spapr: Get rid of cas_check_pvr() error reporting
[qemu/ar7.git] / accel / tcg / cputlb.c
blob2bbbb3ab290e8264c1823aaa410fe2c69419c193
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 #include "translate-all.h"
37 #include "trace/trace-root.h"
38 #include "trace/mem.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
43 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
44 /* #define DEBUG_TLB */
45 /* #define DEBUG_TLB_LOG */
47 #ifdef DEBUG_TLB
48 # define DEBUG_TLB_GATE 1
49 # ifdef DEBUG_TLB_LOG
50 # define DEBUG_TLB_LOG_GATE 1
51 # else
52 # define DEBUG_TLB_LOG_GATE 0
53 # endif
54 #else
55 # define DEBUG_TLB_GATE 0
56 # define DEBUG_TLB_LOG_GATE 0
57 #endif
59 #define tlb_debug(fmt, ...) do { \
60 if (DEBUG_TLB_LOG_GATE) { \
61 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
62 ## __VA_ARGS__); \
63 } else if (DEBUG_TLB_GATE) { \
64 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
65 } \
66 } while (0)
68 #define assert_cpu_is_self(cpu) do { \
69 if (DEBUG_TLB_GATE) { \
70 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
71 } \
72 } while (0)
74 /* run_on_cpu_data.target_ptr should always be big enough for a
75 * target_ulong even on 32 bit builds */
76 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
81 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
85 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
90 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
94 size_t max_entries)
96 desc->window_begin_ns = ns;
97 desc->window_max_entries = max_entries;
101 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
102 * @desc: The CPUTLBDesc portion of the TLB
103 * @fast: The CPUTLBDescFast portion of the same TLB
105 * Called with tlb_lock_held.
107 * We have two main constraints when resizing a TLB: (1) we only resize it
108 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
109 * the array or unnecessarily flushing it), which means we do not control how
110 * frequently the resizing can occur; (2) we don't have access to the guest's
111 * future scheduling decisions, and therefore have to decide the magnitude of
112 * the resize based on past observations.
114 * In general, a memory-hungry process can benefit greatly from an appropriately
115 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
116 * we just have to make the TLB as large as possible; while an oversized TLB
117 * results in minimal TLB miss rates, it also takes longer to be flushed
118 * (flushes can be _very_ frequent), and the reduced locality can also hurt
119 * performance.
121 * To achieve near-optimal performance for all kinds of workloads, we:
123 * 1. Aggressively increase the size of the TLB when the use rate of the
124 * TLB being flushed is high, since it is likely that in the near future this
125 * memory-hungry process will execute again, and its memory hungriness will
126 * probably be similar.
128 * 2. Slowly reduce the size of the TLB as the use rate declines over a
129 * reasonably large time window. The rationale is that if in such a time window
130 * we have not observed a high TLB use rate, it is likely that we won't observe
131 * it in the near future. In that case, once a time window expires we downsize
132 * the TLB to match the maximum use rate observed in the window.
134 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
135 * since in that range performance is likely near-optimal. Recall that the TLB
136 * is direct mapped, so we want the use rate to be low (or at least not too
137 * high), since otherwise we are likely to have a significant amount of
138 * conflict misses.
140 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
141 int64_t now)
143 size_t old_size = tlb_n_entries(fast);
144 size_t rate;
145 size_t new_size = old_size;
146 int64_t window_len_ms = 100;
147 int64_t window_len_ns = window_len_ms * 1000 * 1000;
148 bool window_expired = now > desc->window_begin_ns + window_len_ns;
150 if (desc->n_used_entries > desc->window_max_entries) {
151 desc->window_max_entries = desc->n_used_entries;
153 rate = desc->window_max_entries * 100 / old_size;
155 if (rate > 70) {
156 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
157 } else if (rate < 30 && window_expired) {
158 size_t ceil = pow2ceil(desc->window_max_entries);
159 size_t expected_rate = desc->window_max_entries * 100 / ceil;
162 * Avoid undersizing when the max number of entries seen is just below
163 * a pow2. For instance, if max_entries == 1025, the expected use rate
164 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
165 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
166 * later. Thus, make sure that the expected use rate remains below 70%.
167 * (and since we double the size, that means the lowest rate we'd
168 * expect to get is 35%, which is still in the 30-70% range where
169 * we consider that the size is appropriate.)
171 if (expected_rate > 70) {
172 ceil *= 2;
174 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
177 if (new_size == old_size) {
178 if (window_expired) {
179 tlb_window_reset(desc, now, desc->n_used_entries);
181 return;
184 g_free(fast->table);
185 g_free(desc->iotlb);
187 tlb_window_reset(desc, now, 0);
188 /* desc->n_used_entries is cleared by the caller */
189 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
190 fast->table = g_try_new(CPUTLBEntry, new_size);
191 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
194 * If the allocations fail, try smaller sizes. We just freed some
195 * memory, so going back to half of new_size has a good chance of working.
196 * Increased memory pressure elsewhere in the system might cause the
197 * allocations to fail though, so we progressively reduce the allocation
198 * size, aborting if we cannot even allocate the smallest TLB we support.
200 while (fast->table == NULL || desc->iotlb == NULL) {
201 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
202 error_report("%s: %s", __func__, strerror(errno));
203 abort();
205 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 g_free(fast->table);
209 g_free(desc->iotlb);
210 fast->table = g_try_new(CPUTLBEntry, new_size);
211 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
215 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
217 desc->n_used_entries = 0;
218 desc->large_page_addr = -1;
219 desc->large_page_mask = -1;
220 desc->vindex = 0;
221 memset(fast->table, -1, sizeof_tlb(fast));
222 memset(desc->vtable, -1, sizeof(desc->vtable));
225 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
226 int64_t now)
228 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
229 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
231 tlb_mmu_resize_locked(desc, fast, now);
232 tlb_mmu_flush_locked(desc, fast);
235 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
237 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
239 tlb_window_reset(desc, now, 0);
240 desc->n_used_entries = 0;
241 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
242 fast->table = g_new(CPUTLBEntry, n_entries);
243 desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
244 tlb_mmu_flush_locked(desc, fast);
247 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
249 env_tlb(env)->d[mmu_idx].n_used_entries++;
252 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
254 env_tlb(env)->d[mmu_idx].n_used_entries--;
257 void tlb_init(CPUState *cpu)
259 CPUArchState *env = cpu->env_ptr;
260 int64_t now = get_clock_realtime();
261 int i;
263 qemu_spin_init(&env_tlb(env)->c.lock);
265 /* All tlbs are initialized flushed. */
266 env_tlb(env)->c.dirty = 0;
268 for (i = 0; i < NB_MMU_MODES; i++) {
269 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
273 void tlb_destroy(CPUState *cpu)
275 CPUArchState *env = cpu->env_ptr;
276 int i;
278 qemu_spin_destroy(&env_tlb(env)->c.lock);
279 for (i = 0; i < NB_MMU_MODES; i++) {
280 CPUTLBDesc *desc = &env_tlb(env)->d[i];
281 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
283 g_free(fast->table);
284 g_free(desc->iotlb);
288 /* flush_all_helper: run fn across all cpus
290 * If the wait flag is set then the src cpu's helper will be queued as
291 * "safe" work and the loop exited creating a synchronisation point
292 * where all queued work will be finished before execution starts
293 * again.
295 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
296 run_on_cpu_data d)
298 CPUState *cpu;
300 CPU_FOREACH(cpu) {
301 if (cpu != src) {
302 async_run_on_cpu(cpu, fn, d);
307 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
309 CPUState *cpu;
310 size_t full = 0, part = 0, elide = 0;
312 CPU_FOREACH(cpu) {
313 CPUArchState *env = cpu->env_ptr;
315 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
316 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
317 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
319 *pfull = full;
320 *ppart = part;
321 *pelide = elide;
324 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
326 CPUArchState *env = cpu->env_ptr;
327 uint16_t asked = data.host_int;
328 uint16_t all_dirty, work, to_clean;
329 int64_t now = get_clock_realtime();
331 assert_cpu_is_self(cpu);
333 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
335 qemu_spin_lock(&env_tlb(env)->c.lock);
337 all_dirty = env_tlb(env)->c.dirty;
338 to_clean = asked & all_dirty;
339 all_dirty &= ~to_clean;
340 env_tlb(env)->c.dirty = all_dirty;
342 for (work = to_clean; work != 0; work &= work - 1) {
343 int mmu_idx = ctz32(work);
344 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
347 qemu_spin_unlock(&env_tlb(env)->c.lock);
349 cpu_tb_jmp_cache_clear(cpu);
351 if (to_clean == ALL_MMUIDX_BITS) {
352 qatomic_set(&env_tlb(env)->c.full_flush_count,
353 env_tlb(env)->c.full_flush_count + 1);
354 } else {
355 qatomic_set(&env_tlb(env)->c.part_flush_count,
356 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
357 if (to_clean != asked) {
358 qatomic_set(&env_tlb(env)->c.elide_flush_count,
359 env_tlb(env)->c.elide_flush_count +
360 ctpop16(asked & ~to_clean));
365 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
367 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
369 if (cpu->created && !qemu_cpu_is_self(cpu)) {
370 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
371 RUN_ON_CPU_HOST_INT(idxmap));
372 } else {
373 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
377 void tlb_flush(CPUState *cpu)
379 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
382 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
384 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
386 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
388 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
389 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
392 void tlb_flush_all_cpus(CPUState *src_cpu)
394 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
397 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
399 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
401 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
403 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
404 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
409 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
412 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
413 target_ulong page)
415 return tlb_hit_page(tlb_entry->addr_read, page) ||
416 tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
417 tlb_hit_page(tlb_entry->addr_code, page);
421 * tlb_entry_is_empty - return true if the entry is not in use
422 * @te: pointer to CPUTLBEntry
424 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
426 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
429 /* Called with tlb_c.lock held */
430 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
431 target_ulong page)
433 if (tlb_hit_page_anyprot(tlb_entry, page)) {
434 memset(tlb_entry, -1, sizeof(*tlb_entry));
435 return true;
437 return false;
440 /* Called with tlb_c.lock held */
441 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
442 target_ulong page)
444 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
445 int k;
447 assert_cpu_is_self(env_cpu(env));
448 for (k = 0; k < CPU_VTLB_SIZE; k++) {
449 if (tlb_flush_entry_locked(&d->vtable[k], page)) {
450 tlb_n_used_entries_dec(env, mmu_idx);
455 static void tlb_flush_page_locked(CPUArchState *env, int midx,
456 target_ulong page)
458 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
459 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
461 /* Check if we need to flush due to large pages. */
462 if ((page & lp_mask) == lp_addr) {
463 tlb_debug("forcing full flush midx %d ("
464 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
465 midx, lp_addr, lp_mask);
466 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
467 } else {
468 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
469 tlb_n_used_entries_dec(env, midx);
471 tlb_flush_vtlb_page_locked(env, midx, page);
476 * tlb_flush_page_by_mmuidx_async_0:
477 * @cpu: cpu on which to flush
478 * @addr: page of virtual address to flush
479 * @idxmap: set of mmu_idx to flush
481 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
482 * at @addr from the tlbs indicated by @idxmap from @cpu.
484 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
485 target_ulong addr,
486 uint16_t idxmap)
488 CPUArchState *env = cpu->env_ptr;
489 int mmu_idx;
491 assert_cpu_is_self(cpu);
493 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
495 qemu_spin_lock(&env_tlb(env)->c.lock);
496 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
497 if ((idxmap >> mmu_idx) & 1) {
498 tlb_flush_page_locked(env, mmu_idx, addr);
501 qemu_spin_unlock(&env_tlb(env)->c.lock);
503 tb_flush_jmp_cache(cpu, addr);
507 * tlb_flush_page_by_mmuidx_async_1:
508 * @cpu: cpu on which to flush
509 * @data: encoded addr + idxmap
511 * Helper for tlb_flush_page_by_mmuidx and friends, called through
512 * async_run_on_cpu. The idxmap parameter is encoded in the page
513 * offset of the target_ptr field. This limits the set of mmu_idx
514 * that can be passed via this method.
516 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
517 run_on_cpu_data data)
519 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
520 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
521 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
523 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
526 typedef struct {
527 target_ulong addr;
528 uint16_t idxmap;
529 } TLBFlushPageByMMUIdxData;
532 * tlb_flush_page_by_mmuidx_async_2:
533 * @cpu: cpu on which to flush
534 * @data: allocated addr + idxmap
536 * Helper for tlb_flush_page_by_mmuidx and friends, called through
537 * async_run_on_cpu. The addr+idxmap parameters are stored in a
538 * TLBFlushPageByMMUIdxData structure that has been allocated
539 * specifically for this helper. Free the structure when done.
541 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
542 run_on_cpu_data data)
544 TLBFlushPageByMMUIdxData *d = data.host_ptr;
546 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
547 g_free(d);
550 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
552 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
554 /* This should already be page aligned */
555 addr &= TARGET_PAGE_MASK;
557 if (qemu_cpu_is_self(cpu)) {
558 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
559 } else if (idxmap < TARGET_PAGE_SIZE) {
561 * Most targets have only a few mmu_idx. In the case where
562 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
563 * allocating memory for this operation.
565 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
566 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
567 } else {
568 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
570 /* Otherwise allocate a structure, freed by the worker. */
571 d->addr = addr;
572 d->idxmap = idxmap;
573 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
574 RUN_ON_CPU_HOST_PTR(d));
578 void tlb_flush_page(CPUState *cpu, target_ulong addr)
580 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
583 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
584 uint16_t idxmap)
586 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
588 /* This should already be page aligned */
589 addr &= TARGET_PAGE_MASK;
592 * Allocate memory to hold addr+idxmap only when needed.
593 * See tlb_flush_page_by_mmuidx for details.
595 if (idxmap < TARGET_PAGE_SIZE) {
596 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
597 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
598 } else {
599 CPUState *dst_cpu;
601 /* Allocate a separate data block for each destination cpu. */
602 CPU_FOREACH(dst_cpu) {
603 if (dst_cpu != src_cpu) {
604 TLBFlushPageByMMUIdxData *d
605 = g_new(TLBFlushPageByMMUIdxData, 1);
607 d->addr = addr;
608 d->idxmap = idxmap;
609 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
610 RUN_ON_CPU_HOST_PTR(d));
615 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
618 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
620 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
623 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
624 target_ulong addr,
625 uint16_t idxmap)
627 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
629 /* This should already be page aligned */
630 addr &= TARGET_PAGE_MASK;
633 * Allocate memory to hold addr+idxmap only when needed.
634 * See tlb_flush_page_by_mmuidx for details.
636 if (idxmap < TARGET_PAGE_SIZE) {
637 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641 } else {
642 CPUState *dst_cpu;
643 TLBFlushPageByMMUIdxData *d;
645 /* Allocate a separate data block for each destination cpu. */
646 CPU_FOREACH(dst_cpu) {
647 if (dst_cpu != src_cpu) {
648 d = g_new(TLBFlushPageByMMUIdxData, 1);
649 d->addr = addr;
650 d->idxmap = idxmap;
651 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
652 RUN_ON_CPU_HOST_PTR(d));
656 d = g_new(TLBFlushPageByMMUIdxData, 1);
657 d->addr = addr;
658 d->idxmap = idxmap;
659 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
660 RUN_ON_CPU_HOST_PTR(d));
664 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
666 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
669 /* update the TLBs so that writes to code in the virtual page 'addr'
670 can be detected */
671 void tlb_protect_code(ram_addr_t ram_addr)
673 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
674 DIRTY_MEMORY_CODE);
677 /* update the TLB so that writes in physical page 'phys_addr' are no longer
678 tested for self modifying code */
679 void tlb_unprotect_code(ram_addr_t ram_addr)
681 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
686 * Dirty write flag handling
688 * When the TCG code writes to a location it looks up the address in
689 * the TLB and uses that data to compute the final address. If any of
690 * the lower bits of the address are set then the slow path is forced.
691 * There are a number of reasons to do this but for normal RAM the
692 * most usual is detecting writes to code regions which may invalidate
693 * generated code.
695 * Other vCPUs might be reading their TLBs during guest execution, so we update
696 * te->addr_write with qatomic_set. We don't need to worry about this for
697 * oversized guests as MTTCG is disabled for them.
699 * Called with tlb_c.lock held.
701 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
702 uintptr_t start, uintptr_t length)
704 uintptr_t addr = tlb_entry->addr_write;
706 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
707 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
708 addr &= TARGET_PAGE_MASK;
709 addr += tlb_entry->addend;
710 if ((addr - start) < length) {
711 #if TCG_OVERSIZED_GUEST
712 tlb_entry->addr_write |= TLB_NOTDIRTY;
713 #else
714 qatomic_set(&tlb_entry->addr_write,
715 tlb_entry->addr_write | TLB_NOTDIRTY);
716 #endif
722 * Called with tlb_c.lock held.
723 * Called only from the vCPU context, i.e. the TLB's owner thread.
725 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
727 *d = *s;
730 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
731 * the target vCPU).
732 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
733 * thing actually updated is the target TLB entry ->addr_write flags.
735 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
737 CPUArchState *env;
739 int mmu_idx;
741 env = cpu->env_ptr;
742 qemu_spin_lock(&env_tlb(env)->c.lock);
743 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
744 unsigned int i;
745 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
747 for (i = 0; i < n; i++) {
748 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
749 start1, length);
752 for (i = 0; i < CPU_VTLB_SIZE; i++) {
753 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
754 start1, length);
757 qemu_spin_unlock(&env_tlb(env)->c.lock);
760 /* Called with tlb_c.lock held */
761 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
762 target_ulong vaddr)
764 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
765 tlb_entry->addr_write = vaddr;
769 /* update the TLB corresponding to virtual page vaddr
770 so that it is no longer dirty */
771 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
773 CPUArchState *env = cpu->env_ptr;
774 int mmu_idx;
776 assert_cpu_is_self(cpu);
778 vaddr &= TARGET_PAGE_MASK;
779 qemu_spin_lock(&env_tlb(env)->c.lock);
780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
781 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
784 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
785 int k;
786 for (k = 0; k < CPU_VTLB_SIZE; k++) {
787 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
790 qemu_spin_unlock(&env_tlb(env)->c.lock);
793 /* Our TLB does not support large pages, so remember the area covered by
794 large pages and trigger a full TLB flush if these are invalidated. */
795 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
796 target_ulong vaddr, target_ulong size)
798 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
799 target_ulong lp_mask = ~(size - 1);
801 if (lp_addr == (target_ulong)-1) {
802 /* No previous large page. */
803 lp_addr = vaddr;
804 } else {
805 /* Extend the existing region to include the new page.
806 This is a compromise between unnecessary flushes and
807 the cost of maintaining a full variable size TLB. */
808 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
809 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
810 lp_mask <<= 1;
813 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
814 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
817 /* Add a new TLB entry. At most one entry for a given virtual address
818 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
819 * supplied size is only used by tlb_flush_page.
821 * Called from TCG-generated code, which is under an RCU read-side
822 * critical section.
824 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
825 hwaddr paddr, MemTxAttrs attrs, int prot,
826 int mmu_idx, target_ulong size)
828 CPUArchState *env = cpu->env_ptr;
829 CPUTLB *tlb = env_tlb(env);
830 CPUTLBDesc *desc = &tlb->d[mmu_idx];
831 MemoryRegionSection *section;
832 unsigned int index;
833 target_ulong address;
834 target_ulong write_address;
835 uintptr_t addend;
836 CPUTLBEntry *te, tn;
837 hwaddr iotlb, xlat, sz, paddr_page;
838 target_ulong vaddr_page;
839 int asidx = cpu_asidx_from_attrs(cpu, attrs);
840 int wp_flags;
841 bool is_ram, is_romd;
843 assert_cpu_is_self(cpu);
845 if (size <= TARGET_PAGE_SIZE) {
846 sz = TARGET_PAGE_SIZE;
847 } else {
848 tlb_add_large_page(env, mmu_idx, vaddr, size);
849 sz = size;
851 vaddr_page = vaddr & TARGET_PAGE_MASK;
852 paddr_page = paddr & TARGET_PAGE_MASK;
854 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
855 &xlat, &sz, attrs, &prot);
856 assert(sz >= TARGET_PAGE_SIZE);
858 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
859 " prot=%x idx=%d\n",
860 vaddr, paddr, prot, mmu_idx);
862 address = vaddr_page;
863 if (size < TARGET_PAGE_SIZE) {
864 /* Repeat the MMU check and TLB fill on every access. */
865 address |= TLB_INVALID_MASK;
867 if (attrs.byte_swap) {
868 address |= TLB_BSWAP;
871 is_ram = memory_region_is_ram(section->mr);
872 is_romd = memory_region_is_romd(section->mr);
874 if (is_ram || is_romd) {
875 /* RAM and ROMD both have associated host memory. */
876 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
877 } else {
878 /* I/O does not; force the host address to NULL. */
879 addend = 0;
882 write_address = address;
883 if (is_ram) {
884 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
886 * Computing is_clean is expensive; avoid all that unless
887 * the page is actually writable.
889 if (prot & PAGE_WRITE) {
890 if (section->readonly) {
891 write_address |= TLB_DISCARD_WRITE;
892 } else if (cpu_physical_memory_is_clean(iotlb)) {
893 write_address |= TLB_NOTDIRTY;
896 } else {
897 /* I/O or ROMD */
898 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
900 * Writes to romd devices must go through MMIO to enable write.
901 * Reads to romd devices go through the ram_ptr found above,
902 * but of course reads to I/O must go through MMIO.
904 write_address |= TLB_MMIO;
905 if (!is_romd) {
906 address = write_address;
910 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
911 TARGET_PAGE_SIZE);
913 index = tlb_index(env, mmu_idx, vaddr_page);
914 te = tlb_entry(env, mmu_idx, vaddr_page);
917 * Hold the TLB lock for the rest of the function. We could acquire/release
918 * the lock several times in the function, but it is faster to amortize the
919 * acquisition cost by acquiring it just once. Note that this leads to
920 * a longer critical section, but this is not a concern since the TLB lock
921 * is unlikely to be contended.
923 qemu_spin_lock(&tlb->c.lock);
925 /* Note that the tlb is no longer clean. */
926 tlb->c.dirty |= 1 << mmu_idx;
928 /* Make sure there's no cached translation for the new page. */
929 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
932 * Only evict the old entry to the victim tlb if it's for a
933 * different page; otherwise just overwrite the stale data.
935 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
936 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
937 CPUTLBEntry *tv = &desc->vtable[vidx];
939 /* Evict the old entry into the victim tlb. */
940 copy_tlb_helper_locked(tv, te);
941 desc->viotlb[vidx] = desc->iotlb[index];
942 tlb_n_used_entries_dec(env, mmu_idx);
945 /* refill the tlb */
947 * At this point iotlb contains a physical section number in the lower
948 * TARGET_PAGE_BITS, and either
949 * + the ram_addr_t of the page base of the target RAM (RAM)
950 * + the offset within section->mr of the page base (I/O, ROMD)
951 * We subtract the vaddr_page (which is page aligned and thus won't
952 * disturb the low bits) to give an offset which can be added to the
953 * (non-page-aligned) vaddr of the eventual memory access to get
954 * the MemoryRegion offset for the access. Note that the vaddr we
955 * subtract here is that of the page base, and not the same as the
956 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
958 desc->iotlb[index].addr = iotlb - vaddr_page;
959 desc->iotlb[index].attrs = attrs;
961 /* Now calculate the new entry */
962 tn.addend = addend - vaddr_page;
963 if (prot & PAGE_READ) {
964 tn.addr_read = address;
965 if (wp_flags & BP_MEM_READ) {
966 tn.addr_read |= TLB_WATCHPOINT;
968 } else {
969 tn.addr_read = -1;
972 if (prot & PAGE_EXEC) {
973 tn.addr_code = address;
974 } else {
975 tn.addr_code = -1;
978 tn.addr_write = -1;
979 if (prot & PAGE_WRITE) {
980 tn.addr_write = write_address;
981 if (prot & PAGE_WRITE_INV) {
982 tn.addr_write |= TLB_INVALID_MASK;
984 if (wp_flags & BP_MEM_WRITE) {
985 tn.addr_write |= TLB_WATCHPOINT;
989 copy_tlb_helper_locked(te, &tn);
990 tlb_n_used_entries_inc(env, mmu_idx);
991 qemu_spin_unlock(&tlb->c.lock);
994 /* Add a new TLB entry, but without specifying the memory
995 * transaction attributes to be used.
997 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
998 hwaddr paddr, int prot,
999 int mmu_idx, target_ulong size)
1001 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1002 prot, mmu_idx, size);
1005 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1007 ram_addr_t ram_addr;
1009 ram_addr = qemu_ram_addr_from_host(ptr);
1010 if (ram_addr == RAM_ADDR_INVALID) {
1011 error_report("Bad ram pointer %p", ptr);
1012 abort();
1014 return ram_addr;
1018 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1019 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1020 * be discarded and looked up again (e.g. via tlb_entry()).
1022 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1023 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1025 CPUClass *cc = CPU_GET_CLASS(cpu);
1026 bool ok;
1029 * This is not a probe, so only valid return is success; failure
1030 * should result in exception + longjmp to the cpu loop.
1032 ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
1033 assert(ok);
1036 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1037 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1038 MMUAccessType access_type, MemOp op)
1040 CPUState *cpu = env_cpu(env);
1041 hwaddr mr_offset;
1042 MemoryRegionSection *section;
1043 MemoryRegion *mr;
1044 uint64_t val;
1045 bool locked = false;
1046 MemTxResult r;
1048 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1049 mr = section->mr;
1050 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1051 cpu->mem_io_pc = retaddr;
1052 if (!cpu->can_do_io) {
1053 cpu_io_recompile(cpu, retaddr);
1056 if (!qemu_mutex_iothread_locked()) {
1057 qemu_mutex_lock_iothread();
1058 locked = true;
1060 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1061 if (r != MEMTX_OK) {
1062 hwaddr physaddr = mr_offset +
1063 section->offset_within_address_space -
1064 section->offset_within_region;
1066 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1067 mmu_idx, iotlbentry->attrs, r, retaddr);
1069 if (locked) {
1070 qemu_mutex_unlock_iothread();
1073 return val;
1077 * Save a potentially trashed IOTLB entry for later lookup by plugin.
1078 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1079 * because of the side effect of io_writex changing memory layout.
1081 static void save_iotlb_data(CPUState *cs, hwaddr addr,
1082 MemoryRegionSection *section, hwaddr mr_offset)
1084 #ifdef CONFIG_PLUGIN
1085 SavedIOTLB *saved = &cs->saved_iotlb;
1086 saved->addr = addr;
1087 saved->section = section;
1088 saved->mr_offset = mr_offset;
1089 #endif
1092 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1093 int mmu_idx, uint64_t val, target_ulong addr,
1094 uintptr_t retaddr, MemOp op)
1096 CPUState *cpu = env_cpu(env);
1097 hwaddr mr_offset;
1098 MemoryRegionSection *section;
1099 MemoryRegion *mr;
1100 bool locked = false;
1101 MemTxResult r;
1103 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1104 mr = section->mr;
1105 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1106 if (!cpu->can_do_io) {
1107 cpu_io_recompile(cpu, retaddr);
1109 cpu->mem_io_pc = retaddr;
1112 * The memory_region_dispatch may trigger a flush/resize
1113 * so for plugins we save the iotlb_data just in case.
1115 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1117 if (!qemu_mutex_iothread_locked()) {
1118 qemu_mutex_lock_iothread();
1119 locked = true;
1121 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1122 if (r != MEMTX_OK) {
1123 hwaddr physaddr = mr_offset +
1124 section->offset_within_address_space -
1125 section->offset_within_region;
1127 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1128 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1129 retaddr);
1131 if (locked) {
1132 qemu_mutex_unlock_iothread();
1136 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1138 #if TCG_OVERSIZED_GUEST
1139 return *(target_ulong *)((uintptr_t)entry + ofs);
1140 #else
1141 /* ofs might correspond to .addr_write, so use qatomic_read */
1142 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1143 #endif
1146 /* Return true if ADDR is present in the victim tlb, and has been copied
1147 back to the main tlb. */
1148 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1149 size_t elt_ofs, target_ulong page)
1151 size_t vidx;
1153 assert_cpu_is_self(env_cpu(env));
1154 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1155 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1156 target_ulong cmp;
1158 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1159 #if TCG_OVERSIZED_GUEST
1160 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1161 #else
1162 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1163 #endif
1165 if (cmp == page) {
1166 /* Found entry in victim tlb, swap tlb and iotlb. */
1167 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1169 qemu_spin_lock(&env_tlb(env)->c.lock);
1170 copy_tlb_helper_locked(&tmptlb, tlb);
1171 copy_tlb_helper_locked(tlb, vtlb);
1172 copy_tlb_helper_locked(vtlb, &tmptlb);
1173 qemu_spin_unlock(&env_tlb(env)->c.lock);
1175 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1176 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1177 tmpio = *io; *io = *vio; *vio = tmpio;
1178 return true;
1181 return false;
1184 /* Macro to call the above, with local variables from the use context. */
1185 #define VICTIM_TLB_HIT(TY, ADDR) \
1186 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1187 (ADDR) & TARGET_PAGE_MASK)
1190 * Return a ram_addr_t for the virtual address for execution.
1192 * Return -1 if we can't translate and execute from an entire page
1193 * of RAM. This will force us to execute by loading and translating
1194 * one insn at a time, without caching.
1196 * NOTE: This function will trigger an exception if the page is
1197 * not executable.
1199 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1200 void **hostp)
1202 uintptr_t mmu_idx = cpu_mmu_index(env, true);
1203 uintptr_t index = tlb_index(env, mmu_idx, addr);
1204 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1205 void *p;
1207 if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1208 if (!VICTIM_TLB_HIT(addr_code, addr)) {
1209 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1210 index = tlb_index(env, mmu_idx, addr);
1211 entry = tlb_entry(env, mmu_idx, addr);
1213 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1215 * The MMU protection covers a smaller range than a target
1216 * page, so we must redo the MMU check for every insn.
1218 return -1;
1221 assert(tlb_hit(entry->addr_code, addr));
1224 if (unlikely(entry->addr_code & TLB_MMIO)) {
1225 /* The region is not backed by RAM. */
1226 if (hostp) {
1227 *hostp = NULL;
1229 return -1;
1232 p = (void *)((uintptr_t)addr + entry->addend);
1233 if (hostp) {
1234 *hostp = p;
1236 return qemu_ram_addr_from_host_nofail(p);
1239 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1241 return get_page_addr_code_hostp(env, addr, NULL);
1244 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1245 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1247 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1249 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1251 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1252 struct page_collection *pages
1253 = page_collection_lock(ram_addr, ram_addr + size);
1254 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1255 page_collection_unlock(pages);
1259 * Set both VGA and migration bits for simplicity and to remove
1260 * the notdirty callback faster.
1262 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1264 /* We remove the notdirty callback only if the code has been flushed. */
1265 if (!cpu_physical_memory_is_clean(ram_addr)) {
1266 trace_memory_notdirty_set_dirty(mem_vaddr);
1267 tlb_set_dirty(cpu, mem_vaddr);
1271 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1272 int fault_size, MMUAccessType access_type,
1273 int mmu_idx, bool nonfault,
1274 void **phost, uintptr_t retaddr)
1276 uintptr_t index = tlb_index(env, mmu_idx, addr);
1277 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1278 target_ulong tlb_addr, page_addr;
1279 size_t elt_ofs;
1280 int flags;
1282 switch (access_type) {
1283 case MMU_DATA_LOAD:
1284 elt_ofs = offsetof(CPUTLBEntry, addr_read);
1285 break;
1286 case MMU_DATA_STORE:
1287 elt_ofs = offsetof(CPUTLBEntry, addr_write);
1288 break;
1289 case MMU_INST_FETCH:
1290 elt_ofs = offsetof(CPUTLBEntry, addr_code);
1291 break;
1292 default:
1293 g_assert_not_reached();
1295 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1297 page_addr = addr & TARGET_PAGE_MASK;
1298 if (!tlb_hit_page(tlb_addr, page_addr)) {
1299 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1300 CPUState *cs = env_cpu(env);
1301 CPUClass *cc = CPU_GET_CLASS(cs);
1303 if (!cc->tlb_fill(cs, addr, fault_size, access_type,
1304 mmu_idx, nonfault, retaddr)) {
1305 /* Non-faulting page table read failed. */
1306 *phost = NULL;
1307 return TLB_INVALID_MASK;
1310 /* TLB resize via tlb_fill may have moved the entry. */
1311 entry = tlb_entry(env, mmu_idx, addr);
1313 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1315 flags = tlb_addr & TLB_FLAGS_MASK;
1317 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1318 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1319 *phost = NULL;
1320 return TLB_MMIO;
1323 /* Everything else is RAM. */
1324 *phost = (void *)((uintptr_t)addr + entry->addend);
1325 return flags;
1328 int probe_access_flags(CPUArchState *env, target_ulong addr,
1329 MMUAccessType access_type, int mmu_idx,
1330 bool nonfault, void **phost, uintptr_t retaddr)
1332 int flags;
1334 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1335 nonfault, phost, retaddr);
1337 /* Handle clean RAM pages. */
1338 if (unlikely(flags & TLB_NOTDIRTY)) {
1339 uintptr_t index = tlb_index(env, mmu_idx, addr);
1340 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1342 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1343 flags &= ~TLB_NOTDIRTY;
1346 return flags;
1349 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1350 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1352 void *host;
1353 int flags;
1355 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1357 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1358 false, &host, retaddr);
1360 /* Per the interface, size == 0 merely faults the access. */
1361 if (size == 0) {
1362 return NULL;
1365 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1366 uintptr_t index = tlb_index(env, mmu_idx, addr);
1367 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1369 /* Handle watchpoints. */
1370 if (flags & TLB_WATCHPOINT) {
1371 int wp_access = (access_type == MMU_DATA_STORE
1372 ? BP_MEM_WRITE : BP_MEM_READ);
1373 cpu_check_watchpoint(env_cpu(env), addr, size,
1374 iotlbentry->attrs, wp_access, retaddr);
1377 /* Handle clean RAM pages. */
1378 if (flags & TLB_NOTDIRTY) {
1379 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1383 return host;
1386 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1387 MMUAccessType access_type, int mmu_idx)
1389 void *host;
1390 int flags;
1392 flags = probe_access_internal(env, addr, 0, access_type,
1393 mmu_idx, true, &host, 0);
1395 /* No combination of flags are expected by the caller. */
1396 return flags ? NULL : host;
1399 #ifdef CONFIG_PLUGIN
1401 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1402 * This should be a hot path as we will have just looked this path up
1403 * in the softmmu lookup code (or helper). We don't handle re-fills or
1404 * checking the victim table. This is purely informational.
1406 * This almost never fails as the memory access being instrumented
1407 * should have just filled the TLB. The one corner case is io_writex
1408 * which can cause TLB flushes and potential resizing of the TLBs
1409 * losing the information we need. In those cases we need to recover
1410 * data from a copy of the iotlbentry. As long as this always occurs
1411 * from the same thread (which a mem callback will be) this is safe.
1414 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1415 bool is_store, struct qemu_plugin_hwaddr *data)
1417 CPUArchState *env = cpu->env_ptr;
1418 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1419 uintptr_t index = tlb_index(env, mmu_idx, addr);
1420 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1422 if (likely(tlb_hit(tlb_addr, addr))) {
1423 /* We must have an iotlb entry for MMIO */
1424 if (tlb_addr & TLB_MMIO) {
1425 CPUIOTLBEntry *iotlbentry;
1426 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1427 data->is_io = true;
1428 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1429 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1430 } else {
1431 data->is_io = false;
1432 data->v.ram.hostaddr = addr + tlbe->addend;
1434 return true;
1435 } else {
1436 SavedIOTLB *saved = &cpu->saved_iotlb;
1437 data->is_io = true;
1438 data->v.io.section = saved->section;
1439 data->v.io.offset = saved->mr_offset;
1440 return true;
1444 #endif
1446 /* Probe for a read-modify-write atomic operation. Do not allow unaligned
1447 * operations, or io operations to proceed. Return the host address. */
1448 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1449 TCGMemOpIdx oi, uintptr_t retaddr)
1451 size_t mmu_idx = get_mmuidx(oi);
1452 uintptr_t index = tlb_index(env, mmu_idx, addr);
1453 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1454 target_ulong tlb_addr = tlb_addr_write(tlbe);
1455 MemOp mop = get_memop(oi);
1456 int a_bits = get_alignment_bits(mop);
1457 int s_bits = mop & MO_SIZE;
1458 void *hostaddr;
1460 /* Adjust the given return address. */
1461 retaddr -= GETPC_ADJ;
1463 /* Enforce guest required alignment. */
1464 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1465 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1466 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1467 mmu_idx, retaddr);
1470 /* Enforce qemu required alignment. */
1471 if (unlikely(addr & ((1 << s_bits) - 1))) {
1472 /* We get here if guest alignment was not requested,
1473 or was not enforced by cpu_unaligned_access above.
1474 We might widen the access and emulate, but for now
1475 mark an exception and exit the cpu loop. */
1476 goto stop_the_world;
1479 /* Check TLB entry and enforce page permissions. */
1480 if (!tlb_hit(tlb_addr, addr)) {
1481 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1482 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
1483 mmu_idx, retaddr);
1484 index = tlb_index(env, mmu_idx, addr);
1485 tlbe = tlb_entry(env, mmu_idx, addr);
1487 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1490 /* Notice an IO access or a needs-MMU-lookup access */
1491 if (unlikely(tlb_addr & TLB_MMIO)) {
1492 /* There's really nothing that can be done to
1493 support this apart from stop-the-world. */
1494 goto stop_the_world;
1497 /* Let the guest notice RMW on a write-only page. */
1498 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1499 tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1500 mmu_idx, retaddr);
1501 /* Since we don't support reads and writes to different addresses,
1502 and we do have the proper page loaded for write, this shouldn't
1503 ever return. But just in case, handle via stop-the-world. */
1504 goto stop_the_world;
1507 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1509 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1510 notdirty_write(env_cpu(env), addr, 1 << s_bits,
1511 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1514 return hostaddr;
1516 stop_the_world:
1517 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1521 * Load Helpers
1523 * We support two different access types. SOFTMMU_CODE_ACCESS is
1524 * specifically for reading instructions from system memory. It is
1525 * called by the translation loop and in some helpers where the code
1526 * is disassembled. It shouldn't be called directly by guest code.
1529 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1530 TCGMemOpIdx oi, uintptr_t retaddr);
1532 static inline uint64_t QEMU_ALWAYS_INLINE
1533 load_memop(const void *haddr, MemOp op)
1535 switch (op) {
1536 case MO_UB:
1537 return ldub_p(haddr);
1538 case MO_BEUW:
1539 return lduw_be_p(haddr);
1540 case MO_LEUW:
1541 return lduw_le_p(haddr);
1542 case MO_BEUL:
1543 return (uint32_t)ldl_be_p(haddr);
1544 case MO_LEUL:
1545 return (uint32_t)ldl_le_p(haddr);
1546 case MO_BEQ:
1547 return ldq_be_p(haddr);
1548 case MO_LEQ:
1549 return ldq_le_p(haddr);
1550 default:
1551 qemu_build_not_reached();
1555 static inline uint64_t QEMU_ALWAYS_INLINE
1556 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1557 uintptr_t retaddr, MemOp op, bool code_read,
1558 FullLoadHelper *full_load)
1560 uintptr_t mmu_idx = get_mmuidx(oi);
1561 uintptr_t index = tlb_index(env, mmu_idx, addr);
1562 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1563 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1564 const size_t tlb_off = code_read ?
1565 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1566 const MMUAccessType access_type =
1567 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1568 unsigned a_bits = get_alignment_bits(get_memop(oi));
1569 void *haddr;
1570 uint64_t res;
1571 size_t size = memop_size(op);
1573 /* Handle CPU specific unaligned behaviour */
1574 if (addr & ((1 << a_bits) - 1)) {
1575 cpu_unaligned_access(env_cpu(env), addr, access_type,
1576 mmu_idx, retaddr);
1579 /* If the TLB entry is for a different page, reload and try again. */
1580 if (!tlb_hit(tlb_addr, addr)) {
1581 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1582 addr & TARGET_PAGE_MASK)) {
1583 tlb_fill(env_cpu(env), addr, size,
1584 access_type, mmu_idx, retaddr);
1585 index = tlb_index(env, mmu_idx, addr);
1586 entry = tlb_entry(env, mmu_idx, addr);
1588 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1589 tlb_addr &= ~TLB_INVALID_MASK;
1592 /* Handle anything that isn't just a straight memory access. */
1593 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1594 CPUIOTLBEntry *iotlbentry;
1595 bool need_swap;
1597 /* For anything that is unaligned, recurse through full_load. */
1598 if ((addr & (size - 1)) != 0) {
1599 goto do_unaligned_access;
1602 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1604 /* Handle watchpoints. */
1605 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1606 /* On watchpoint hit, this will longjmp out. */
1607 cpu_check_watchpoint(env_cpu(env), addr, size,
1608 iotlbentry->attrs, BP_MEM_READ, retaddr);
1611 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1613 /* Handle I/O access. */
1614 if (likely(tlb_addr & TLB_MMIO)) {
1615 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1616 access_type, op ^ (need_swap * MO_BSWAP));
1619 haddr = (void *)((uintptr_t)addr + entry->addend);
1622 * Keep these two load_memop separate to ensure that the compiler
1623 * is able to fold the entire function to a single instruction.
1624 * There is a build-time assert inside to remind you of this. ;-)
1626 if (unlikely(need_swap)) {
1627 return load_memop(haddr, op ^ MO_BSWAP);
1629 return load_memop(haddr, op);
1632 /* Handle slow unaligned access (it spans two pages or IO). */
1633 if (size > 1
1634 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1635 >= TARGET_PAGE_SIZE)) {
1636 target_ulong addr1, addr2;
1637 uint64_t r1, r2;
1638 unsigned shift;
1639 do_unaligned_access:
1640 addr1 = addr & ~((target_ulong)size - 1);
1641 addr2 = addr1 + size;
1642 r1 = full_load(env, addr1, oi, retaddr);
1643 r2 = full_load(env, addr2, oi, retaddr);
1644 shift = (addr & (size - 1)) * 8;
1646 if (memop_big_endian(op)) {
1647 /* Big-endian combine. */
1648 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1649 } else {
1650 /* Little-endian combine. */
1651 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1653 return res & MAKE_64BIT_MASK(0, size * 8);
1656 haddr = (void *)((uintptr_t)addr + entry->addend);
1657 return load_memop(haddr, op);
1661 * For the benefit of TCG generated code, we want to avoid the
1662 * complication of ABI-specific return type promotion and always
1663 * return a value extended to the register size of the host. This is
1664 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1665 * data, and for that we always have uint64_t.
1667 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1670 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1671 TCGMemOpIdx oi, uintptr_t retaddr)
1673 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1676 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1677 TCGMemOpIdx oi, uintptr_t retaddr)
1679 return full_ldub_mmu(env, addr, oi, retaddr);
1682 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1683 TCGMemOpIdx oi, uintptr_t retaddr)
1685 return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
1686 full_le_lduw_mmu);
1689 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1690 TCGMemOpIdx oi, uintptr_t retaddr)
1692 return full_le_lduw_mmu(env, addr, oi, retaddr);
1695 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1696 TCGMemOpIdx oi, uintptr_t retaddr)
1698 return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
1699 full_be_lduw_mmu);
1702 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1703 TCGMemOpIdx oi, uintptr_t retaddr)
1705 return full_be_lduw_mmu(env, addr, oi, retaddr);
1708 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1709 TCGMemOpIdx oi, uintptr_t retaddr)
1711 return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
1712 full_le_ldul_mmu);
1715 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1716 TCGMemOpIdx oi, uintptr_t retaddr)
1718 return full_le_ldul_mmu(env, addr, oi, retaddr);
1721 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1722 TCGMemOpIdx oi, uintptr_t retaddr)
1724 return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
1725 full_be_ldul_mmu);
1728 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1729 TCGMemOpIdx oi, uintptr_t retaddr)
1731 return full_be_ldul_mmu(env, addr, oi, retaddr);
1734 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
1735 TCGMemOpIdx oi, uintptr_t retaddr)
1737 return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
1738 helper_le_ldq_mmu);
1741 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
1742 TCGMemOpIdx oi, uintptr_t retaddr)
1744 return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
1745 helper_be_ldq_mmu);
1749 * Provide signed versions of the load routines as well. We can of course
1750 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
1754 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
1755 TCGMemOpIdx oi, uintptr_t retaddr)
1757 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
1760 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
1761 TCGMemOpIdx oi, uintptr_t retaddr)
1763 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
1766 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
1767 TCGMemOpIdx oi, uintptr_t retaddr)
1769 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
1772 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
1773 TCGMemOpIdx oi, uintptr_t retaddr)
1775 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
1778 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
1779 TCGMemOpIdx oi, uintptr_t retaddr)
1781 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
1785 * Load helpers for cpu_ldst.h.
1788 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
1789 int mmu_idx, uintptr_t retaddr,
1790 MemOp op, FullLoadHelper *full_load)
1792 uint16_t meminfo;
1793 TCGMemOpIdx oi;
1794 uint64_t ret;
1796 meminfo = trace_mem_get_info(op, mmu_idx, false);
1797 trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
1799 op &= ~MO_SIGN;
1800 oi = make_memop_idx(op, mmu_idx);
1801 ret = full_load(env, addr, oi, retaddr);
1803 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
1805 return ret;
1808 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1809 int mmu_idx, uintptr_t ra)
1811 return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu);
1814 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1815 int mmu_idx, uintptr_t ra)
1817 return (int8_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_SB,
1818 full_ldub_mmu);
1821 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1822 int mmu_idx, uintptr_t ra)
1824 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu);
1827 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1828 int mmu_idx, uintptr_t ra)
1830 return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_BESW,
1831 full_be_lduw_mmu);
1834 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1835 int mmu_idx, uintptr_t ra)
1837 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu);
1840 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1841 int mmu_idx, uintptr_t ra)
1843 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu);
1846 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1847 int mmu_idx, uintptr_t ra)
1849 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu);
1852 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1853 int mmu_idx, uintptr_t ra)
1855 return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_LESW,
1856 full_le_lduw_mmu);
1859 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1860 int mmu_idx, uintptr_t ra)
1862 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu);
1865 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1866 int mmu_idx, uintptr_t ra)
1868 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu);
1871 uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr,
1872 uintptr_t retaddr)
1874 return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1877 int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
1879 return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1882 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr,
1883 uintptr_t retaddr)
1885 return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1888 int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
1890 return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1893 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr,
1894 uintptr_t retaddr)
1896 return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1899 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr,
1900 uintptr_t retaddr)
1902 return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1905 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr,
1906 uintptr_t retaddr)
1908 return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1911 int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
1913 return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1916 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr,
1917 uintptr_t retaddr)
1919 return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1922 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr,
1923 uintptr_t retaddr)
1925 return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1928 uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr)
1930 return cpu_ldub_data_ra(env, ptr, 0);
1933 int cpu_ldsb_data(CPUArchState *env, target_ulong ptr)
1935 return cpu_ldsb_data_ra(env, ptr, 0);
1938 uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr)
1940 return cpu_lduw_be_data_ra(env, ptr, 0);
1943 int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr)
1945 return cpu_ldsw_be_data_ra(env, ptr, 0);
1948 uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr)
1950 return cpu_ldl_be_data_ra(env, ptr, 0);
1953 uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr)
1955 return cpu_ldq_be_data_ra(env, ptr, 0);
1958 uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr)
1960 return cpu_lduw_le_data_ra(env, ptr, 0);
1963 int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr)
1965 return cpu_ldsw_le_data_ra(env, ptr, 0);
1968 uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr)
1970 return cpu_ldl_le_data_ra(env, ptr, 0);
1973 uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr)
1975 return cpu_ldq_le_data_ra(env, ptr, 0);
1979 * Store Helpers
1982 static inline void QEMU_ALWAYS_INLINE
1983 store_memop(void *haddr, uint64_t val, MemOp op)
1985 switch (op) {
1986 case MO_UB:
1987 stb_p(haddr, val);
1988 break;
1989 case MO_BEUW:
1990 stw_be_p(haddr, val);
1991 break;
1992 case MO_LEUW:
1993 stw_le_p(haddr, val);
1994 break;
1995 case MO_BEUL:
1996 stl_be_p(haddr, val);
1997 break;
1998 case MO_LEUL:
1999 stl_le_p(haddr, val);
2000 break;
2001 case MO_BEQ:
2002 stq_be_p(haddr, val);
2003 break;
2004 case MO_LEQ:
2005 stq_le_p(haddr, val);
2006 break;
2007 default:
2008 qemu_build_not_reached();
2012 static void __attribute__((noinline))
2013 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2014 uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2015 bool big_endian)
2017 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2018 uintptr_t index, index2;
2019 CPUTLBEntry *entry, *entry2;
2020 target_ulong page2, tlb_addr, tlb_addr2;
2021 TCGMemOpIdx oi;
2022 size_t size2;
2023 int i;
2026 * Ensure the second page is in the TLB. Note that the first page
2027 * is already guaranteed to be filled, and that the second page
2028 * cannot evict the first.
2030 page2 = (addr + size) & TARGET_PAGE_MASK;
2031 size2 = (addr + size) & ~TARGET_PAGE_MASK;
2032 index2 = tlb_index(env, mmu_idx, page2);
2033 entry2 = tlb_entry(env, mmu_idx, page2);
2035 tlb_addr2 = tlb_addr_write(entry2);
2036 if (!tlb_hit_page(tlb_addr2, page2)) {
2037 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2038 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2039 mmu_idx, retaddr);
2040 index2 = tlb_index(env, mmu_idx, page2);
2041 entry2 = tlb_entry(env, mmu_idx, page2);
2043 tlb_addr2 = tlb_addr_write(entry2);
2046 index = tlb_index(env, mmu_idx, addr);
2047 entry = tlb_entry(env, mmu_idx, addr);
2048 tlb_addr = tlb_addr_write(entry);
2051 * Handle watchpoints. Since this may trap, all checks
2052 * must happen before any store.
2054 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2055 cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2056 env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2057 BP_MEM_WRITE, retaddr);
2059 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2060 cpu_check_watchpoint(env_cpu(env), page2, size2,
2061 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2062 BP_MEM_WRITE, retaddr);
2066 * XXX: not efficient, but simple.
2067 * This loop must go in the forward direction to avoid issues
2068 * with self-modifying code in Windows 64-bit.
2070 oi = make_memop_idx(MO_UB, mmu_idx);
2071 if (big_endian) {
2072 for (i = 0; i < size; ++i) {
2073 /* Big-endian extract. */
2074 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2075 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2077 } else {
2078 for (i = 0; i < size; ++i) {
2079 /* Little-endian extract. */
2080 uint8_t val8 = val >> (i * 8);
2081 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2086 static inline void QEMU_ALWAYS_INLINE
2087 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2088 TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
2090 uintptr_t mmu_idx = get_mmuidx(oi);
2091 uintptr_t index = tlb_index(env, mmu_idx, addr);
2092 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2093 target_ulong tlb_addr = tlb_addr_write(entry);
2094 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2095 unsigned a_bits = get_alignment_bits(get_memop(oi));
2096 void *haddr;
2097 size_t size = memop_size(op);
2099 /* Handle CPU specific unaligned behaviour */
2100 if (addr & ((1 << a_bits) - 1)) {
2101 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2102 mmu_idx, retaddr);
2105 /* If the TLB entry is for a different page, reload and try again. */
2106 if (!tlb_hit(tlb_addr, addr)) {
2107 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2108 addr & TARGET_PAGE_MASK)) {
2109 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2110 mmu_idx, retaddr);
2111 index = tlb_index(env, mmu_idx, addr);
2112 entry = tlb_entry(env, mmu_idx, addr);
2114 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2117 /* Handle anything that isn't just a straight memory access. */
2118 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2119 CPUIOTLBEntry *iotlbentry;
2120 bool need_swap;
2122 /* For anything that is unaligned, recurse through byte stores. */
2123 if ((addr & (size - 1)) != 0) {
2124 goto do_unaligned_access;
2127 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2129 /* Handle watchpoints. */
2130 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2131 /* On watchpoint hit, this will longjmp out. */
2132 cpu_check_watchpoint(env_cpu(env), addr, size,
2133 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2136 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2138 /* Handle I/O access. */
2139 if (tlb_addr & TLB_MMIO) {
2140 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2141 op ^ (need_swap * MO_BSWAP));
2142 return;
2145 /* Ignore writes to ROM. */
2146 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2147 return;
2150 /* Handle clean RAM pages. */
2151 if (tlb_addr & TLB_NOTDIRTY) {
2152 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2155 haddr = (void *)((uintptr_t)addr + entry->addend);
2158 * Keep these two store_memop separate to ensure that the compiler
2159 * is able to fold the entire function to a single instruction.
2160 * There is a build-time assert inside to remind you of this. ;-)
2162 if (unlikely(need_swap)) {
2163 store_memop(haddr, val, op ^ MO_BSWAP);
2164 } else {
2165 store_memop(haddr, val, op);
2167 return;
2170 /* Handle slow unaligned access (it spans two pages or IO). */
2171 if (size > 1
2172 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2173 >= TARGET_PAGE_SIZE)) {
2174 do_unaligned_access:
2175 store_helper_unaligned(env, addr, val, retaddr, size,
2176 mmu_idx, memop_big_endian(op));
2177 return;
2180 haddr = (void *)((uintptr_t)addr + entry->addend);
2181 store_memop(haddr, val, op);
2184 void __attribute__((noinline))
2185 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2186 TCGMemOpIdx oi, uintptr_t retaddr)
2188 store_helper(env, addr, val, oi, retaddr, MO_UB);
2191 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2192 TCGMemOpIdx oi, uintptr_t retaddr)
2194 store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2197 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2198 TCGMemOpIdx oi, uintptr_t retaddr)
2200 store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2203 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2204 TCGMemOpIdx oi, uintptr_t retaddr)
2206 store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2209 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2210 TCGMemOpIdx oi, uintptr_t retaddr)
2212 store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2215 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2216 TCGMemOpIdx oi, uintptr_t retaddr)
2218 store_helper(env, addr, val, oi, retaddr, MO_LEQ);
2221 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2222 TCGMemOpIdx oi, uintptr_t retaddr)
2224 store_helper(env, addr, val, oi, retaddr, MO_BEQ);
2228 * Store Helpers for cpu_ldst.h
2231 static inline void QEMU_ALWAYS_INLINE
2232 cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2233 int mmu_idx, uintptr_t retaddr, MemOp op)
2235 TCGMemOpIdx oi;
2236 uint16_t meminfo;
2238 meminfo = trace_mem_get_info(op, mmu_idx, true);
2239 trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
2241 oi = make_memop_idx(op, mmu_idx);
2242 store_helper(env, addr, val, oi, retaddr, op);
2244 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
2247 void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2248 int mmu_idx, uintptr_t retaddr)
2250 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
2253 void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2254 int mmu_idx, uintptr_t retaddr)
2256 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW);
2259 void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2260 int mmu_idx, uintptr_t retaddr)
2262 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL);
2265 void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2266 int mmu_idx, uintptr_t retaddr)
2268 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ);
2271 void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2272 int mmu_idx, uintptr_t retaddr)
2274 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW);
2277 void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2278 int mmu_idx, uintptr_t retaddr)
2280 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL);
2283 void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2284 int mmu_idx, uintptr_t retaddr)
2286 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ);
2289 void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr,
2290 uint32_t val, uintptr_t retaddr)
2292 cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2295 void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr,
2296 uint32_t val, uintptr_t retaddr)
2298 cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2301 void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr,
2302 uint32_t val, uintptr_t retaddr)
2304 cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2307 void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr,
2308 uint64_t val, uintptr_t retaddr)
2310 cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2313 void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr,
2314 uint32_t val, uintptr_t retaddr)
2316 cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2319 void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr,
2320 uint32_t val, uintptr_t retaddr)
2322 cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2325 void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr,
2326 uint64_t val, uintptr_t retaddr)
2328 cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2331 void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2333 cpu_stb_data_ra(env, ptr, val, 0);
2336 void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2338 cpu_stw_be_data_ra(env, ptr, val, 0);
2341 void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2343 cpu_stl_be_data_ra(env, ptr, val, 0);
2346 void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2348 cpu_stq_be_data_ra(env, ptr, val, 0);
2351 void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2353 cpu_stw_le_data_ra(env, ptr, val, 0);
2356 void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2358 cpu_stl_le_data_ra(env, ptr, val, 0);
2361 void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2363 cpu_stq_le_data_ra(env, ptr, val, 0);
2366 /* First set of helpers allows passing in of OI and RETADDR. This makes
2367 them callable from other helpers. */
2369 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
2370 #define ATOMIC_NAME(X) \
2371 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
2372 #define ATOMIC_MMU_DECLS
2373 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
2374 #define ATOMIC_MMU_CLEANUP
2375 #define ATOMIC_MMU_IDX get_mmuidx(oi)
2377 #include "atomic_common.c.inc"
2379 #define DATA_SIZE 1
2380 #include "atomic_template.h"
2382 #define DATA_SIZE 2
2383 #include "atomic_template.h"
2385 #define DATA_SIZE 4
2386 #include "atomic_template.h"
2388 #ifdef CONFIG_ATOMIC64
2389 #define DATA_SIZE 8
2390 #include "atomic_template.h"
2391 #endif
2393 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2394 #define DATA_SIZE 16
2395 #include "atomic_template.h"
2396 #endif
2398 /* Second set of helpers are directly callable from TCG as helpers. */
2400 #undef EXTRA_ARGS
2401 #undef ATOMIC_NAME
2402 #undef ATOMIC_MMU_LOOKUP
2403 #define EXTRA_ARGS , TCGMemOpIdx oi
2404 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
2405 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC())
2407 #define DATA_SIZE 1
2408 #include "atomic_template.h"
2410 #define DATA_SIZE 2
2411 #include "atomic_template.h"
2413 #define DATA_SIZE 4
2414 #include "atomic_template.h"
2416 #ifdef CONFIG_ATOMIC64
2417 #define DATA_SIZE 8
2418 #include "atomic_template.h"
2419 #endif
2420 #undef ATOMIC_MMU_IDX
2422 /* Code access functions. */
2424 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2425 TCGMemOpIdx oi, uintptr_t retaddr)
2427 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2430 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2432 TCGMemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2433 return full_ldub_code(env, addr, oi, 0);
2436 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2437 TCGMemOpIdx oi, uintptr_t retaddr)
2439 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2442 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2444 TCGMemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2445 return full_lduw_code(env, addr, oi, 0);
2448 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2449 TCGMemOpIdx oi, uintptr_t retaddr)
2451 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2454 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2456 TCGMemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2457 return full_ldl_code(env, addr, oi, 0);
2460 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2461 TCGMemOpIdx oi, uintptr_t retaddr)
2463 return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
2466 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2468 TCGMemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
2469 return full_ldq_code(env, addr, oi, 0);