Merge remote-tracking branch 'remotes/kraxel/tags/seabios-1.12-20181120-pull-request...
[qemu/ar7.git] / target / arm / internals.h
blobd208b70a64f3ab850e954d2065fcc88c41ea2827
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
40 static inline bool excp_is_internal(int excp)
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
57 #define GTIMER_SCALE 16
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
97 /**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
107 * For AArch64, map a given EL to an index in the banked_spsr array.
108 * Note that this mapping and the AArch32 mapping defined in bank_number()
109 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110 * mandated mapping between each other.
112 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
114 static const unsigned int map[4] = {
115 [1] = BANK_SVC, /* EL1. */
116 [2] = BANK_HYP, /* EL2. */
117 [3] = BANK_MON, /* EL3. */
119 assert(el >= 1 && el <= 3);
120 return map[el];
123 /* Map CPU modes onto saved register banks. */
124 static inline int bank_number(int mode)
126 switch (mode) {
127 case ARM_CPU_MODE_USR:
128 case ARM_CPU_MODE_SYS:
129 return BANK_USRSYS;
130 case ARM_CPU_MODE_SVC:
131 return BANK_SVC;
132 case ARM_CPU_MODE_ABT:
133 return BANK_ABT;
134 case ARM_CPU_MODE_UND:
135 return BANK_UND;
136 case ARM_CPU_MODE_IRQ:
137 return BANK_IRQ;
138 case ARM_CPU_MODE_FIQ:
139 return BANK_FIQ;
140 case ARM_CPU_MODE_HYP:
141 return BANK_HYP;
142 case ARM_CPU_MODE_MON:
143 return BANK_MON;
145 g_assert_not_reached();
149 * r14_bank_number: Map CPU mode onto register bank for r14
151 * Given an AArch32 CPU mode, return the index into the saved register
152 * banks to use for the R14 (LR) in that mode. This is the same as
153 * bank_number(), except for the special case of Hyp mode, where
154 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
155 * This should be used as the index into env->banked_r14[], and
156 * bank_number() used for the index into env->banked_r13[] and
157 * env->banked_spsr[].
159 static inline int r14_bank_number(int mode)
161 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
164 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
165 void arm_translate_init(void);
167 enum arm_fprounding {
168 FPROUNDING_TIEEVEN,
169 FPROUNDING_POSINF,
170 FPROUNDING_NEGINF,
171 FPROUNDING_ZERO,
172 FPROUNDING_TIEAWAY,
173 FPROUNDING_ODD
176 int arm_rmode_to_sf(int rmode);
178 static inline void aarch64_save_sp(CPUARMState *env, int el)
180 if (env->pstate & PSTATE_SP) {
181 env->sp_el[el] = env->xregs[31];
182 } else {
183 env->sp_el[0] = env->xregs[31];
187 static inline void aarch64_restore_sp(CPUARMState *env, int el)
189 if (env->pstate & PSTATE_SP) {
190 env->xregs[31] = env->sp_el[el];
191 } else {
192 env->xregs[31] = env->sp_el[0];
196 static inline void update_spsel(CPUARMState *env, uint32_t imm)
198 unsigned int cur_el = arm_current_el(env);
199 /* Update PSTATE SPSel bit; this requires us to update the
200 * working stack pointer in xregs[31].
202 if (!((imm ^ env->pstate) & PSTATE_SP)) {
203 return;
205 aarch64_save_sp(env, cur_el);
206 env->pstate = deposit32(env->pstate, 0, 1, imm);
208 /* We rely on illegal updates to SPsel from EL0 to get trapped
209 * at translation time.
211 assert(cur_el >= 1 && cur_el <= 3);
212 aarch64_restore_sp(env, cur_el);
216 * arm_pamax
217 * @cpu: ARMCPU
219 * Returns the implementation defined bit-width of physical addresses.
220 * The ARMv8 reference manuals refer to this as PAMax().
222 static inline unsigned int arm_pamax(ARMCPU *cpu)
224 static const unsigned int pamax_map[] = {
225 [0] = 32,
226 [1] = 36,
227 [2] = 40,
228 [3] = 42,
229 [4] = 44,
230 [5] = 48,
232 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
234 /* id_aa64mmfr0 is a read-only register so values outside of the
235 * supported mappings can be considered an implementation error. */
236 assert(parange < ARRAY_SIZE(pamax_map));
237 return pamax_map[parange];
240 /* Return true if extended addresses are enabled.
241 * This is always the case if our translation regime is 64 bit,
242 * but depends on TTBCR.EAE for 32 bit.
244 static inline bool extended_addresses_enabled(CPUARMState *env)
246 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
247 return arm_el_is_aa64(env, 1) ||
248 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
251 /* Valid Syndrome Register EC field values */
252 enum arm_exception_class {
253 EC_UNCATEGORIZED = 0x00,
254 EC_WFX_TRAP = 0x01,
255 EC_CP15RTTRAP = 0x03,
256 EC_CP15RRTTRAP = 0x04,
257 EC_CP14RTTRAP = 0x05,
258 EC_CP14DTTRAP = 0x06,
259 EC_ADVSIMDFPACCESSTRAP = 0x07,
260 EC_FPIDTRAP = 0x08,
261 EC_CP14RRTTRAP = 0x0c,
262 EC_ILLEGALSTATE = 0x0e,
263 EC_AA32_SVC = 0x11,
264 EC_AA32_HVC = 0x12,
265 EC_AA32_SMC = 0x13,
266 EC_AA64_SVC = 0x15,
267 EC_AA64_HVC = 0x16,
268 EC_AA64_SMC = 0x17,
269 EC_SYSTEMREGISTERTRAP = 0x18,
270 EC_SVEACCESSTRAP = 0x19,
271 EC_INSNABORT = 0x20,
272 EC_INSNABORT_SAME_EL = 0x21,
273 EC_PCALIGNMENT = 0x22,
274 EC_DATAABORT = 0x24,
275 EC_DATAABORT_SAME_EL = 0x25,
276 EC_SPALIGNMENT = 0x26,
277 EC_AA32_FPTRAP = 0x28,
278 EC_AA64_FPTRAP = 0x2c,
279 EC_SERROR = 0x2f,
280 EC_BREAKPOINT = 0x30,
281 EC_BREAKPOINT_SAME_EL = 0x31,
282 EC_SOFTWARESTEP = 0x32,
283 EC_SOFTWARESTEP_SAME_EL = 0x33,
284 EC_WATCHPOINT = 0x34,
285 EC_WATCHPOINT_SAME_EL = 0x35,
286 EC_AA32_BKPT = 0x38,
287 EC_VECTORCATCH = 0x3a,
288 EC_AA64_BKPT = 0x3c,
291 #define ARM_EL_EC_SHIFT 26
292 #define ARM_EL_IL_SHIFT 25
293 #define ARM_EL_ISV_SHIFT 24
294 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
295 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
297 static inline uint32_t syn_get_ec(uint32_t syn)
299 return syn >> ARM_EL_EC_SHIFT;
302 /* Utility functions for constructing various kinds of syndrome value.
303 * Note that in general we follow the AArch64 syndrome values; in a
304 * few cases the value in HSR for exceptions taken to AArch32 Hyp
305 * mode differs slightly, and we fix this up when populating HSR in
306 * arm_cpu_do_interrupt_aarch32_hyp().
307 * The exception is FP/SIMD access traps -- these report extra information
308 * when taking an exception to AArch32. For those we include the extra coproc
309 * and TA fields, and mask them out when taking the exception to AArch64.
311 static inline uint32_t syn_uncategorized(void)
313 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
316 static inline uint32_t syn_aa64_svc(uint32_t imm16)
318 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
321 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
323 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
326 static inline uint32_t syn_aa64_smc(uint32_t imm16)
328 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
331 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
333 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
334 | (is_16bit ? 0 : ARM_EL_IL);
337 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
339 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
342 static inline uint32_t syn_aa32_smc(void)
344 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
347 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
349 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
352 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
354 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
355 | (is_16bit ? 0 : ARM_EL_IL);
358 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
359 int crn, int crm, int rt,
360 int isread)
362 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
363 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
364 | (crm << 1) | isread;
367 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
368 int crn, int crm, int rt, int isread,
369 bool is_16bit)
371 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
372 | (is_16bit ? 0 : ARM_EL_IL)
373 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
374 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
377 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
378 int crn, int crm, int rt, int isread,
379 bool is_16bit)
381 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
382 | (is_16bit ? 0 : ARM_EL_IL)
383 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
384 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
387 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
388 int rt, int rt2, int isread,
389 bool is_16bit)
391 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
392 | (is_16bit ? 0 : ARM_EL_IL)
393 | (cv << 24) | (cond << 20) | (opc1 << 16)
394 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
397 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
398 int rt, int rt2, int isread,
399 bool is_16bit)
401 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
402 | (is_16bit ? 0 : ARM_EL_IL)
403 | (cv << 24) | (cond << 20) | (opc1 << 16)
404 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
407 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
409 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
410 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
411 | (is_16bit ? 0 : ARM_EL_IL)
412 | (cv << 24) | (cond << 20) | 0xa;
415 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
417 /* AArch32 SIMD trap: TA == 1 coproc == 0 */
418 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
419 | (is_16bit ? 0 : ARM_EL_IL)
420 | (cv << 24) | (cond << 20) | (1 << 5);
423 static inline uint32_t syn_sve_access_trap(void)
425 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
428 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
430 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
431 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
434 static inline uint32_t syn_data_abort_no_iss(int same_el,
435 int ea, int cm, int s1ptw,
436 int wnr, int fsc)
438 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
439 | ARM_EL_IL
440 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
443 static inline uint32_t syn_data_abort_with_iss(int same_el,
444 int sas, int sse, int srt,
445 int sf, int ar,
446 int ea, int cm, int s1ptw,
447 int wnr, int fsc,
448 bool is_16bit)
450 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
451 | (is_16bit ? 0 : ARM_EL_IL)
452 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
453 | (sf << 15) | (ar << 14)
454 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
457 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
459 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
460 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
463 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
465 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
466 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
469 static inline uint32_t syn_breakpoint(int same_el)
471 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
472 | ARM_EL_IL | 0x22;
475 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
477 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
478 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
479 (cv << 24) | (cond << 20) | ti;
482 /* Update a QEMU watchpoint based on the information the guest has set in the
483 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
485 void hw_watchpoint_update(ARMCPU *cpu, int n);
486 /* Update the QEMU watchpoints for every guest watchpoint. This does a
487 * complete delete-and-reinstate of the QEMU watchpoint list and so is
488 * suitable for use after migration or on reset.
490 void hw_watchpoint_update_all(ARMCPU *cpu);
491 /* Update a QEMU breakpoint based on the information the guest has set in the
492 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
494 void hw_breakpoint_update(ARMCPU *cpu, int n);
495 /* Update the QEMU breakpoints for every guest breakpoint. This does a
496 * complete delete-and-reinstate of the QEMU breakpoint list and so is
497 * suitable for use after migration or on reset.
499 void hw_breakpoint_update_all(ARMCPU *cpu);
501 /* Callback function for checking if a watchpoint should trigger. */
502 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
504 /* Adjust addresses (in BE32 mode) before testing against watchpoint
505 * addresses.
507 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
509 /* Callback function for when a watchpoint or breakpoint triggers. */
510 void arm_debug_excp_handler(CPUState *cs);
512 #ifdef CONFIG_USER_ONLY
513 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
515 return false;
517 #else
518 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
519 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
520 /* Actually handle a PSCI call */
521 void arm_handle_psci_call(ARMCPU *cpu);
522 #endif
525 * arm_clear_exclusive: clear the exclusive monitor
526 * @env: CPU env
527 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
529 static inline void arm_clear_exclusive(CPUARMState *env)
531 env->exclusive_addr = -1;
535 * ARMFaultType: type of an ARM MMU fault
536 * This corresponds to the v8A pseudocode's Fault enumeration,
537 * with extensions for QEMU internal conditions.
539 typedef enum ARMFaultType {
540 ARMFault_None,
541 ARMFault_AccessFlag,
542 ARMFault_Alignment,
543 ARMFault_Background,
544 ARMFault_Domain,
545 ARMFault_Permission,
546 ARMFault_Translation,
547 ARMFault_AddressSize,
548 ARMFault_SyncExternal,
549 ARMFault_SyncExternalOnWalk,
550 ARMFault_SyncParity,
551 ARMFault_SyncParityOnWalk,
552 ARMFault_AsyncParity,
553 ARMFault_AsyncExternal,
554 ARMFault_Debug,
555 ARMFault_TLBConflict,
556 ARMFault_Lockdown,
557 ARMFault_Exclusive,
558 ARMFault_ICacheMaint,
559 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
560 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
561 } ARMFaultType;
564 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
565 * @type: Type of fault
566 * @level: Table walk level (for translation, access flag and permission faults)
567 * @domain: Domain of the fault address (for non-LPAE CPUs only)
568 * @s2addr: Address that caused a fault at stage 2
569 * @stage2: True if we faulted at stage 2
570 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
571 * @ea: True if we should set the EA (external abort type) bit in syndrome
573 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
574 struct ARMMMUFaultInfo {
575 ARMFaultType type;
576 target_ulong s2addr;
577 int level;
578 int domain;
579 bool stage2;
580 bool s1ptw;
581 bool ea;
585 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
586 * Compare pseudocode EncodeSDFSC(), though unlike that function
587 * we set up a whole FSR-format code including domain field and
588 * putting the high bit of the FSC into bit 10.
590 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
592 uint32_t fsc;
594 switch (fi->type) {
595 case ARMFault_None:
596 return 0;
597 case ARMFault_AccessFlag:
598 fsc = fi->level == 1 ? 0x3 : 0x6;
599 break;
600 case ARMFault_Alignment:
601 fsc = 0x1;
602 break;
603 case ARMFault_Permission:
604 fsc = fi->level == 1 ? 0xd : 0xf;
605 break;
606 case ARMFault_Domain:
607 fsc = fi->level == 1 ? 0x9 : 0xb;
608 break;
609 case ARMFault_Translation:
610 fsc = fi->level == 1 ? 0x5 : 0x7;
611 break;
612 case ARMFault_SyncExternal:
613 fsc = 0x8 | (fi->ea << 12);
614 break;
615 case ARMFault_SyncExternalOnWalk:
616 fsc = fi->level == 1 ? 0xc : 0xe;
617 fsc |= (fi->ea << 12);
618 break;
619 case ARMFault_SyncParity:
620 fsc = 0x409;
621 break;
622 case ARMFault_SyncParityOnWalk:
623 fsc = fi->level == 1 ? 0x40c : 0x40e;
624 break;
625 case ARMFault_AsyncParity:
626 fsc = 0x408;
627 break;
628 case ARMFault_AsyncExternal:
629 fsc = 0x406 | (fi->ea << 12);
630 break;
631 case ARMFault_Debug:
632 fsc = 0x2;
633 break;
634 case ARMFault_TLBConflict:
635 fsc = 0x400;
636 break;
637 case ARMFault_Lockdown:
638 fsc = 0x404;
639 break;
640 case ARMFault_Exclusive:
641 fsc = 0x405;
642 break;
643 case ARMFault_ICacheMaint:
644 fsc = 0x4;
645 break;
646 case ARMFault_Background:
647 fsc = 0x0;
648 break;
649 case ARMFault_QEMU_NSCExec:
650 fsc = M_FAKE_FSR_NSC_EXEC;
651 break;
652 case ARMFault_QEMU_SFault:
653 fsc = M_FAKE_FSR_SFAULT;
654 break;
655 default:
656 /* Other faults can't occur in a context that requires a
657 * short-format status code.
659 g_assert_not_reached();
662 fsc |= (fi->domain << 4);
663 return fsc;
667 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
668 * Compare pseudocode EncodeLDFSC(), though unlike that function
669 * we fill in also the LPAE bit 9 of a DFSR format.
671 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
673 uint32_t fsc;
675 switch (fi->type) {
676 case ARMFault_None:
677 return 0;
678 case ARMFault_AddressSize:
679 fsc = fi->level & 3;
680 break;
681 case ARMFault_AccessFlag:
682 fsc = (fi->level & 3) | (0x2 << 2);
683 break;
684 case ARMFault_Permission:
685 fsc = (fi->level & 3) | (0x3 << 2);
686 break;
687 case ARMFault_Translation:
688 fsc = (fi->level & 3) | (0x1 << 2);
689 break;
690 case ARMFault_SyncExternal:
691 fsc = 0x10 | (fi->ea << 12);
692 break;
693 case ARMFault_SyncExternalOnWalk:
694 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
695 break;
696 case ARMFault_SyncParity:
697 fsc = 0x18;
698 break;
699 case ARMFault_SyncParityOnWalk:
700 fsc = (fi->level & 3) | (0x7 << 2);
701 break;
702 case ARMFault_AsyncParity:
703 fsc = 0x19;
704 break;
705 case ARMFault_AsyncExternal:
706 fsc = 0x11 | (fi->ea << 12);
707 break;
708 case ARMFault_Alignment:
709 fsc = 0x21;
710 break;
711 case ARMFault_Debug:
712 fsc = 0x22;
713 break;
714 case ARMFault_TLBConflict:
715 fsc = 0x30;
716 break;
717 case ARMFault_Lockdown:
718 fsc = 0x34;
719 break;
720 case ARMFault_Exclusive:
721 fsc = 0x35;
722 break;
723 default:
724 /* Other faults can't occur in a context that requires a
725 * long-format status code.
727 g_assert_not_reached();
730 fsc |= 1 << 9;
731 return fsc;
734 static inline bool arm_extabort_type(MemTxResult result)
736 /* The EA bit in syndromes and fault status registers is an
737 * IMPDEF classification of external aborts. ARM implementations
738 * usually use this to indicate AXI bus Decode error (0) or
739 * Slave error (1); in QEMU we follow that.
741 return result != MEMTX_DECODE_ERROR;
744 /* Do a page table walk and add page to TLB if possible */
745 bool arm_tlb_fill(CPUState *cpu, vaddr address,
746 MMUAccessType access_type, int mmu_idx,
747 ARMMMUFaultInfo *fi);
749 /* Return true if the stage 1 translation regime is using LPAE format page
750 * tables */
751 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
753 /* Raise a data fault alignment exception for the specified virtual address */
754 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
755 MMUAccessType access_type,
756 int mmu_idx, uintptr_t retaddr);
758 /* arm_cpu_do_transaction_failed: handle a memory system error response
759 * (eg "no device/memory present at address") by raising an external abort
760 * exception
762 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
763 vaddr addr, unsigned size,
764 MMUAccessType access_type,
765 int mmu_idx, MemTxAttrs attrs,
766 MemTxResult response, uintptr_t retaddr);
768 /* Call any registered EL change hooks */
769 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
771 ARMELChangeHook *hook, *next;
772 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
773 hook->hook(cpu, hook->opaque);
776 static inline void arm_call_el_change_hook(ARMCPU *cpu)
778 ARMELChangeHook *hook, *next;
779 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
780 hook->hook(cpu, hook->opaque);
784 /* Return true if this address translation regime is secure */
785 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
787 switch (mmu_idx) {
788 case ARMMMUIdx_S12NSE0:
789 case ARMMMUIdx_S12NSE1:
790 case ARMMMUIdx_S1NSE0:
791 case ARMMMUIdx_S1NSE1:
792 case ARMMMUIdx_S1E2:
793 case ARMMMUIdx_S2NS:
794 case ARMMMUIdx_MPrivNegPri:
795 case ARMMMUIdx_MUserNegPri:
796 case ARMMMUIdx_MPriv:
797 case ARMMMUIdx_MUser:
798 return false;
799 case ARMMMUIdx_S1E3:
800 case ARMMMUIdx_S1SE0:
801 case ARMMMUIdx_S1SE1:
802 case ARMMMUIdx_MSPrivNegPri:
803 case ARMMMUIdx_MSUserNegPri:
804 case ARMMMUIdx_MSPriv:
805 case ARMMMUIdx_MSUser:
806 return true;
807 default:
808 g_assert_not_reached();
812 /* Return the FSR value for a debug exception (watchpoint, hardware
813 * breakpoint or BKPT insn) targeting the specified exception level.
815 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
817 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
818 int target_el = arm_debug_target_el(env);
819 bool using_lpae = false;
821 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
822 using_lpae = true;
823 } else {
824 if (arm_feature(env, ARM_FEATURE_LPAE) &&
825 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
826 using_lpae = true;
830 if (using_lpae) {
831 return arm_fi_to_lfsc(&fi);
832 } else {
833 return arm_fi_to_sfsc(&fi);
837 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
838 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
840 #define MEMOPIDX_SHIFT 8
843 * v7m_using_psp: Return true if using process stack pointer
844 * Return true if the CPU is currently using the process stack
845 * pointer, or false if it is using the main stack pointer.
847 static inline bool v7m_using_psp(CPUARMState *env)
849 /* Handler mode always uses the main stack; for thread mode
850 * the CONTROL.SPSEL bit determines the answer.
851 * Note that in v7M it is not possible to be in Handler mode with
852 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
854 return !arm_v7m_is_handler_mode(env) &&
855 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
859 * v7m_sp_limit: Return SP limit for current CPU state
860 * Return the SP limit value for the current CPU security state
861 * and stack pointer.
863 static inline uint32_t v7m_sp_limit(CPUARMState *env)
865 if (v7m_using_psp(env)) {
866 return env->v7m.psplim[env->v7m.secure];
867 } else {
868 return env->v7m.msplim[env->v7m.secure];
873 * aarch32_mode_name(): Return name of the AArch32 CPU mode
874 * @psr: Program Status Register indicating CPU mode
876 * Returns, for debug logging purposes, a printable representation
877 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
878 * the low bits of the specified PSR.
880 static inline const char *aarch32_mode_name(uint32_t psr)
882 static const char cpu_mode_names[16][4] = {
883 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
884 "???", "???", "hyp", "und", "???", "???", "???", "sys"
887 return cpu_mode_names[psr & 0xf];
891 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
893 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
894 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
895 * Must be called with the iothread lock held.
897 void arm_cpu_update_virq(ARMCPU *cpu);
900 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
902 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
903 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
904 * Must be called with the iothread lock held.
906 void arm_cpu_update_vfiq(ARMCPU *cpu);
908 #endif