Merge remote-tracking branch 'remotes/kraxel/tags/seabios-1.12-20181120-pull-request...
[qemu/ar7.git] / target / arm / op_helper.c
blob0d6e89e474a1637b0ab014d3f27d4ce86fc90458
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 void raise_exception(CPUARMState *env, uint32_t excp,
32 uint32_t syndrome, uint32_t target_el)
34 CPUState *cs = CPU(arm_env_get_cpu(env));
36 if ((env->cp15.hcr_el2 & HCR_TGE) &&
37 target_el == 1 && !arm_is_secure(env)) {
39 * Redirect NS EL1 exceptions to NS EL2. These are reported with
40 * their original syndrome register value, with the exception of
41 * SIMD/FP access traps, which are reported as uncategorized
42 * (see DDI0478C.a D1.10.4)
44 target_el = 2;
45 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
46 syndrome = syn_uncategorized();
50 assert(!excp_is_internal(excp));
51 cs->exception_index = excp;
52 env->exception.syndrome = syndrome;
53 env->exception.target_el = target_el;
54 cpu_loop_exit(cs);
57 static int exception_target_el(CPUARMState *env)
59 int target_el = MAX(1, arm_current_el(env));
61 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
62 * to EL3 in this case.
64 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
65 target_el = 3;
68 return target_el;
71 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
72 uint32_t maxindex)
74 uint32_t val, shift;
75 uint64_t *table = vn;
77 val = 0;
78 for (shift = 0; shift < 32; shift += 8) {
79 uint32_t index = (ireg >> shift) & 0xff;
80 if (index < maxindex) {
81 uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
82 val |= tmp << shift;
83 } else {
84 val |= def & (0xff << shift);
87 return val;
90 #if !defined(CONFIG_USER_ONLY)
92 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
93 unsigned int target_el,
94 bool same_el, bool ea,
95 bool s1ptw, bool is_write,
96 int fsc)
98 uint32_t syn;
100 /* ISV is only set for data aborts routed to EL2 and
101 * never for stage-1 page table walks faulting on stage 2.
103 * Furthermore, ISV is only set for certain kinds of load/stores.
104 * If the template syndrome does not have ISV set, we should leave
105 * it cleared.
107 * See ARMv8 specs, D7-1974:
108 * ISS encoding for an exception from a Data Abort, the
109 * ISV field.
111 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
112 syn = syn_data_abort_no_iss(same_el,
113 ea, 0, s1ptw, is_write, fsc);
114 } else {
115 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
116 * syndrome created at translation time.
117 * Now we create the runtime syndrome with the remaining fields.
119 syn = syn_data_abort_with_iss(same_el,
120 0, 0, 0, 0, 0,
121 ea, 0, s1ptw, is_write, fsc,
122 false);
123 /* Merge the runtime syndrome with the template syndrome. */
124 syn |= template_syn;
126 return syn;
129 static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
130 int mmu_idx, ARMMMUFaultInfo *fi)
132 CPUARMState *env = &cpu->env;
133 int target_el;
134 bool same_el;
135 uint32_t syn, exc, fsr, fsc;
136 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
138 target_el = exception_target_el(env);
139 if (fi->stage2) {
140 target_el = 2;
141 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
143 same_el = (arm_current_el(env) == target_el);
145 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
146 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
147 /* LPAE format fault status register : bottom 6 bits are
148 * status code in the same form as needed for syndrome
150 fsr = arm_fi_to_lfsc(fi);
151 fsc = extract32(fsr, 0, 6);
152 } else {
153 fsr = arm_fi_to_sfsc(fi);
154 /* Short format FSR : this fault will never actually be reported
155 * to an EL that uses a syndrome register. Use a (currently)
156 * reserved FSR code in case the constructed syndrome does leak
157 * into the guest somehow.
159 fsc = 0x3f;
162 if (access_type == MMU_INST_FETCH) {
163 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
164 exc = EXCP_PREFETCH_ABORT;
165 } else {
166 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
167 same_el, fi->ea, fi->s1ptw,
168 access_type == MMU_DATA_STORE,
169 fsc);
170 if (access_type == MMU_DATA_STORE
171 && arm_feature(env, ARM_FEATURE_V6)) {
172 fsr |= (1 << 11);
174 exc = EXCP_DATA_ABORT;
177 env->exception.vaddress = addr;
178 env->exception.fsr = fsr;
179 raise_exception(env, exc, syn, target_el);
182 /* try to fill the TLB and return an exception if error. If retaddr is
183 * NULL, it means that the function was called in C code (i.e. not
184 * from generated code or from helper.c)
186 void tlb_fill(CPUState *cs, target_ulong addr, int size,
187 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
189 bool ret;
190 ARMMMUFaultInfo fi = {};
192 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
193 if (unlikely(ret)) {
194 ARMCPU *cpu = ARM_CPU(cs);
196 /* now we have a real cpu fault */
197 cpu_restore_state(cs, retaddr, true);
199 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
203 /* Raise a data fault alignment exception for the specified virtual address */
204 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
205 MMUAccessType access_type,
206 int mmu_idx, uintptr_t retaddr)
208 ARMCPU *cpu = ARM_CPU(cs);
209 ARMMMUFaultInfo fi = {};
211 /* now we have a real cpu fault */
212 cpu_restore_state(cs, retaddr, true);
214 fi.type = ARMFault_Alignment;
215 deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
218 /* arm_cpu_do_transaction_failed: handle a memory system error response
219 * (eg "no device/memory present at address") by raising an external abort
220 * exception
222 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
223 vaddr addr, unsigned size,
224 MMUAccessType access_type,
225 int mmu_idx, MemTxAttrs attrs,
226 MemTxResult response, uintptr_t retaddr)
228 ARMCPU *cpu = ARM_CPU(cs);
229 ARMMMUFaultInfo fi = {};
231 /* now we have a real cpu fault */
232 cpu_restore_state(cs, retaddr, true);
234 fi.ea = arm_extabort_type(response);
235 fi.type = ARMFault_SyncExternal;
236 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
239 #endif /* !defined(CONFIG_USER_ONLY) */
241 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
244 * Perform the v8M stack limit check for SP updates from translated code,
245 * raising an exception if the limit is breached.
247 if (newvalue < v7m_sp_limit(env)) {
248 CPUState *cs = CPU(arm_env_get_cpu(env));
251 * Stack limit exceptions are a rare case, so rather than syncing
252 * PC/condbits before the call, we use cpu_restore_state() to
253 * get them right before raising the exception.
255 cpu_restore_state(cs, GETPC(), true);
256 raise_exception(env, EXCP_STKOF, 0, 1);
260 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
262 uint32_t res = a + b;
263 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
264 env->QF = 1;
265 return res;
268 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
270 uint32_t res = a + b;
271 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
272 env->QF = 1;
273 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
275 return res;
278 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
280 uint32_t res = a - b;
281 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
282 env->QF = 1;
283 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
285 return res;
288 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
290 uint32_t res;
291 if (val >= 0x40000000) {
292 res = ~SIGNBIT;
293 env->QF = 1;
294 } else if (val <= (int32_t)0xc0000000) {
295 res = SIGNBIT;
296 env->QF = 1;
297 } else {
298 res = val << 1;
300 return res;
303 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
305 uint32_t res = a + b;
306 if (res < a) {
307 env->QF = 1;
308 res = ~0;
310 return res;
313 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
315 uint32_t res = a - b;
316 if (res > a) {
317 env->QF = 1;
318 res = 0;
320 return res;
323 /* Signed saturation. */
324 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
326 int32_t top;
327 uint32_t mask;
329 top = val >> shift;
330 mask = (1u << shift) - 1;
331 if (top > 0) {
332 env->QF = 1;
333 return mask;
334 } else if (top < -1) {
335 env->QF = 1;
336 return ~mask;
338 return val;
341 /* Unsigned saturation. */
342 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
344 uint32_t max;
346 max = (1u << shift) - 1;
347 if (val < 0) {
348 env->QF = 1;
349 return 0;
350 } else if (val > max) {
351 env->QF = 1;
352 return max;
354 return val;
357 /* Signed saturate. */
358 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
360 return do_ssat(env, x, shift);
363 /* Dual halfword signed saturate. */
364 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
366 uint32_t res;
368 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
369 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
370 return res;
373 /* Unsigned saturate. */
374 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
376 return do_usat(env, x, shift);
379 /* Dual halfword unsigned saturate. */
380 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
382 uint32_t res;
384 res = (uint16_t)do_usat(env, (int16_t)x, shift);
385 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
386 return res;
389 void HELPER(setend)(CPUARMState *env)
391 env->uncached_cpsr ^= CPSR_E;
394 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
395 * The function returns the target EL (1-3) if the instruction is to be trapped;
396 * otherwise it returns 0 indicating it is not trapped.
398 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
400 int cur_el = arm_current_el(env);
401 uint64_t mask;
403 if (arm_feature(env, ARM_FEATURE_M)) {
404 /* M profile cores can never trap WFI/WFE. */
405 return 0;
408 /* If we are currently in EL0 then we need to check if SCTLR is set up for
409 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
411 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
412 int target_el;
414 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
415 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
416 /* Secure EL0 and Secure PL1 is at EL3 */
417 target_el = 3;
418 } else {
419 target_el = 1;
422 if (!(env->cp15.sctlr_el[target_el] & mask)) {
423 return target_el;
427 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
428 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
429 * bits will be zero indicating no trap.
431 if (cur_el < 2 && !arm_is_secure(env)) {
432 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
433 if (env->cp15.hcr_el2 & mask) {
434 return 2;
438 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
439 if (cur_el < 3) {
440 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
441 if (env->cp15.scr_el3 & mask) {
442 return 3;
446 return 0;
449 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
451 CPUState *cs = CPU(arm_env_get_cpu(env));
452 int target_el = check_wfx_trap(env, false);
454 if (cpu_has_work(cs)) {
455 /* Don't bother to go into our "low power state" if
456 * we would just wake up immediately.
458 return;
461 if (target_el) {
462 env->pc -= insn_len;
463 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
464 target_el);
467 cs->exception_index = EXCP_HLT;
468 cs->halted = 1;
469 cpu_loop_exit(cs);
472 void HELPER(wfe)(CPUARMState *env)
474 /* This is a hint instruction that is semantically different
475 * from YIELD even though we currently implement it identically.
476 * Don't actually halt the CPU, just yield back to top
477 * level loop. This is not going into a "low power state"
478 * (ie halting until some event occurs), so we never take
479 * a configurable trap to a different exception level.
481 HELPER(yield)(env);
484 void HELPER(yield)(CPUARMState *env)
486 ARMCPU *cpu = arm_env_get_cpu(env);
487 CPUState *cs = CPU(cpu);
489 /* This is a non-trappable hint instruction that generally indicates
490 * that the guest is currently busy-looping. Yield control back to the
491 * top level loop so that a more deserving VCPU has a chance to run.
493 cs->exception_index = EXCP_YIELD;
494 cpu_loop_exit(cs);
497 /* Raise an internal-to-QEMU exception. This is limited to only
498 * those EXCP values which are special cases for QEMU to interrupt
499 * execution and not to be used for exceptions which are passed to
500 * the guest (those must all have syndrome information and thus should
501 * use exception_with_syndrome).
503 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
505 CPUState *cs = CPU(arm_env_get_cpu(env));
507 assert(excp_is_internal(excp));
508 cs->exception_index = excp;
509 cpu_loop_exit(cs);
512 /* Raise an exception with the specified syndrome register value */
513 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
514 uint32_t syndrome, uint32_t target_el)
516 raise_exception(env, excp, syndrome, target_el);
519 /* Raise an EXCP_BKPT with the specified syndrome register value,
520 * targeting the correct exception level for debug exceptions.
522 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
524 /* FSR will only be used if the debug target EL is AArch32. */
525 env->exception.fsr = arm_debug_exception_fsr(env);
526 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
527 * values to the guest that it shouldn't be able to see at its
528 * exception/security level.
530 env->exception.vaddress = 0;
531 raise_exception(env, EXCP_BKPT, syndrome, arm_debug_target_el(env));
534 uint32_t HELPER(cpsr_read)(CPUARMState *env)
536 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
539 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
541 cpsr_write(env, val, mask, CPSRWriteByInstr);
544 /* Write the CPSR for a 32-bit exception return */
545 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
547 qemu_mutex_lock_iothread();
548 arm_call_pre_el_change_hook(arm_env_get_cpu(env));
549 qemu_mutex_unlock_iothread();
551 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
553 /* Generated code has already stored the new PC value, but
554 * without masking out its low bits, because which bits need
555 * masking depends on whether we're returning to Thumb or ARM
556 * state. Do the masking now.
558 env->regs[15] &= (env->thumb ? ~1 : ~3);
560 qemu_mutex_lock_iothread();
561 arm_call_el_change_hook(arm_env_get_cpu(env));
562 qemu_mutex_unlock_iothread();
565 /* Access to user mode registers from privileged modes. */
566 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
568 uint32_t val;
570 if (regno == 13) {
571 val = env->banked_r13[BANK_USRSYS];
572 } else if (regno == 14) {
573 val = env->banked_r14[BANK_USRSYS];
574 } else if (regno >= 8
575 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
576 val = env->usr_regs[regno - 8];
577 } else {
578 val = env->regs[regno];
580 return val;
583 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
585 if (regno == 13) {
586 env->banked_r13[BANK_USRSYS] = val;
587 } else if (regno == 14) {
588 env->banked_r14[BANK_USRSYS] = val;
589 } else if (regno >= 8
590 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
591 env->usr_regs[regno - 8] = val;
592 } else {
593 env->regs[regno] = val;
597 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
599 if ((env->uncached_cpsr & CPSR_M) == mode) {
600 env->regs[13] = val;
601 } else {
602 env->banked_r13[bank_number(mode)] = val;
606 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
608 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
609 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
610 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
612 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
613 exception_target_el(env));
616 if ((env->uncached_cpsr & CPSR_M) == mode) {
617 return env->regs[13];
618 } else {
619 return env->banked_r13[bank_number(mode)];
623 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
624 uint32_t regno)
626 /* Raise an exception if the requested access is one of the UNPREDICTABLE
627 * cases; otherwise return. This broadly corresponds to the pseudocode
628 * BankedRegisterAccessValid() and SPSRAccessValid(),
629 * except that we have already handled some cases at translate time.
631 int curmode = env->uncached_cpsr & CPSR_M;
633 if (regno == 17) {
634 /* ELR_Hyp: a special case because access from tgtmode is OK */
635 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
636 goto undef;
638 return;
641 if (curmode == tgtmode) {
642 goto undef;
645 if (tgtmode == ARM_CPU_MODE_USR) {
646 switch (regno) {
647 case 8 ... 12:
648 if (curmode != ARM_CPU_MODE_FIQ) {
649 goto undef;
651 break;
652 case 13:
653 if (curmode == ARM_CPU_MODE_SYS) {
654 goto undef;
656 break;
657 case 14:
658 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
659 goto undef;
661 break;
662 default:
663 break;
667 if (tgtmode == ARM_CPU_MODE_HYP) {
668 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
669 if (curmode != ARM_CPU_MODE_MON) {
670 goto undef;
674 return;
676 undef:
677 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
678 exception_target_el(env));
681 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
682 uint32_t regno)
684 msr_mrs_banked_exc_checks(env, tgtmode, regno);
686 switch (regno) {
687 case 16: /* SPSRs */
688 env->banked_spsr[bank_number(tgtmode)] = value;
689 break;
690 case 17: /* ELR_Hyp */
691 env->elr_el[2] = value;
692 break;
693 case 13:
694 env->banked_r13[bank_number(tgtmode)] = value;
695 break;
696 case 14:
697 env->banked_r14[r14_bank_number(tgtmode)] = value;
698 break;
699 case 8 ... 12:
700 switch (tgtmode) {
701 case ARM_CPU_MODE_USR:
702 env->usr_regs[regno - 8] = value;
703 break;
704 case ARM_CPU_MODE_FIQ:
705 env->fiq_regs[regno - 8] = value;
706 break;
707 default:
708 g_assert_not_reached();
710 break;
711 default:
712 g_assert_not_reached();
716 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
718 msr_mrs_banked_exc_checks(env, tgtmode, regno);
720 switch (regno) {
721 case 16: /* SPSRs */
722 return env->banked_spsr[bank_number(tgtmode)];
723 case 17: /* ELR_Hyp */
724 return env->elr_el[2];
725 case 13:
726 return env->banked_r13[bank_number(tgtmode)];
727 case 14:
728 return env->banked_r14[r14_bank_number(tgtmode)];
729 case 8 ... 12:
730 switch (tgtmode) {
731 case ARM_CPU_MODE_USR:
732 return env->usr_regs[regno - 8];
733 case ARM_CPU_MODE_FIQ:
734 return env->fiq_regs[regno - 8];
735 default:
736 g_assert_not_reached();
738 default:
739 g_assert_not_reached();
743 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
744 uint32_t isread)
746 const ARMCPRegInfo *ri = rip;
747 int target_el;
749 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
750 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
751 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
754 if (!ri->accessfn) {
755 return;
758 switch (ri->accessfn(env, ri, isread)) {
759 case CP_ACCESS_OK:
760 return;
761 case CP_ACCESS_TRAP:
762 target_el = exception_target_el(env);
763 break;
764 case CP_ACCESS_TRAP_EL2:
765 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
766 * a bug in the access function.
768 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
769 target_el = 2;
770 break;
771 case CP_ACCESS_TRAP_EL3:
772 target_el = 3;
773 break;
774 case CP_ACCESS_TRAP_UNCATEGORIZED:
775 target_el = exception_target_el(env);
776 syndrome = syn_uncategorized();
777 break;
778 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
779 target_el = 2;
780 syndrome = syn_uncategorized();
781 break;
782 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
783 target_el = 3;
784 syndrome = syn_uncategorized();
785 break;
786 case CP_ACCESS_TRAP_FP_EL2:
787 target_el = 2;
788 /* Since we are an implementation that takes exceptions on a trapped
789 * conditional insn only if the insn has passed its condition code
790 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
791 * (which is also the required value for AArch64 traps).
793 syndrome = syn_fp_access_trap(1, 0xe, false);
794 break;
795 case CP_ACCESS_TRAP_FP_EL3:
796 target_el = 3;
797 syndrome = syn_fp_access_trap(1, 0xe, false);
798 break;
799 default:
800 g_assert_not_reached();
803 raise_exception(env, EXCP_UDEF, syndrome, target_el);
806 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
808 const ARMCPRegInfo *ri = rip;
810 if (ri->type & ARM_CP_IO) {
811 qemu_mutex_lock_iothread();
812 ri->writefn(env, ri, value);
813 qemu_mutex_unlock_iothread();
814 } else {
815 ri->writefn(env, ri, value);
819 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
821 const ARMCPRegInfo *ri = rip;
822 uint32_t res;
824 if (ri->type & ARM_CP_IO) {
825 qemu_mutex_lock_iothread();
826 res = ri->readfn(env, ri);
827 qemu_mutex_unlock_iothread();
828 } else {
829 res = ri->readfn(env, ri);
832 return res;
835 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
837 const ARMCPRegInfo *ri = rip;
839 if (ri->type & ARM_CP_IO) {
840 qemu_mutex_lock_iothread();
841 ri->writefn(env, ri, value);
842 qemu_mutex_unlock_iothread();
843 } else {
844 ri->writefn(env, ri, value);
848 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
850 const ARMCPRegInfo *ri = rip;
851 uint64_t res;
853 if (ri->type & ARM_CP_IO) {
854 qemu_mutex_lock_iothread();
855 res = ri->readfn(env, ri);
856 qemu_mutex_unlock_iothread();
857 } else {
858 res = ri->readfn(env, ri);
861 return res;
864 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
866 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
867 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
868 * to catch that case at translate time.
870 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
871 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
872 extract32(op, 3, 3), 4,
873 imm, 0x1f, 0);
874 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
877 switch (op) {
878 case 0x05: /* SPSel */
879 update_spsel(env, imm);
880 break;
881 case 0x1e: /* DAIFSet */
882 env->daif |= (imm << 6) & PSTATE_DAIF;
883 break;
884 case 0x1f: /* DAIFClear */
885 env->daif &= ~((imm << 6) & PSTATE_DAIF);
886 break;
887 default:
888 g_assert_not_reached();
892 void HELPER(clear_pstate_ss)(CPUARMState *env)
894 env->pstate &= ~PSTATE_SS;
897 void HELPER(pre_hvc)(CPUARMState *env)
899 ARMCPU *cpu = arm_env_get_cpu(env);
900 int cur_el = arm_current_el(env);
901 /* FIXME: Use actual secure state. */
902 bool secure = false;
903 bool undef;
905 if (arm_is_psci_call(cpu, EXCP_HVC)) {
906 /* If PSCI is enabled and this looks like a valid PSCI call then
907 * that overrides the architecturally mandated HVC behaviour.
909 return;
912 if (!arm_feature(env, ARM_FEATURE_EL2)) {
913 /* If EL2 doesn't exist, HVC always UNDEFs */
914 undef = true;
915 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
916 /* EL3.HCE has priority over EL2.HCD. */
917 undef = !(env->cp15.scr_el3 & SCR_HCE);
918 } else {
919 undef = env->cp15.hcr_el2 & HCR_HCD;
922 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
923 * For ARMv8/AArch64, HVC is allowed in EL3.
924 * Note that we've already trapped HVC from EL0 at translation
925 * time.
927 if (secure && (!is_a64(env) || cur_el == 1)) {
928 undef = true;
931 if (undef) {
932 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
933 exception_target_el(env));
937 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
939 ARMCPU *cpu = arm_env_get_cpu(env);
940 int cur_el = arm_current_el(env);
941 bool secure = arm_is_secure(env);
942 bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
945 * SMC behaviour is summarized in the following table.
946 * This helper handles the "Trap to EL2" and "Undef insn" cases.
947 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
948 * helper.
950 * -> ARM_FEATURE_EL3 and !SMD
951 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
953 * Conduit SMC, valid call Trap to EL2 PSCI Call
954 * Conduit SMC, inval call Trap to EL2 Trap to EL3
955 * Conduit not SMC Trap to EL2 Trap to EL3
958 * -> ARM_FEATURE_EL3 and SMD
959 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
961 * Conduit SMC, valid call Trap to EL2 PSCI Call
962 * Conduit SMC, inval call Trap to EL2 Undef insn
963 * Conduit not SMC Trap to EL2 Undef insn
966 * -> !ARM_FEATURE_EL3
967 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
969 * Conduit SMC, valid call Trap to EL2 PSCI Call
970 * Conduit SMC, inval call Trap to EL2 Undef insn
971 * Conduit not SMC Undef insn Undef insn
974 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
975 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
976 * extensions, SMD only applies to NS state.
977 * On ARMv7 without the Virtualization extensions, the SMD bit
978 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
979 * so we need not special case this here.
981 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
982 : smd_flag && !secure;
984 if (!arm_feature(env, ARM_FEATURE_EL3) &&
985 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
986 /* If we have no EL3 then SMC always UNDEFs and can't be
987 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
988 * firmware within QEMU, and we want an EL2 guest to be able
989 * to forbid its EL1 from making PSCI calls into QEMU's
990 * "firmware" via HCR.TSC, so for these purposes treat
991 * PSCI-via-SMC as implying an EL3.
992 * This handles the very last line of the previous table.
994 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
995 exception_target_el(env));
998 if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
999 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
1000 * We also want an EL2 guest to be able to forbid its EL1 from
1001 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
1002 * This handles all the "Trap to EL2" cases of the previous table.
1004 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1007 /* Catch the two remaining "Undef insn" cases of the previous table:
1008 * - PSCI conduit is SMC but we don't have a valid PCSI call,
1009 * - We don't have EL3 or SMD is set.
1011 if (!arm_is_psci_call(cpu, EXCP_SMC) &&
1012 (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
1013 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1014 exception_target_el(env));
1018 static int el_from_spsr(uint32_t spsr)
1020 /* Return the exception level that this SPSR is requesting a return to,
1021 * or -1 if it is invalid (an illegal return)
1023 if (spsr & PSTATE_nRW) {
1024 switch (spsr & CPSR_M) {
1025 case ARM_CPU_MODE_USR:
1026 return 0;
1027 case ARM_CPU_MODE_HYP:
1028 return 2;
1029 case ARM_CPU_MODE_FIQ:
1030 case ARM_CPU_MODE_IRQ:
1031 case ARM_CPU_MODE_SVC:
1032 case ARM_CPU_MODE_ABT:
1033 case ARM_CPU_MODE_UND:
1034 case ARM_CPU_MODE_SYS:
1035 return 1;
1036 case ARM_CPU_MODE_MON:
1037 /* Returning to Mon from AArch64 is never possible,
1038 * so this is an illegal return.
1040 default:
1041 return -1;
1043 } else {
1044 if (extract32(spsr, 1, 1)) {
1045 /* Return with reserved M[1] bit set */
1046 return -1;
1048 if (extract32(spsr, 0, 4) == 1) {
1049 /* return to EL0 with M[0] bit set */
1050 return -1;
1052 return extract32(spsr, 2, 2);
1056 void HELPER(exception_return)(CPUARMState *env)
1058 int cur_el = arm_current_el(env);
1059 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
1060 uint32_t spsr = env->banked_spsr[spsr_idx];
1061 int new_el;
1062 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
1064 aarch64_save_sp(env, cur_el);
1066 arm_clear_exclusive(env);
1068 /* We must squash the PSTATE.SS bit to zero unless both of the
1069 * following hold:
1070 * 1. debug exceptions are currently disabled
1071 * 2. singlestep will be active in the EL we return to
1072 * We check 1 here and 2 after we've done the pstate/cpsr write() to
1073 * transition to the EL we're going to.
1075 if (arm_generate_debug_exceptions(env)) {
1076 spsr &= ~PSTATE_SS;
1079 new_el = el_from_spsr(spsr);
1080 if (new_el == -1) {
1081 goto illegal_return;
1083 if (new_el > cur_el
1084 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
1085 /* Disallow return to an EL which is unimplemented or higher
1086 * than the current one.
1088 goto illegal_return;
1091 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
1092 /* Return to an EL which is configured for a different register width */
1093 goto illegal_return;
1096 if (new_el == 2 && arm_is_secure_below_el3(env)) {
1097 /* Return to the non-existent secure-EL2 */
1098 goto illegal_return;
1101 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
1102 && !arm_is_secure_below_el3(env)) {
1103 goto illegal_return;
1106 qemu_mutex_lock_iothread();
1107 arm_call_pre_el_change_hook(arm_env_get_cpu(env));
1108 qemu_mutex_unlock_iothread();
1110 if (!return_to_aa64) {
1111 env->aarch64 = 0;
1112 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1113 * will sort the register banks out for us, and we've already
1114 * caught all the bad-mode cases in el_from_spsr().
1116 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1117 if (!arm_singlestep_active(env)) {
1118 env->uncached_cpsr &= ~PSTATE_SS;
1120 aarch64_sync_64_to_32(env);
1122 if (spsr & CPSR_T) {
1123 env->regs[15] = env->elr_el[cur_el] & ~0x1;
1124 } else {
1125 env->regs[15] = env->elr_el[cur_el] & ~0x3;
1127 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1128 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1129 cur_el, new_el, env->regs[15]);
1130 } else {
1131 env->aarch64 = 1;
1132 pstate_write(env, spsr);
1133 if (!arm_singlestep_active(env)) {
1134 env->pstate &= ~PSTATE_SS;
1136 aarch64_restore_sp(env, new_el);
1137 env->pc = env->elr_el[cur_el];
1138 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1139 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1140 cur_el, new_el, env->pc);
1143 * Note that cur_el can never be 0. If new_el is 0, then
1144 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1146 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
1148 qemu_mutex_lock_iothread();
1149 arm_call_el_change_hook(arm_env_get_cpu(env));
1150 qemu_mutex_unlock_iothread();
1152 return;
1154 illegal_return:
1155 /* Illegal return events of various kinds have architecturally
1156 * mandated behaviour:
1157 * restore NZCV and DAIF from SPSR_ELx
1158 * set PSTATE.IL
1159 * restore PC from ELR_ELx
1160 * no change to exception level, execution state or stack pointer
1162 env->pstate |= PSTATE_IL;
1163 env->pc = env->elr_el[cur_el];
1164 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1165 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1166 pstate_write(env, spsr);
1167 if (!arm_singlestep_active(env)) {
1168 env->pstate &= ~PSTATE_SS;
1170 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1171 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1174 /* Return true if the linked breakpoint entry lbn passes its checks */
1175 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1177 CPUARMState *env = &cpu->env;
1178 uint64_t bcr = env->cp15.dbgbcr[lbn];
1179 int brps = extract32(cpu->dbgdidr, 24, 4);
1180 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1181 int bt;
1182 uint32_t contextidr;
1184 /* Links to unimplemented or non-context aware breakpoints are
1185 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1186 * as if linked to an UNKNOWN context-aware breakpoint (in which
1187 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1188 * We choose the former.
1190 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1191 return false;
1194 bcr = env->cp15.dbgbcr[lbn];
1196 if (extract64(bcr, 0, 1) == 0) {
1197 /* Linked breakpoint disabled : generate no events */
1198 return false;
1201 bt = extract64(bcr, 20, 4);
1203 /* We match the whole register even if this is AArch32 using the
1204 * short descriptor format (in which case it holds both PROCID and ASID),
1205 * since we don't implement the optional v7 context ID masking.
1207 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1209 switch (bt) {
1210 case 3: /* linked context ID match */
1211 if (arm_current_el(env) > 1) {
1212 /* Context matches never fire in EL2 or (AArch64) EL3 */
1213 return false;
1215 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1216 case 5: /* linked address mismatch (reserved in AArch64) */
1217 case 9: /* linked VMID match (reserved if no EL2) */
1218 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1219 default:
1220 /* Links to Unlinked context breakpoints must generate no
1221 * events; we choose to do the same for reserved values too.
1223 return false;
1226 return false;
1229 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1231 CPUARMState *env = &cpu->env;
1232 uint64_t cr;
1233 int pac, hmc, ssc, wt, lbn;
1234 /* Note that for watchpoints the check is against the CPU security
1235 * state, not the S/NS attribute on the offending data access.
1237 bool is_secure = arm_is_secure(env);
1238 int access_el = arm_current_el(env);
1240 if (is_wp) {
1241 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1243 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1244 return false;
1246 cr = env->cp15.dbgwcr[n];
1247 if (wp->hitattrs.user) {
1248 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1249 * match watchpoints as if they were accesses done at EL0, even if
1250 * the CPU is at EL1 or higher.
1252 access_el = 0;
1254 } else {
1255 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1257 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1258 return false;
1260 cr = env->cp15.dbgbcr[n];
1262 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1263 * enabled and that the address and access type match; for breakpoints
1264 * we know the address matched; check the remaining fields, including
1265 * linked breakpoints. We rely on WCR and BCR having the same layout
1266 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1267 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1268 * must act either like some valid combination or as if the watchpoint
1269 * were disabled. We choose the former, and use this together with
1270 * the fact that EL3 must always be Secure and EL2 must always be
1271 * Non-Secure to simplify the code slightly compared to the full
1272 * table in the ARM ARM.
1274 pac = extract64(cr, 1, 2);
1275 hmc = extract64(cr, 13, 1);
1276 ssc = extract64(cr, 14, 2);
1278 switch (ssc) {
1279 case 0:
1280 break;
1281 case 1:
1282 case 3:
1283 if (is_secure) {
1284 return false;
1286 break;
1287 case 2:
1288 if (!is_secure) {
1289 return false;
1291 break;
1294 switch (access_el) {
1295 case 3:
1296 case 2:
1297 if (!hmc) {
1298 return false;
1300 break;
1301 case 1:
1302 if (extract32(pac, 0, 1) == 0) {
1303 return false;
1305 break;
1306 case 0:
1307 if (extract32(pac, 1, 1) == 0) {
1308 return false;
1310 break;
1311 default:
1312 g_assert_not_reached();
1315 wt = extract64(cr, 20, 1);
1316 lbn = extract64(cr, 16, 4);
1318 if (wt && !linked_bp_matches(cpu, lbn)) {
1319 return false;
1322 return true;
1325 static bool check_watchpoints(ARMCPU *cpu)
1327 CPUARMState *env = &cpu->env;
1328 int n;
1330 /* If watchpoints are disabled globally or we can't take debug
1331 * exceptions here then watchpoint firings are ignored.
1333 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1334 || !arm_generate_debug_exceptions(env)) {
1335 return false;
1338 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1339 if (bp_wp_matches(cpu, n, true)) {
1340 return true;
1343 return false;
1346 static bool check_breakpoints(ARMCPU *cpu)
1348 CPUARMState *env = &cpu->env;
1349 int n;
1351 /* If breakpoints are disabled globally or we can't take debug
1352 * exceptions here then breakpoint firings are ignored.
1354 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1355 || !arm_generate_debug_exceptions(env)) {
1356 return false;
1359 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1360 if (bp_wp_matches(cpu, n, false)) {
1361 return true;
1364 return false;
1367 void HELPER(check_breakpoints)(CPUARMState *env)
1369 ARMCPU *cpu = arm_env_get_cpu(env);
1371 if (check_breakpoints(cpu)) {
1372 HELPER(exception_internal(env, EXCP_DEBUG));
1376 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1378 /* Called by core code when a CPU watchpoint fires; need to check if this
1379 * is also an architectural watchpoint match.
1381 ARMCPU *cpu = ARM_CPU(cs);
1383 return check_watchpoints(cpu);
1386 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1388 ARMCPU *cpu = ARM_CPU(cs);
1389 CPUARMState *env = &cpu->env;
1391 /* In BE32 system mode, target memory is stored byteswapped (on a
1392 * little-endian host system), and by the time we reach here (via an
1393 * opcode helper) the addresses of subword accesses have been adjusted
1394 * to account for that, which means that watchpoints will not match.
1395 * Undo the adjustment here.
1397 if (arm_sctlr_b(env)) {
1398 if (len == 1) {
1399 addr ^= 3;
1400 } else if (len == 2) {
1401 addr ^= 2;
1405 return addr;
1408 void arm_debug_excp_handler(CPUState *cs)
1410 /* Called by core code when a watchpoint or breakpoint fires;
1411 * need to check which one and raise the appropriate exception.
1413 ARMCPU *cpu = ARM_CPU(cs);
1414 CPUARMState *env = &cpu->env;
1415 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1417 if (wp_hit) {
1418 if (wp_hit->flags & BP_CPU) {
1419 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1420 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1422 cs->watchpoint_hit = NULL;
1424 env->exception.fsr = arm_debug_exception_fsr(env);
1425 env->exception.vaddress = wp_hit->hitaddr;
1426 raise_exception(env, EXCP_DATA_ABORT,
1427 syn_watchpoint(same_el, 0, wnr),
1428 arm_debug_target_el(env));
1430 } else {
1431 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1432 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1434 /* (1) GDB breakpoints should be handled first.
1435 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1436 * since singlestep is also done by generating a debug internal
1437 * exception.
1439 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1440 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1441 return;
1444 env->exception.fsr = arm_debug_exception_fsr(env);
1445 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
1446 * values to the guest that it shouldn't be able to see at its
1447 * exception/security level.
1449 env->exception.vaddress = 0;
1450 raise_exception(env, EXCP_PREFETCH_ABORT,
1451 syn_breakpoint(same_el),
1452 arm_debug_target_el(env));
1456 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1457 The only way to do that in TCG is a conditional branch, which clobbers
1458 all our temporaries. For now implement these as helper functions. */
1460 /* Similarly for variable shift instructions. */
1462 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1464 int shift = i & 0xff;
1465 if (shift >= 32) {
1466 if (shift == 32)
1467 env->CF = x & 1;
1468 else
1469 env->CF = 0;
1470 return 0;
1471 } else if (shift != 0) {
1472 env->CF = (x >> (32 - shift)) & 1;
1473 return x << shift;
1475 return x;
1478 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1480 int shift = i & 0xff;
1481 if (shift >= 32) {
1482 if (shift == 32)
1483 env->CF = (x >> 31) & 1;
1484 else
1485 env->CF = 0;
1486 return 0;
1487 } else if (shift != 0) {
1488 env->CF = (x >> (shift - 1)) & 1;
1489 return x >> shift;
1491 return x;
1494 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1496 int shift = i & 0xff;
1497 if (shift >= 32) {
1498 env->CF = (x >> 31) & 1;
1499 return (int32_t)x >> 31;
1500 } else if (shift != 0) {
1501 env->CF = (x >> (shift - 1)) & 1;
1502 return (int32_t)x >> shift;
1504 return x;
1507 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1509 int shift1, shift;
1510 shift1 = i & 0xff;
1511 shift = shift1 & 0x1f;
1512 if (shift == 0) {
1513 if (shift1 != 0)
1514 env->CF = (x >> 31) & 1;
1515 return x;
1516 } else {
1517 env->CF = (x >> (shift - 1)) & 1;
1518 return ((uint32_t)x >> shift) | (x << (32 - shift));