tests/acceptance: refactor boot_linux_console test to allow code reuse
[qemu/ar7.git] / hw / misc / imx6_ccm.c
blob7fec8f0a4762258e54f86b333e4d15f0fdcf1f02
1 /*
2 * IMX6 Clock Control Module
4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
10 * the CCM.
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
15 #include "migration/vmstate.h"
16 #include "qemu/log.h"
17 #include "qemu/module.h"
19 #ifndef DEBUG_IMX6_CCM
20 #define DEBUG_IMX6_CCM 0
21 #endif
23 #define DPRINTF(fmt, args...) \
24 do { \
25 if (DEBUG_IMX6_CCM) { \
26 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
27 __func__, ##args); \
28 } \
29 } while (0)
31 static const char *imx6_ccm_reg_name(uint32_t reg)
33 static char unknown[20];
35 switch (reg) {
36 case CCM_CCR:
37 return "CCR";
38 case CCM_CCDR:
39 return "CCDR";
40 case CCM_CSR:
41 return "CSR";
42 case CCM_CCSR:
43 return "CCSR";
44 case CCM_CACRR:
45 return "CACRR";
46 case CCM_CBCDR:
47 return "CBCDR";
48 case CCM_CBCMR:
49 return "CBCMR";
50 case CCM_CSCMR1:
51 return "CSCMR1";
52 case CCM_CSCMR2:
53 return "CSCMR2";
54 case CCM_CSCDR1:
55 return "CSCDR1";
56 case CCM_CS1CDR:
57 return "CS1CDR";
58 case CCM_CS2CDR:
59 return "CS2CDR";
60 case CCM_CDCDR:
61 return "CDCDR";
62 case CCM_CHSCCDR:
63 return "CHSCCDR";
64 case CCM_CSCDR2:
65 return "CSCDR2";
66 case CCM_CSCDR3:
67 return "CSCDR3";
68 case CCM_CDHIPR:
69 return "CDHIPR";
70 case CCM_CTOR:
71 return "CTOR";
72 case CCM_CLPCR:
73 return "CLPCR";
74 case CCM_CISR:
75 return "CISR";
76 case CCM_CIMR:
77 return "CIMR";
78 case CCM_CCOSR:
79 return "CCOSR";
80 case CCM_CGPR:
81 return "CGPR";
82 case CCM_CCGR0:
83 return "CCGR0";
84 case CCM_CCGR1:
85 return "CCGR1";
86 case CCM_CCGR2:
87 return "CCGR2";
88 case CCM_CCGR3:
89 return "CCGR3";
90 case CCM_CCGR4:
91 return "CCGR4";
92 case CCM_CCGR5:
93 return "CCGR5";
94 case CCM_CCGR6:
95 return "CCGR6";
96 case CCM_CMEOR:
97 return "CMEOR";
98 default:
99 sprintf(unknown, "%d ?", reg);
100 return unknown;
104 static const char *imx6_analog_reg_name(uint32_t reg)
106 static char unknown[20];
108 switch (reg) {
109 case CCM_ANALOG_PLL_ARM:
110 return "PLL_ARM";
111 case CCM_ANALOG_PLL_ARM_SET:
112 return "PLL_ARM_SET";
113 case CCM_ANALOG_PLL_ARM_CLR:
114 return "PLL_ARM_CLR";
115 case CCM_ANALOG_PLL_ARM_TOG:
116 return "PLL_ARM_TOG";
117 case CCM_ANALOG_PLL_USB1:
118 return "PLL_USB1";
119 case CCM_ANALOG_PLL_USB1_SET:
120 return "PLL_USB1_SET";
121 case CCM_ANALOG_PLL_USB1_CLR:
122 return "PLL_USB1_CLR";
123 case CCM_ANALOG_PLL_USB1_TOG:
124 return "PLL_USB1_TOG";
125 case CCM_ANALOG_PLL_USB2:
126 return "PLL_USB2";
127 case CCM_ANALOG_PLL_USB2_SET:
128 return "PLL_USB2_SET";
129 case CCM_ANALOG_PLL_USB2_CLR:
130 return "PLL_USB2_CLR";
131 case CCM_ANALOG_PLL_USB2_TOG:
132 return "PLL_USB2_TOG";
133 case CCM_ANALOG_PLL_SYS:
134 return "PLL_SYS";
135 case CCM_ANALOG_PLL_SYS_SET:
136 return "PLL_SYS_SET";
137 case CCM_ANALOG_PLL_SYS_CLR:
138 return "PLL_SYS_CLR";
139 case CCM_ANALOG_PLL_SYS_TOG:
140 return "PLL_SYS_TOG";
141 case CCM_ANALOG_PLL_SYS_SS:
142 return "PLL_SYS_SS";
143 case CCM_ANALOG_PLL_SYS_NUM:
144 return "PLL_SYS_NUM";
145 case CCM_ANALOG_PLL_SYS_DENOM:
146 return "PLL_SYS_DENOM";
147 case CCM_ANALOG_PLL_AUDIO:
148 return "PLL_AUDIO";
149 case CCM_ANALOG_PLL_AUDIO_SET:
150 return "PLL_AUDIO_SET";
151 case CCM_ANALOG_PLL_AUDIO_CLR:
152 return "PLL_AUDIO_CLR";
153 case CCM_ANALOG_PLL_AUDIO_TOG:
154 return "PLL_AUDIO_TOG";
155 case CCM_ANALOG_PLL_AUDIO_NUM:
156 return "PLL_AUDIO_NUM";
157 case CCM_ANALOG_PLL_AUDIO_DENOM:
158 return "PLL_AUDIO_DENOM";
159 case CCM_ANALOG_PLL_VIDEO:
160 return "PLL_VIDEO";
161 case CCM_ANALOG_PLL_VIDEO_SET:
162 return "PLL_VIDEO_SET";
163 case CCM_ANALOG_PLL_VIDEO_CLR:
164 return "PLL_VIDEO_CLR";
165 case CCM_ANALOG_PLL_VIDEO_TOG:
166 return "PLL_VIDEO_TOG";
167 case CCM_ANALOG_PLL_VIDEO_NUM:
168 return "PLL_VIDEO_NUM";
169 case CCM_ANALOG_PLL_VIDEO_DENOM:
170 return "PLL_VIDEO_DENOM";
171 case CCM_ANALOG_PLL_MLB:
172 return "PLL_MLB";
173 case CCM_ANALOG_PLL_MLB_SET:
174 return "PLL_MLB_SET";
175 case CCM_ANALOG_PLL_MLB_CLR:
176 return "PLL_MLB_CLR";
177 case CCM_ANALOG_PLL_MLB_TOG:
178 return "PLL_MLB_TOG";
179 case CCM_ANALOG_PLL_ENET:
180 return "PLL_ENET";
181 case CCM_ANALOG_PLL_ENET_SET:
182 return "PLL_ENET_SET";
183 case CCM_ANALOG_PLL_ENET_CLR:
184 return "PLL_ENET_CLR";
185 case CCM_ANALOG_PLL_ENET_TOG:
186 return "PLL_ENET_TOG";
187 case CCM_ANALOG_PFD_480:
188 return "PFD_480";
189 case CCM_ANALOG_PFD_480_SET:
190 return "PFD_480_SET";
191 case CCM_ANALOG_PFD_480_CLR:
192 return "PFD_480_CLR";
193 case CCM_ANALOG_PFD_480_TOG:
194 return "PFD_480_TOG";
195 case CCM_ANALOG_PFD_528:
196 return "PFD_528";
197 case CCM_ANALOG_PFD_528_SET:
198 return "PFD_528_SET";
199 case CCM_ANALOG_PFD_528_CLR:
200 return "PFD_528_CLR";
201 case CCM_ANALOG_PFD_528_TOG:
202 return "PFD_528_TOG";
203 case CCM_ANALOG_MISC0:
204 return "MISC0";
205 case CCM_ANALOG_MISC0_SET:
206 return "MISC0_SET";
207 case CCM_ANALOG_MISC0_CLR:
208 return "MISC0_CLR";
209 case CCM_ANALOG_MISC0_TOG:
210 return "MISC0_TOG";
211 case CCM_ANALOG_MISC2:
212 return "MISC2";
213 case CCM_ANALOG_MISC2_SET:
214 return "MISC2_SET";
215 case CCM_ANALOG_MISC2_CLR:
216 return "MISC2_CLR";
217 case CCM_ANALOG_MISC2_TOG:
218 return "MISC2_TOG";
219 case PMU_REG_1P1:
220 return "PMU_REG_1P1";
221 case PMU_REG_3P0:
222 return "PMU_REG_3P0";
223 case PMU_REG_2P5:
224 return "PMU_REG_2P5";
225 case PMU_REG_CORE:
226 return "PMU_REG_CORE";
227 case PMU_MISC1:
228 return "PMU_MISC1";
229 case PMU_MISC1_SET:
230 return "PMU_MISC1_SET";
231 case PMU_MISC1_CLR:
232 return "PMU_MISC1_CLR";
233 case PMU_MISC1_TOG:
234 return "PMU_MISC1_TOG";
235 case USB_ANALOG_DIGPROG:
236 return "USB_ANALOG_DIGPROG";
237 default:
238 sprintf(unknown, "%d ?", reg);
239 return unknown;
243 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
245 static const VMStateDescription vmstate_imx6_ccm = {
246 .name = TYPE_IMX6_CCM,
247 .version_id = 1,
248 .minimum_version_id = 1,
249 .fields = (VMStateField[]) {
250 VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
251 VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
252 VMSTATE_END_OF_LIST()
256 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
258 uint64_t freq = 24000000;
260 if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
261 freq *= 22;
262 } else {
263 freq *= 20;
266 DPRINTF("freq = %d\n", (uint32_t)freq);
268 return freq;
271 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
273 uint64_t freq = 0;
275 freq = imx6_analog_get_pll2_clk(dev) * 18
276 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
278 DPRINTF("freq = %d\n", (uint32_t)freq);
280 return freq;
283 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
285 uint64_t freq = 0;
287 freq = imx6_analog_get_pll2_clk(dev) * 18
288 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
290 DPRINTF("freq = %d\n", (uint32_t)freq);
292 return freq;
295 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
297 uint64_t freq = 0;
299 switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
300 case 0:
301 freq = imx6_analog_get_pll2_clk(dev);
302 break;
303 case 1:
304 freq = imx6_analog_get_pll2_pfd2_clk(dev);
305 break;
306 case 2:
307 freq = imx6_analog_get_pll2_pfd0_clk(dev);
308 break;
309 case 3:
310 freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
311 break;
312 default:
313 /* We should never get there */
314 g_assert_not_reached();
315 break;
318 DPRINTF("freq = %d\n", (uint32_t)freq);
320 return freq;
323 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
325 uint64_t freq = 0;
327 freq = imx6_analog_get_periph_clk(dev)
328 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
330 DPRINTF("freq = %d\n", (uint32_t)freq);
332 return freq;
335 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
337 uint64_t freq = 0;
339 freq = imx6_ccm_get_ahb_clk(dev)
340 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));
342 DPRINTF("freq = %d\n", (uint32_t)freq);
344 return freq;
347 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
349 uint64_t freq = 0;
351 freq = imx6_ccm_get_ipg_clk(dev)
352 / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
354 DPRINTF("freq = %d\n", (uint32_t)freq);
356 return freq;
359 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
361 uint32_t freq = 0;
362 IMX6CCMState *s = IMX6_CCM(dev);
364 switch (clock) {
365 case CLK_NONE:
366 break;
367 case CLK_IPG:
368 freq = imx6_ccm_get_ipg_clk(s);
369 break;
370 case CLK_IPG_HIGH:
371 freq = imx6_ccm_get_per_clk(s);
372 break;
373 case CLK_32k:
374 freq = CKIL_FREQ;
375 break;
376 case CLK_HIGH:
377 freq = 24000000;
378 break;
379 case CLK_HIGH_DIV:
380 freq = 24000000 / 8;
381 break;
382 default:
383 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
384 TYPE_IMX6_CCM, __func__, clock);
385 break;
388 DPRINTF("Clock = %d) = %d\n", clock, freq);
390 return freq;
393 static void imx6_ccm_reset(DeviceState *dev)
395 IMX6CCMState *s = IMX6_CCM(dev);
397 DPRINTF("\n");
399 s->ccm[CCM_CCR] = 0x040116FF;
400 s->ccm[CCM_CCDR] = 0x00000000;
401 s->ccm[CCM_CSR] = 0x00000010;
402 s->ccm[CCM_CCSR] = 0x00000100;
403 s->ccm[CCM_CACRR] = 0x00000000;
404 s->ccm[CCM_CBCDR] = 0x00018D40;
405 s->ccm[CCM_CBCMR] = 0x00022324;
406 s->ccm[CCM_CSCMR1] = 0x00F00000;
407 s->ccm[CCM_CSCMR2] = 0x02B92F06;
408 s->ccm[CCM_CSCDR1] = 0x00490B00;
409 s->ccm[CCM_CS1CDR] = 0x0EC102C1;
410 s->ccm[CCM_CS2CDR] = 0x000736C1;
411 s->ccm[CCM_CDCDR] = 0x33F71F92;
412 s->ccm[CCM_CHSCCDR] = 0x0002A150;
413 s->ccm[CCM_CSCDR2] = 0x0002A150;
414 s->ccm[CCM_CSCDR3] = 0x00014841;
415 s->ccm[CCM_CDHIPR] = 0x00000000;
416 s->ccm[CCM_CTOR] = 0x00000000;
417 s->ccm[CCM_CLPCR] = 0x00000079;
418 s->ccm[CCM_CISR] = 0x00000000;
419 s->ccm[CCM_CIMR] = 0xFFFFFFFF;
420 s->ccm[CCM_CCOSR] = 0x000A0001;
421 s->ccm[CCM_CGPR] = 0x0000FE62;
422 s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
423 s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
424 s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
425 s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
426 s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
427 s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
428 s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
429 s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
431 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
432 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
433 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
434 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
435 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
436 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
437 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
438 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
439 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
440 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
441 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
442 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
443 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
444 s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
445 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
446 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
447 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
449 s->analog[PMU_REG_1P1] = 0x00001073;
450 s->analog[PMU_REG_3P0] = 0x00000F74;
451 s->analog[PMU_REG_2P5] = 0x00005071;
452 s->analog[PMU_REG_CORE] = 0x00402010;
453 s->analog[PMU_MISC0] = 0x04000000;
454 s->analog[PMU_MISC1] = 0x00000000;
455 s->analog[PMU_MISC2] = 0x00272727;
457 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
458 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
459 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
460 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
461 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
462 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
463 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
464 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
465 s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
467 /* all PLLs need to be locked */
468 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
469 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
470 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
471 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
472 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
473 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
474 s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK;
475 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
478 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
480 uint32_t value = 0;
481 uint32_t index = offset >> 2;
482 IMX6CCMState *s = (IMX6CCMState *)opaque;
484 value = s->ccm[index];
486 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
488 return (uint64_t)value;
491 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
492 unsigned size)
494 uint32_t index = offset >> 2;
495 IMX6CCMState *s = (IMX6CCMState *)opaque;
497 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
498 (uint32_t)value);
501 * We will do a better implementation later. In particular some bits
502 * cannot be written to.
504 s->ccm[index] = (uint32_t)value;
507 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
509 uint32_t value;
510 uint32_t index = offset >> 2;
511 IMX6CCMState *s = (IMX6CCMState *)opaque;
513 switch (index) {
514 case CCM_ANALOG_PLL_ARM_SET:
515 case CCM_ANALOG_PLL_USB1_SET:
516 case CCM_ANALOG_PLL_USB2_SET:
517 case CCM_ANALOG_PLL_SYS_SET:
518 case CCM_ANALOG_PLL_AUDIO_SET:
519 case CCM_ANALOG_PLL_VIDEO_SET:
520 case CCM_ANALOG_PLL_MLB_SET:
521 case CCM_ANALOG_PLL_ENET_SET:
522 case CCM_ANALOG_PFD_480_SET:
523 case CCM_ANALOG_PFD_528_SET:
524 case CCM_ANALOG_MISC0_SET:
525 case PMU_MISC1_SET:
526 case CCM_ANALOG_MISC2_SET:
527 case USB_ANALOG_USB1_VBUS_DETECT_SET:
528 case USB_ANALOG_USB1_CHRG_DETECT_SET:
529 case USB_ANALOG_USB1_MISC_SET:
530 case USB_ANALOG_USB2_VBUS_DETECT_SET:
531 case USB_ANALOG_USB2_CHRG_DETECT_SET:
532 case USB_ANALOG_USB2_MISC_SET:
534 * All REG_NAME_SET register access are in fact targeting the
535 * the REG_NAME register.
537 value = s->analog[index - 1];
538 break;
539 case CCM_ANALOG_PLL_ARM_CLR:
540 case CCM_ANALOG_PLL_USB1_CLR:
541 case CCM_ANALOG_PLL_USB2_CLR:
542 case CCM_ANALOG_PLL_SYS_CLR:
543 case CCM_ANALOG_PLL_AUDIO_CLR:
544 case CCM_ANALOG_PLL_VIDEO_CLR:
545 case CCM_ANALOG_PLL_MLB_CLR:
546 case CCM_ANALOG_PLL_ENET_CLR:
547 case CCM_ANALOG_PFD_480_CLR:
548 case CCM_ANALOG_PFD_528_CLR:
549 case CCM_ANALOG_MISC0_CLR:
550 case PMU_MISC1_CLR:
551 case CCM_ANALOG_MISC2_CLR:
552 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
553 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
554 case USB_ANALOG_USB1_MISC_CLR:
555 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
556 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
557 case USB_ANALOG_USB2_MISC_CLR:
559 * All REG_NAME_CLR register access are in fact targeting the
560 * the REG_NAME register.
562 value = s->analog[index - 2];
563 break;
564 case CCM_ANALOG_PLL_ARM_TOG:
565 case CCM_ANALOG_PLL_USB1_TOG:
566 case CCM_ANALOG_PLL_USB2_TOG:
567 case CCM_ANALOG_PLL_SYS_TOG:
568 case CCM_ANALOG_PLL_AUDIO_TOG:
569 case CCM_ANALOG_PLL_VIDEO_TOG:
570 case CCM_ANALOG_PLL_MLB_TOG:
571 case CCM_ANALOG_PLL_ENET_TOG:
572 case CCM_ANALOG_PFD_480_TOG:
573 case CCM_ANALOG_PFD_528_TOG:
574 case CCM_ANALOG_MISC0_TOG:
575 case PMU_MISC1_TOG:
576 case CCM_ANALOG_MISC2_TOG:
577 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
578 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
579 case USB_ANALOG_USB1_MISC_TOG:
580 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
581 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
582 case USB_ANALOG_USB2_MISC_TOG:
584 * All REG_NAME_TOG register access are in fact targeting the
585 * the REG_NAME register.
587 value = s->analog[index - 3];
588 break;
589 default:
590 value = s->analog[index];
591 break;
594 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
596 return (uint64_t)value;
599 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
600 unsigned size)
602 uint32_t index = offset >> 2;
603 IMX6CCMState *s = (IMX6CCMState *)opaque;
605 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
606 (uint32_t)value);
608 switch (index) {
609 case CCM_ANALOG_PLL_ARM_SET:
610 case CCM_ANALOG_PLL_USB1_SET:
611 case CCM_ANALOG_PLL_USB2_SET:
612 case CCM_ANALOG_PLL_SYS_SET:
613 case CCM_ANALOG_PLL_AUDIO_SET:
614 case CCM_ANALOG_PLL_VIDEO_SET:
615 case CCM_ANALOG_PLL_MLB_SET:
616 case CCM_ANALOG_PLL_ENET_SET:
617 case CCM_ANALOG_PFD_480_SET:
618 case CCM_ANALOG_PFD_528_SET:
619 case CCM_ANALOG_MISC0_SET:
620 case PMU_MISC1_SET:
621 case CCM_ANALOG_MISC2_SET:
622 case USB_ANALOG_USB1_VBUS_DETECT_SET:
623 case USB_ANALOG_USB1_CHRG_DETECT_SET:
624 case USB_ANALOG_USB1_MISC_SET:
625 case USB_ANALOG_USB2_VBUS_DETECT_SET:
626 case USB_ANALOG_USB2_CHRG_DETECT_SET:
627 case USB_ANALOG_USB2_MISC_SET:
629 * All REG_NAME_SET register access are in fact targeting the
630 * the REG_NAME register. So we change the value of the
631 * REG_NAME register, setting bits passed in the value.
633 s->analog[index - 1] |= value;
634 break;
635 case CCM_ANALOG_PLL_ARM_CLR:
636 case CCM_ANALOG_PLL_USB1_CLR:
637 case CCM_ANALOG_PLL_USB2_CLR:
638 case CCM_ANALOG_PLL_SYS_CLR:
639 case CCM_ANALOG_PLL_AUDIO_CLR:
640 case CCM_ANALOG_PLL_VIDEO_CLR:
641 case CCM_ANALOG_PLL_MLB_CLR:
642 case CCM_ANALOG_PLL_ENET_CLR:
643 case CCM_ANALOG_PFD_480_CLR:
644 case CCM_ANALOG_PFD_528_CLR:
645 case CCM_ANALOG_MISC0_CLR:
646 case PMU_MISC1_CLR:
647 case CCM_ANALOG_MISC2_CLR:
648 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
649 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
650 case USB_ANALOG_USB1_MISC_CLR:
651 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
652 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
653 case USB_ANALOG_USB2_MISC_CLR:
655 * All REG_NAME_CLR register access are in fact targeting the
656 * the REG_NAME register. So we change the value of the
657 * REG_NAME register, unsetting bits passed in the value.
659 s->analog[index - 2] &= ~value;
660 break;
661 case CCM_ANALOG_PLL_ARM_TOG:
662 case CCM_ANALOG_PLL_USB1_TOG:
663 case CCM_ANALOG_PLL_USB2_TOG:
664 case CCM_ANALOG_PLL_SYS_TOG:
665 case CCM_ANALOG_PLL_AUDIO_TOG:
666 case CCM_ANALOG_PLL_VIDEO_TOG:
667 case CCM_ANALOG_PLL_MLB_TOG:
668 case CCM_ANALOG_PLL_ENET_TOG:
669 case CCM_ANALOG_PFD_480_TOG:
670 case CCM_ANALOG_PFD_528_TOG:
671 case CCM_ANALOG_MISC0_TOG:
672 case PMU_MISC1_TOG:
673 case CCM_ANALOG_MISC2_TOG:
674 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
675 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
676 case USB_ANALOG_USB1_MISC_TOG:
677 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
678 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
679 case USB_ANALOG_USB2_MISC_TOG:
681 * All REG_NAME_TOG register access are in fact targeting the
682 * the REG_NAME register. So we change the value of the
683 * REG_NAME register, toggling bits passed in the value.
685 s->analog[index - 3] ^= value;
686 break;
687 default:
689 * We will do a better implementation later. In particular some bits
690 * cannot be written to.
692 s->analog[index] = value;
693 break;
697 static const struct MemoryRegionOps imx6_ccm_ops = {
698 .read = imx6_ccm_read,
699 .write = imx6_ccm_write,
700 .endianness = DEVICE_NATIVE_ENDIAN,
701 .valid = {
703 * Our device would not work correctly if the guest was doing
704 * unaligned access. This might not be a limitation on the real
705 * device but in practice there is no reason for a guest to access
706 * this device unaligned.
708 .min_access_size = 4,
709 .max_access_size = 4,
710 .unaligned = false,
714 static const struct MemoryRegionOps imx6_analog_ops = {
715 .read = imx6_analog_read,
716 .write = imx6_analog_write,
717 .endianness = DEVICE_NATIVE_ENDIAN,
718 .valid = {
720 * Our device would not work correctly if the guest was doing
721 * unaligned access. This might not be a limitation on the real
722 * device but in practice there is no reason for a guest to access
723 * this device unaligned.
725 .min_access_size = 4,
726 .max_access_size = 4,
727 .unaligned = false,
731 static void imx6_ccm_init(Object *obj)
733 DeviceState *dev = DEVICE(obj);
734 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
735 IMX6CCMState *s = IMX6_CCM(obj);
737 /* initialize a container for the all memory range */
738 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
740 /* We initialize an IO memory region for the CCM part */
741 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
742 TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
744 /* Add the CCM as a subregion at offset 0 */
745 memory_region_add_subregion(&s->container, 0, &s->ioccm);
747 /* We initialize an IO memory region for the ANALOG part */
748 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
749 TYPE_IMX6_CCM ".analog",
750 CCM_ANALOG_MAX * sizeof(uint32_t));
752 /* Add the ANALOG as a subregion at offset 0x4000 */
753 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
755 sysbus_init_mmio(sd, &s->container);
758 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
760 DeviceClass *dc = DEVICE_CLASS(klass);
761 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
763 dc->reset = imx6_ccm_reset;
764 dc->vmsd = &vmstate_imx6_ccm;
765 dc->desc = "i.MX6 Clock Control Module";
767 ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
770 static const TypeInfo imx6_ccm_info = {
771 .name = TYPE_IMX6_CCM,
772 .parent = TYPE_IMX_CCM,
773 .instance_size = sizeof(IMX6CCMState),
774 .instance_init = imx6_ccm_init,
775 .class_init = imx6_ccm_class_init,
778 static void imx6_ccm_register_types(void)
780 type_register_static(&imx6_ccm_info);
783 type_init(imx6_ccm_register_types)