }
1432 # This command is multiple commands multiplexed together.
1434 # @device: This is normally the name of a block device but it may also be 'vnc'.
1435 # when it's 'vnc', then sub command depends on @target
1437 # @target: If @device is a block device, then this is the new filename.
1438 # If @device is 'vnc', then if the value 'password' selects the vnc
1439 # change password command. Otherwise, this specifies a new server URI
1440 # address to listen to for VNC connections.
1442 # @arg: If @device is a block device, then this is an optional format to open
1444 # If @device is 'vnc' and @target is 'password', this is the new VNC
1445 # password to set. See change-vnc-password for additional notes.
1447 # Returns: Nothing on success.
1448 # If @device is not a valid block device, DeviceNotFound
1450 # Notes: This interface is deprecated, and it is strongly recommended that you
1451 # avoid using it. For changing block devices, use
1452 # blockdev-change-medium; for changing VNC parameters, use
1453 # change-vnc-password.
1459 # 1. Change a removable medium
1461 # -> { "execute": "change",
1462 # "arguments": { "device": "ide1-cd0",
1463 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1464 # <- { "return": {} }
1466 # 2. Change VNC password
1468 # -> { "execute": "change",
1469 # "arguments": { "device": "vnc", "target": "password",
1470 # "arg": "foobar1" } }
1471 # <- { "return": {} }
1474 { 'command': 'change',
1475 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1480 # This structure describes a search result from @qom-list-types
1482 # @name: the type name found in the search
1484 # @abstract: the type is abstract and can't be directly instantiated.
1485 # Omitted if false. (since 2.10)
1487 # @parent: Name of parent type, if any (since 2.10)
1491 { 'struct': 'ObjectTypeInfo',
1492 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1497 # This command will return a list of types given search parameters
1499 # @implements: if specified, only return types that implement this type name
1501 # @abstract: if true, include abstract types in the results
1503 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1507 { 'command': 'qom-list-types',
1508 'data': { '*implements': 'str', '*abstract': 'bool' },
1509 'returns': [ 'ObjectTypeInfo' ],
1510 'allow-preconfig': true }
1513 # @device-list-properties:
1515 # List properties associated with a device.
1517 # @typename: the type name of a device
1519 # Returns: a list of ObjectPropertyInfo describing a devices properties
1521 # Note: objects can create properties at runtime, for example to describe
1522 # links between different devices and/or objects. These properties
1523 # are not included in the output of this command.
1527 { 'command': 'device-list-properties',
1528 'data': { 'typename': 'str'},
1529 'returns': [ 'ObjectPropertyInfo' ] }
1532 # @qom-list-properties:
1534 # List properties associated with a QOM object.
1536 # @typename: the type name of an object
1538 # Note: objects can create properties at runtime, for example to describe
1539 # links between different devices and/or objects. These properties
1540 # are not included in the output of this command.
1542 # Returns: a list of ObjectPropertyInfo describing object properties
1546 { 'command': 'qom-list-properties',
1547 'data': { 'typename': 'str'},
1548 'returns': [ 'ObjectPropertyInfo' ],
1549 'allow-preconfig': true }
1552 # @xen-set-global-dirty-log:
1554 # Enable or disable the global dirty log mode.
1556 # @enable: true to enable, false to disable.
1564 # -> { "execute": "xen-set-global-dirty-log",
1565 # "arguments": { "enable": true } }
1566 # <- { "return": {} }
1569 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1574 # @driver: the name of the new device's driver
1576 # @bus: the device's parent bus (device tree path)
1578 # @id: the device's ID, must be unique
1580 # Additional arguments depend on the type.
1585 # 1. For detailed information about this command, please refer to the
1586 # 'docs/qdev-device-use.txt' file.
1588 # 2. It's possible to list device properties by running QEMU with the
1589 # "-device DEVICE,help" command-line argument, where DEVICE is the
1594 # -> { "execute": "device_add",
1595 # "arguments": { "driver": "e1000", "id": "net1",
1597 # "mac": "52:54:00:12:34:56" } }
1598 # <- { "return": {} }
1600 # TODO: This command effectively bypasses QAPI completely due to its
1601 # "additional arguments" business. It shouldn't have been added to
1602 # the schema in this form. It should be qapified properly, or
1603 # replaced by a properly qapified command.
1607 { 'command': 'device_add',
1608 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1609 'gen': false } # so we can get the additional arguments
1614 # Remove a device from a guest
1616 # @id: the device's ID or QOM path
1618 # Returns: Nothing on success
1619 # If @id is not a valid device, DeviceNotFound
1621 # Notes: When this command completes, the device may not be removed from the
1622 # guest. Hot removal is an operation that requires guest cooperation.
1623 # This command merely requests that the guest begin the hot removal
1624 # process. Completion of the device removal process is signaled with a
1625 # DEVICE_DELETED event. Guest reset will automatically complete removal
1632 # -> { "execute": "device_del",
1633 # "arguments": { "id": "net1" } }
1634 # <- { "return": {} }
1636 # -> { "execute": "device_del",
1637 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1638 # <- { "return": {} }
1641 { 'command': 'device_del', 'data': {'id': 'str'} }
1646 # Emitted whenever the device removal completion is acknowledged by the guest.
1647 # At this point, it's safe to reuse the specified device ID. Device removal can
1648 # be initiated by the guest or by HMP/QMP commands.
1650 # @device: device name
1652 # @path: device path
1658 # <- { "event": "DEVICE_DELETED",
1659 # "data": { "device": "virtio-net-pci-0",
1660 # "path": "/machine/peripheral/virtio-net-pci-0" },
1661 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1664 { 'event': 'DEVICE_DELETED',
1665 'data': { '*device': 'str', 'path': 'str' } }
1668 # @DumpGuestMemoryFormat:
1670 # An enumeration of guest-memory-dump's format.
1674 # @kdump-zlib: kdump-compressed format with zlib-compressed
1676 # @kdump-lzo: kdump-compressed format with lzo-compressed
1678 # @kdump-snappy: kdump-compressed format with snappy-compressed
1680 # @win-dmp: Windows full crashdump format,
1681 # can be used instead of ELF converting (since 2.13)
1685 { 'enum': 'DumpGuestMemoryFormat',
1686 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1689 # @dump-guest-memory:
1691 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1692 # very long depending on the amount of guest memory.
1694 # @paging: if true, do paging to get guest's memory mapping. This allows
1695 # using gdb to process the core file.
1697 # IMPORTANT: this option can make QEMU allocate several gigabytes
1698 # of RAM. This can happen for a large guest, or a
1699 # malicious guest pretending to be large.
1701 # Also, paging=true has the following limitations:
1703 # 1. The guest may be in a catastrophic state or can have corrupted
1704 # memory, which cannot be trusted
1705 # 2. The guest can be in real-mode even if paging is enabled. For
1706 # example, the guest uses ACPI to sleep, and ACPI sleep state
1708 # 3. Currently only supported on i386 and x86_64.
1710 # @protocol: the filename or file descriptor of the vmcore. The supported
1713 # 1. file: the protocol starts with "file:", and the following
1714 # string is the file's path.
1715 # 2. fd: the protocol starts with "fd:", and the following string
1718 # @detach: if true, QMP will return immediately rather than
1719 # waiting for the dump to finish. The user can track progress
1720 # using "query-dump". (since 2.6).
1722 # @begin: if specified, the starting physical address.
1724 # @length: if specified, the memory size, in bytes. If you don't
1725 # want to dump all guest's memory, please specify the start @begin
1728 # @format: if specified, the format of guest memory dump. But non-elf
1729 # format is conflict with paging and filter, ie. @paging, @begin and
1730 # @length is not allowed to be specified with non-elf @format at the
1731 # same time (since 2.0)
1733 # Note: All boolean arguments default to false
1735 # Returns: nothing on success
1741 # -> { "execute": "dump-guest-memory",
1742 # "arguments": { "protocol": "fd:dump" } }
1743 # <- { "return": {} }
1746 { 'command': 'dump-guest-memory',
1747 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1748 '*begin': 'int', '*length': 'int',
1749 '*format': 'DumpGuestMemoryFormat'} }
1754 # Describe the status of a long-running background guest memory dump.
1756 # @none: no dump-guest-memory has started yet.
1758 # @active: there is one dump running in background.
1760 # @completed: the last dump has finished successfully.
1762 # @failed: the last dump has failed.
1766 { 'enum': 'DumpStatus',
1767 'data': [ 'none', 'active', 'completed', 'failed' ] }
1772 # The result format for 'query-dump'.
1774 # @status: enum of @DumpStatus, which shows current dump status
1776 # @completed: bytes written in latest dump (uncompressed)
1778 # @total: total bytes to be written in latest dump (uncompressed)
1782 { 'struct': 'DumpQueryResult',
1783 'data': { 'status': 'DumpStatus',
1790 # Query latest dump status.
1792 # Returns: A @DumpStatus object showing the dump status.
1798 # -> { "execute": "query-dump" }
1799 # <- { "return": { "status": "active", "completed": 1024000,
1800 # "total": 2048000 } }
1803 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1808 # Emitted when background dump has completed
1810 # @result: final dump status
1812 # @error: human-readable error string that provides
1813 # hint on why dump failed. Only presents on failure. The
1814 # user should not try to interpret the error string.
1820 # { "event": "DUMP_COMPLETED",
1821 # "data": {"result": {"total": 1090650112, "status": "completed",
1822 # "completed": 1090650112} } }
1825 { 'event': 'DUMP_COMPLETED' ,
1826 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1829 # @DumpGuestMemoryCapability:
1831 # A list of the available formats for dump-guest-memory
1835 { 'struct': 'DumpGuestMemoryCapability',
1837 'formats': ['DumpGuestMemoryFormat'] } }
1840 # @query-dump-guest-memory-capability:
1842 # Returns the available formats for dump-guest-memory
1844 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1851 # -> { "execute": "query-dump-guest-memory-capability" }
1852 # <- { "return": { "formats":
1853 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1856 { 'command': 'query-dump-guest-memory-capability',
1857 'returns': 'DumpGuestMemoryCapability' }
1862 # Dump guest's storage keys
1864 # @filename: the path to the file to dump to
1866 # This command is only supported on s390 architecture.
1872 # -> { "execute": "dump-skeys",
1873 # "arguments": { "filename": "/tmp/skeys" } }
1874 # <- { "return": {} }
1877 { 'command': 'dump-skeys',
1878 'data': { 'filename': 'str' } }
1883 # Create a QOM object.
1885 # @qom-type: the class name for the object to be created
1887 # @id: the name of the new object
1889 # @props: a dictionary of properties to be passed to the backend
1891 # Returns: Nothing on success
1892 # Error if @qom-type is not a valid class name
1898 # -> { "execute": "object-add",
1899 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1900 # "props": { "filename": "/dev/hwrng" } } }
1901 # <- { "return": {} }
1904 { 'command': 'object-add',
1905 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1910 # Remove a QOM object.
1912 # @id: the name of the QOM object to remove
1914 # Returns: Nothing on success
1915 # Error if @id is not a valid id for a QOM object
1921 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1922 # <- { "return": {} }
1925 { 'command': 'object-del', 'data': {'id': 'str'} }
1930 # Receive a file descriptor via SCM rights and assign it a name
1932 # @fdname: file descriptor name
1934 # Returns: Nothing on success
1938 # Notes: If @fdname already exists, the file descriptor assigned to
1939 # it will be closed and replaced by the received file
1942 # The 'closefd' command can be used to explicitly close the
1943 # file descriptor when it is no longer needed.
1947 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1948 # <- { "return": {} }
1951 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1956 # Close a file descriptor previously passed via SCM rights
1958 # @fdname: file descriptor name
1960 # Returns: Nothing on success
1966 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1967 # <- { "return": {} }
1970 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1975 # Information describing a machine.
1977 # @name: the name of the machine
1979 # @alias: an alias for the machine name
1981 # @is-default: whether the machine is default
1983 # @cpu-max: maximum number of CPUs supported by the machine type
1986 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1990 { 'struct': 'MachineInfo',
1991 'data': { 'name': 'str', '*alias': 'str',
1992 '*is-default': 'bool', 'cpu-max': 'int',
1993 'hotpluggable-cpus': 'bool'} }
1998 # Return a list of supported machines
2000 # Returns: a list of MachineInfo
2004 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
2007 # @CpuDefinitionInfo:
2009 # Virtual CPU definition.
2011 # @name: the name of the CPU definition
2013 # @migration-safe: whether a CPU definition can be safely used for
2014 # migration in combination with a QEMU compatibility machine
2015 # when migrating between different QMU versions and between
2016 # hosts with different sets of (hardware or software)
2017 # capabilities. If not provided, information is not available
2018 # and callers should not assume the CPU definition to be
2019 # migration-safe. (since 2.8)
2021 # @static: whether a CPU definition is static and will not change depending on
2022 # QEMU version, machine type, machine options and accelerator options.
2023 # A static model is always migration-safe. (since 2.8)
2025 # @unavailable-features: List of properties that prevent
2026 # the CPU model from running in the current
2028 # @typename: Type name that can be used as argument to @device-list-properties,
2029 # to introspect properties configurable using -cpu or -global.
2032 # @unavailable-features is a list of QOM property names that
2033 # represent CPU model attributes that prevent the CPU from running.
2034 # If the QOM property is read-only, that means there's no known
2035 # way to make the CPU model run in the current host. Implementations
2036 # that choose not to provide specific information return the
2037 # property name "type".
2038 # If the property is read-write, it means that it MAY be possible
2039 # to run the CPU model in the current host if that property is
2040 # changed. Management software can use it as hints to suggest or
2041 # choose an alternative for the user, or just to generate meaningful
2042 # error messages explaining why the CPU model can't be used.
2043 # If @unavailable-features is an empty list, the CPU model is
2044 # runnable using the current host and machine-type.
2045 # If @unavailable-features is not present, runnability
2046 # information for the CPU is not available.
2050 { 'struct': 'CpuDefinitionInfo',
2051 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2052 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2057 # Actual memory information in bytes.
2059 # @base-memory: size of "base" memory specified with command line
2062 # @plugged-memory: size of memory that can be hot-unplugged. This field
2063 # is omitted if target doesn't support memory hotplug
2064 # (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2068 { 'struct': 'MemoryInfo',
2069 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2072 # @query-memory-size-summary:
2074 # Return the amount of initially allocated and present hotpluggable (if
2075 # enabled) memory in bytes.
2079 # -> { "execute": "query-memory-size-summary" }
2080 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2084 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2087 # @query-cpu-definitions:
2089 # Return a list of supported virtual CPU definitions
2091 # Returns: a list of CpuDefInfo
2095 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2100 # Virtual CPU model.
2102 # A CPU model consists of the name of a CPU definition, to which
2103 # delta changes are applied (e.g. features added/removed). Most magic values
2104 # that an architecture might require should be hidden behind the name.
2105 # However, if required, architectures can expose relevant properties.
2107 # @name: the name of the CPU definition the model is based on
2108 # @props: a dictionary of QOM properties to be applied
2112 { 'struct': 'CpuModelInfo',
2113 'data': { 'name': 'str',
2117 # @CpuModelExpansionType:
2119 # An enumeration of CPU model expansion types.
2121 # @static: Expand to a static CPU model, a combination of a static base
2122 # model name and property delta changes. As the static base model will
2123 # never change, the expanded CPU model will be the same, independent of
2124 # independent of QEMU version, machine type, machine options, and
2125 # accelerator options. Therefore, the resulting model can be used by
2126 # tooling without having to specify a compatibility machine - e.g. when
2127 # displaying the "host" model. static CPU models are migration-safe.
2129 # @full: Expand all properties. The produced model is not guaranteed to be
2130 # migration-safe, but allows tooling to get an insight and work with
2133 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2134 # features enabled by the CPU model may be omitted, because they can't be
2135 # implemented by a static CPU model definition (e.g. cache info passthrough and
2136 # PMU passthrough in x86). If you need an accurate representation of the
2137 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2138 # static representation that will keep ABI compatibility even when changing QEMU
2139 # version or machine-type, use @static (but keep in mind that some features may
2144 { 'enum': 'CpuModelExpansionType',
2145 'data': [ 'static', 'full' ] }
2149 # @CpuModelExpansionInfo:
2151 # The result of a cpu model expansion.
2153 # @model: the expanded CpuModelInfo.
2157 { 'struct': 'CpuModelExpansionInfo',
2158 'data': { 'model': 'CpuModelInfo' } }
2162 # @query-cpu-model-expansion:
2164 # Expands a given CPU model (or a combination of CPU model + additional options)
2165 # to different granularities, allowing tooling to get an understanding what a
2166 # specific CPU model looks like in QEMU under a certain configuration.
2168 # This interface can be used to query the "host" CPU model.
2170 # The data returned by this command may be affected by:
2172 # * QEMU version: CPU models may look different depending on the QEMU version.
2173 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2174 # * machine-type: CPU model may look different depending on the machine-type.
2175 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2176 # * machine options (including accelerator): in some architectures, CPU models
2177 # may look different depending on machine and accelerator options. (Except for
2178 # CPU models reported as "static" in query-cpu-definitions.)
2179 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2180 # global properties may affect expansion of CPU models. Using
2181 # query-cpu-model-expansion while using these is not advised.
2183 # Some architectures may not support all expansion types. s390x supports
2184 # "full" and "static".
2186 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2187 # not supported, if the model cannot be expanded, if the model contains
2188 # an unknown CPU definition name, unknown properties or properties
2189 # with a wrong type. Also returns an error if an expansion type is
2194 { 'command': 'query-cpu-model-expansion',
2195 'data': { 'type': 'CpuModelExpansionType',
2196 'model': 'CpuModelInfo' },
2197 'returns': 'CpuModelExpansionInfo' }
2200 # @CpuModelCompareResult:
2202 # An enumeration of CPU model comparison results. The result is usually
2203 # calculated using e.g. CPU features or CPU generations.
2205 # @incompatible: If model A is incompatible to model B, model A is not
2206 # guaranteed to run where model B runs and the other way around.
2208 # @identical: If model A is identical to model B, model A is guaranteed to run
2209 # where model B runs and the other way around.
2211 # @superset: If model A is a superset of model B, model B is guaranteed to run
2212 # where model A runs. There are no guarantees about the other way.
2214 # @subset: If model A is a subset of model B, model A is guaranteed to run
2215 # where model B runs. There are no guarantees about the other way.
2219 { 'enum': 'CpuModelCompareResult',
2220 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2223 # @CpuModelCompareInfo:
2225 # The result of a CPU model comparison.
2227 # @result: The result of the compare operation.
2228 # @responsible-properties: List of properties that led to the comparison result
2229 # not being identical.
2231 # @responsible-properties is a list of QOM property names that led to
2232 # both CPUs not being detected as identical. For identical models, this
2234 # If a QOM property is read-only, that means there's no known way to make the
2235 # CPU models identical. If the special property name "type" is included, the
2236 # models are by definition not identical and cannot be made identical.
2240 { 'struct': 'CpuModelCompareInfo',
2241 'data': {'result': 'CpuModelCompareResult',
2242 'responsible-properties': ['str']
2247 # @query-cpu-model-comparison:
2249 # Compares two CPU models, returning how they compare in a specific
2250 # configuration. The results indicates how both models compare regarding
2251 # runnability. This result can be used by tooling to make decisions if a
2252 # certain CPU model will run in a certain configuration or if a compatible
2253 # CPU model has to be created by baselining.
2255 # Usually, a CPU model is compared against the maximum possible CPU model
2256 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2257 # model is identical or a subset, it will run in that configuration.
2259 # The result returned by this command may be affected by:
2261 # * QEMU version: CPU models may look different depending on the QEMU version.
2262 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2263 # * machine-type: CPU model may look different depending on the machine-type.
2264 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2265 # * machine options (including accelerator): in some architectures, CPU models
2266 # may look different depending on machine and accelerator options. (Except for
2267 # CPU models reported as "static" in query-cpu-definitions.)
2268 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2269 # global properties may affect expansion of CPU models. Using
2270 # query-cpu-model-expansion while using these is not advised.
2272 # Some architectures may not support comparing CPU models. s390x supports
2273 # comparing CPU models.
2275 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2276 # not supported, if a model cannot be used, if a model contains
2277 # an unknown cpu definition name, unknown properties or properties
2282 { 'command': 'query-cpu-model-comparison',
2283 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2284 'returns': 'CpuModelCompareInfo' }
2287 # @CpuModelBaselineInfo:
2289 # The result of a CPU model baseline.
2291 # @model: the baselined CpuModelInfo.
2295 { 'struct': 'CpuModelBaselineInfo',
2296 'data': { 'model': 'CpuModelInfo' } }
2299 # @query-cpu-model-baseline:
2301 # Baseline two CPU models, creating a compatible third model. The created
2302 # model will always be a static, migration-safe CPU model (see "static"
2303 # CPU model expansion for details).
2305 # This interface can be used by tooling to create a compatible CPU model out
2306 # two CPU models. The created CPU model will be identical to or a subset of
2307 # both CPU models when comparing them. Therefore, the created CPU model is
2308 # guaranteed to run where the given CPU models run.
2310 # The result returned by this command may be affected by:
2312 # * QEMU version: CPU models may look different depending on the QEMU version.
2313 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2314 # * machine-type: CPU model may look different depending on the machine-type.
2315 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2316 # * machine options (including accelerator): in some architectures, CPU models
2317 # may look different depending on machine and accelerator options. (Except for
2318 # CPU models reported as "static" in query-cpu-definitions.)
2319 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2320 # global properties may affect expansion of CPU models. Using
2321 # query-cpu-model-expansion while using these is not advised.
2323 # Some architectures may not support baselining CPU models. s390x supports
2324 # baselining CPU models.
2326 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2327 # not supported, if a model cannot be used, if a model contains
2328 # an unknown cpu definition name, unknown properties or properties
2333 { 'command': 'query-cpu-model-baseline',
2334 'data': { 'modela': 'CpuModelInfo',
2335 'modelb': 'CpuModelInfo' },
2336 'returns': 'CpuModelBaselineInfo' }
2341 # Information about a file descriptor that was added to an fd set.
2343 # @fdset-id: The ID of the fd set that @fd was added to.
2345 # @fd: The file descriptor that was received via SCM rights and
2346 # added to the fd set.
2350 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2355 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2357 # @fdset-id: The ID of the fd set to add the file descriptor to.
2359 # @opaque: A free-form string that can be used to describe the fd.
2361 # Returns: @AddfdInfo on success
2363 # If file descriptor was not received, FdNotSupplied
2365 # If @fdset-id is a negative value, InvalidParameterValue
2367 # Notes: The list of fd sets is shared by all monitor connections.
2369 # If @fdset-id is not specified, a new fd set will be created.
2375 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2376 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2379 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2380 'returns': 'AddfdInfo' }
2385 # Remove a file descriptor from an fd set.
2387 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2389 # @fd: The file descriptor that is to be removed.
2391 # Returns: Nothing on success
2392 # If @fdset-id or @fd is not found, FdNotFound
2396 # Notes: The list of fd sets is shared by all monitor connections.
2398 # If @fd is not specified, all file descriptors in @fdset-id
2403 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2404 # <- { "return": {} }
2407 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2412 # Information about a file descriptor that belongs to an fd set.
2414 # @fd: The file descriptor value.
2416 # @opaque: A free-form string that can be used to describe the fd.
2420 { 'struct': 'FdsetFdInfo',
2421 'data': {'fd': 'int', '*opaque': 'str'} }
2426 # Information about an fd set.
2428 # @fdset-id: The ID of the fd set.
2430 # @fds: A list of file descriptors that belong to this fd set.
2434 { 'struct': 'FdsetInfo',
2435 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2440 # Return information describing all fd sets.
2442 # Returns: A list of @FdsetInfo
2446 # Note: The list of fd sets is shared by all monitor connections.
2450 # -> { "execute": "query-fdsets" }
2456 # "opaque": "rdonly:/path/to/file"
2460 # "opaque": "rdwr:/path/to/file"
2480 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2485 # Information describing the QEMU target.
2487 # @arch: the target architecture
2491 { 'struct': 'TargetInfo',
2492 'data': { 'arch': 'SysEmuTarget' } }
2497 # Return information about the target for this QEMU
2499 # Returns: TargetInfo
2503 { 'command': 'query-target', 'returns': 'TargetInfo' }
2506 # @AcpiTableOptions:
2508 # Specify an ACPI table on the command line to load.
2510 # At most one of @file and @data can be specified. The list of files specified
2511 # by any one of them is loaded and concatenated in order. If both are omitted,
2514 # Other fields / optargs can be used to override fields of the generic ACPI
2515 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2516 # Description Table Header. If a header field is not overridden, then the
2517 # corresponding value from the concatenated blob is used (in case of @file), or
2518 # it is filled in with a hard-coded value (in case of @data).
2520 # String fields are copied into the matching ACPI member from lowest address
2521 # upwards, and silently truncated / NUL-padded to length.
2523 # @sig: table signature / identifier (4 bytes)
2525 # @rev: table revision number (dependent on signature, 1 byte)
2527 # @oem_id: OEM identifier (6 bytes)
2529 # @oem_table_id: OEM table identifier (8 bytes)
2531 # @oem_rev: OEM-supplied revision number (4 bytes)
2533 # @asl_compiler_id: identifier of the utility that created the table
2536 # @asl_compiler_rev: revision number of the utility that created the
2539 # @file: colon (:) separated list of pathnames to load and
2540 # concatenate as table data. The resultant binary blob is expected to
2541 # have an ACPI table header. At least one file is required. This field
2544 # @data: colon (:) separated list of pathnames to load and
2545 # concatenate as table data. The resultant binary blob must not have an
2546 # ACPI table header. At least one file is required. This field excludes
2551 { 'struct': 'AcpiTableOptions',
2556 '*oem_table_id': 'str',
2557 '*oem_rev': 'uint32',
2558 '*asl_compiler_id': 'str',
2559 '*asl_compiler_rev': 'uint32',
2564 # @CommandLineParameterType:
2566 # Possible types for an option parameter.
2568 # @string: accepts a character string
2570 # @boolean: accepts "on" or "off"
2572 # @number: accepts a number
2574 # @size: accepts a number followed by an optional suffix (K)ilo,
2575 # (M)ega, (G)iga, (T)era
2579 { 'enum': 'CommandLineParameterType',
2580 'data': ['string', 'boolean', 'number', 'size'] }
2583 # @CommandLineParameterInfo:
2585 # Details about a single parameter of a command line option.
2587 # @name: parameter name
2589 # @type: parameter @CommandLineParameterType
2591 # @help: human readable text string, not suitable for parsing.
2593 # @default: default value string (since 2.1)
2597 { 'struct': 'CommandLineParameterInfo',
2598 'data': { 'name': 'str',
2599 'type': 'CommandLineParameterType',
2601 '*default': 'str' } }
2604 # @CommandLineOptionInfo:
2606 # Details about a command line option, including its list of parameter details
2608 # @option: option name
2610 # @parameters: an array of @CommandLineParameterInfo
2614 { 'struct': 'CommandLineOptionInfo',
2615 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2618 # @query-command-line-options:
2620 # Query command line option schema.
2622 # @option: option name
2624 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2625 # @option). Returns an error if the given @option doesn't exist.
2631 # -> { "execute": "query-command-line-options",
2632 # "arguments": { "option": "option-rom" } }
2637 # "name": "romfile",
2641 # "name": "bootindex",
2645 # "option": "option-rom"
2651 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2652 'returns': ['CommandLineOptionInfo'],
2653 'allow-preconfig': true }
2656 # @X86CPURegister32:
2658 # A X86 32-bit register
2662 { 'enum': 'X86CPURegister32',
2663 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2666 # @X86CPUFeatureWordInfo:
2668 # Information about a X86 CPU feature word
2670 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2672 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2675 # @cpuid-register: Output register containing the feature bits
2677 # @features: value of output register, containing the feature bits
2681 { 'struct': 'X86CPUFeatureWordInfo',
2682 'data': { 'cpuid-input-eax': 'int',
2683 '*cpuid-input-ecx': 'int',
2684 'cpuid-register': 'X86CPURegister32',
2685 'features': 'int' } }
2688 # @DummyForceArrays:
2690 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2694 { 'struct': 'DummyForceArrays',
2695 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2701 # @node: NUMA nodes configuration
2703 # @dist: NUMA distance configuration (since 2.10)
2705 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2709 { 'enum': 'NumaOptionsType',
2710 'data': [ 'node', 'dist', 'cpu' ] }
2715 # A discriminated record of NUMA options. (for OptsVisitor)
2719 { 'union': 'NumaOptions',
2720 'base': { 'type': 'NumaOptionsType' },
2721 'discriminator': 'type',
2723 'node': 'NumaNodeOptions',
2724 'dist': 'NumaDistOptions',
2725 'cpu': 'NumaCpuOptions' }}
2730 # Create a guest NUMA node. (for OptsVisitor)
2732 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2734 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2737 # @mem: memory size of this node; mutually exclusive with @memdev.
2738 # Equally divide total memory among nodes if both @mem and @memdev are
2741 # @memdev: memory backend object. If specified for one node,
2742 # it must be specified for all nodes.
2746 { 'struct': 'NumaNodeOptions',
2748 '*nodeid': 'uint16',
2749 '*cpus': ['uint16'],
2756 # Set the distance between 2 NUMA nodes.
2758 # @src: source NUMA node.
2760 # @dst: destination NUMA node.
2762 # @val: NUMA distance from source node to destination node.
2763 # When a node is unreachable from another node, set the distance
2764 # between them to 255.
2768 { 'struct': 'NumaDistOptions',
2777 # Option "-numa cpu" overrides default cpu to node mapping.
2778 # It accepts the same set of cpu properties as returned by
2779 # query-hotpluggable-cpus[].props, where node-id could be used to
2780 # override default node mapping.
2784 { 'struct': 'NumaCpuOptions',
2785 'base': 'CpuInstanceProperties',
2791 # Host memory policy types
2793 # @default: restore default policy, remove any nondefault policy
2795 # @preferred: set the preferred host nodes for allocation
2797 # @bind: a strict policy that restricts memory allocation to the
2798 # host nodes specified
2800 # @interleave: memory allocations are interleaved across the set
2801 # of host nodes specified
2805 { 'enum': 'HostMemPolicy',
2806 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2811 # Information about memory backend
2813 # @id: backend's ID if backend has 'id' property (since 2.9)
2815 # @size: memory backend size
2817 # @merge: enables or disables memory merge support
2819 # @dump: includes memory backend's memory in a core dump or not
2821 # @prealloc: enables or disables memory preallocation
2823 # @host-nodes: host nodes for its memory policy
2825 # @policy: memory policy of memory backend
2829 { 'struct': 'Memdev',
2836 'host-nodes': ['uint16'],
2837 'policy': 'HostMemPolicy' }}
2842 # Returns information for all memory backends.
2844 # Returns: a list of @Memdev.
2850 # -> { "execute": "query-memdev" }
2854 # "size": 536870912,
2857 # "prealloc": false,
2858 # "host-nodes": [0, 1],
2862 # "size": 536870912,
2866 # "host-nodes": [2, 3],
2867 # "policy": "preferred"
2873 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2876 # @PCDIMMDeviceInfo:
2878 # PCDIMMDevice state information
2882 # @addr: physical address, where device is mapped
2884 # @size: size of memory that the device provides
2886 # @slot: slot number at which device is plugged in
2888 # @node: NUMA node number where device is plugged in
2890 # @memdev: memory backend linked with device
2892 # @hotplugged: true if device was hotplugged
2894 # @hotpluggable: true if device if could be added/removed while machine is running
2898 { 'struct': 'PCDIMMDeviceInfo',
2899 'data': { '*id': 'str',
2905 'hotplugged': 'bool',
2906 'hotpluggable': 'bool'
2911 # @MemoryDeviceInfo:
2913 # Union containing information about a memory device
2917 { 'union': 'MemoryDeviceInfo',
2918 'data': { 'dimm': 'PCDIMMDeviceInfo',
2919 'nvdimm': 'PCDIMMDeviceInfo'
2924 # @query-memory-devices:
2926 # Lists available memory devices and their state
2932 # -> { "execute": "query-memory-devices" }
2933 # <- { "return": [ { "data":
2934 # { "addr": 5368709120,
2935 # "hotpluggable": true,
2936 # "hotplugged": true,
2938 # "memdev": "/objects/memX",
2940 # "size": 1073741824,
2946 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2949 # @MEM_UNPLUG_ERROR:
2951 # Emitted when memory hot unplug error occurs.
2953 # @device: device name
2955 # @msg: Informative message
2961 # <- { "event": "MEM_UNPLUG_ERROR"
2962 # "data": { "device": "dimm1",
2963 # "msg": "acpi: device unplug for unsupported device"
2965 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2968 { 'event': 'MEM_UNPLUG_ERROR',
2969 'data': { 'device': 'str', 'msg': 'str' } }
2974 # @DIMM: memory slot
2975 # @CPU: logical CPU slot (since 2.7)
2977 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2982 # OSPM Status Indication for a device
2983 # For description of possible values of @source and @status fields
2984 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2986 # @device: device ID associated with slot
2988 # @slot: slot ID, unique per slot of a given @slot-type
2990 # @slot-type: type of the slot
2992 # @source: an integer containing the source event
2994 # @status: an integer containing the status code
2998 { 'struct': 'ACPIOSTInfo',
2999 'data' : { '*device': 'str',
3001 'slot-type': 'ACPISlotType',
3006 # @query-acpi-ospm-status:
3008 # Return a list of ACPIOSTInfo for devices that support status
3009 # reporting via ACPI _OST method.
3015 # -> { "execute": "query-acpi-ospm-status" }
3016 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3017 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3018 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3019 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3023 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3028 # Emitted when guest executes ACPI _OST method.
3030 # @info: OSPM Status Indication
3036 # <- { "event": "ACPI_DEVICE_OST",
3037 # "data": { "device": "d1", "slot": "0",
3038 # "slot-type": "DIMM", "source": 1, "status": 0 } }
3041 { 'event': 'ACPI_DEVICE_OST',
3042 'data': { 'info': 'ACPIOSTInfo' } }
3045 # @rtc-reset-reinjection:
3047 # This command will reset the RTC interrupt reinjection backlog.
3048 # Can be used if another mechanism to synchronize guest time
3049 # is in effect, for example QEMU guest agent's guest-set-time
3056 # -> { "execute": "rtc-reset-reinjection" }
3057 # <- { "return": {} }
3060 { 'command': 'rtc-reset-reinjection' }
3065 # Emitted when the guest changes the RTC time.
3067 # @offset: offset between base RTC clock (as specified by -rtc base), and
3068 # new RTC clock value
3070 # Note: This event is rate-limited.
3076 # <- { "event": "RTC_CHANGE",
3077 # "data": { "offset": 78 },
3078 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3081 { 'event': 'RTC_CHANGE',
3082 'data': { 'offset': 'int' } }
3087 # Mode of the replay subsystem.
3089 # @none: normal execution mode. Replay or record are not enabled.
3091 # @record: record mode. All non-deterministic data is written into the
3094 # @play: replay mode. Non-deterministic data required for system execution
3095 # is read from the log.
3099 { 'enum': 'ReplayMode',
3100 'data': [ 'none', 'record', 'play' ] }
3103 # @xen-load-devices-state:
3105 # Load the state of all devices from file. The RAM and the block devices
3106 # of the VM are not loaded by this command.
3108 # @filename: the file to load the state of the devices from as binary
3109 # data. See xen-save-devices-state.txt for a description of the binary
3116 # -> { "execute": "xen-load-devices-state",
3117 # "arguments": { "filename": "/tmp/resume" } }
3118 # <- { "return": {} }
3121 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3126 # The struct describes capability for a specific GIC (Generic
3127 # Interrupt Controller) version. These bits are not only decided by
3128 # QEMU/KVM software version, but also decided by the hardware that
3129 # the program is running upon.
3131 # @version: version of GIC to be described. Currently, only 2 and 3
3134 # @emulated: whether current QEMU/hardware supports emulated GIC
3135 # device in user space.
3137 # @kernel: whether current QEMU/hardware supports hardware
3138 # accelerated GIC device in kernel.
3142 { 'struct': 'GICCapability',
3143 'data': { 'version': 'int',
3145 'kernel': 'bool' } }
3148 # @query-gic-capabilities:
3150 # This command is ARM-only. It will return a list of GICCapability
3151 # objects that describe its capability bits.
3153 # Returns: a list of GICCapability objects.
3159 # -> { "execute": "query-gic-capabilities" }
3160 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3161 # { "version": 3, "emulated": false, "kernel": true } ] }
3164 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3167 # @CpuInstanceProperties:
3169 # List of properties to be used for hotplugging a CPU instance,
3170 # it should be passed by management with device_add command when
3171 # a CPU is being hotplugged.
3173 # @node-id: NUMA node ID the CPU belongs to
3174 # @socket-id: socket number within node/board the CPU belongs to
3175 # @core-id: core number within socket the CPU belongs to
3176 # @thread-id: thread number within core the CPU belongs to
3178 # Note: currently there are 4 properties that could be present
3179 # but management should be prepared to pass through other
3180 # properties with device_add command to allow for future
3181 # interface extension. This also requires the filed names to be kept in
3182 # sync with the properties passed to -device/device_add.
3186 { 'struct': 'CpuInstanceProperties',
3187 'data': { '*node-id': 'int',
3188 '*socket-id': 'int',
3197 # @type: CPU object type for usage with device_add command
3198 # @props: list of properties to be used for hotplugging CPU
3199 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3200 # @qom-path: link to existing CPU object if CPU is present or
3201 # omitted if CPU is not present.
3205 { 'struct': 'HotpluggableCPU',
3206 'data': { 'type': 'str',
3207 'vcpus-count': 'int',
3208 'props': 'CpuInstanceProperties',
3214 # @query-hotpluggable-cpus:
3216 # Returns: a list of HotpluggableCPU objects.
3222 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3224 # -> { "execute": "query-hotpluggable-cpus" }
3226 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3227 # "vcpus-count": 1 },
3228 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3229 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3232 # For pc machine type started with -smp 1,maxcpus=2:
3234 # -> { "execute": "query-hotpluggable-cpus" }
3237 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3238 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3241 # "qom-path": "/machine/unattached/device[0]",
3242 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3243 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3247 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3250 # -> { "execute": "query-hotpluggable-cpus" }
3253 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3254 # "props": { "core-id": 1 }
3257 # "qom-path": "/machine/unattached/device[0]",
3258 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
3259 # "props": { "core-id": 0 }
3264 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3265 'allow-preconfig': true }
3272 # @guid: the globally unique identifier
3276 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3279 # @query-vm-generation-id:
3281 # Show Virtual Machine Generation ID
3285 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3291 # An enumeration of SEV state information used during @query-sev.
3293 # @uninit: The guest is uninitialized.
3295 # @launch-update: The guest is currently being launched; plaintext data and
3296 # register state is being imported.
3298 # @launch-secret: The guest is currently being launched; ciphertext data
3299 # is being imported.
3301 # @running: The guest is fully launched or migrated in.
3303 # @send-update: The guest is currently being migrated out to another machine.
3305 # @receive-update: The guest is currently being migrated from another machine.
3309 { 'enum': 'SevState',
3310 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3311 'send-update', 'receive-update' ] }
3316 # Information about Secure Encrypted Virtualization (SEV) support
3318 # @enabled: true if SEV is active
3320 # @api-major: SEV API major version
3322 # @api-minor: SEV API minor version
3324 # @build-id: SEV FW build id
3326 # @policy: SEV policy value
3328 # @state: SEV guest state
3330 # @handle: SEV firmware handle
3334 { 'struct': 'SevInfo',
3335 'data': { 'enabled': 'bool',
3336 'api-major': 'uint8',
3337 'api-minor' : 'uint8',
3338 'build-id' : 'uint8',
3339 'policy' : 'uint32',
3340 'state' : 'SevState',
3348 # Returns information about SEV
3356 # -> { "execute": "query-sev" }
3357 # <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3358 # "build-id" : 0, "policy" : 0, "state" : "running",
3362 { 'command': 'query-sev', 'returns': 'SevInfo' }
3365 # @SevLaunchMeasureInfo:
3367 # SEV Guest Launch measurement information
3369 # @data: the measurement value encoded in base64
3374 { 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3377 # @query-sev-launch-measure:
3379 # Query the SEV guest launch information.
3381 # Returns: The @SevLaunchMeasureInfo for the guest
3387 # -> { "execute": "query-sev-launch-measure" }
3388 # <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3391 { 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3396 # The struct describes capability for a Secure Encrypted Virtualization
3399 # @pdh: Platform Diffie-Hellman key (base64 encoded)
3401 # @cert-chain: PDH certificate chain (base64 encoded)
3403 # @cbitpos: C-bit location in page table entry
3405 # @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3410 { 'struct': 'SevCapability',
3411 'data': { 'pdh': 'str',
3412 'cert-chain': 'str',
3414 'reduced-phys-bits': 'int'} }
3417 # @query-sev-capabilities:
3419 # This command is used to get the SEV capabilities, and is supported on AMD
3420 # X86 platforms only.
3422 # Returns: SevCapability objects.
3428 # -> { "execute": "query-sev-capabilities" }
3429 # <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3430 # "cbitpos": 47, "reduced-phys-bits": 5}}
3433 { 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3436 # @CommandDropReason:
3438 # Reasons that caused one command to be dropped.
3440 # @queue-full: the command queue is full. This can only occur when
3441 # the client sends a new non-oob command before the
3442 # response to the previous non-oob command has been
3447 { 'enum': 'CommandDropReason',
3448 'data': [ 'queue-full' ] }
3453 # Emitted when a command is dropped due to some reason. Commands can
3454 # only be dropped when the oob capability is enabled.
3456 # @id: The dropped command's "id" field.
3457 # FIXME Broken by design. Events are broadcast to all monitors. If
3458 # another monitor's client has a command with the same ID in flight,
3459 # the event will incorrectly claim that command was dropped.
3461 # @reason: The reason why the command is dropped.
3467 # { "event": "COMMAND_DROPPED",
3468 # "data": {"result": {"id": "libvirt-102",
3469 # "reason": "queue-full" } } }
3472 { 'event': 'COMMAND_DROPPED' ,
3473 'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3478 # Runtime equivalent of '-numa' CLI option, available at
3479 # preconfigure stage to configure numa mapping before initializing
3484 { 'command': 'set-numa-node', 'boxed': true,
3485 'data': 'NumaOptions',
3486 'allow-preconfig': true